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1. Introduction

A maze is a finite, two-dimensional, obstructed checkerboard.

To search a maze, a finite automaton, started on any cell, must
eventually visit every reachable cell without passing through any
barriers. In each step, the automaton determines which of its
neighbor cellsare reachable in one step and then, depending on its
state, moves north, east, south, or west one cell.

In 1974 Lothar Budach gave a very long (175 manuscript
pages) but readable proof that no single automaton can search all
mazes. The proof was quite formal, making nontrivial use of con
cepts and techniques of category theory.

About the same time, A.N. Shah gave a finite automaton with
5 pebbles which could search an arbitrary maze (the automaton
may drop a pebble on a cell it is visiting, then upon returning to
that cell later on can sense the pebble's presence, and if desired
pick it up and move it to a new cell). Shah also conjectured that
fewer than 5 pebbles would not suffice. The first of our two main
results is that, contrary to Shah's conjecture, the search can be
implemented with just two pebbles. The question is still open
whether a finite automaton with just one pebble can search any
maze.

The algorithm given has two parts, represented by the follow
ing two lemmas:

Lemma 1. A single automaton without pebbles can search any
maze, provided the westernmost of all southernmost squares of any
barrier is marked.

This lemma is proved by showing how the marked squares of
the barriers delineate a spanning tree covering the maze.

Lemma 2 (Unique Point Lemma). A one-counter automaton,
visiting cell P on the boundary of a barrier, may search the boun
dary of the barrier and return to P and stop, with the knowledge
whether or not P is the westernmost of all southernmost points of
that barrier. Moreover, the counter never need hold a number
larger than the perimeter of the barrier.
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Our proof technique also yields the following related results:

(1) there is a two pebble automaton that can search all mazes
(the two pebblessimulate the counter);

(2) there are two automata which together can search all
mazes;

(3) there is a logspace algorithm to search mazes, a vast
improvement over the naive linear space algorithm which con
structs a map of the maze.

Mazes and regular planar graphs appear similar on the surface,
but in fact they differ substantially. The primary difference is that
an automaton in a maze has a compass: it can distinguish N.E.S.W.
A compass can provide the automaton with valuable information,
as shown by the second of our two main results, namely that no
three automata together can search all finite planar cubic graphs.

These two results taken together say that mazes are strictly
easier to search than regular planar graphs, answering a question of
Blum and Sakoda (1977).

The proof that nosingle automaton can search alt finite planar
cubic graphs is quite straightforward, in contrast to BuJach's proof
of the corresponding result for mazes. The proof that no pair of
automata can search all finite planar cubic graphs is an order of
magnitude harder, but once the tricks are established the proof is
routine.

The proof that no three automata can search all such graphs is
again an order of magnitude harder than the proof for two. We
believe that a formal treatment a' la Budach would yield 175 pages,
as well. The proof makes use ofconcepts ofdifferential geometry!
In particular it requires the development of the geometry of the
regular tessellations |p,q) (notation is from Coxetcr (1963)). The
graph |p,q) is the unique planar graph of degree q, all of whose
faces have p edges. The geometry of the five finite |p,q|, i.e. those
for which

P q 2

corresponds to spherical geometry. The geometry of (3,6), (4.4),
and (6,3), i.e. those (p.q) for which

P q 2

corresponds to Euclidean plane geometry. The geometry of the
remaining (p,q|. i.e. those for which

i+±<±
P q 2

corresponds to hyperbolic geometry, first developed by Lobachev-
sky and Bolyai and later refined by Gauss. Paths of an automaton
in (p.q) are periodic, due to the rich automorphism structure of
(p.m); they correspond to curves of constant geodesic curvature in
the surface correspondingto (p.q).

•in Kc;itf.nch Center,



A ke> slop in the proof is thai, for suitable p and q, any two
initially parallel paths of the automaton in (p.ql diverge, in much
the same way that initially parallel geodesies diverge in a hyperbolic
plane or pseudosphere.

We develop the geometric tools in a formal way as far as pos
sible, since they may be of independent interesi. In particular we
formalize the concept of Gaussian curvature for the regular tessella
tions, and prove a discrete analog of the Gauss-Bonnet Formula,
one of the central tools of differential geometry.

Our lower bound proof for three automata does not appear to
generalize, and in fact the problem remains open whether there is a
finite set of automata which together can search all finite planar
cubic graphs.

2. Preliminary definitions and notation

Z, N, and R denote the integers, nonnegative integers, and
real numbers respectively.

Mazes

A vertex \s a point in the Euclidean plane with integer coordi
nates. An edge is a unit-length segment connecting two vertices. A
cell isa region of unit area enclosed by four edges. A maze consists
of an assignment of either black or white to each cell, so that

i) there are only finitely many while cells,

ii) any pair of white cells is connected by a path of edge-
adjacent while cells. I border

A' barrier is any maximal connected set of black cells. The unique
infinite barrier is called the border. Since any two white cells are
connected by a path or edge-adjacent white cells, it follows that bar
riers are simply connected, i.e. contain no holes. The maze illus
trated above contains three barriers, including the border.

The boundary of a barrier is the set of edges that separate
black cells from white cells. A while cell edge-adjacent to a black
cell is called a boundary cell.

Automata in mazes

A Jimie automaton consists of a finite control with start and
halt states and a transition function. A finite set of automata search
a maze as follows. The automata are started together on a white
cell, all in their start states. In one step, each automaton deter
mines which other automata are visiting the same cell and their
current states, which adjacent cells are while, and its own current
state. Based on this information, it moves to un edge-adjacent
white cell itiul enters :i new Mate

We iv,.i\ equip an automaton with a finite number ot pebble*.

each with a unique name. At the start, the automaton is carrying
all of its pebbles. Thereafter, it is always carrying some subset of
its pebbles, and the rest are lying on white cells of the mn/.e. In
each step the automaton determines the names of the pebbles it is
carrying and the names ol the pebbles lying on the cell it is visiting.
It may use this information to help determine its next transition.
In each step the automaton may pick up pebbles from the cell it is
visiting or deposit some.

