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Summary

A comprehensive study of multidimensional stability and related

problems of scalar and matrix polynomials is presented in this survey paper.

In particular, applications of this study to stability of multidimensional

recursive digital and continuous filters, to synthesis of network with

commensurate and noncommensurate transmission lines, and to numerical

stability of stiff differential equations are enumerated.

A novel approach to the multidimensional stability study is the classi

fication of various regions of analyticity. Various computational tests

for checking these regions are presented. These include the classical ones

based on inners and symmetric matrix approach, table form, local positivity,

Lyapunov test, the impulse response tests, the cepstral method and the

graphical ones based on Nyquist-like tests. A thorough discussion and

comparison of the computational complexities which arise in the various

tests are included.

A critical view of the progress made during the last two decades on

multidimensional stability is presented in the conclusions. The latter also

includes some research topics for future investigations. An extensive list

of references constitutes a major part of this survey.

Research sponsored by National Science Foundation Grant ENG76-21816.



I. Introduction

In a recent survey paper [1], this writer had discussed in detail the

stability and related problems of one-dimensional scalar polynomials. This

study was mainly based on the inners concept. The contents of the present

paper is a follow-up of the earlier one, and is devoted to stability of

multidimensional scalar and matrix polynomials. It is hoped that the con

tents of these two papers will clarify and update the stability problem of

linear dynamical systems first proposed by Maxwell [2] over a century ago.

During the last two decades, interest in the stability of two-dimen

sional polynomials arose in various applications. For instance stability

of two-dimensional continuous filters arises in providing a test for a

driving-point impedance realizability condition using commensurate-delay

transmission lines and lumped reactances [3-5]. On the other hand, stability

of two-dimensional digital filters occurs in the useful design of these

filters. Such filters, in recent years, have found widespread applications

in many fields, such as image processing, digitized photographic data and

geophysics for processing of seismic, gravity and magnetic data. Other

applications related to stability of two-dimensional polynomials arise in

numerical stability of stiff differential equations [6-10]. A comprehensive

study of stability of two-dimensional polynomials related to the above

applications will be a major part of this survey.

Extension of the stability problem to multidimensional polynomials is

receiving wide attention in recent years in view of the emerging widespread

applications and hence these will be also discussed in this survey.

The mathematical basis of multidimensional stability and related

problems lies in the theory of complex function of several variables. To

this end a few references in this area are cited in this survey [11-21].



Such references serve as background material for the study of the problems

discussed in this paper.

A survey of problems of two-dimensional stability of digital filters

is discussed in [22] and for two and multidimensional stability appeared in

[23]. Also collections of papers related to two-dimensional stability of

digital filters appeared in [24].

In this paper similarities and differences between one dimensional

and multidimensional stability definitions and tests will be emphasized and

discussed. A significant and important difference lies in the fact that

the singularities of F(z) = 0 are isolated or distinct points and those of

F(z,,...,z ) = 0, are multidimensional surfaces or manifolds. This fact
1 n

makes the stability tests for multidimensional polynomials much more difficult,

Other differences between general problems of one and multidimensional systems

are discussed in detail in the survey paper by Bose [25].

Problems of stability related to one dimensional linear systems as

surveyed in [l] were classified in terms of root-clustering in the complex

plane. These included the open left half plane, the unit disc, the negative

real axis and other related regions. The multidimensional stability

and its related problems will be classified in this paper in terms of regions

of analyticity. Such regions might encompass the hyperplane, the polydisc

or several other regions. By using such a classification the stability

conditions and the tests will be more organized and hopefully better under

stood.

A common feature of the one dimensional and multidimensional sta

bility lies in their definition. In both cases the concept of bounded-

input-bounded-output (BIBO) stability is used. This requires for the multi

dimensional recursive digital filter, for instance, that the sample response



g(m,n,k,...) be absolutely summable, i.e.,

I I I"-I|g(m,n,k,...)| < co . (1)
m n k Z

Other forms of stability definitions will be also discussed in this survey.

A minor difference between one dimensional and multidimensional stability

lies in the definition of the z-transform. For the one dimensional case, the

Z-transform is defined by

00

F(z) = I f(n)z"n (2)
n=-°°

while for the multidimensional z-transform, it is generally defined in the

literature of multidimensional digital filters as follows:

00 00-00 00

Z[{f(n,m,k,...,£)}] = I I I •'• I f(n,m,k,...)znzmz^.. (3)
n=-°° m=-°° k=-°° JL=-°°

This contrast in the definition is quite unfortunate for in some

cases it causes some confusion. A remark as to conversion of the stability

regions related to the classical definition of the z-transform as in (2) is

commented on in [23].

The objectives of this paper are threefold. First, because of the

increasing publication in this topic during the last twenty years, it

appears that such a review is timely. This review would aid the investi

gator in this field to digest and evaluate the various definitions, tests

and the computational problems. Secondly, by exposing the work done in

this field, it becomes apparent what research problems need solution in

order to advance these investigations. This is of importance in view of the

many applications of the field of multidimensional systems. A recent issue



of this Proceedings [26] edited by Bose is devoted exclusively to the study

of multidimensional systems. Thirdly, in reviewing and assessing the

research done in this area, it appears that there are some errors in the

definitions of the necessary and sufficient conditions for stability of two

and multidimensional digital filters. Also some of the proofs seem to be

incomplete or not quite correct. Hence, in this survey special attention

is devoted to these and other critical problems which arise in multidimen

sional polynomials and which have no counterpart in the one dimensional case.

Thus, it is hoped that the contents of this survey are both informative

and correct so that the new researcher in this field feels confident in

advancing the state of the field.

The structure of the paper is devoted to the following topics. In

Section II, a brief review of the stability of one dimensional polynomials

(scalar case) is given. In this review which supplements the earlier one [l],

presents an important theorem related to the inners concept which could be

of much use in the multidimensional case. As in the earlier review this

supplement is devoted to the inners approach to the stability. In Section III,

a complete study of the stability problems of two dimensional systems (sca<^

lar case) is presented. Most of the published material is devoted to this

area, in view of the widespread applications and the availability of effec

tive computational procedures. In this section the various stability tests

are discussed in detail. These include the classical one based on the inner

and symmetric matrix approach, table form, and local positivity.

Also included in this section is the impulse response test,

the cepstral method and the Nyquist-like test. In Section IV, the stability

discussion is extended to multidimensional scalar polynomials. The regions

of analyticity for the two-dimensional is generalized to the multidimensional



case. It is shown in this section that the computational efforts for the

stability tests increase tremendously as the dimension increases. Also in

this section the computational methods such as decision algebra, and algebraic

geometry ideas, are discussed in detail and the efforts to simplify the

tests are brought forth.

Having discussed the scalar case in detail, in Section V, the one

dimensional polynomial matrix stability tests are briefly reviewed. This

review will set the stage for the discussion of two dimensional matrix

polynomials discussed in Section VI. The application of such a case lies in

the stability of tests of two-dimensional multi-input multi-output linear digital

filters. In addition to the Lyapunov test, the various tests developed in Section III

are used for this case too. Extension of the stability discussion for multi

dimensional multi-input multi-output linear recursive digital filters

is discussed in Section VII. The major difficulties encountered in this case

as compared to the two-dimensional case are emphasized. Similar to the

two-dimensional case, the methods used for testing stability for the multi

dimensional scalar case are readily applicable.

Finally in Section VIII a critical view of the material presented in

this paper is discussed. In particular problems for future research

are singled out for further investigations.

An extensive list of references is presented in Section IX. Such a

list, though not very complete, serves as a starting point for the new

researcher in this challenging and emerging field of investigations.



II. Brief Review of One Dimensional Stability (Scalar Case)

In a previous survey paper [l], a review of the one dimensional stability

of a scalar polynomial is presented in detail. In this review the theory

of inners was presented and applied to many problems of stability and related

topics. Since this publication, many papers on the inners have appeared

[27-28] which clarified and extended the application of this notion. As

will be explained in later sections, the theory of inners is also applicable

to problems of multidimensional stability and hence the following theorem

recently obtained [29] will shed some light on these applications. Also it

would put the inners notion into more mathematical basis. Because of its

importance, it will be stated in the following

Theorem 1 [29]. Let the square matrix T be given as:

T =

m-1

"Ti
!o>

-T3

m

4J

m-1

(4)

m

where T- is upper triangular and T- is lower skew triangular (or J. T. is

upper triangular, where J, is the matrix having ones on the second diagonal

and zero elsewhere). Multiply the above matrix by another matrix as follows:

1 i °m-1
T T
1 2

T T
1 2

L I T„ T
m-iJ--3 4-» L

0 ! R

m-1 m

with L = -T^T" (which always exists).

m-1

(5)

m

Note that T- has unit elements on the main diagonal and I is the identity matrix,
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It follows that the inners determinants of T are identically the leading

principal minors of R where R is about a half size matrix. Note we can

transform R to be a symmetric matrix R by premultiplying the above equation
s

by a suitable triangular matrix. With this in mind we state:

Corollary 1. When T is a "Sylvester type matrix", then the symmetric

matrix R becomes the Hermite quadratic form (or the Bezoutian) associated
s

with the two polynomials used to generate the Sylvester matrix. Thus, we

have the following identity

{T is P.I. (Positive Innerwise)} o R is P.D.S. (Positive Definite Symmtric)
s

(6)

Remarks

1. The above identity was utilized in the survey paper [l] as well

as in the inners text [23] to present the stability or root clustering problem

in terms of either P.I. or P.D.S. matrices. This corollary will be also

utilized in later sections for multidimensional stability tests.

2. Knowing R one cannot recover the unique T unless T- and T_ are

known. This is due to the fact that R was obtained from T using a certain

algorithm. [29].

3. The left triangle of zeros of T is utilized effectively to obtain

a recursive algorithm to calculate the inners determinants. This is also

discussed in [l] and [23]. This algorithm can be also extended to compute

the inners determinants associated with multidimensional stability and

related problems.

4. Though the inners notion in [l] was exclusively used for testing

stability of one dimensional polynomials, there exists several other methods

which are not discussed in that paper. However, in the present paper all



the known methods for testing stability of one dimensional polynomials are

applied to the multidimensional case. This represents a basic departure from

the objectives of the earlier survey.

5. The corollary Under restrictive conditions can be extended to the

case when T is the generalized Sylvester matrix [29a]. The application of

this will be discussed in Section V.
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III. Stability of Two-Dimensional Polynomials (Scalar Case)

Problems related to the stability of two dimensional scalar polynomials

arise in many engineering applications. Historically, such applications

were first introduced by Ansell [4] in connection with the testing of

two-variable reactance properties with application to networks of

transmission lines and lumped reactances. In recent years, considerable

work has been devoted to the area of two-dimensional digital filters.

Stability problems related to such filters are well established in

the literature and hence we will study the stability of such filters first.

Finally, in this section, we will also study stability problems related to

numerical integration methods. Such methods include tests for A-stability,

A(a)-stability and stiff stability [l0]. Also, in this section, we will

apply the stability tests to the various regions of analyticity as related

to the above three major applications.

A. Stability of Two-Dimensional Digital Filters

There are various recursive schemes applied to these filters. These

include the quarter-plane, the symmetric half-plane and asymmetric half plane

filters. Each of these filters give rise to different analyticity regions

and hence these will be discussed separately.

a. Stability Property of Quarter-Plane Filters

The difference equation which describes the input-output relationship

of such filters is presented as:

K L I J

y(m,n) = I I p(k,A)x(m-k,n-£) - I I q(i,j)y(m-i,n-j) (7)
k=0 £=0 i=0 j=0

(i,j)^(0,0)
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In the above linear difference equation, {x(m,n)} and {y(m,n)} represent the

input and output sequences respectively. Figure 1 shows how the above compu

tation proceeds. First quadrant filters are often termed "causal" or "spatially

+
causal". The latter definition is used by Strinzis. A feature

of such filters is related to the fact that the value of a given point,

y(m,n), of the sequence depends only on the values of those points, x(i,j),

of the input sequence for which both i <^ m and j <^ n. Recursive equations

for the second, third and fourth quadrant filters are obtained similar to the

above equation and discussed by Huang [30] and others [3l]. Consequently,

the first, second, third, and fourth quadrant filters are said to recurse

in the ++, -+, —, and + - directions.

The two-dimensional z-transform of equation (7) leads to the transfer function,

P(z ,z )

G<VZ2> "Q(i^T W

where P(z-,z ) and 0(z..,z ) are the following two-dimensional polynomials

in z and z_

K L . •

P<VZo> = I I p(k,Jl)zV;
12 k=0 i~0 12 m

I J w
Q(z ,z )=11 q(i,j)z A

1=1 j=0 X z

In the first quadrant case, since q(0,0) = 1 is assumed, Q(z-,z9) 4 0

in some neighborhood U£ ^ {(z ,z ): |z |<e, |z |<e} of (0,0). Hence in U

the function G(z-,z«) is analytic and has the power series expansion

G(z ,z ) = I I g(m,n)zmzn (10)
L m=0 n=0 1 L

+

See references [44] and [64a].
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(g(m,n)} is the unit sample response of the first quadrant filter, and this

filter is BIBO stable if and only if {g(m,n)} is absolutely summable, i.e.,

I I|g(m,n)| < «, . (11)
m n

Remarks

1. When equation (11) is satisfied we denote that {g(m,n)} G !L .

'2
Also when J £|g(m,n)| < °°, we denote it as {g(m,n)} € i0 and finally when

m n

|g(m,n)| < k for some k < °° and for all (m,n) we denote it as {g(m,n)} €E Z^.

A discussion of these bounded forms will be mentioned later.

2. To apply the stability results for the other three quadrants, it

is only necessary to note that G(z_ ,z«), G(z- ,z« ), or G(z-,z2 ) can be

realized as a stable first quadrant filter [30], provided no essential

singularities of the second are introduced.

Consider now the two-dimensional rational function (in the literature

these are also referred to as two variable rational functions) of equation

(9), where P(z-,z„) and Q(z ,z_) are mutually prime (i.e., the two polyno

mials have no irreducible factors in common). A 2-tuple (z ,z ) such that

Q(zn,z9) = 0 but P(z-,z_) ^ 0 will be called a pole or a nonessential

singularity of the first kind (such a point is analogous to a pole in the

one dimensional case). A 2-tuple (z^z^ such that Q(z]L,z2) =P(z1,z2) =0

will be called a nonessential singularity of the second kind (such points

have no one dimensional analogs). Clearly, if (z ,z«) is a pole, G(z ,z_) = °°.

If (z ,z ) is a nonessential singularity of the second kind, the value of

G(z.,z.) is undefined.

a.1 The effect of the numerator polynomial on stability. Perhaps,

potentially the most important stability theorem for two-dimensional filters

is due to Shanks et al [32], who stated that GCz^Zg) is BIBO if and only if
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Q(2]L,z2) JO for all {(Zl,z2): |z]L|<l> |z2|<l} . (12)

Before applying this theorem, all irreducible factors common to P(z.,z2)

and Q(z_,z2) should first be cancelled (mutually prime polynomials). A test

for the existence of common factors is given in [33], and an algorithm for

extraction of the greatest common factor is given in [34]. A similar

theorem with some generalization for the case when P(z ,z_) = 1 was given by

Farmer and Bednar [35]. Shanks' theorem was used and quoted by many authors

as the necessary and sufficient condition for stability. Recently in

a classic paper by Goodman [36], it is shown that the necessity condition

does not hold. This is due to the effect of the numerator on stability

(which has no analog in the one dimensional case). The reason is as follows:

In some cases G(z.,z_) has a nonessential singularity of the second kind on

|z_| =1 and |z-| = 1 but (g(m,n)} € JL. The following two examples illus

trate this point:

(l-z )8(l-z )8 ?,<«,,*,)
VW = 2-zx-z2 = Q(Zl,z2) UJ;

a (l-z-)(l-z ) P9(z.,z)

Vl»«2>g 2-1«1-«2 =M^ (1A)

The above transfer functions have mutually prime numerator and denominator,

and Q(z-,z )^ 0 on {(z_,z ): |z |_<1, |z2|£l} except at z = z = 1.

Both G (z ,z ) and G„(z.,z„) have nonessential singularities of the second

kind at z- = z« = 1, but as shown by Goodman [36], G-(z_,z«) is BIBO stable

and G (z ,z ) is BIBO unstable. Hence, Shanks theorem is only sufficient

for BIBO stability.
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Remarks

1. For effective design of two-dimensional digital such cases

presented above are to be avoided [25]. Hence, for consideration of

design and avoiding such singularities, it is suggested privately by

Saeks and Anderson, that the BIBO stability should be referred to as

t
"structural stability". A mention of such type of singularities was also

indicated by Humes and Jury [37].

2. Critical cases involving non-essential singularities of the second

kind as applied to multidimensional network synthesis were also noted in

the work by Bose and Newcomb [38]. In the work of Goodman [36] several

theorems are given which are repeated in this survey.

3. To test for the presence or absence of nonessential singularity of

the second kind on the unit bidisc, it becomes necessary to ascertain whether

or not at |z1()| = |z2Q| = 1, P(z10»z20) =Q(zio»z*20) =°* Thou8h it: is
possible to solve this problem as implied by the results from elementary

decision algebra [39], the computational complexity is excessive, especially

for dimensions higher than two.

4. When G(z-,z0) = -r-j r, the stability theorem of Farmer and Bednar

gives the necessary and sufficient conditions for BIBO stability.

In the following, we will present few theorems related to stability:

Theorem 2. If G(z_,z2) represents a BIBO stable filter, then G(z.,z9)

has no poles in the analyticity region of equation (12), and no nonessential

singularities of the second kind in that region, except possibly on the

distinguished boundary of the unit bidisc (i.e., {(z ,z ): |z |= |z_| =l}).

The above is a necessary condition for BIBO stability.

Theorem 3. If G(z ,z_) has a bounded unit sample response, then G(z ,z )

is analytic in {(z-iZ,): |z |<_1, |z.|j<l} or Q(z ,z«) ^ 0 in the same region.
_

See also [71].
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Theorem 4. If G(z ,z2) is bounded in {(z^z^: \z±\ <1, |z2| <l}, then
{g(m,n)} is square summable or belongs to JL.

Theorem 5. If Q(z ,0) f 0 in equation (8) for |z1| <_ 1, then for any

fixed n, g(m,n) -*• 0 geometrically in n and

oo

I |g(m,n)| <•• (15)
m=0

In summarizing the discussion of this subsection, we state the follow

ing for G(z ,z ) in equation (8) in a table form.

Table 1. Various stability definitions

a. BIBO stability <* {g(m,n)> G ^

b. Q(z1,z2) f 0in {(Zl,z2): IzJ <1, |z2| <1> ±£ BIBO stability
c. Q(z1,z2) ^0in {(z^): \z^\ <1, |z2| <l}, except at |zj =|z2| =1

«-r- BIBO stability

d. {g(m,n)} G l2 +j- BIBO stability

e. lim {g(m,n)} =0 ±p (g(m,n)} G J^ or {g(m,n)> G %1

f. Q(Zl,z2) i 0in {(zrz2): |Zl|<l, |z2|<l} ^ |g(m,n)|<M<~,
for all m, n

g. |G(Zl,z2)| <N<oo in {|Zi| <1, |z2|<l} • {g(m,n)} G jl2

h. Q(z1,0) Oin {|zjll, |z9| <_l} —> \ |g(m,n)| < «>, for all n.
1 l z m=0

The above results have several important implications for the two-

dimensional filter design problem. In this survey, we do not discuss this;

however, we refer the reader to references [40] and [4l].
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a.2 Regions of analyticity for quarter plane filters. In the follow

ing discussion, we will assume that both P(z ,z ) and Q(z-,z„) in equation

(8) are mutually prime. Furthermore, we also assume that neither has non

essential singularities of the second kind on the unit bidisc. Both of

these cases are discussed earlier. Based on these assumptions, the stability

condition is ascertained by checking for the following analyticity region as

obtained by Shanks [32].

Q(Z;L,z2) t 0 , for all {(z^z^: |z1|<l, |z2|<l} (16)

To apply the above test, we have to map the region of the z..-plane,

|z_ | <^ 1 into the z_-plane by algebraic mapping Q(z ,zj =0. If the image

of that map lies completely outside the circle |z2| = 1, the filter is stable;

otherwise, it is not. This test is computationally involved and does not

lead to a finite algorithm. In a later work, Huang [30], .based on the earlier

work of Ansell [4] on the stability of two-dimensional Hurwitz polynomials,

had simplified the above test considerably. This was done by showing that

the above region is equivalent to the following region:

i) Q(Zl,0) f 0 , |z |< 1
1 X ~ (17)

ii) Q(zrz2) t 0, |zx| = 1, |z2| <1

Huang's proof of the equivalence of regions (16) and (17) is not com

plete and unfortunately his proof was propagated in some texts [23].

Recently, new and rigorous proofs were supplied by Goodman [42], Davis

[43] and still another by Murray [43a]. Hence, it is established that

t
Huang's theorem is correct.

A simple proof of Huang's theorem is contained in Gunning and Rossi, Analytic
functions of several complex variables, Prentice-Hall, 1963, Ch. 1, Section C,
Theorem 7. The author is grateful to John Murray for bringing this to hisv
attention. Similar proofs appeared in Goodman [40] and Strinzis 144].
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Remarks

1. The analyticity region in equation (17) is exchangeable as far as

z and z. are concerned. This exchangeable property is computationally use

ful in certain forms of two-dimensional polynomials.

2. The testing of region (17) can be performed by a finite algorithm

which relies heavily on root clustering properties of one dimensional poly

nomials. Various forms of such an algorithm will be presented later in this

section. Furthermore, the first condition of (17) can be also replaced by

Q(z1,a) # 0, for all |a| <1 and |z |<1 [44].

In independent works by Strintzis [44] and DeCarlo, Murray, and Saeks

[45], it has been shown that another region of analyticity is equivalent to

equation (17). This is given as follows:

i) Q(a,z„) # 0, for some a, |a| _< 1, when |z \ <^ 1

ii) Q(z1,b) ^ 0, for some b, |b| = 1, when |z |<1 (18)

iii) Q(2l,z2) 4 0, |zj = |z2| =1

In particular, with the choice of a = b = 1, the above conditions become

Q(l,z2) t 0 , |z2| <1

Q(Z;L,1) #0 , \zx\ <1 (19)

Q(Zl,z2) * 0 , |Zl| = |z2| =1

Still another region of analyticity was developed by DeCarlo et al [45] and

it is presented as follows:

Q(z ,z9) i 0 for z = z = z, when |z| < 1
L L (20)T

Q(Z;L,z2) t 0 for |Z]L| = |z2| =1

t
The first inequality follows directly from the first two conditions of
equation (18).
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Remarks

1. In contrast to the one-dimensional digital filter, the stability test

for the two-dimensional case involves several regions of analyticity while

the former has one region (i.e., root clustering outside the unit disc).

2. The significance of these various regions lies in the computational

aspects for the various tests. This gives more degrees of freedom in ascer

taining the most economical test. Again, as remarked earlier the algorithm

for testing for the regions (17)-(20) is finite and relies on the well

known stability tests for one-dimensional polynomials.

4.

b. Stability Property of Asymmetric Half-Plane Filters

Asymmetric half-plane filters (also referred to by Strinzis [29,44] as

nonanticipative) are an extension of the quarter-plane filters and, in fact,

quarter plane filters may be considered to be a special case of such filters.*i"+

As shown by Dudgeon [46], the asymmetric half-plane filter is the most

general such filter, and, furthermore, has important theoretical advantages

over the quarter-plane filters. In this survey which is devoted to stability

problems, we will not discuss these advantages; however, the reader is

referred to Dudgeon [46] and Goodman [40] for such discussions.

The difference equation of such filters is given by:

N M N
a a a

y(j,k) = I a(0,n)x(j,k-n) + J £ a(m,n)x(j-m,k-n)
n=0 m=l n=-La .

\ *b Nb ( }
- I b(0,n)y(j,k-n) -J J b(m,n)y(j-m,k-n)

n=l m=l n=-L,

The weighting sequences {a(m,n)} and {b(m,n)} have support on a region whose

shape is shown in Figure 2. There are seven other support regions whose

recursion equations are similar to equation (21), but the orders of

t
Sometimes referred to in the literature as nonsymmetric [47].
tt
Levy, et al. [126] have shown that using coordinate transformation one can

obtain the properties of half-plane filters from the quarter-plane.
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computation of the output sequence are different. For detailed discussion of

recursiveness as xrell as stability of all eight classes, the reader is re

ferred to Ekstrom and Wood [47,47a] and Dudgeon [46]. In Figure 3, it is shown

how the output sequence of a filter with difference equation (21) is computed.

A given point, y(j,k), of the output sequence can be computed if and only

if all of the points under the output mask have been computed previously.

Thus the possible orders of computation are more limited in the asymmetric

half-plane case than in the quarter plane case. This ordering is reflected

on the region of analyticity for stability properties of this filter. This

is explained as follows:

The transfer function of the filter described by equation (21) is:

P(z ,z )

G<VZ2>=Q(zf^y <22)
where

N M N
a a a

P(Zl,z2) = I a(0,n)z* + I I a(m,n)z^z2 (23)
n=0 m=l n=-L

a

Na n \ \
Q(VZ2) = I b(0»n>z2 + I I M*,n)zmzn (24)

n^O m=l n=-L,

Assuming the numerator and denominator or polynomials of equations (22)

are mutually prime and neither has non-essential singularities of the second

kind on |z-| = |z_| = 1, the stability condition as given by Ekstrom and

Wood [47] is presented in the following region of analyticity:

Q(0,z ) * 0 for all \z \ < 1
(25)

Q(z ,z ) t 0 for all |z2| = 1, |z |<1
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It should be emphasized that although equation (25) has similar but not

the same form as equation (17), the roles of z- and z are not interchangeable

as in the quarter plane case. Hence we consider equation (25) as a different

region.

Remarks

1. One can also obtain similar regions of analyticity as in (18) and

(20) for the asymmetric half-plane filters.

2. The effect of the numerator on stability follows exactly as in the

first quarter plane.

3. If G(z1,z2) = l/Q(z]L,z2), then G^z^ is a stable transfer func

tion if and only if Q(z ,z2> ^0, for all {(z^z^: |z1|£l, |z2|<_l}.

c. Stability Property of Symmetric Half-Plane Filters

Stability of symmetric half-plane filters, also referred to by Strinzis

[48] as spatially non-causal filters, were first discussed by Shanks and

Justice [32], who gave the following region of analyticity as a stability

test of G(«rz2) =Q( ^

Q(Z;L,z2) t 0when |z2| =1, IzJ <1 (26)

Using Strinzis [44] or DeCarlo et al [45] results, the above is simplified

to give

Q(z ,b) +_ 0 for some |b| = 1, when |z1| _< 1
and (27)

Q(Zl,z2) * 0when IzJ = |z2| =1

In equation (26), Q(z ,z ) is given by

N N
n m

2
Q(z.,z„) =1+1 lazz
xv 1* 2 Ln L„ mn 1

m=0 n=-N

(28)
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A modification of the above symmetric filter 1/Q(z ,z ) which is

recursive is given by Murray [49] as follows:

Q(V.2)-1+ I La-"Z" <29)m=l n=-N

The above filter omits all of the row m = 0 except for the constant

term. It differs from the asymmetric half-plane filter in the fact that the

latter omits half of this row.

The filter is stable if and only if the following region of analyticity

is satisfied:

Q(Z;L,z2) ?t 0, |zj =1and jzj <1. (30)

The above is the same as equation (26). The advantage of such a filter

lies in the fact that it is recursively realizable, while that of Shanks

and Justice is not.

Another form of noncausal two-dimensional linear filter (or processor)

is presented by S.S.L. Chang [50]. Such processors are said to be stable if

their impulse response decreases exponentially in all four directions. In

this work Chang [50] proved the following theorem:

Theorem 6. Let P and Q denote polynomials in z and z2 such that the

following region of analyticity is satisfied:

Q(Zl,z2) ^0 for all |Zl| = |z2| =1 (31)

Then the rational function

G<V*2^Q(^T °2)
has a unique stable expansion.
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Note in this case the z-transform of the two-dimensional input is defined as

X(zx,z2) =11 x(n,m)z1mz2n (33)

Similarly the z-transform of the output and impulse sequence is so defined.