We may also equip an automaton with one or more counters.
A counter holds a nonnegative integer, initially zero. In each step,
the automaton can increment or decrement ihe counter by one and
tesi for zero.

A set of automata is said to be capable of searching a maze if
every reachable white cell is visited by some automaton eventually.
The automata need not halt.

For a more formal treatment, the reader is referred to Budach
(1977).

Embedded graphs

Mazes are a special case of the following more general con
struct, which we will use in sections 4, 5, and 6.

An embedded graph G is an undirected, connected, planar
graph equipped with an embedding in the plane. VG represents the
(possibly infinite) set of vertices of G, EG its undirected edges, and
FG its faces. G* is the planar dual of G. EG is the set of directed
edges formed from edges in EG,

EG - ((u,v)||u.v)€EG).

The embedding of G imparts an orienlation to the edges incident to
a vertex. By an automorphism of G we will always mean an auto
morphism preserving this orientation. The group of all such auto
morphisms is denoted Atit(G). A subgraph H of an embedded
graph G is a full subgraph of G (i.e. one for which (u.v)tEH when
ever u.veVH and (u.v)eEG) equipped with the embedding inher
ited from G.

A class of embedded graphs we will find particularly useful is
the class of regular tesselations (p.q). where (p.q) is ihe unique
embedded graph of degree q, till or whose faces have p edges. Note
that (p.q)* =•• (q.p). The notation (p.q) is from Coxcter (1963).

A maze may then be viewed as a finite connected subgraph of
(4,4).

Automata In embedded graphs

Finite automata in embedded graphs arc defined with respect
10 an arbitrary but fixed keN. They may search only embedded
graphs which arc regular ofdegree k or their subgraphs Suppose II
is a subgraph or regular embedded graph G. A collection or finite
automata searches II by visiting its edges. In one stop, an automa
ton visiting (directed) edge (u.v) determines which other automata
are visiting (undirected) edge (u.v) and their current slates, and
which edges of G incident to v are present in H. Based on this
information, ii moves lo one of these edges (v,w). The automata
run synchronously. Automata in mazes represent the case k-4.

3. Algorithms for searching mazes

In this section we will prove

Theorem 3.1. There is a finite automaton with one counter
which can search any maze and halt.

Tins yields the following related results:
Corollary i.-\ There is a finite automaton with two pebbles

winch can search any maze and hall.

Corollary .?..?. There are two finite automata which together
can search any maze and halt.

Hie 1 counter or 2 pebbles will he used only to measure v-distance
(1 ititude) along a boundary.



Definition. The unique point of a boundary, BDRY, (or its
associated barrier) is the unique point (x0,y0) * BDRY such that for
all (x.y) i BDRYly0 < y or (y0 - >' and x0 < x)].

The unique cell of a boundary (or its associated barrier) is the
unique while cell whose NE or SW vertex is the boundary's unique
point. .^^

uniqul poinli

Unique Point Lemma. There exist both 2 pebble and 1
counter automata that one may place on any white cell, C, or a
maze together with 2 pebbles or an empty counter (whichever the
case may be), in state qNE (or qSvv)- The automaton, after some
moving about in the maze, will return to C with its 2 pebbles or
empty counterand stop in state q^P (qswS) if the NE (SW) vertex
of C is a "unique point" of a boundary and in q^ (q|w) if not.

Let C denote a closed simple curve in 2-dimensional
Euclidean space composed entirely or a finite number of horizontal
and vertical line segments. Let p0 be a point in the interior of
some vertical line segment. For p in the interior of some line seg
ment of C, let
v(p) - (total number or right hand turns - total number or left
hand turns that must be made in a walk from p0 to p that begins at
p„, initially goes north a nonzero distance, and continues in the
same direction along C until p is reached].
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The ±4 Lemma. v(p0) = 4 if the walk from p0 to p„ is
nomotopic to a clockwise loop. v(p0) - -4 if the walk is nomoto
pic to a counterclockwise loop.

Mod 3 Corollary. v(p0) - 1 mod 3 if the walk from p0 to p0 is
homotopic to a clockwise loop. v(p0) = 2 mod 3 if the walk from
p(, to Po is homotopic to a counterclockwise loop.

Definition. For p - a corner point and q = a point on a verti
cal linesegment having p as endpoint, let v(p) » v(q).

Algorithm and informal proof of the Unique Point Lemma for 1-
counter automata

A 1-counter automaton can check if a boundary point, p0, is
the unique point of that boundary as follows. First it checks that p0
is a lower left-hand corner point of a barrier:

Then it travels north from p0 along the boundary using the counter
to keep track or vertical distance or latitude. The counter interrupts
ihe automaton each lime it passes a point having the same latitude
as Po. While moving along the boundary, the automaton uses its

internal states to keep track of v(p) mod 3. When the automaton is
first interrupted at a point p, (at the same latitude as p0), it knows
whether p, lies west or east or p0, depending on whether v(p,) mod
3 = 1or 2, respectively (this follows from the mod 3corollary).

vtp.^morja-t 1 f
Y(p,)mod3»Z

Case I: p( lies west or p„. The automaton retraces its path
back to Po and halts there. In this case, p0 is notthe unique boun
dary point.

Case 2: P| lies east or p0. In this case, the automaton contin
ues moving along the boundary (as before) until one or the follow
ing two conditions occurs:

Condition 1. A boundary point pj is found at a latilude below
Po-

In this case, ihe automaton can retrace this path back lo p0 and
halt. Po is //or the unique point or that boundary.