This indicates the non-causality but the recursiveness of the filter. Also

note that the definition of stability in this case is different from the

earlier presented form. In concluding this discussion on recursive filters,

it might be mentioned that the class of finite impulse response (FIR) or

nonrecursiveness> the problem of instability does not arise, for in such

cases the filter is always stable.

B. Stability of Two-Dimensional Continuous Filters

The first work related to stability of two-dimensional continuous

filters is probably due to Ansell [4], In this work, the author was concerned

with obtaining a test for the two-variable reactance property. Such a test

has an application to networks of commensurate delay transmission lines and

lumped reactances. In the process of obtaining such a test, Ansell intro

duced the following definition:

Definition. A real polynomial in s- and s2, G(s..,s2), is a two variable

Hurwitz polynomial in the narrow sense if it has the following property:

G(s1,s2) t 0, Re s1 > 0, Re s2 > 0

G(s1,s2) ^ 0, Re s1 > 0, Re s2 = 0 (34)
and

G(s1,s2) ± 0, Re s2 > 0, Re s1 =0
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Remarks

1. The definition of Hurwitz in the narrow sense is generalized from

the one-dimensional real polynomial, in which case it is defined as

G(s) £ 0, Res >0 (35)

The above definition is introduced to distinguish it from polynomials

of the property:

G(s) ^0, Re s > 0 (36)

2. Ansell*s definition of two-variable Hurwitz polynomials in the

narrow sense is unfortunate. To be consistent with the one-dimensional case,

the following definition is adopted:

G(sl9s2) t 0, Re s1 >0, Re s2 >0 (37)

"Similar to the discrete case, it is conjectured that the above condition

guarantees that the impulse response of 1/G(s-,s9) is in L.. Thus we have

"BIBO" stability. However, a proof is still lacking. In the following

discussion we will refer to polynomials satisfying the analyticity region (37)

as "Two-Dimensional Hurwitzian".

Based on the maximum modulus theorem, Ansell simplified the analyticity

region of (34) to the following:

i) G^.l) ^0, Res.^0

ii) G(jw,s2) ^ 0, Re s2 > 0, for all to

iii) G(s., ,s2) has no factor (Si-Soq) having Re s20 = 0

There exists a finite algorithm to test for the above region, which

will be discussed in part D of this section.

In obtaining a finite algorithm for the stability test of first quarter

two-dimensional digital filters, Huang [30] modified the above equation



24

(without proof) to give the stability test for the region in (37) as follows:

i) G(s ,1) f 0, Re s. > 0
(39)

ii) G(jw,s2) f 0, Re s» > 0, for all w

a.

Using a bilinear transformation the above region is the Huang*s sta

bility region of equation (17). This justifies the definition of "Two-

Dimensional Hurwitzian" introduced in the above remark. The algorithms to be

used to check for (39) will be introduced later on. A proof for obtaining

the equivalence of (37) and (39) can be constructed on similar lines as for

the discrete analog. An analog continuous region, similar to (19), has been

obtained by Strinzis [44]. Also some necessary conditions for the stability

of G(s1,s ) are given by Weinberg [5].

C. Stability Properties for Numerical Integration Methods

Arithmetic tests for A-stability, A(a)-stability and stiff stability

are special cases of general stability tests for numerical integration

methods [6-10,51]. They are accepted as appropriate properties of numerical

methods suitable for solving a stiff initial value problem, as described by

a first order vector ordinary differential equation

x(t) = f [x (t),t] (40)

with initial condition

^o> - 5o (41)

The archtypical initial value problem by which the foregoing stability

properties are given definition is that in which (40) is the scalar, linear

equation

x(t) = qx(t) (42)

+
Such a transformation should be used with caution because the regions
are not always preserved. See Goodman, "Some difficulties with the
double bilinear transformation in 2-D digital filter design," to be
published in Proc. IEEE.
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subject to the constraint Re{q} < 0 and with initial condition xQ. Our

concern is with those methods, defining with (42) a linear difference equation

for x (n= 0,1,2,...) — a unique approximation of x(t) at t = nh+t_

(n = 0,1,2,...) — and having a real characteristic polynomial P in two variables

(dimensions) X(= hq) and C, such that {x } is asymptotic to the origin if and

only if P(X,£) = 0 implies |c| < 1. Under the precondition Re(q> < 0, the

solution to the archtypical initial value problem is also aysmptotic to the

origin. The following discussion follows the work of Bickart and Jury [10].

G.l Stability Region

Lett/ denote a simply connected open region of the extended complex

plane C* such that dV^-- the boundary of J— is piecewise regular. Then,

a method is said to be stable with respect to if

P(X,C) + 0, for all XG^ and CG D° (43)

where D denotes the open unit disc, and D is the complement in C*.

The above equation can also be written

P(X,£) ^ 0, for all Xef and |c| > 1 (44)

Remarks

Equation (44) differs from the regions of (16) and (37) in the fact

that C is related to the unit disc and X to the left half plane

(as will be seen later) and hence it is of mixed form. This represents a

generalization of the regions discussed earlier in (A) and (B).

To obtain a convenient test to validate equation (44), we transform

the polynomial P(X,C) into another polynomial Q(X,s) as follows:
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Q(X,s) =(s-1) PP(X,^) (45)

where m denotes the degree of P in £. Correspondingly, we let m denote
P q

the degree of Q in s. Then we have the following theorem:

Theorem 7. The implication of (44) is valid if and only if m = m and

Q(X,s) $ 0, for all X G^and Res >0 (46)

Similar to equations (16) and (34), the testing of (46) is very compli

cated even for the simplest forms of the region^. Hence, in order to

obtain a finite algorithm for testing stability, we can show as done earlier

in (A) and (B) that the region of (46) is equivalent to the following region:

i) Q(X,sQ) *0, for all XG^ and sQ G£c

ii) {XG9yn{X: Q(X,«) £0}} A{sGJCc} =>Q(X,s)^0 (47)
and

iii) Q(',s) $ 0, for all Re s = 0

—p

where ©C is the complement of the closure set of the open left half plane

and A means "and".

The tests of (47) are a root-clustering tests of (possibly, parametrized) one-

dimensional polynomials and hence can be tested by a finite algorithm. Such

tests will be discussed in part D. Furthermore, this test is more compli

cated than (17) and (38) because of the complexity of the region in equa

tion (46).

C.2 Special Cases

1. A-stability: In this case ^f in equation (47) is the open left half

plane (the Hurwitz region). Hence, XG ^"becomes s- G £ and s can be treated

as the second dimension s~.
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2. A[a]-stability: In this case for aG (0,tt/2], set^= 0"a = {X:

|arg{-X}| <a}. The region W is presented in Figure 4.

3. Stiff stability: In this case the region f is such that it

contains the open half-plane {X: Re{X} <-6} for some 6 _> 0 and has the origin

as a boundary point. This is shown in Figure 5.

D. Stability Tests for Various Analyticity Regions

Having delineated the various stability regions in (A-C), in this part

we will be mainly concerned with the various tests which have been known

for the stability tests of two-dimensional scalar polynomials. Also, in

this part we will indicate how to apply the various tests to the most impor

tant stability regions discussed earlier. The importance of the various

finite tests lies in the computational properties of the operations involved.

a. Symmetric Matrix Forms [52]

It is known that stability tests for one-dimensional continuous and

discrete scalar polynomials are checked by requiring a certain Hermitan

matrix (Hermite matrix for the continuous case and Schur-Cohn matrix for the

discrete case) to be positive definite. This matrix is formed under a cer

tain rule from the coefficients of the polynomials under study. Such tests

are well known and in reference [23] a complete study of these matrices is

given.

To apply this form of matrix to the region of (17) we proceed follow

ing the work of Anderson-Jury [52] as follows:

1. From the first inequality of equation (17) we form the reciprocal

polynomial of Q(z ,0) to obtain Q (z ,0) = znQ(z" ,0) where "n" is the

degree of the one-dimensional polynomial in z . By so doing, the region
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becomes |z |^ 1, and hence we can use the symmetric matrix of the reduced

Schur-Cohn as developed by Anderson-Jury [23], in this case.

To verify the first inequality of (17), the reduced Schur-Cohn matrix

applied to the real polynomial Q (z ,0) ought to be positive definite or

(P.D.) plus the positivity of about n/2 of the bilinearly transformed

coefficients [1]. We may note that if Q(z-,0) is used, then the reduced Schur-

Cohn matrix is negative definite.

2. To check the second inequality of (17), we replace the polynomial

Q(z ,z_), considered as a polynomial in z„, by its reciprocal (i.e., Q_(z1,z_))

in a way similar to Q(z ,0). By doing so, Q (z ,z.) is considered as a

polynomial in z«, whose coefficients are functions of a parameter z_. For

stability we require that the Schur-Cohn matrix for complex coefficients be

positive definite (P.D.). In this case the entries of the Schur-Cohn matrix

are polynomials in z- and/or z (conjugate). The minors of this matrix are

again polynomials in z and z , and are real because the Schur-Cohn matrix

is Hermitian. This fact will be utilized for the checking of positive

definiteness.

V

3. In a discussion by Siljak [53], it is pointed out that for the Schur-

Cohn Hermitian matrix to be (P.D.), it is required that only the determinant

of the matrix be positive plus the auxiliary condition in which the Schur

matrix for a point on the unit circle be positive. Usually, the point can

be taken as z =1.

4. To check the positiveness of the Schur-Cohn determinant for |z_| = 1
JQ — —10 —1

and bearing in mind that on |z- | - |eJ | = 1 we have z. = eJ = z. , we

obtain a polynomial of the following form:

i N a ^-J-\ - V - ^Jj.„-Jn (48)
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The above equation has to be positive (or of constant sign) on |z | - 1)?

To ascertain the above condition, we form the following polynomials.:

g(Z;L) =z^f(z1,z^1) >0 for |Zl| =1 (50)

To satisfy equation (50), we require that

g(l) > 0 (51)

and g(z ) of degree 2N has no roots on the unit circle or equivalently should

have N roots inside the unit circle; since g(z ) is a reciprocal polyno

mial, the other N are outside the unit circle. Tests for such conditions

are well known in the literature [23,53].

Another method for testing equation (48) for positivity is to make the

substitution (see reference [63] for this substitution):

, -1
Zl 1 2-2 2x1= 121 ,Ui+z-L )=4x^-2, ... (52)

in equation (48), which implies that

-1 <x1 < 1, when |z|=l (53)

Hence to check the positivity of equation (48), we require that f-(x-) be

positive for all -1 _< x _< 1, or alternatively f (x.) be devoid of real zeros

in this interval. Again, various tests [54] are available for checking this.

The implication of this substitution will be considered when the Bose method

[55] of local positivity test is discussed.

In order to discuss the testing of the other regions mentioned in part

(A), we will make the following observation on the auxiliary condition men-^

tioned earlier. If we denote the determinant of the Hermitian Schur-Cohn

matrix as |a|, then the auxiliary constraint can be written as*
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AUt .,-1 >° <">

The implication of (54) is that all the leading principal minors which

are now determinants of matrices having constant coefficients are positive.

This means that the polynomial Q (z.,z ) has all its roots inside the

V1
unit disc in the z--plane or alternatively the polynomial

Q(l,z2) i 0, |z2| <1 (55)

The above is evident because the checking of (55) requires the positivity

of the symmetric Schur-Cohn matrix related to Q(l,z2) which is exactly the

|A|at z = 1 in equation (54).

As pointed out in remark (2) of (a.2), the first condition of equation

(17) can be also replaced (without affecting the stability region of (16))

with

Q(Zl,l) * 0, IzJ <1 (56)

Comparing equations (55) and (56) with the first two equations of region

(19) we arrive at the conclusion that the testing of the third condition of

(19) is equivalent to testing the positivity of the determinant of the Schur-

Cohn Hermitian matrix. Hence, from a computational point of view the testing

of regions (17) and (19) is equivalent.

Similarly the testing of region (20) is now straightforward. The first

condition is a one-dimensional real polynomial to be tested for stability.

The second condition is similar to the third condition of (19).

The testing of the region of (25) is similar to (17), except in this

case the roles of z and z„ are not interchangeable. The testing of the

region (26) is again similar to testing the third inequality of (17). Finally,

the testing of the region (31) is similar to testing of the last inequality
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in (19). Hence, in conclusion we have shown that the checking of all the

analyticity regions in part (A) is performed by using the symmetric matrix form.

The application of the symmetric matrix approach to testing the regions

in part (B) namely regions (38) and (39) can be performed in a similar

fashion as for the regions in part (A).

Considering the region (39) first, we readily ascertain that the check

ing of (i) is readily performed using the symmetric form of the Lienard-

Chipart method [23] of the one-dimensional real polynomial. To check (ii)

we use the Hermitian matrix for the complex polynomial which requires [53]

that its determinant be positive for all u) and the matrix at w = 0 be posi

tive. The requirement that the determinant be positive is equivalent to the

following even polynomial:

F(w2) > 0, for all a) > 0 (57)

2
The checking of equation (57) requires that the even polynomial F(u> ) = F(x)

be devoid of positive real zeros. Such tests are available in the litera

ture [23,53]. It may be remarked that (using bilinear transformation)

Huang [30] applied this modified form of Ansellfs results [4] to check the

stability of (17).

The checking of the region (38) is more complicated. In this case the

testing of the second condition requires that all the principal minors of

the Hermitian matrix be non-negative (i.e.

|A (w)| _> 0, for all 0) and i = l,2,...,n) (58)

t
We may note that the determinant of the Schur-Cohn Hermitian matrix is,
except for a sign change, the same as the resultant of Q(zi,z2) written as
a polynomial in z2 and its reciprocal (inverse) polynomial. A sufficient
condition for satisfying the region (31) is that the resultant have no
roots on the unit circle in the z«-plane for all |z_| =1.
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where n is the degree of G(ja),s2) as a polynomial in s„. The testing of (58)

requires that n sets of the even polynomials corresponding to the n minors

of the Hermitian matrix be devoid of odd numbers of positive real zeros.

Again various tests are available [23,53] for checking this requirement.

In extending the application of the symmetric matrix form to the regions

in part (C), one may note that if sQ is taken as real and equals unity in

(i) of (47), we obtain a similar form of the first inequality of (38) or

(39). Furthermore, ascertaining (ii) and (iii) for the special cases dis

cussed in C.2 requires in part the checking of nonnegativity of the follow

ing even polynomials in certain regions (i.e.

|A±(u)| >0, for all ye4 and i=l,2,...,n (59)

is required) where *^f" represents a certain region and ri is the number of the

various polynomials. For a complete discussion of checking the stability

regions of A, A[ot] and stiff stability the reader is referred to Bickart

and Jury [10].

b. Innerwise Matrix Form [1,23]

In section II of this review, we established in equation (6) that for

each positive definite symmetric matrix there corresponds a positive inner-

wise matrix of double dimension. Hence, for the symmetric matrix form

discussed in Corollary 1, there corresponds an innerwise matrix with about double

dimension, but with left triangle of zeros. The pattern of the innerwise

matrix makes it computationally attractive, for there exists a recursive

algorithm for computing the inners determinants consecutively.

to explain briefly the inners approach to the stability of two-dimen

sional digital filters, we concentrate first on region (17) which can be

rewritten as:
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i) Q^z-.O) ¥ 0, |z |>1
11 L (60)

ii) Q-j/z^^) r 0, |Z]L| =1, |z2| >1

where Q is the reciprocal polynomial of Q(z 0) in equation C17) . To check condi

tion (i) of equation (60), we require that (n-1) x (n-1) innerwise matrix

be positive innerwise (or P.I.) plus about n/2 bilinearly transformed coeffi

cients of Q to be positive. Such a test was discussed in an earlier survey

paper [1] and in the text [23].

To check (ii) we require that the 2nx2n Schur-Cohn matrix be written

in an innerwise form [23], to be positive innerwise or (P.I.). The entries

of this matrix are no longer constants as in real or complex polynomials but

are functions of z such that |z | =1. The condition of stability requires

that this matrix be (P.I.), which is equivalent to the Schur-Cohn Hermitian matrix

discussed in (a) being positive definite (P.D.). Hence, we call the Schur-

Cohn innerwise matrix "innerwise Hermitian" because all the inners deter

minants (which are equivalent to the leading principal minor of the Schur-

Cohn Hermitian matrix) are real. The checking of (ii) requires that the

reciprocal polynomial obtained from the innerwise matrix determinant be

positive plus an auxiliary constraint which requires that this matrix be

positive for z = 1. The last condition is equivalent (based on earlier

discussions) to •

Q1(l,z2) t 0, for all |z2| >1 (61)

The condition that the innerwise determinant be positive follows the same

lines as in (a), namely the recursive polynomial should be devoid of zeros

on the unit circle and be positive for one point on the unit circle. The

checking of this special root distribution is discussed in detail in [1,23].

Similarly, we can check for all the regions discussed in (a).
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In a similar fashion we can check equation (39) for stability for two-

dimensional continuous filters as follows:

For condition (i) of (39), we use the Lienard-Chipart approach in an

innerwise form. In this case the (n-1) x (n-1) innerwise matrix is positive

innerwise plus about n/2 of the coefficients be positive.

In the checking of (ii)of equation (39) we form the nxn innerwise matrix

[1,23] whose entries are functions of w. This matrix is also "innerwise

Hermitian" and hence we apply the same procedure as done in case (a) for the

symmetric matrix form. In a similar fashion we can check for all the

regions of parts A, B and C of this section. Furthermore, the polynomials

in equation (59) are obtained from the inners determinants [10] rather than

from the principal minors of the Hermitian matrices.

Remarks

1. The use of the computational algorithm based on the double trian-

gularization of the innerwise matrix can be also extended for the stability

of the two-dimensional polynomials.

2. In recent years, Bose and his coworkers [54-58] have extensively

used the inners approach for checking the stability of two- and multidimen

sional digital and continuous systems. They have developed a computer

program for computing exactly the inners determinants.

c. Table Form for Stability Check

It is well known that the Routh table which was developed a century ago

can be adopted for checking the root-clustering and root-distributions of a

one-dimensional polynomial with respect to the imaginary axis in the s-plane.

Extension of the use of the Routh table to determining stability of two-

dimensional continuous filters has been performed by Siljak [53].
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In his studies, Siljak applied twice the Routh table to check stability:

once for the real polynomial related to the first condition of (39) and the

other time to the even polynomial which arises from testing the second con

dition of region (39). The connection between the table form and the inner-

wise matrix approach is discussed by Jury [59] in the Routh Centennial Lecture.

A similar table form exists for the stability or for the root-distribu

tion of real or complex polynomials with respect to its unit circle. Such

a table form was discussed by Cohn [60], Marden [61], Jury [62] and others.

The first authors to apply this table form to check the region of (17) were

Maria and Fahmy [63]. In their work, the authors didn't utilize the simpli

fication due to checking the positivity of the Schur-Cohn Hermitian matrix.

Thus, Siljak [53] in a later work has carried out this simplification, similar

to the continuous case.

Remarks

v

1. In the work of Siljak, the Routh table or its discrete analog was applied

twice for checking regions (17) and (39). However, he computed both the Schur-

Cohn Hermitian matrix and this matrix at a certain point, i.e. at z = 1

using the formulas for the symmetric matrix. It is evident that both of

these can be separately computed using the table form.+ Hence, the complete use

of the table of checking the stability of two-dimensional digital filters

requires its use four times. Similar conclusions can be reached for testing

equation (19).

2. If we use region (20) for checking stability, we require only

three times the use of the table. Thus, it appears that region (20) offers

certain computational advantages in certain cases.

3. Though the table form has been discussed for the typical regions

(17) and (39), it can be readily adopted to test for all other regions of

analyticity discussed in parts A, B and C.

Also, together they can be computed using one table.
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d. Local Positivity Method

This method which was introduced by Bose [55] is based on some properties

of network theory in one-dimensional continuous and discrete systems. The

basic test for checking the second condition of region (17) using this method

is based on the following theorem:

Theorem 8. \(z1>z2) ^0 for |z |= 1, |zj >1 if and only if:

1) the zeros of D (0,z.) and D9(0,z„)' are located on the unit circle

l*2l =i;
2) the zeros of D (0,z ) and D.(0,z ) are simple and alternate on the

unit circle |z_| =1; and

3) the resultant R(x) of D (x,z.) and D (x,z_) has no real roots in

the interval -1 <_ x <_ 1. (The polynomials R(x) or R(-x) have to be tested for

positivity for the local region -1 <_x£l. Hence, the method is called

"local positivity.")

To clarify the terms in the above theorems, we note

n2 -1Q1(z1,z2) =z2'Q(zlfz2x) (62)

where n« is the degree of z2 in Q(z..,z2).

and

Let
n.

Q1(Z1'Z2} = I VZl)z2 (63)

n2

Q1(Z1,Z2) =JA(Z1)Z2 (64)

2n.,

k=0

D (zx,z2)

Ki=i k=0 i

ifi
where the c Ts are constant. Substituting z = eJ in equation (65) to obtain,
_

It can be shown that for stability D-(x,z«) and D«(x,z9) cannot have a reduction
in degree for any x in -1 <_ x <_ 1. Therefore, if a reduction of degree occurs
in D.(0,z2), D2(0,z2) it is not necessary to proceed further with the test.
tt 0
Note that D has all its 2n2 roots inside the unit circle iff Q. has all its

n« roots inside the unit circle.
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2n

D (z1,z2) = I (I(2c, cosj9)z2)) (66)
|zj-l k=0 j J

Using the trigonometric identity,

cos n6 = I (9nv)(-l)kcos(n 2k)8 sin2k6 (67)
k=0 Zk

where m = n/2 for n even and (n-l)/2 for n odd. Equation (66) can now be

written as: 2n

°' N =1 dkWz2 (68)D(x,z2) = D (z1,z2)
Zl|=l k=0

where d, (x) are polynomials in x = cos 8. Let

1 2n2 -1D1(x,z2) =-[D(x,z2) +z2 D(x,z2 )] (69)

Remarks

1 2n2 -1D2(x,z2) =-|tD(x,z2) -z2 ZD(x,z2x)] (70)

1. The checking of the first inequality in region (17) can be performed

for the one-dimensional case following Schussler [63a]. It is given in the

following assertion:

Assertion. Let D(z) be a polynomial of degree n having real coeffi

cients, and let

D(z) = D1(z)+D2(z) (71)

where

D1(z) =|[D(z)+znD(z"1)] (72)
D2(z) =-|[D(z)-znD(z~1)] (73)
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Then D(z) ^ 0 in |z| >^ 1 if and only if all the zeros of D-(z) and D«(z) are

simple, are located on the unit circle |z| = 1, and also separate each other

+
on the unit circle.

2. Satisfying conditions (1) and (2) of Theorem § Is equivalent to the

polynomial D (z_ ,z.) ^ 0 for z = j, \zA >_ 1. This is translated in the

notation of (18) to the following:

Q(b,z2) * 0, for all |z2| < 1, |b| = |j| =1 (74)

In observing region (18), we arrive at the conclusion that the checking

of (3) in Theorem 8 is equivalent to the checking of the last condition of

(19). Thus, we have reconciled the stability test of this method to that

of regions (17) or (19).

3. One can simplify this test by considering the region of (20).

A similar theorem was also obtained by Bose [55] for the continuous

case as in region (39). It is based on the following theorem:

Theorem 9. It is known from before that

Q(s]L,s2) 4 0, in Re s± > 0, Re s2 >0 (75)

if and only if:

Q(s1,l) t 0 , Re s1 >0 (76)

Q(s.,s2) + 0 , Re s1 = 0, Re s2 > 0 (77)

Hence, the theorem states that Q(s.,,s2) ^ 0 in Re s. « 0, Re s2 >^ 0 if and

only if

+

An algorithm for testing this condition is given by Szezupak-Mitra-Jury
in IEEE Trans, on ASSP, vol. ASSP-25, pp. 101-102, Feb. 1977.
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t
1) the zeros of N.(l,s2) and N2(l,s2) are located on the line Re s2 = 0;

2) the zeros of N (l,s„) and N9(l,s9) are simple and alternate on the

line Re s„ = 0; and

3) the resultant R (u).) of N- (u>_ ,s2) and N2(oj- ,s2) has no real roots

where „2n2
N°(Sl,s2) =Q(Sl,s2)Q*(Sl,s2) = I n(o)1)s^ (78)

k=0

N(aj.,s9) =N°(Sl,s )| _,„. (79)

Nl(a)l,s2} "flN<V82)+N(Ml,"82)] (80)

^2((Mvs2) =|[N(a)1,s2)-N(a)1,-s2)] (81)

Note that equation (76) can be tested using a standard one-dimensional

technique by carrying out the continued fraction expansion of Ev Q(s-,1)/

Od Q(s ,1) or Od Q(s1»l)/Ev Q(s.,l). If all the coefficients of the con

tinued fraction expansion are positive then Q(s.,1) is a Hurwitz polynomial,

or alternatively the fraction is a reactance function.

and

e. Impulse Response Test

In the following discussion we will indicate how the impulse response

g can be used to check the stability of two-dimensional digital filters.
m,n

These discussions will follow the works of Strintzis[48,64], Goodman [40]

and Vidysagar and Bose [65]. First, we discuss the stability of the causal

or spatially causal filter of the quarter plane type. Following Strinzis

[64], we present the following theorem:

+

Again for stability, N1((o,s9) and N9(u>,s9) cannot have a reduction in degree
for any u in -» < w < «>. Therefore, if a reduction in degree is noticed in
N-(l,s9) and N-(l,s9) it is not necessary to proceed further in the test.
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,I il/m+n-.
Theorem 10. Let H be the upper limit of the double sequence i|gmjn! '

«= *= lsm,nP <82>
m and/or n-*-00

If G(z ,z )+ is rational in z± and z2, the following conditions exist:
(i) H < 1, the above is necessary and sufficient for convergence of

r r m n

G(VZ2)= I J,8./l!2
z.=0 Z =U

(83)
L « ^_/x°m,n 1 2

•i

in {|z |<1, |z,|<l} and for "BIBO" stability of the filter. If H>1,

the filter is unstable. Furthermore, as a consequence of (i), we also have

(ii) |g |<kp,ttHl, 0<k<+-, |p| <1. (84)
m,n* —

The case where H = 1, is discussed in the following lemma.

LemmaJ.. If G(z ,z ) is rational and if H = 1, then the unstable

singularities may only occur in one of the following regions:

1) |Z;L| =1, z2 arbitrary (85)
2) z arbitrary, |z2| =1 (86>
3) along the perimeter (but not the interior) of the set

{^lll1' l^ll1** i,e# when

G(z.,z )=°° for some |z |= |z2| =1 (87a)

G(z ,z )?«» if either |z1| <1or |z2| <1 (87b)

*In the followSig ,deyelopment, we assume that the numerator and denominator
of G(z ,z9) are mutually prime and that no non-essential singularities of
the second kind in |z.| = |z2|= 1 exist.
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Based on this lemma, we have

Theorem 11. [40,64]. If G(z-,z2) is rational and not in the class of

functions described in (87), the following conditions are all equivalent

and each is necessary and sufficient for BIBO stability of the filter:

(iii) |g I -*• 0 when m •> », orn->-» (88)
,0m,n'

(iv) I I |gmn|P<~, P>1 (89>
m=0 n=0 m,n

Other relationships related to stability of the impulse response are

described by Goodman [40] and a relationship similar to (iv) by Vidyasagar

and Bose [65].

The conditions (i-iv) developed earlier may be used directly as sta

bility criteria in the design of two-dimensional filters in the time domain.

If the design is based on a frequency-domain characterization

P(z1,z )

G<V*2> =QCi^T (90)

where Q is a polynomial function,

h h ilV
Q(VZ2> = I I ai i Zl Z2 (91)1 l i^O i2=o H9±2 L z

and P is a polynomial bounded in the intersection |z | £ 1, i = 1,2, then the

filter G(z ,z2) is BIBO if and only if the following filter is stable:

oo oo k k

£(ZTZ->) ° nl,1„ \ ° I I St lr Z11z9 (92)-1-2' Q(z1(z2) ^o^VV^l 2
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On multiplying both sides of (92) by Q(z ,z2) as given in (91) and

equating coefficients, we obtain

'0*° a0,0

h h
I I 8n -i n-i 8i i =°

i =0 i =0 nl V 2 2 V 2

for all n > 0, r = 1,2 where
r —

(93)

(94)

r A o, if any k < 0, r = 1,2 (95)

We thus obtain the following theorem due to Strinzis [64]:

Theorem 12. Let {g, . } be the sequence obtained by the recursive
^i'2

relations (93-95). Either of the following conditions is necessary and

sufficient for BIBO stability of (90).