Condition 2. The automaton discovers a finite sequence of
successive points p2,p,.... in the same latitude as P! with the pro
perty that each point p,+, (i ^ 1) lies west of the preceding point p,
until for the first time a point pllt, is found that lies east of the
preceding point pn.

r4 rj r2 *„♦,

In this case, p„ =• Po and p„,| = p(. The automaton then retraces
its path back from pnHl to pn and halls back where it started. In
this case, p0 is the unique point or the boundary.

Finally, the automaton can easily decide whether or not p„ lies
on the (outside) border on the basis or whether the cell northeast
or southeast of p0 is black.

Replacement of the counter by 2 pebbles

To replace the counter by 2 pebbles, note that the automaton
uses the counter only to measure y-displacement while traveling
along the boundary or a barrier. An automaton can as easily use 2
pebbles to store ihe count, with the distance along the boundary
between the 2 pebbles serving as counter contents und the lead
pebble serving to mark the position or the original 1-counter auto
maton.

The single counter automaton may also be replaced by two
finite automata without counters or pebbles. This construction we
leave to the reader.

Proof of Theorem 3.1.

Let us assign lo every vertex or a maze a color. Unique
points are lo be colored green and all other vertices are to be
colored white.

Extend the definition of a finite automaton so that in any cell
and in any state there, the automaton can determine which, ir any,
or the cell's 4 vertices are green. As usual, the automaton can
determine which or its neighboring cells arc white and then, based
on this information, can cither hall or cross an edge into a neigh
boring while cell and change its stale appropriately. This we call u
J..-lite green-eyed automaton.

A 1-counter or 2-pebhle automaton is ut leastas powerful as a
finite green-eyed automaton (with no pebbles and no counter) in a
maze whose unique points are colored green. This follows from the
unique point lemma. Thus we may (and shall) complete ihis proof
b) showing how a finite green-eyed automaton can seanrh a maze in
v.hich unique points are colored green



We begin by defining an ordering on the barriers of a maze.
Let X and Y be barriers. Let Vx and Vv denote their unique
points. Say that X is father of Y iff Y is not the border and X is the
first barrier reached by moving due south from VY. This ordering
ot the barriers forms a tree (since every barrier except the border
has exactly one father, and the border has no father) which we call
the tree of barriers:/

•• -4-4 "Ti'ti H

If the white cells form a simply connected region, i.e. if the
only barrier is the border, then a finite automaton can visit all
(white) boundary cells by moving from one such cell to the next,
keeping the boundary always on the left.

To search an entire simply connected maze, modify the above pro
cedure so that each time the automaton steps from one boundary-
cell to the next, it first goes into a subroutine that causes the auto
maton to move north until it reaches a barrier and then to return
south whence il came before going on to the next step. This way,
each white cell interior to a simply connected maze gets visited
immediately after the white cell beneath it gets visited.

Any maze can be converted to a simply connected one by
relabeling all vertical edges that lie between each green vertex and
the barrier immediately beneath it as boundary edges. The figure
below shows all boundary edges plus all those specially labelled as
such drawn heavily in black. The path of an automaton along this
boundary is shown dotted.

Finally, in order to halt, the finite green-eyed automaton has
only to check that it twice visited the (only) border cell having a
green vertex.

4. Lower bounds for 1 and 2 automata in planar graphs

This and the next two sections will be devoted to proving ihat
no three finite automata together can search all finite cubic embed
ded graphs. In this section we prove such a lower bound for I and
2 automata.

In contrast to Budach's corresponding result for mazes, the
following theorem is easy to prove:

Theorem 4.1. No single automaton can search all finite cubic
embedded graphs.

Proof. Start the automaton on (6,3). Since all verticesare or
degree 3 and no other automata are present, it eventually enters a
cycle or states, and thereafter its path is periodic, ir this periodic
path describes a cycle or (6,3), then cul away all or (6,3) except the
finite portion ever visiled by ihe automaton, plus a little margin.
The resulting finite graph may be made cubic again by cauterizing.
i.e. attaching

H
to the cut edges.

ir the automaton visits infinitely may vertices or (6,3), then
extend the periodic part or the path or the automaton backwards
and forwards several periods.

* t 9 \ f l w I a ft ». t f\ r

Start

Cul away all or (6,3) except the vertices on this path plus a shghl
margin.

A i

J4 / »' \J *' »-' *-' -V-"*

1

'Iwist the resulting graph around and identify AU with CD so that
the ends or the periodic path match up, lorming a continuous
periodic cycle. Cauterizecul edgesas above.



In both cases we have constructed a finite embedded graph
such that the automaton moves in a cycle without searching all of
the graph. This completes the proof.

The proof that no two automata can search all finite cubic
embedded graphs is somewhat harder. The main idea is to con
struct hypernodes -- finite, rotationally symmetric, embedded graphs
which are cubic except for three exterior vertices, e.g.

All nodes of a cubic graph G can be replaced by hypemodes tp to
get Go4. We then observe an automaton's motion in Go<£, viewing
occurrences of <p as black boxes, ignoring the automaton's motion
inside <t>. The key lemma (4.5) states that for any automaton M, a
special hypernode </>M may be constructed so that M's motion in
G<x>M is degenerate, i.e. between copies of </>m always goes left,
always goes right, or always backs up.

Let us restrict our attention to the behavior of an automaton

M in cubic embedded graphs. For such graphs, the orientation
defined by the embedding jakes the form of unique left and right
turn functions L,R:E*G—EG, as illustrated. We also include
B:EG—EG for backing up.

V
v/

L(u,x)
R(u,x)
B(u,x)

(x,v)
(x.w)
(x.u)

The functions L, R, and B are one-one and onto.

In the absence of other automata, the sequence of states that
M assumes and its turning behavior are independent of the graph it
is searching and quickly become periodic. In order to concentrate
on this periodic behavior, we will isolate the cyclesof M, i.e. those
states and transitions of M which remain after removing transitions
involving input from other automata and non-cycle states (p is a
cycle state if. when started in p, M reenters p infinitely often). The
cycles of M are governed by two functions

NEXTSTATE.Q—Q
DIRECTION:Q—(L.R.B)

where Q is the set of cycle states When visiting edge (u,v) in stale
p«Q with no other automata present, M moves into state
NEXTSTATE(p) and to edge DlRECTION(p)(u,v). NEXTSTATE
is one-one and onto Q.

\\ M is a set of cycles and G is a cubic embedded graph, the
set of conMurations for M and G is the set

CONFIG -EGxQ

describing a possible current position of M in G and current state.
The function NEXTCONFIG:CONFlG—CONFIG describes the
motion of M in one step:

NEXTCONFIG(u,v.p)-(DlRECTION(p)(u,v),NEXTSTATE(p)).

Since L, R, B and NEXTSTATE are 1-1 and onto, so is
NEXTCONFIG.

A hypernode 4> is a finite embedded graph with three dis
tinguished vertices such that

i) all vertices are of degree 3 except the 3 distinguished ver
tices, which are of degree 2;

ii) the 3 distinguished vertices occur on the boundary of the
exterior face of «/> (determined by the embedding),

Hi) 4> has a nontrivial automorphism.

We also allow the trivial hypernode. consisting of a single vertex and
no edges.

Given a cubic embedded graph G and hypernode £, we con
struct embedded graph G<x/> by replacing all nodes of G with <i>.
The embedding of Go<£ is inherited from G and 4>. For example, if
G is the graph

and <p is the small hypernode pictured above, then Go</>

If </., \!i are hypernodes, then so is <£o</». For example, if <t> is
the small hypernode pictured above, then </><><£ is the hypernode

Note that o is associative and that the trivial hypernode serves as an
identity' for o.

To be completely precise, we must associate with G»0 a mor-
phism h:Go<?>—G which collapses $, so that we know which
occurrences of <t in G<x£ replaced vertices of G. Wc will lake this
for granted, using "occurrence of 4 in Go<f>" for "inverse image of a
vertex of G under h". A hyperedge of Gc<£ is the inverse image of
an edge of G under h, and a hyperfaceis the inverse image of a face
of (i under h. Wc denote by Aut^(Gu</») the group ol automor
phisms of G«»A preserving occurrences of eV Then Aul^GotfO «*
Aut(G).

Suppose tf> occurs in Go<& as illustrated.



The embedding of <p imparts an orientation to the hyperedges
incident to u, v, and w. This orientation is given by left and right
turn functions L0, R^ and backup function B0.

L^(u',u)-(w,w')

R^(u',u)-(v,v')

B^(u',u)-(u,u').

L^, R^, and B4 are one-oneand onto the set of hyperedges.
Let M be an automaton consisting only of cycles,

M - <Q,NEXTSTATE,DIRECTION> .

Suppose M is started in state p visiting hyperedge (u'.u). In the
next step it enters <£. At some future time it must emerge from <p,
since NEXTCONFIG is one-one. If it emerges in state q, we take

NEXTSTATE* (p)=q

and

DIRECTION4(p)-L (respectively R, B)

if it emerges on hyperedge L^u'.u) (respectively
R.jfu'.u), Bd(u',u)). It follows from the fact that NEXTCONFIG is
one-one that NEXTSTATE* is one-one and onto Q, thus partitions
Q into disjoint cycles. Moreover, if p is a state of cycle C of M,
then NEXTSTATE*(p)eC, so this partitioning refines the partition
ing of NEXTSTATE.

In this way we have defined a new automaton

M* - <Q,NEXTSTATE*,DIRECiTONd>

such that the behavior of M* in G mimics the behavior of M in
God>. We could formalize this statement with a commutative
diagram involving paths of M in G<x£, paths of M* in G. and the
collapsing morphism Go<£—G, but for now we trust in the reader's
intuition and just state

Lemma 4.2. The behavior of M* in G mimics the behavior of
M in Gotf>.

Let C be a cycle of automaton M. C is an automaton itself.
There isa two-way infinite periodic sequence Xc< (L.R.Bl2 describ
ing the turning motion of M when it is in cycle C. The reduced
sequence xc is xc modulo trees. For example, if

xc- (LRBRBBLLBLLBLBLLLRBRRLBL)Z

then

xc - (LLRLRR)2.

For any periodic x, either xeBz or x«(L,R)z. We say x is degenerate
if x«(Lz,Rz.B'). A cycle C is degenerate if xc is. An automaton M
is degenerated all its cycles are. For example, if xc — Lz, and if M
is in cycle C on (6,3). then M is going counterclockwise around
some face, with possible tree-like excursions away from that face at
various points, but always returning to that face.

Wc now show how to construct a hypernode <t>M to make M
degenerate.

Lemma 4.3. For any nondegencrate cycle C, there is a hyper
node <f>c sucri tnat some cycle of C*. is degenerate.

Proof We may assume without loss of generality that xc is
reduced modulo trees. Since C is nondegenerate,

xcc(L,R)2-(Lz,RzJ.

There are three cases:

i) xc contains 2 consecutive L's.

ii) Xc contains 2 consecutive R's.