1) ^ >k |kl+k2 <1for kx and/or k2 •* <°.
2) The polynomial Q(z ,z2) is nonzero for |z |= |z2| = 1, and gfc k

approaches zero as one or both indices k. 2 approach infinity.

Remarks

1. The recursive relationships in (93-95) can be used to test for

stability as indicated in (1) of Theorem 12. The storage required for

application of (1) is minimal. This is an advantage in some cases as com

pared with stability in tests of (a-d) of this section. Criterion (2) of

the above theorem is comparable to the checking of equation (19).

2. Conditions (i-iv) of Theorems 10, 11 are different than the one-dimen

sional case. In particular (iii) and (iv) are not equal to (i) and (ii)
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t
because of Lemma 1. However, the corresponding ones for the one-dimen

sional case are all equal.

3. Further stability conditions in terms of the impulse response are

given in Table 1.

4. Application of the stability test based on the impulse response

for one-dimensional polynomials was proposed long ago by Krishnamurthy [66]

To complete the above discussions, we will present a theorem due to

Strinzis [48] analogous to (83,84) and (88,89) for asymmetric half-plane

filters discussed in part A-b.

To generate an "impulse response" sequence of the filter in equation

(22), we need a Taylor's series expansion of G(z ,z_) (we assume that both

the numerator and denominator are mutually prime and no non-essential

singularities of the second kind on |z.| = |z«| - 1 exist),

G(Zl,z2) = I z^hm(z2) (96)
m=0

followed by Laurent series expansion of each h (z«),
m 2

n=oo

W - I <WZ2 <97>
n=-oo

where one property of h (z„) is given by:
m 2.

mz m! « m ± Z rt
9z. z =0

+

An example for (87a and b) is giyensbyi-.Goodaan [40]. It is as follows:

G(z1,zn) =1—2' 2-Z;L-z2

The above filter is BIBO unstable but has a unit sample response {g }
such that lim {g(m,n)} = 0. '

m,n-x»
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Other properties of h (z0) also exist, but these are not relevant to the
m z

following theorem [48].

Theorem 13. If G(z.,z ) is rational and unless (101) given below are

true, then the following conditions are all equivalent and each is necessary

and sufficient for the stability of asymmetric half-plane (non-anticipative)

filters.

lim Is 1-0 (99)
, i , m.n

m and/or n-*-±°°

OO 00

pfor some p, 1 < p < -H», £ J |h |P < +» (100)
m=0 n=-«> '

If there exists

lim |h (z0)|1/m =1 (101a)
m z

m

for at least one z , |z | =1 but for all other z , |z | = 1

lim |h (z9)|1/m <1, (101b)
m 2

m

then conditions (101a) always imply BIBO instability of the filters, but the

lim {gm } = 0.
m,n-~> m'n

f. Cepstral Stability Test

It is known that the two-dimensional complex cepstrum can be used for

the stabilization of recursive filters. Such studies were conducted by

Pistor [31], Dudgeon [46] and Ekstrom and Woods [47,47a]. Furthermore,

ceptral analysis has been used in speech processing by Oppenheim et al [67]

and more recently it is applied in image processing especially image deblur-

ring by Rom [68].
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As in the one-dimensional case, the two-dimensional complex cepstrum

is defined as the inverse Fourier transform of the complex logarithm of the

two-dimensional Fourier transform of a sequence. Thus, if two sequences are

convolved, their cepstra add. For the following discussions we define the

two-dimensional z-transform cepstrum G(z- ,z„) as the logarithm of the

two-dimensional z-transform of an array g(m,n) € & :

G(Zl,z2) = £n[Z{g(m,n)}] = AJGU^)] (102)

In the works of Pistor [31] and Ekstrom and Woods [47] on two-dimen

sional spectral factorization, they have shown how such a factorization can

be used for obtaining a stability theorem for two-dimensional recursive fil

ters. Pistor [31] gave such a criterion mentioned below and Ekstrom and

Woods [47], and later Ekstrom and Twogood [69], gave algorithms for the

stability test. In the following discussions we will principally follow the

algorithm of Ekstrom and Twogood [69].

Theorem 14 [31]. The quantity {1 (m,n)} >Q is recursively stable if and

only if there exists a power series n—

l \\ nZ"Z" <103)m=0 n=0 Tn,n

that is absolutely convergent and equal to I Q (z ,z?) for all (z ,z ) such

that |z1| _< 1, |z2| £ 1where fq(m,n) is a first quadrant sequence and

{q } is the inverse z-transform of Q(z,,z0), i.e.
m,n ^ 1* 2

{Vn} -* Q<VZ2> =V»<"l'*2) <104>

In the above Q(z-,z2) represents the denominator of the causal filter

F(z1,z2) = l/Q(Z;L,z2).
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Corollary 2[31]. The s} quadrant function q in which I = 2,3,4

is recursively stable if and only if I [Q. (z_,1/zJ], I [Q9(l/z_,1/z.)] or
nil z nz l z

*n^3^zl'z2^' respectively, are equal to a power series of the form (103)

that is absolutely convergent for all (z ,z ) in |z | <1, |z | <1.

Though the above theorem and corollary of Pistor [31] are of interest,

he did not present an algorithm for testing stability. Such a test was

later obtained by Ekstrom and Woods [47] as an application of the two-dimen

sional spectral factorization. It is based on a two-dimensional factoriza

tion operation involving the autocorrelation function of the filter which

covers both the quarter and half planes. By using the autocorrelation of

the filter, this test involved calculating the logarithm of a real array.

While this introduced substantial complexity into the computation, it did

avoid the problems associated with defining the complex logarithm. Recently

Dudgeon [70] has shown the existence of a two-dimensional complex cepstrum.

Based on such existence, Ekstrom and Twogood [69] have obtained an alternate

test which removes the earlier complexity and is computationally attractive.

In the following, we will present in detail this test.

Cepstral Test [69]. For stability considerations, the important property

of the cepstral transformation is that the nonessential singularities and zeros

of G(z-,z_) map into the essential singularities and zeros of G(z-,z9).

Because of this, the regions of analyticity of G(z ,z ) and G(z ,z ) are

identical. Now if G(z ,z9) is a stable filter, it can be written in a power

series for m, n E]R (where H is the region of support of the filter, whether

a quarter-plane or asymmetric half-plane) and hence G(z ,z.) can be similarly

expanded:
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G<vO =IIg<«.n)z"z; (105)

The above leads to the following theorem which gives the stability test.

Theorem 15 T691.The asymmetric half-plane recursive filter G(z1,z2) =

is stable if and only if its cepstrum g(m,n) has support on ]R.
Q(z1,z2)

Because G(z ,z ) is analytic on {|z |=1, |z |<l}, g(m,n) takes support

on the entire half plane (in this case the half-plane defined by {m^O, n>^0}

U {m<0, n>0}). The additional region of analyticity for G(z,0) on

{|z- |<_l} ensures that g(m,n) = 0 for n < 0. The above theorem can be

generalized to other classes of half-plane and quarter-plane filters.

The implementation of this theorem into stability test proceeds as

follows. 1. Form Q(z ,z2) from q(m,n) of the filter to be tested for

stability. 2. Calculate Q(z ,z ) and then its inverse z-transform to obtain the

cepstrum q(m,n). If q(m,n) = 0, for m,n ^ H, then the filter is stable.

If q(m,n) # 0 for m,n $1R, then the filter is unstable. In the numerical

realization of the test, one can replace the z-transforms with the DFT

(discrete Fourier Transform) as shown in Figure 6. In this figure ^(mjn)

is the aliased version of q(m,n). The difference can be calculated from the

size of DFT.

In order to ensure the analyticity of Q(u,v) which is equal to

Q(u,v) = AnQ(u,v) = £jQ(u,v)| +j argQ(u,v) (106)

the phase term, arg Q(u,v), must be periodic and continuous as shown by

Dudgeon [70]. To ensure continuity one can use a method called phase

unwrapping [69], and to ensure periodicity (with period 2tt) , one uses the

method of linear phase removal [70]. A method for accomplishing this is

reported by Ekstrom and Twogood [69] with numerical examples for performing

the stability test.
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Remarks

1. The cepstral method is mainly applicable for numerical testing for

stability. As such, it is not amenable to obtain stability inequality con-

tditions as can be done (for low order polynomials) using the tests (a-d).

2. This method is an approximate method and thus it might be less

reliable than the methods of (a-d). The latter methods can also be approxi

mate when the zeros of the polynomials are near the boundaries of the regions

of analyticity. However, several effective numerical methods are known to

give in this case precise results.

3. A computational comparison between a former complicated test of

Ekstrom and Woods [47] with the table form of Maria and Fahmi [63] showed

the cepstral method to be more efficient. However, this comparison

is made with the complicated procedure of Maria and Fahmy (i.e. without

taking computational advantages of the positive Hermitian matrix) and thus

a new comparison of the present method and Siljak1s table form is indeed

warranted.

In spite of some minor drawbacks of the cepstral method, it is very

useful and indeed it has potential for applications in problems other

than stability.

g. Nyquist-Like Test

It is well known that the Nyquist criterion gives information on the

stability of one-dimensional discrete and continuous systems by graphically

plotting the Nyquist locus in the z or s-planes. In a series of articles,

R.A. DeCarlo, J. Murray and R. Sacks [45,71,72] have clearly extended the

Nyquist mapping to determine the stability of two-dimensional as well as

multi-dimensional scalar polynomials. The key to their formulation of the

Nyquist-like theory is the observation that from an abstract analytical

+

See eqns. (120) and (121).
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functional point of view the classical one-variable Nyquist plot is simply

a method for determining whether or not an analytic function in one variable

has zeros in an appropriate region by plotting the image of the function on

the boundary of the region. To obtain a Nyquist theory in two dimensions,

2
one can decompose the region of C , in which Q(z ,z2) of equation (17) is

forbidden to have zeros as a union of a family of one-variable regions to

which the classical Nyquist theorem applies. Here, we define the disc Da in
2
C , for real a, 0 <_ a £ 2tt, by

Da= {(eja,z2), |z2|<l} (107)

and we define the disc D by

D={(z^O), |zj <l} (108)

corresponding to the region of analyticity in equation (17). Based on the

above observation, we have

Theorem 16 [71].A digital filter characterized by the two-dimensional
P(z.,z2)

transfer function G(z ,z9) = —f r- (with the assumptions indicated in
1 2 K±\Z-9Z-)

a.2) is structurally stable, if and only if the Nyquist plots for the

family of one-dimensional functions

Q(ej0t,z2), 0<a<2?r (109)
and

Q(z1,0)

do not equal or encircle zero in the complex plane.

We can also obtain other graphical tests for stability by invoking the

analyticity regions of (18-20). This leads to the following theorems:
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Theorem 17 [45,72]. The two-dimensional digital filter described above

is structurally stable if and only if

(i) Q(z.,z ) has no zeros on |z.| = |z | =1 (110)

(ii) The Nyquist plots for the one-dimensional functions Q(l,z )

and Q(z.,0) do not encircle zero. (Ill)

In the test of (i), we check the image of the distinguished boundary.

It is indeed the two-dimensional frequency response and can be obtained

graphically.

Theorem 18[72].Let Q be as above. The filter is structurally stable

if and only if

(i) Q(z ,z«) has no zeros on the distinguished boundary,

(ii) The Nyquist plots for the one-dimensional functions Q(l,z ) and

Q(z,,l) do not encircle zero.

Actually the regions of analyticity of the above two theorems are

readily obtainable by special cases from the regions of (18).

Theorem 19 [72]. Let Q be as above. Then the filter is structurally

stable if and only if

(i) Q has no zeros on the distinguished boundary,

(ii) The Nyquist plot for the single variable function Q(z,z) does

not encircle zero.

Remarks

1. Because the Nyquist plot is related to the frequency response, it

appears that the above tests are useful not only for checking stability but

for design purposes where certain changes in the frequency response are
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required. Also, the extension of the above theorems to multidimensional

digital filters will be explored in the next section.

2. Though DeCarlo et al have presented the Nyquist-like tests for the

digital filters, similar tests can be readily obtained for two- and multi

dimensional continuous filters. Furthermore, the Nyquist-like can be extended

to some other regions of analyticity than the one quarter plane region dis

cussed by the above authors.

h. Stabilization of Unstable Filters

In an effective design of two-dimensional digital filters, it is often

required to stabilize an unstable filter without perturbing the magnitude of

the frequency response or to guarantee a stable filter. In the one-dimen

sional case, this is accomplished by cascading the unstable filter with a

digital all-pass filter which has no effect on the magnitude of the frequency

response and which guarantees stability. Of course, there exist other

procedures for accomplishing this. In the two-dimensional case, there are

difficulties in extending the approaches used for the one-dimensional case.

These difficulties are mainly due to the inability to factor a two-dimen

sional polynomial.

The approaches used for trying to stabilize an unstable two-dimensional

digital filter without affecting the frequency response are of three kinds,

namely, the two-dimensional discrete Hilbert transform, the two-dimensional

complex cepstrum method and the planar least square inverse (PLSI) method.

Unfortunately, all three methods are plagued with difficulties inherent for

two-dimensional polynomials.

Read and Treitel [73] have defined a two-dimensional discrete Hilbert

transform to be used for the stabilization of recursive filters. The basis
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of this method is to obtain a log-magnitude function of the denominator

polynomial of the filter and use the two-dimensional discrete Hilbert transform

to calculate the minimum phase (i.e. stable) function associated with that log-

magnitude function. A new denominator polynomial is then constructed by a

complex exponentiation. In many cases the reconstructed minimum phase denominator

polynomial is infinte. Furthermore in a discussion by Bose [74] and Woods [74a] ,

it is indicated that the magnitude function is impaired. A recent work by

Murray [74b] shed more light on this problem.

The complex spectrum approach was first used by Pistor [31] and Dudgeon

[46] and later on by Ekstrom and Wood [47a]. The basic idea of this approach

is to use the two-dimensional cepstra to decompose the magnitude-squared

frequency responses to get stable recursible two-dimensional filters. The

Pistor decomposition was made of four stable recursible one-quadrant filters

while the Dudgeon decomposition was made of half-plane filters. Ekstrom and

Woods, using the concept of canonical spectral factorization, decomposed the

filter into several forms which included the above cases as well as asymme

tric ones. The resulting factors are recursively computable and of minimum

phase (i.e. stable). In all the various decomposition methods, the factors,

though recursively computable and stable, are generally infinite dimensional.

Hence, truncation is used by the above authors for the recursive filter.

This truncation evidently changes the magnitude function and in some cases

the truncated factors are unstable. To avoid this, Ekstrom and Woods have

introduced windowing. It involves both a truncation and a smoothing. A

weighting factor is applied to the truncated array which smooths out pertur

bations in the frequency spectra introduced by the truncation and tends to

stabilize the truncated filters.

Another stabilization procedure is based on a conjecture due to Shanks

et al [75]. The conjecture states that the planar least squares inverse (PLSI)

t
Further refinement of this method is contained in the Ph.D. thesis of

R. E. Twogood, "Design and implementation techniques for 2-D digital
filters," Dept. of EE, U. C. Davis, Nov. 1977.
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of an array is a minimum phase array (i.e. stable). To illustrate this we

assume that we have an unstable filter

P(zvz )

G<vz2> • w^> (112)

which we want to stabilize. Letting q(m,n) denote the coefficients of the

denominator, we seek an inverse to q, denoted b such that

6(m,n) = q(m,n) **b(m,n) (113)

where ** denotes the two-dimensional convolution. The filter b(m,n) is

chosen to minimize the error in the above equation. If b is chosen to mini

mize the mean-squared error

e= I [g(m,n)-q(m,n)**b(m,n)]2 , (114)
m,n

then it is referred to as the PLSI of q(m,n). By the conjecture, b(m,n) is

a minimum phase array (i.e. stable). To stabilize an unstable filter,

Shanks et al [75] proposed taking the double PLSI of the denominator array.

This double inversion will yield a stable filter and the frequency response

of the final result will hopefully approximate the original frequency response,

The final frequency response will be an approximation to the original one

and in some cases might not be a good approximation. In these cases an

improvement is achieved by increasing the degree of the intermediate PLSI

filter. While the conjecture was not proven for the two-dimensional case,

it has been proven for the one-dimensional case. This conjecture has been

used in the design of many filters and has been discussed by Bednar [76].

In a later work Genin and Kamp [77] came up with a counterexample. Further

more, they made use of the properties of orthogonal polynomials of
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two-dimensions to disprove the conjecture in general [78], Furthermore,

Anderson-Jury [79], and Jury et al [80] have proved the conjecture for low

degree polynomials. In examining the failure of the conjecture in the Genin

and Kamp [77] counterexample, Jury [81] has proposed a new conjecture which

is the same as that of Shanks* except with the added condition that the

inverse polynomial of b(m,n) to be chosen is of the same degree as the

original polynomial of q(m,n). So far no counterexample has been obtained.

Also in [81], Jury discussed the mathematical difficulties in proving the

conjecture with the added condition. Hence, it appears that the design

approach using this method still remains unsolved.

With the above, we close the stability discussion of the two-dimensional

polynomials and in the next section we examine the stability of multi

dimensional scalar polynomials.
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IV. Stability of Multidimensional Polynomials (Scalar Case)

Stability problems of polynomials of dimensions higher than two arise

in several applications. The importance and need for multidimensional digital

filtering in certain areas like seismology have already been discussed

[82,83]. Hence stability problems associated with such filters need be con

sidered. Other applications arise in obtaining realizability properties of

impedances of networks and transmission lines, where the transmission lines

are of incommensurate lengths [84] and in the realizability condition of

multivariable positive real functions [38]. Also in problems connected with

the numerical integration method of difference-differential equations, we

encounter the stability of multidimensional polynomials [51]. Other related

problems arise in the output feedback stabilization [39,85,86].

Analogously with the two-dimensional stability of the earlier discussion,

we will present first the various regions of analyticity for the discrete

filter followed by the continuous one. In the last part of this section, we

will present the various stability tests and their computational aspects.

Since the generalization of regions of analyticity from the two-dimensional

case is straightforward, in the first two parts of this section the

review will be succinct.

In the next three sections, similar reviews of stability of multi

dimensional polynomials for the matrix case will be explored where most

of the results of this and the earlier two sections are readily applicable.

A. Stability of Multidimensional Digital Filters

In the following discussions we will enumerate the various regions of

analyticity for the multidimensional digital filter in the order of their

early developments. The first authors who indicated such a region for
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non-causal digital filters were Justice and Shanks [32], They expressed

such a region for the denominator polynomial of the multidimensional discrete

transfer function G(z-,z_,...,z ) as follows:
1 z. n

Theorem 20 [32],

r s n

q(z ,...,z ) t o , {n|z|<i}n{ n |z|>i}n{ n |z|=i} (lis)
1 n i=l 1 i=r+l X i=s+l

Remarks

1. In equation (115), r + s-r+n-s = n (where n is the number

of the dimensions). For

P(z1,z2,...,zn)
<SC1."2--«n>-Q(«1,»2,...,«n) (116)

where P and Q are mutually prime and no nonessential singularities of the second

kind on the distinguished-boundary of the polydisc exist, the impulse response of

the filter described by equation (116), i.e. g(m,n,k,...) £ %., or

I X-.-J'[g(m,n,k,...)| <~ (H7)
m n

2. The above theorem is a generalization of the region given in equa

tion (26). The authors did not present any algorithm or method for testing

the region (115). This will be discussed later on.

In a subsequent work by Anderson-Jury [87], a generalization of both

Shanks et al [75] as well as of Huang's theorem [30] was obtained. In

addition, in this work a method for checking this generalization was out

lined. Here we give the salient theorems of this work. The generalization

of Shanks1 two-dimensional stability theorem is given by:

n

Q(Zl,...,z ) * 0 , n |z.| < 1 (118)
1 n i=i !
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In essence the above is a generalization of the region described in

equation (16). This region is related to the stability of the causal quarter-

plane.

Theorem 21 [87]. The analyticity region of equation (118) is equivalent to:

Q(Z;L,0,...,0) * 0 , \z±\ <1
q(Zi,z2,o,...,o) * o , {|z1|-i}n{|z2| <1>

I n-3

Q(z.,z ,...,zw 9,o,o) t o , { n |z | =i}n{.|z J <i}1 2 n-2 i=1 i n-2 (ug)
n-2

Q(z1,z2,...,zn_1,o) + o , { n |z±| =i}n{|zn_1| <i}

n-1

Q(Zl,z9,...,z ) ^ o , { n |z I =i}n{[zJ <i}
l z n ... i n

The region of (119) is a generalization of the region of equation (17).

It is a generalization of Huang's conditions [30].

In a subsequent and independent work, Takahashi and Tsujii [87a] have

obtained similar generalizations as in equation (119). They also discussed

in detail the computational complexity for testing this condition. Further

more, they obtained the stability conditions of a certain three-dimensional

polynomial with literal coefficients. These conditions are given below: Let

Q(z1,z2,z ) = l+az1 +bz+cz +dz z2 +ez2z3 +fz z1 +gz z2z3 (120)

The necessary and sufficient condition for structural stability of G(z1,z9,z.j)

whose denominator given in equation (120) is given by the following inequali

ties (after minor corrections) [87a]
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A<0, B<0, C<0, E<0

D2 < -4B+4AE+8AC^BE
2 2

where A = (c-e-f+g) - (1-a-b+d)

B= (c+e-f-g)2- (1-a+b-d)2

C= (c-e+f-g)2- (1+a-b-d)2

D = 8(d+fe-ab-cg)

E= (c+e+f+g)2- (1+a+b+d)2

(121)

It is of interest to note that the stability inequalities for two first

degree two-dimensional polynomials was presented by Huang [30]. They are

obtained as special cases of (121). The above shows the formidable com

plexity which arises when higher dimensions are considered.

In an independent and almost simultaneous works both Strinzis [44]

and DeCarlo et al [45] have obtained a region which is simpler computa

tionally than Anderson-Jury. This region is a generalization of the region

in equation (19) and is given by the following theorem:

Theorem 22 [44,45]. The following set of conditions are equivalent to

equations (118) and (119):

i) for some b.,...,b such that lb I =1, r = l,...,k and for all i,
In ' r1

i = 1,...,n

Q(z, ,...,z ) ^ 0 when z = b , r ^ i and IzJ < 1
In r r 'I'

ll) Q(zr...,zn) ^ 0 when |zj = [zj = ••• = |zj = 1

For simplicity one can choose b =1.

(122)+

t
It is of interest that computationally condition (ii) with the last condition

of (i), i.e., Q(l,l,...zn) f 0 |zn| <. 1, is equivalent to:

Q(z1,z2,...zn) ^ 0, when |z^| = |z2| • ... « lzn_il =1 and lznl ± !•
The above is exactly the last condition of (119).
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In the enlightening works of DeCarlo, Murray and Saeks [45] and Murray

[43a], the authors have obtained other regions which are simpler than in the

above theorem. One such region is the generalization of equation (20).

Theorem 23 [43a,45]. The following set of conditions is equivalent to

equations (118) and (119) :

i) Q(z,z,...,z) = 0, |z | < 1
(123)

ii) Q(zlfz2,...,zn) * 0, |Z]J =|z2| lznl=l

Along the same lines as above, Strinzis [44] had obtained another region

equivalent to equation (115) which is computationally simpler. It is given

in the following theorem:

Theorem 24 [44]. The following set of conditions is equivalent to (115),

for some b-,...,b, , |b | = 1, r = l,2,...,n and
j. k r

i) for each i, i = 1,2,...,r

Q(z,,...,z ) 4 0 when |z.I < 1 and z = b , r 4 i
x 1 n ' i' — r . r

ii) for each i, i = r+l,...,s (124)

Q(z, ,...,z ) f 0 when |z. I > 1 and z = b , r # i
^ 1 n ' i' — r r

iii) Q(Z;L,...,zn) 4 0when IzJ = |z2| = ••• = |zj =1

Another form of noncausal multidimensional linear filters (processors)

is presented by S.S.L. Chang [50]. Such processors are said to be stable

if the impulse response decreases exponentially in all 2-n directions. In

this case the region of analyticity is a generalization of equation (31)

and is given by the following:

Q(z1,z2,...,zn) * 0 for all \z±\ =|z2| =••• =|zj =1 (125)
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In concluding this part, it is pertinent to mention the following

remarks:

1. The above regions for multidimensional stability of digital filters

are the only ones known up to the present time. They generalize the regions

of two-dimensional stability except the region of a symmetric half-plane of

equation (25). It is hoped that such a generalization will be forthcoming.

It is expected that as more applications develop more regions of analy

ticity will be defined.

2. In most of the stability regions, the stability tests of equations

similar to (125) are the most significant. All other conditions are

stability tests of one-dimensional digital filters. Hence, the test of

Q(z1,...,zn) f 0 for all |z.| =1, i=l,2,...,n, will be one of the major

items of the stability tests in the last part of this section.

B. Stability of Multidimensional Continuous Filters

In this part we will obtain the region for a multidimensional "Hurwitzian"

polynomial which is a generalization of the region in equation (35) . We will also

obtain a generalization of the region in (39). In addition, we will obtain

the region for multivariable positive real functions (MPRF) [25].

The condition for a multidimensional polynomial to be Hurwitzian is

t
expressed following Anderson-Jury [87] as follows :

n

Q(Sl,s_,...,s ) t 0 , O Re s > 0 (126)12 n i=1 i-

It is conjectured that the above condition gives the necessary and sufficient

condition for structural stability of G(s.,,...,s ), whose denominator is

expressed in equation (126). A generalization of equation (39) is given by

Anderson-Jury [87] as follows:

^Because of the difficulties inherent in the use of double bilinear transformation
as mentioned in the footnote of p. 24, the proof of eq. (126) is lacking.
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The condition of (126) is equivalent to the following:

Q(S;L,1,...,1) * 0 , Re Si > 0

I n-3
Q(Sl,s2,...,sn_2,l,l) 4 0 , { nResi=0}O{Resn_1>0}

n-2

Q(s1,s2,...,sn_1,l) * 0 , { nRes.=0}n{Resn_1>0}
n-1

Q(sn,s0,...,s ) 4 0 , { PlRes =0}n{Resn - >.0}
1 2. n . - l n— x

(127)

In the works of Strintzis [44], the above is further simplified to give the

following region:

i) for some sequence of real numbers w-,...,w and for each i,

i = 1,... ,n

(128)

Q(s1,...,s ) ^ 0 when s = jw ,r^ i and Re[s±] _> 0

ii) Q(s1,...,s )^ 0when Re[s]L] =Re[s2] =••• =Re[sn] =0

In particular, if we choose w- = ••• =w =0, the stability conditions are:

Q(s ,0,...,0) ± 0 when Re[s-] _> 0

Q(0,s2,0,...,0) f 0 when Re[s2] _> 0
I (129)

0(0,0,...,0,s ) ^ 0 when Re[s ] > 0
n n

Q(sn,s0,...,s ) ^ 0 when Re[sJ = ••• =Re[s ]=0
± l n l n

In the investigations of the multivariable (multidimensional) positive

real function (MPRF), which is given by

Z<VS2 n>°Q(s^ /) (130)
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it is known following Bose [25], that to test one of the conditions for positive

realness, we require:

n

Q(S;L,...,Sn) ^ 0 , fl Re s± > 0 (131)
i=l

The above condition is required for

n

Re Z(s-,...,s ) > 0 in n Re s. > 0 (132)
1 n " 1=1*

Remark

It is often simpler to determine first whether Q(s.,...,s ) ^ 0 in
n n1 n
H Re s _> 0. If Q(s ,...,s ) is devoid of zeros in H Re s > 0 (utilizing
i=l 1 in i=1 i
equation (129)), then it is possible to replace the test for equation (132)

by the simpler test for

Re Z(jw ,ju)2,... ,jw ) >. 0 for all real U) ,u)_,... ,0) (133)

C. Stability Tests for Multidimensional Polynomials

In this part we will extend the various stability tests mentioned in

(III-D) to the multidimensional polynomials. Though this extension is

straightforward, the computational effort becomes exceedingly complicated as

the dimension increases. Also we will discuss the tests for the various

regions of analyticity discussed in part A and B of this section.

a. Symmetric Matrix Form [88]

The first application of this method to stability tests for three-

dimensional polynomials was made by Bose-^Jury [88]. In applying this test

to equation (119), we have to test for the following equation:

2

Q(z1,z2,z3) *0 , {O |z±| =l}n{|z3| <1} (134)
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The test involves applying the Schur-Cohn matrix to the following equation:

P ±
Q(Zl,z2,z3) = I ai(z1,z2)z3 (135)

Using the same procedure as in the two-dimensional case, we obtain the

Schur-Cohn matrix which is Hermitian as a function of the variables z^ and

z , where |z | = |z | = 1. This matrix ought to be checked for positive

(negative) definiteness. This indicates that the determinant ought to be

positive for all |z | = |z | =1. This can be accomplished by the use of

the following lemma.