Hi) xc - (LR)Z.
Case i). Suppose xc - (LyL)z for some y c (L.R)'. Construct

<f>L- from 3 copies of y, placed end to end, oriented clockwise. Free
edges are cauterized. For example, if xt — (LyL)7 with y -
LLRLR, then <£c is the hypernode

If p is a state of C such that p occurs at the start of period LyL of
xc, and ifDis the cycle ofC^c containing p, then xu « l/.

Case ii) is analogous.

Case iii). If xc « (I.R)Z, use <f>c a

Then some cycle DofC*r has xD —Bz.
Lemma 4.4. If C is degenerate and tp is any hypernode, then

all cycles of C* are degenerate.

Proof. Follows from Lemma 4.2.

Lemma 4.5. For any M, there is a hypernode <£M sucn ,nat
M*M isdegenerate.

Proof. Execute the following program:

begin N :=* M;
<!> :•» the trivial hypernode.
while N has a nondegenerate cycle C do

begin <7> :•» <^c°'A'»
N :« N*c

end

end



The program always halts, since each iteration of the while loop
strictly increases the number of degenerate cycles, by Lemmas 4.3
and 4.4. and there can be at most |Q |. To show correctness, con

sider the statement

N - M*.

4This statement is certainly true upon first entry to the while loop.
Moreover, it is an invariant of the loop, since if N «=• M* then

• N*c-<M*)*c-Mv<>.

Thus N «° M* upon termination. But since N consists only of
dcge^rate cycles upon termination, the final value of <f> is the
desired hypernode <£M.

Theorem 4.6. No two finite automata together con search all
finite cubic embedded graphs.

Proof. Let M\ N' be the automata consisting of all cycles of
M, N respectively. Let 4> ~* cW°£n- By Lemmas 4.4 and 4.5, M'*
and N'o are degenerate.

Start M and N together in (6,3)o<£. If M and N see each other
only finitely often, then M and N eventually revert to M' and N\
But by 4.2, M' and N' in (6.3)o<£ are simulated by M'* and N'* in
(6,3), which are degenerate; thus M and N thereafter stay confined
within a bounded region of (6,3)o<£, tracing closed loops. The argu
ment of Theorem 4.1 now applies.

Otherwise, M and N see each other infinitely often.
Eventually a configuration is repeated, and due to the rich automor
phism structure of (6,3}o<£, the behavior of M and N is periodic
thereafter. The argument of Theorem 4.1 now applies. This com
pletes the proof.

5. The geometry of (p,q)
In this section we develop the geometric tools necessary to

the lower bound for three automata to be proved in section 6. This
section may be skipped on first reading. Proofs will be sketched or
omitted. We will be concerned with the geometric properties of the
regular tessellations (p.q) defined in section 2, particularly (3,q) for
q > 6.

The regular tesselation (p.q) is called spherical, plane, or hyper
bolic, if

p q 2
1 or <•>
2* 2'

respectively.

In studying the regular tesellations it is helpful to associate
with each (p.q) a surface of constant Gaussian curvature. With a
spherical (resp. plane, hyperbolic) tessellation we associate a sphere
(resp. Euclidean plane, hyperbolic plane), a surface of constant
positive (resp. zero, negative) Gaussian curvature. The geometry
of (p,q) is the discrete analog of the geometry of its associated sur
face. This correspondence has been observed by Coxeter (1963).

The five spherical tesselations (3,3). (4,3), (3,4), (5,3), (3,5)
are the only finite ones; they are the tetrahedron, cube, octahedron,
dodecahedron, and icosahedron. respectively. There are only three
plane tesselations: (6,3), (4,4), (3,6). The remaining tesselations
are the hyperbolic tesselations. A portion of (7.3) is illustrated.

The groups Aut((p,q)), denoted |p,q)f by Coxeter (1963),
have been studied by Miller (1902), Brahana (1923) and others
(see Coxeter and Moser (1972)).

Elements of Aut((p,q}) are denoted o-, t. Every u- is cither a
rotation (if it has finite order) or a translation (if it has infinite
order). Reflections are not allowed, since they do not preserve
orientation, a is a rotation iff it preserves an edge, face, or vertex,
in which case it has order 2, divisor of p, or divisor of q, respec
tively, (p.q) is symmetric in the sense that for every pair of edges
(u.v), (u',v'), there is a unique a with rr(u) — u'and cr(v) — v'.

d denotes the shortest-path metric on V(p,q). If A, B are sets
of vertices, we take

d(A,B) inf inf d(u,v),
utA »iB

although d is no longer a metric when extended to sets. Any auto
morphism is an isometry with respect to d.

Curves

Let (p,q) be an infinite tesselation. A curve in (p.q) is a two-
way infinite path in (p.q) such that any 3 consecutive vertices are
distinct. Curves may be directed or undirected. A parametrization
of a curve is a map x:Z—V(p,q) such that

i) x(m), x(m + l) are adjacent

ii) x(m-l) ^ x(m + l) for any m.

x, y, z denote parametrizalions. x and y parametrize the same
directed curve if there is a c such that x(m) — y(c+m) for all m.
x and y parametrize the same undirected curve if for some c, either
x(m) — y(c+m) for all m or x(m) =» y(c-m) for all m. We may
view a curve as the equivalence class of all its parametrizalions.
We will usually fix a parametrization, but most of the properties of
curves to be studied are independent of the choice of parametriza
tion.

Vx denotes the vertices of x and Ex its (undirected) edges. A
curve x is finite if Vx is. A curve y is a suhcurveof x if Ey G Ex.
We write d(x,y) for d(Vx.Vy). x(m.n) denotes the finite segment of
x consisting of x(m),x(m + l) x(n). We also allow semi-ndinite
segmentsby letting m=«—«> or n =»«>. s,t denote finite segments of
curves, s is a loop if its endpoints coincide. We define

|x(m,n) | =» n-m,

||x(m,n)|| = d(x(m),x(n)).

s is a shortest path if | |s 11 - |s |. x is a shortest path if all its finite
segments are.

Simplicity

A curve is simple if the relation

(<x(m),x(m+l)> |m«Z)

is a one-one function. For infinite x, this means no multiple ver
tices. For finite x, this means x traces a simple circuit in (p.q). A
simple loop of x is a loop with no multiple vertices except its end-
points. It is a consequence of the Jordan curve theorem that any
simple curve partitions (p.q) into exactly 2 (plane-) connected
regions. If x is directed, these regions may be designated left and
right in the obvious way. A finite simple curve is positivelyoriented
if it bounds the region to its left.

Periodicity

If c«Z then c is a period of x if there is a <r in Ant ((p.q)) with
ir(x(m))«x(c+m) for all m. For each c, if such a n cxisis then it
is unique, and is denoted o~Xi. The set

Aut(x) - {ir,x |c is a period of x)

is a subgroup of Aut((p,q)) isomorphic to Z or some cyclic group
Z,.:. x is said to be periodic if it has a nontnvial period



Proposition 5.1. If x is periodic then the following are
equivalent.

i) x is infinite

ii) Aut(x) =Z

iii) sup (|m-n | ( d(x(m),x(n)) < b) < ».
In the sequel, a period of x, otherwise unqualified, will mean a
nonzero period of x.

Adherence, divergence, approximation

Two curves are adherent if they stay close together. More
precisely, for A,B £ V(p,q). we say A adheres to B if

sup dfti.B) < oo.
IK \

A and B are adherent if they adhere to each other. Let

D(A,B) - max (supd(u,B), sup d(A,v)}.
uiA v«B

Then A and B are adherent iff D(A,B) < oo.

Let x be a directed curve, A £ V(p.q). x is said to diverge*
(torn A if x gets arbitrarily far away from A moving in the positive
direction, i.e. if

sup d(x(m,«»),A) — oo.
m

Likewise, x diverges' from A if

sup d(x(-o°,m),A) - °°.
01

x diverges from A if it both diverges*and diverges" from A. x and
y are divergent if they diverge from each other.

The notions of divergence*, divergence", and adherence
between curves are not related in general; however.

Proposition 5.2. If x.y are periodic, then the following are
equivalent:

t) x diverges* from y

ii) x diverges" from y

iii) x does not adhere to y.

In addition.

Proposition 5.3. If x.y are periodic and infinite, then the fol
lowing are equivalent:

i) x adheres to y

ii) y adheres to x

iii) Aut(x) f) Aut(y) is nontrivial.

Thus any pair of infinite periodic curves are either adherent or
divergent.

y is said to approximate x if Aut(x) £ Aut(y). By the above,
if x is infinite and periodic then any curve approximating x adheres
to x. Every periodic curve has a simple approximating subcurve.

Curvature

The total angle once around each vertex of (p,q) is 2ir. The
quantum angle between two consecutive edges adjacent to a vertex
is

Q-^L.
q

Every vertex x(m) along a curve x has a left interior angleini\(m), a
right interior angleintr(m), and an exterior anglecxi(m), defined by

x ^ \
respective:). For example, the curve

*4/>A/xt>0

~7V
in (3,7} has intl(m)»3Q, intr(m)«*4Q, arid ext(m)-'/jQ. The
function ext is the discrete analog of geodesic curvature. A curve is
uniquely determined by two vertices and its exterior angle function.

The Gaussian curvature of the graph (p,q) is defined by

KftJl +1—lL
[p q 2)

The Gaussian curvature of (p,q) has the same sign as the Gaussian
curvature of its corresponding surface.

The Gauss-Bonnet Formula

The Gauss-Bonnet Formula is one of the central tools of
differential geometry. It relates a curve x to the simply connected
region S it encloses, in terms of the geodesic curvature g of x and
the Gaussian curvature K of the surface. It states that

Xgdx+/JsKdS ** 2w«
where the first integral is taken with respect to arc length once
around x counterclockwise. For surfaces of constant Gaussian cur
vature such as spheres and pseudospheres, this reduces to

J* gdx +KA - 2jt
where A is the area of S.

We have a discrete version of this theorem for the graphs
(p.q). Let a face of (p.q) be divided into 2p congruent triangles, as
illustrated.

These triangles are called fundamental regions by Coxeter (1963).
Theorem 5.4. Let x be a finite, simple, positively oriented

curve in (p,q) with k vertices, enclosing A fundamental regions.
Then

k-l

£ext(m) + KA - 2ir.
m-0

Proof. Induction on A.

For the remainder of the section, we restrict our attention to
the graphs (3,q), q>6.

A curve x is left straight if

i) for no m does intl(m)=«Q;

ii) for no segment x(ij) does iniI(i)~intI(j)"-2Q and
intl(m)-3Q for i<m<j.

. Right straight is similar, x is straight if it is both left and right
straight.

If s — xfij), define

£exi - £ cxt(m).

Theorem 5.5. The following are equivalent:

i) x is a shortest path.

ii) x is straight.

iii) for all finite segments s of x,



|£ext| < 0- 6(|s|-I)K.
i

* The proofs i) — ii) — iii) are easy. The proof of iii) — i) involves
assuming the contrary and deriving a contradiction of 5.4.

Corollary 5.6. Every infinite periodic curve with period n has
a straight approximatingcurve y with IXx.y) < n.

Theorem 5.7. If q>7 and if x.y are adherent straight curves,
then D(x.y) < 1.

The proof is by contradiction of 5.4. Note that 5.7 doesn't hold in
(3.6).

Corollary 5.8. If q>7 and if x.y are infinite adherent curves
with positive periods m.n, then

D(x,y) <: 1+m+n.