-1 -1 2Lemma2 [88]. The real function, ^z1>z1 »z2,z2 ^>°* n lz±l =1if

and only if the self-inversive polynomial, gU^z^ =z1lz22gi^zi»zi ,Z2,Z2 ^'

evaluated at any arbitrary point z =z^ ;on \z^\ =1has exactly n2/2

zeros in each of the domains |z |<1and |z2| > 1, and g(l,1,1,1) > 0.

[For convenience, this lemma is stated for the case when no degree reduc

tion takes place. If such a case occurs, then the lemma can be modified

to account for the critical case].

Based on the above lemma the stability test for the three-dimensional

polynomial using equation (119) can be carried out in terms of root distribu

tion with respect to the unit circle. In the general case, one has to

determine the positivity of (n-1) dimensional real functions. To do this

for n > 3, Bose-Jury [88] pointed out the use of decision algebra of Tarski-

Seidenberg to accomplish this. The application of this method to the

stability of multidimensional discrete and continuous systems was discussed by

tA real multivariable polynomial Q(z.,z ,...,z .) will be called self-
n (0) (0) (0)

inversive if and only if a zero of Q(z.,z9,...,z ,) at (z ,z« ,...,z .)
(0) (0) (0)implies also a zero at (l/z| ,l/z2 ,...,1/z 1).
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Bose-Jury [89], and to other problems was discussed by Anderson-Bose-Jury

[39].

Similar discussions arise for testing the region of equation (127)

(i.e. for the continuous case). For the three-dimensional filter, we have

to test the positiveness of:

2

D(u) ,U)9) > 0 , n-oo<o) <oo (136)
1 l i=l

where

D^,^) =D(-a^,-^) (137)

For the n-dimensional case, we have to check the positivity of (n-1) dimen

sional real functions for positivity for all the real variables w . This

is referred to as global positivity. This method of symmetric matrix form

can be also applied for checking other regions mentioned in parts A and B.

b. Innerwise Matrix Forms [54,56]

This approach is extensively used by Bose and his collaborators in

ascertaining both global positivity, nonglobal or local positivity (this

refers to positivity confined to a proper interval of the real variable ~R),

or nonnegativity as in equation (132).

The basis of this work is to use the inners determinants to ascertain

the distinct number of real roots. If this number is zero then global

positivity is ascertained [56]. For non-negativity, Modaressi and Bose [90]

haveshownthat it is reducible to positivity by increasing the dimension by

one. For local positivity Modaressi and Bose [58] and Modaressi [57] have

shown the use of the inners theory to ascertain this required test. Further

more, they examined all the critical cases that arise from degree reduction

and others.
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Of importance in this work is the proof of the following lemma due to

Bose and Basu [54].

n

LemmaJ. Q(z-,...,z ) is devoid of zeros on H |z | = 1 if and only if
i=l

Q (x,,...,x ) is devoid of zeros in

-l£x £1, -l£x2£l,...,-l£x £1 , (138)

simultaneously where

Q1(x1,z2,z3,...,zn) = Q(z1,z2,...,Zn)Q(z1,z2,...,zn)

Q2(x1,x2,z3,...,zn) = Q1(x1,z2,...,zn)Q1(x1,z2,...,zn) (13g)

Qn(Xl,x2,...,xn) = Qn_1(x1»x2'--'»xn_l,Zn)Qn-l(xl,X2,",,Xn-l,Zn)

where (z. denotes the complex conjugate of z ) implying that -1 £ x. £ 1 when
z -^z

\z±\ = 1, and x± =—2— on |z±| =1.

The above lemma enables us to ascertain the stability of the multi

dimensional discrete filters by testing the local positivity of another

multidimensional polynomial. Furthermore, by using direct test formulation

the authors have also tested the region given in equation (125).

Remarks

1. Though the inners approach can be used to check multidimensional

stability of both discrete and continuous systems by rational operations, for

practical use, it becomes computationally prohibitive for n larger than three

or four. This is due to treating a plethora of critical cases.

2. Because of this difficulty, other methods for checking global and

local positivity using resultant theory and minimization techniques are

developed. These methods will be briefly reviewed later on.
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c. Table Form for Stability Test

The use of the table form of the Cohn-Marden-Jury for the discrete

case when n = 4 was first introduced in Anderson-Bose-Jury [39] and later on

by Bose-Kamat [91]. In the latter work an algorithm with a view toward

computer implementation is given. The algorithm is based on the generation

of a number of multidimensional polynomials, reduction of each of these into

several single dimensional polynomials by a finite number of rational opera

tions. Thus the ideas of decision algebra theory were the basis of this

reduction. It seems that the computational complexity of such an approach

is more than the inners method discussed in (b). The same is true when one

uses a Routh type of array in the extraction of the "GCD" factor from two

multivariable polynomials. A related work on the use of the table form in

discrete and continuous systems is discussed by Siljak [92],

d. Local Positivity Method

This method which was discussed earlier for two-dimensional polynomials

has not been extended to the multidimensional case. It is believed that

using the regions in (122) and (123) and noting (138) and (139) one can

obtain such a generalization. This is left for future research. A similar

extension is feasible for continuous multidimensional systems.

e. Impulse Response Test

The discussions of III-D-e can be readily generalized from the two-

dimensional to multidimensional digital filters. Indeed, Strinzis [64] has

obtained such a generalization. For stability test, it appears that the

following theorem which is a generalization of Theorem 12 is of importance

and could be useful for stability checking:

t
Very recently in as yet unpublished article, the solution to this problem
is given by N. K. Bose.
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Theorem 25 [64]. Let {g, . , } be the sequence obtained by the

multidimensional generalization of the recursive relationships in (93-95).

The following condition is necessary and sufficient for BIBO stability of

G(z.,z„,...,z ) (i.e. generalization of (1) in theorem 12) .
1 L n

kn+k_+'"+k
i 1 2 n

Limlg, k k I <1 <140>

for all but a finite number of values of (k. ,k_,...,k ).
1 z n

The other theorems presented for the two-dimensional case can be readily

generalized.

f. Cepstral Stability Test [93]

In this work Ahmadi and King [93] have extended the Pistor method dis

cussed in (III-D-f) to the multidimensional cepstral method. In this case

they defined the multidimensional z-transform of the cepstrum G(z.,z2,...,z )

as the logarithm of the multidimensional z-transform of an array

g(m,n,k,..,£) G J^:

G(z.,z0,...,z ) = %[Z{g(m,n,k,...,Jt)> = & G(z ,z ,...,z ) (141)
lZnn nxzn

Based on the above, the authors generalized the stability theorem of Pistor

[31] to give:

Theorem 26 [93]. The sequence

^(mjn.k,...,^) ,' m>_0, n_>0,... ,1>0 (142)

is recursively stable if and only if there exists a power series
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I*, , „v m n k %I I ••• I q(m,n,k,...,£)z znz ---z (143)
m=0 n=0 fc=0 J. z j r

that is absolutely convergent and equal to In Q(z ,...,z ) for all z such
n • -. 1 n i

that O |z |£ 1 (where q(m,n,k,... ,£) is the first quadrant sequence and
i=l

{q(m,n,k,...,£)} is the inverse z-transform of Q(zn,z.,...,z ), i.e.
1 z n

{ q(m,n,k, ...,£)> «-• Q(z ,z ,...,z ) = In Q(z ,...,z ) (144)
± z n in

In the above Q(z_,z_,...,z ) represents the denominator of the causal filter
i z n

'V2'-''.)-Q(V.2!...,.n) (145)

A similar generalization can be obtained for each of the other 2n

quadrant functions q, in which b = 2,3,...,2n. Similar to Pistor [31] the

authors of this generalization have not presented an algorithm for checking

stability. It remains to generalize Ekstrom and Twogood's [69] algorithm for

the multidimensional case. In the paper by Ahmadi and King [93], the authors

showed how an unstable multidimensional recursive digital filter can be

decomposed into 2 stable recursive filters. The number of dimensions in

this case is "n".

g. Nyquist-Like Tests [45,72]

The generalization of the theorems given earlier for the two-dimensional

case to the multidimensional case is straightforward and was obtained by

DeCarlo, Murray and Saeks [47,75] using the concept of homotopy. These

three theorems are presented below:
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Theorem 27 [45,72].The multidimensional filter described in equation

(116) is structurally stable if and only if
n

(i) Q(z_,z_,...,z ) has no zeros on O |z.I = 1
12 n . _ ' i'

(ii) The Nyquist plots for the one-dimensional function

Q(l,...,l,zk,0,...,0), k = 1,2,...,n

do not encircle zero.

Theorem 28 [45,72]. Let Q be as in equation (116). The filter is struc

turally stable if and only if
n

(i) Q(z. ,z0,... ,z )have no zeros in n |z. I =11 2 n i=1 i
(ii) The Nyquist plots for the one-dimensional function

+Q(l,...,l,zk,l,...,l), k=l,2,...,n

do not encircle zero.

Theorem 29 [45,72]. Let Q be described as in equation (116). The filter

is structurally stable if and only if
n

(i) Q(Zl,z2,...,zn) ^0 for O \z±\ =1

(ii) The Nyquist plot for the one-dimensional function

Q(z1»z2,...,zn), z^ = z2

does not encircle zero.

.. - z = z
n

Remark

From the earlier theorems, it is evident that the difficult part of

the test is that Q should have no zeros on the distinguished boundary of the

unit polydisc. To do this by plotting the image of the distinguished boundary

+
Items (ii) of Theorems 27 and 28 can be obtained as a special case of the following:

Q(bl,,,,,bk-l,zk»ai»---»ar) *°» when Izk| <1» k»1,2,...,n, and |br| -1,
a < 1
r* —
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is extremely difficult for n > 2. So far, the authors have not come up with

a straightforward procedure for performing this test. However, for the case

n = 2, this method is simple and of much importance. Furthermore, as men

tioned in the earlier discussion for the two-dimensional case, this method

can be extended to multidimensional continuous systems and to other regions

of analyticity.

h. Direct Methods of Stability Tests [85,86,94-96]

From the earlier discussions, it is apparent that in the stability tests

for the various analytic regions one has to check either global positivity,

nonnegativity or local positivity and nonnegativity. One such method which

tackles these tests as mentioned before was based on the inners concept as

advanced by Bose and coworkers. Based on the equivalence of inners deter

minants and minors of half-size matrices as discussed in (II), the symmetric

matrix approach can be similarly applied. The tests for positivity

and nonnegativity are important not only for checking multidimensional

stability, but also appear as crucial tests in many other applications such

as in Lyapunov Theory, in Limit Cycles existence, in the output feedback

problems, in multivariable positive real tests and in a host of other problems,

Their study has attracted much activity.

In addition to the inners approach, there exist two other approaches.

The first is based upon an augmented theory of resultants and resultants

with back substitution and factorization as expressed within the framework

of algebraic geometry as discussed by Anderson-Scott [85] and Scott [86].

An extension and elaboration of this method is advanced by Bickart-Jury

[94,95]. An algorithm is given for the various tests. The second approach

is proposed by Gesing and Davison [96]. Their approach is based on
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a minimization procedure for a resolution on a hypercube of H of the posi

tivity and nonnegativity. In the study of Bickart-Jury [94], a comparative

study of the three methods is attempted and in the following table, we pre

sent the summary of the results.

Method Sufficient Necessary
Exact Dimension Special

Arithmetic Growth Case
Localization

Resultant yes no yes yes no global

Resultant with

back substitu yes yes no yes no global
tion, factori non-global
zation

Decision algebra
(inners)

yes yes
no (positivity)

yes , •'yes
J yes (nonnega- J

tivity)

global
non-global

local

Minimization yes yes no no no
local

Table 2. Properties and methods for resolving positivity
and nonnegativity.
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V. Brief Review of One-Dimensional Stability (Matrix Case)

In this section, we present the various tests for stability of one-

dimensional polynomial matrices. The study of such matrices arise in the

multi-input-multi output (MIMO) system (open loop and feedback). These

systems are also known in the literature as multivariable systems. Their

study has been the center of major research activities in the past two

decades. The texts of Rosenbrock [97], Wolovich [98] and Desoer-Vidyasagar [99]

are only but a few of the extensive publications in this important field.

In the review of the stability tests, we will divide the methods into

analytical and graphical (or Nyquist-Like Tests). The applications of these

methods to the stability of two- and multidimensional polynomial matrices

to be discussed in the next sections will be emphasized. In particular, the

differences between the stability of the one-dimensional and multidimen

sional polynomial matrices will be singled out. Finally, it should be

mentioned that the stability tests introduced in sections (II-IV) will play

a major role in this and the next two sections, thus providing a unification

of the various methods for all the six sections.