Let n>0, q>7, and let Pn be the set of- infinite curves in
(3,q) with minimal positive period at most n.

Corollary 5.9. If x«Pn then all but a finite number of elements
of Pn diverge from x.

The following theorem will allow us to pass infinite periodic
curves through each other.

Theorem 5.10. Let x.y be periodic straight curves in (3,q),
q>6. Then there exists o-eAut((3,q)) such that

i) x and o-(y) diverge;

ii) x(0,oo) lies to the left of o-(y) and x(-oo.O) lies lo the
right of o-(y).

The following theorem will help us cut up the graph (p.q) to
form a finite graph.

Lemma 5.11. For any translation rx in Aut((3,q)), q^6, there
is a curve x such that

i) x and o-0x are disjoint;

ii) x liesentirely to the left of o-<.x and <rcX liesentirely to the
right of x.

Using 5.11, it is easy to prove

Lemma 5.12. If o- is a translation, then

infd(u,o-k(u)) > k.
u

Let o- be a translation and let (p,q)/o- be the graph obtained from
(p.q) by identifying vertices u and v iff there is an n such that v =
an(u). Let lu]=(o-n(u)|neZ). The (u) are the vertices of
(p,q}/o\ This graph may be visualized by finding x satisfying
5.11(i) and (ii), cutting {p.q} along x and o-oX, and wrapping the
•resulting graph around and identifying x(m) and o-(x(m)) to form a
cylinder. Using 5.11 and 5.12, we have

Theorem 5.13. If o- is a translation and keN, then
i) (p,q)/o-k is planar;

ii) the canonical morphism (p.q)—(p,q)/o-k which takes
u—(ul isone-one on regions of (p,q) of diameter k;

iii) the map lu}—(tr(u)], denoted (cr), is an automorphism of
(p,q}/o-\

5.13(ii) says that (p,q)/o-k looks locally like (p,q) on regions of
diameter <k.

If H is a subgraph of (p.q), let (H) be its image under the
canonical morphism (p,q)—(p,q}/Vk. The following is immediate
from 5.13(iii).

Corollary 5.14. If H is a subgraph of (p.q) preserved by o\
then (HJ is preserved by lo-}.

6. A lower bound for three automata in planar graphs

In this section we combine the results of the previous two
sections and prove

Theorem 6.1. No three finite automata together can search all
finite cubic embedded graphs.

We will be discussing the motion of 3 automata on {7,3}°^ for
some suitable hypernode <£. In order to use the theory of section
5, we will view periodic curves in (7,3)»0 as periodic curves in
(3,7), by fixing once and for all a pairof morphisms

(7,3)o0 ^ (7,3} *> (3,7)
where h collapses <A and g associates vertices (faces) of (7,3) with
faces (vertices) of (3,7). {7,3}«0. (7,3) and (3,7} are all in a sense
isomorphic, in that h and g provide one-one correspondences
between hypernodes (hyperedges, hyperfaces) of l7,3}<>£, nodes
'edges, faces) of (7,3), and faces (edges, nodes) of (3,7). more
over, h and g induce isomorphisms

Aut^({7,3}»0) - Aut((7,3}) -& Aut({3.7}).
Thus, periodic curves x in (7,3)°tf> may be viewed as periodic
curves g(h(x)) in (3,7) which mimic x. We will use this correspon
dence freely in the proof.

Proof of Theorem 6.1. Let A, B, C be 3 automata. Let
4 —4>A°<t>ft°<t>Q, where tp^ is defined in 4.5. By 4.2, 4.4, and 4.5,
A, B, and C are each individually degenerate in (7,3)*<£.

Consider the motion of A and B together in (7,3}°<£, in the
absence of C. At any point in time, either

(i) A and B will land on the same edge at some time in the
future; or

(ii) A and B will never see each other again.

If motion (i) occurs indefinitely, then the motion of A and B
together is eventually periodic, since they may occupy the same
edge in at most | A 11B| pairs of states, and since any subset of
2( |^|+4) directed edges has 2 similar edges under
Aut*((7,3}o0) (a pair of edges are similar if there is a <r mapping
one to the other). Thus the motion of A and B together is
modeled by a periodiccurve in (3,7).

If motion (ii) occurs eventually, then the motion of A and B
is degenerate; they each trace circles in {7,3)«<A. making no pro
gress.

Now consider the motion of A, B, C together in {7,3}»£. At
any point in time, either

(iii) each of A, B, C will see one or both of the other two
automata at some point in the future;

(iv) C will never see A or B again, but A and B will see each
other again (or some other permutation of A, B, C);

(v) no pair of A, B, C will see each other again.

If (iii) occurs indefinitely, then at any time some 2 automata are
within 2 hyperfaces of each other, and infinitely often, all 3 are no
more than 2 hyperfaces apart. This says that the motion of A. B, C
together is eventually periodic. If (iv) eventually occurs and then
occurs indefinitely, then C is degenerate, while A, B are governed
by (i) or (ii) above. Otherwise, if (v) occurs eventually, then all 3
automata are degenerate.

Now we will construct a finite embedded graph such that A,
B, C cycle in the graph without visiting every vertex.

Start the automata together in {7,3)»<6. If (v) eventually
occurs, then only a finite portion of the graph is ever visited, ami
the argument of 4.1 applies. If (iii) occurs indefinitely, th^n the
three automata together never get very far apart, and t»acc n
periodic path; thus the argument of 4.1 applies (use 5.13 and 5 14
to form a cylinder such as that appearing in 4.1). Otherwise, (iv)



occurs eventually, and then occurs indefinitely; i.e.. A, B, C run
together for a while, then A. B move away from C. A and B even
tually trace a periodic path, and can never get more than onehyper-
face apart, otherwise (ii) and hence (v) occurs. Then the path of A
and B together is modeled by a periodic curve x in (3,7). If x is
finite, then only a finite portion of the graph is ever visited, and the
argument of 4.1 applies. Otherwise x is infinite, and A and B gel
arbitrarily far away from C (Theorem 5.1 (iii)), since C is degen
erate.

Lei x be parametrized so that x(0) is near C and so that A
and B are moving in a positive direction along x. Let k be a period
of x. When A and B get sufficiently far from C, sayat x(nk), pick
the i up, move them to x(-nk), and put them down in the same
co;»»iguratioi. They will move in the positive direction along x
until they reach x(0) again. If they don't see C again, so much the
better. If they see C again, motion (iii) is resumed.

Later on, we will connect x(nk) and x(-nk) for some very
large n, in order to form a large periodic loop which looks locally
like x. Right now the purpose of moving A and B by hand from
x(nk) to x(—nk) is to see what the automata will do next, when the
three of them meet again near x(0).

If (iv) happens again, say this time B and C move away from
A on an infinite path, we repeat the above process -• extend the
path of B and C backward, and move them to the back end of this
path, so that they will be moving toward A.

Assume that, after being moved by hand, the two automata
we have moved always meet up again with the third automaton,
and the subsequent motion of the three automata together eventu
ally results in motion (iv). This is the hardest case; the other cases
(motion (iii) indefinitely; motion (v)) will be left to the reader.

Under the assumptions we have made, we must move two
automata by hand infinitely often. Eventually, the motion of A, B,
C, together with our removal of pairs of automata by hand,
becomes periodic. We define the main band as the set of vertices
visited by automata during motion (iii). The main band is the path
taken by the 3 automata when they are all together. At times two
automata leave the main band on an infinite path, leaving the third
automaton on the main band. These two automata are then said to
be on a side band. The main and side bands arc all modeled by
periodic curves in (3,7). The main band may be finite (i.e. may
trace a closed circuit); again, this is the easier case, so we will leave
this case to the reader and assume that the main band is infinite.

If one half of a side band diverges from the main band, the
other half does as well (Proposition 5.2). If a side band adheres to
the main band, we can just include it in the main band. There are
only finitely many of these (Corollary 5.9). Also, only a finite
number of paths of pairs of automata can occupy the same side
band, and distinct side bands diverge (Corollary 5.9). Thus we
have a periodic main band with periodic side bands diverging from
it and from each other, as illustrated.
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We now wish to separate tht; graph and connect the ends of the
main and side bands so that each band forms a continuous periodic-
cycle. Then A. B, C will go around this graph forever without
visiting every vertex: whenever the three automata are together,
they are on the main band; when 2 automata split away from the
third, they trace a side band around and back to the main band, and
the three automata resume tracing the main band.

First wecut the graph and connect the ends of the main band,
making sure it is several periods long. This is done by fomuna
(3.7}/<rk for some large k, where rrcAutfrnain band) (Theorem
5.13). Since the subgraph of (3,7) consisting of the main and side
bands is preserved by o\ Corollary 5.14 gives us the following
situation:

It would be easy to connect the ends of the side bands to form a
toroidal graph, by just bringing them around the outside und attach
ingthem. However, we must make the graph planar. Since all side
bands are periodic, we can make them as longas we like (there are
never any synchronization problems). There are two cases:



In the first case, we will bring the top of the side band around,
down through the opposite side of the main band, and then attach

<f the ends:

This will entail passing side bands through each other and through
the main band. Corollary 5.6 and Theorem 5.10 allow us to do this.
Passing the side band through the opposite side of the main band
may be viewed as another side band emanating from the main band
at that point. Such extra side bands exist by Theorem 5.10.

In the second case, the construction is the same, except there
is no need to pass through the main band.

If we do this for every side band, the result can be embedded
on a sphere. Below is a picture of a main band with three side
bands:

This completes the proof.

Conclusion

The behavior of finite automata on strings is thoroughly
understood. In light of this, we find it quite intriguing that lower
bounds for their behavior in graphs and mazes should be so
difficult. The authors, together with David Lichtenstein, worked
for some time on a lower bound for a single automaton in mazes
before discovering Budach's proof. Although he was several ideas
ahead of us, we were going in the same direction, after exhausting
many other tracks. This indicates to us that Budach's proof is the
right one, and unlikely to be simplified.

We are also quite excited by the wealth of interesting relation
ships which we have observed in conducting this research, many of
which m out opinion merit investigation. In particular we would
like to mention the following open problems:

(i) h it possible to construct a 1-counter automaton thai,
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when placed on a white cell next to a barrier will walk once com
pletely around the boundary of that barrier, and halt back where it
started?

(ii) Our 1-counter algorithm operates in time Ofiv) and space
Odog(n)). A linear (space-) bounded automaton can search an
arbitrary maze in linear time, by constructing a map. Is there any
algorithm for searching mazes in linear lime using only O(log(n))
space, or even o(n) space? Such a machine would not have
enough space to construct a map.

(iii) Coy (1977) has shown that no pushdown automaton can
search all finite planar cubic graphs, by showing that in the absence
of information from the graph, the pushdown store gives no extra
power. Is there a formal relationship between this result and the
analogous fact that all context free languages over a single letter
alphabet are regular?

(iv) Give a finite set of finite automata which together can
search all finite cubic planar graphs, or show no such set exists
(Paul and Tarjan have conjectured the latter). The lower bound
proof for two and three automata involves constructing a graph in
which two automata act like one automaton and one automaton acts

like a pebble. So far we have been unsuccessful in generalizing this
technique.

(v) Give a 1-pebble automaton that can search all mazes, or
show that none exists.
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