A. Analytical Tests

To mention the various analytic tests, it is pertinent to present the

mathematical description of (MIMO) systems. These are presented (for the

continuous case) in time domains as

x(t) = Ax(t) + Bu(t)
(149)

y(t) = Cx(t) + Du(t)

or in terms of the transfer function as follows:
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G(s) = C(sI-A"1)B + D (150)

In other situations it is presented in terms of a system matrix as defined

by Rosenbrock [97]. In this case the system matrix is

P(s) =

sI-A -B

C D

(151)

Without going into the details of each of these descriptions, we will intro

duce the following stability tests.

a. Lyapunov Test

If the system is presented by the state space equation (149), then one

can determine "BIBO" stability from the A-matrix. One such method is based

on Lyapunov's method. Since we are dealing with linear time-invariant

systems, Lyapunov stability and "BIBO" stability are one and the same. Also,

from the A-matrix, one can obtain the characteristic polynomial which needs

to be Hurwitz for stability. Thus one can apply any of the classical

stability tests on the characteristic polynomials. Other methods are

available for testing the stability of the A-matrix. For discussion of

such methods and Lyapunov*s tests, we refer to Jury [23]. Also in this

reference the stability of the A-matrix inside the unit disc is discussed

which relates to the stability of the state-space difference equation

description.

b. Determinant Test

This method is based on testing the stability of a polynomial for its

Hurwitz character. It is based on the following considerations.
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The matrix G(s) (bounded at s = «) in equation (150) can be factored

as

G(s) = N(s)D"1(s) (152)

where

(1) N(s) and D(s) are nxn matrices whose elements are

polynomials in s.

(2) N(s) and D(s) are right coprime. (153)

(3) det D(s) $ 0

(4) s is a pole of G(s) if and only if it is a zero of det D(s).

Based on the above facts, one can determine the stability of G(s) by

examining the Hurwitz character of the determinant of D(s). Hence it is

called the determinant method. For definitions and algorithms for the

factorization, see MacDuffie [100] and Rosenbrock [97]. For items (3) and

(4), we refer the reader to Bourbaki [101], Popov [102], Rosenbrock [97],

Wang [103] and Wolovich [104]. It appears that the above test is due to

many authors and none can claim priority for all the above considerations.

Remark. The above stability test is very important for its extension

to two- and multidimensional polynomial matrices and will be the major topic

of the next sections. Extension of this method to the feedback case was

formulated by Desoer-Schulman [105].

c. Nondeterminant Test

This method due to Anderson-Bitmead [106] who considered the following

test: Given a square, non-singular polynomial matrix D(s), how does one

test, without evaluating the determinant, whether all the zeros of D(s)

in equation (152) are in the open-left half-plane?
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The approach of this tset is to derive from D(s) a rational transfer

function matrix which is lossless positive real (l.p.r.) if and only if

det D(s) is Hurwitz. The (l.p.r.) property is easily checked using the

coefficients of the rational function only. This checking involves the use

of a generalized Bezoutian matrix whose connection with the generalized

Sylvester matrix was discussed by Anderson-Jury [29a]. In this method, the

construction of the (l.p.r.) function requires solution of a polynomial

matrix equation. Up to this writing, this method seems computationally

more involved than the preceding one. However, future research on this

problem might lead to simpler results.

If one restricts the class of polynomial matrices, then Shieh and

Sacheti [107] have shown how to use a form of the Routh table to test

stability. The restriction involves both the odd and even parts of the

matrix polynomial be symmetric.

t
d. Matrix Entries Test

In this case a "MIMO" one-dimensional linear system whose transfer

function G(s) given in equation (150) is BIBO stable if and only if each

entry of G(s) corresponds to a single-input-single-output system which is

BIBO stable. We can apply the known tests to each of the entries of G(s).

Of course, in certain cases this involves formidable computations.

e. Diagonal Dominance Test

This test which was developed by Rosenbrock [97 ]and based on a diagonal

dominance condition of a polynomial matrix as discussed by Ostrowski [108]

is a very powerful test for "MIMO" stability. The condition for diagonal

dominance is based on the following definition:

t
C. T. Chen, Introduction to Linear System Theory, Holt, Rinehart and Winstona

Inc., 1970, Th. 8-5, p. 322.
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Definition. A matrix D(s) is a diagonally dominant on Re s >_ 0 if

(a) d ,(s) has no "poles" on Re s ^ 0, i = l,2,...,n

and (b) for all s: Re s > 0

|di±(s)| >{
either J d (s), i=l,2,...,n

or I d (s), i=l,2,...,n

(154)

If the above condition is satisfied, then one can check stability by

testing only the diagonal terms of the matrix D(s). This represents a

significant simplification.

B. Graphical Tests

In examining the form of equation (153) based on the determinant method,

it becomes evident that one can apply the Nyquist criterion for testing

the Hurwitz character of det D(s) = 0. The idea of expressing stability

conditions in terms of the Nyquist plots of the eigenvalues of G(s) was

originated by MacFarlane [109]. This work was followed by him and his

coworkers in a series of papers. The latest by MacFarlane and Postlethwaite

[110] generalizes this method to obtain the characteristic frequency

and characteristic gain functions. A comprehensive study of the "MIMO"

stability based on the eigenvalues of G(s) was presented by Barman and

Katzenelson [111]. Several important theorems were presented in this work.

It is of interest to note that in both MacFarlane's and Barman-Katzenelson's

works, problems associated with algebraic functions of two dimensions are

explored. The advantage of the eigenvalue design lies in the fact that it

provides the designer with the insight which enables him to choose a
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compensater. This was effectively demonstrated by MacFarlane and his

coworkers in several important papers.

Another major contribution to applications of Nyquist diagrams to

"MIMO" stability was obtained by Rosenbrock [97]. In this work the author

utilized the concept of diagonal dominance of the matrix D(s) to test

stability by using the Nyquist plot. In this case, Rosenbrock combined

graphically the test of diagonal dominance and Nyquist tests by plotting

the Gershgorin's bands on the Nyquist locus. In the next section we will

extend this method for checking graphically the two-dimensional "MIMO"

stability. As mentioned earlier the diagonal dominance condition of D(s)

considerably simplifies the stability test. The Gershgorin's bands are a

graphical method for testing diagonal dominance.

Recent work by Saeks [112] and DeCarlo and Saeks [113] has demon

strated the power of the Nyquist-like tests. In this work the authors

utilized concepts from algebraic topology such as homotopy theory to

construct new proofs of the Nyquist criteria. This work is of significant

value for it shows the general applications of the Nyquist-Like test to many

cases, in particular the two-dimensional case discussed earlier. In

extending their results to "MIMO" stability, they proved the following

theorem:

Theorem30 [113]. The system described by G(s) in equation (152) is

stable if and only if the.Nyquist plot of det D(s) does not encircle nor

pass through "0" in the complex plane. For applying this theorem condi

tions (1) and (2) of equation (153) should be satisfied.

Other major applications of the Nyquist-Like tests are discussed

in detail by the Desoer-Vidyasagar text [99].
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Remarks

1. Though the above tests are discussed for open left half plane

stability (continuous systems), they are also extended to stability within

the unit circle (discrete systems). The latter form will play a major role

in the discussions that will follow.

2. Since DeCarlo and Saeks [113] are mainly interested in an answer only

to stability, their method seems simpler than that of MacFarlane or Barman-

Katzenelson's methods. Furthermore, it seems that the latter method has

not yet been extended to two- and multidimensional systems. Hence, comparison

with the former methods of DeCarlo-Saeks and Rosenbrock is premature.
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VI. Stability of Two-Dimensional Polynomials (Matrix Case)

In this section, we will present stability tests for two-dimensional

polynomial matrices. These matrices arise in the multi-input-multi-output

two-dimensional digital filters. To obtain these matrices, it is useful to

t
describe the 2-D filter in the state-space representation. The stability tests

which we will present are analytical as well as graphical based on the

Nyquist-like tests. These tests are generalizations of what we described

in section V.

In the past several years, different state-space representations were

formulated for the two-dimensional recursive filters which are causal and

of first quadrant types. Among such representations are those of Attasi

[114], Fornasini and Marchesini [115] and Roesser [116]. Without going into ^

detail of advantages and disadvantages of each model of representation, we

only mention that relying on the definitive and noteworthy contributions of

Kung et al [117] and Morf et al [118], we will present our discussions based on

the Roesser model. Morf et al have argued in favor of Roesser's model ibr

tt
it represents a truly first order system, while the other models do not.

They have shown the merits of Roesser's model in their exhaustive discus

sions of the properties of multi-input, multi-output two-dimensional systems.

For other informative discussions of the models mentioned above as well as other

important items, we refer the reader to the work of Willsky [119]. Before we present

Roesser's model, we might mention that some of the stability tests are also

applicable to the other models with some modifications. Whenever appropriate

we will also mention some of the stability tests related to the other

models.

t They can also be obtained from the matrix transfer function.

ttThat is, R and S in equation (155) together comprise a valid local state.
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Formulation of Roesser's Model [116]. In the following formulation,

nli, j are integer valued vertical and horizontal coordinates, {r} €= ]R ,

n2{S} €E 3R are sets which convey information vertically and horizontally,

respectively. The input and output of the system are {u} G RP, {y} e Rn.

The system to be considered is discrete, causal, and its state and output

functions are described by:

R(i+l,j) = A^dJ) + A2S(i,j) + BlU(i,j)

S(i,j+1) = A3R(i,j) + A4S(i,j) + B2u(i,j)

y.(i,j) = C^d.j) + C2S(i,j) + DAu(i,j)

(155)

We apply the two-dimensional z-transform to the above equation and assuming

zero initial conditions, we obtain:

or

i—1,

y(z1,z2) = {[c1,c2] Zl ^1 ~A2
- "A3 Zz\2-V

G(Z;L,z2) = [C1,C2]^V^L "A2
-1

-An zn I -A

B„

2-»

2 n2 2J *-"!-*

+D}u(z1,z2) (156)

+ D (157)

where G(z ,z„) is the two-dimensional transfer function. It is described

by a two-dimensional polynomial matrix. It is the two-dimensional discrete

counterpart of equation (150).

Remarks

1. The computation of the square bracketed term in equation (157) is

often required and for this Koo and Chen [120] have obtained an efficient

algorithm to compute the characteristic polynomial based on extending the 1-D

t
Fadeeva algorithm. After obtaining the characteristic polynomial, the

stability tests of (III-D) are readily applicable. Such a test was performed

by Barry, et al. [125].

See also [120a].
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2. The models of Fornasini and Marchesini [115] as well as of Attasi

[114] are represented respectively as follows:

and

x(m+l,n+l) = Anx(m,n) + A x(m+l,n) + A x(m,n+l) + Bu(m,n)
U i l. (158)

y(m,n) = Cx(m,n)

x(m+l,n+l) = F..x(m,n+1) + F9x(m+l,n) - F_F9x(m,n) + Gu(m,n)
1 ^ 1 ^ (159)

y(m,n) = Hx(m,n)

where it is assumed that

F1F2 = F2FX (160)

is a separable 2-D system. It is noted that Attasi's model is a special

case of equation (158). Since it is separable, many of the one-dimensional

concepts and results are readily extended to this system, in particular,

the stability tests mentioned in the preceding section.

BIBO Stability. We will define the concept of "BIBO" stability for

the system described by equation (155). The following theorems follow from

the work of Humes-Jury [37].

Theorem 31 [37].A "MIMO" 2-D linear system described by equation (155)

is "BIBO" stable if and only if there exists a real y < °° such that for all

positive integers m, n

m n

I I DG(k,A)0 £ Y < °° (161)
k=0 1=0
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G(k,£) = ^-o i <|)G(z1,z2)z^k+1z2il+1dz1dz2 (162)

where c and c9 are the boundaries of the unit bidisc.

A. Analytic Tests

Theorem 32 [37]. A "MIMO" 2-D linear digital filter whose transfer func

tion is given by the matrix G(z ,z2) in equation (157) is "BIBO" stable if

every entry of G(z-,z ) corresponds to a single-input-single-output system

which is "BIBO" stable.

a. Matrix Entries Test

Theorem 33 [37]. A system whose transfer function is given by (157) is

BIBO stable if every entry G(z ,z2) has no'poles' [note (z^z^ is a 'pole'

of G(z-,z9) if (z.,z9) is a zero of the denominator of some entry of

G(z1,z2)] in the region U ={(z^z^: IzJ <1, |z2|£l>. On the other
hand, if G(z ,z«) is the transfer function of a BIBO stable system, then

_2
no entry of G(z..,z9) has poles on U or non-essential singularities of the

2
second kind, except possibly on the distinguished boundary T = {(z^z^:

|z. |=|z?| =l}. Such cases have been discussed earlier in Section IIIa.1.

This method corresponds to the application of 2-D digital filters stability

test (discussed inII]) m*p times. It is the counterpart of the matrix

entries test discussed in (V-A.d) .

b. Determinant Test

In the following the extension of the determinant method discussed

in (V-A-b) to the two-dimensional case will be developed. This method is

based on the (right or left) decomposition of G(z-,z2) in equation (157)
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into two 2-D polynomial matrices N(z ,z ) and D(z.,z9) such that

G(Z;L,z2) =VZ1»Z2)DR1(Z1,Z2) =D^1(Z1,Z2)N£(Z1,Z2) (163)

The pertinent and important results developed by Morf et al [118] on two-

dimensional polynomial matrices facilitates the derivation of the deter

minant test by Humes-Jury [37]. We will present a few facts from Morf et al

[118]. The one-dimensional counterpart of these facts can be found in

Rosenbrock [97].

Fact 1. N(z ,z_), D(z ,z?) are two-dimensional right coprime (left

coprime) if

(i) N, D are one-dimensional right (left) coprime as polynomials in

z. with coefficients that are rational functions of z9;

(ii) N, D are one-dimensional right (left) coprime as polynomial

matrices in z9 with coefficients that are rational functions in z .

Fact 2. Let N(z ,z_) be a full rank two-dimensional polynomial matrix.

Then there exists a unique N(z ,z„) (modulo a right unimodular matrix) and

a unique N (z-,z ) (modulo a left unimodular matrix) with

det N(zx,z2) = n(z2) (164)

* • tand N (z..,z9) primitive such that

N(zrz2) =N(Zl,z2)N*(Zl,z2) (165)

Furthermore, Morf et al [118] gave an algorithm that gives the GCRD

(greatest common right divisor) of N(z ,z_) and D(z.,z ). It is based on

obtaining the primitive factorization on the right hand side of N and D,

i.e. find N*, D* and R such that

t
By primitive we mean the following:

Let A(z,co) be a mxn polynomial matrix, (m<n) , then A(z,w) is said to be
primitive in F[to] [z] (the ring of polynomials in z with coefficients in F[io])
iff A(z,u ) is of full rank for all fixed co .

o o
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W

(166)
D'

with- P] primitive,

Fact 3. If G(Z;L,z2) =Nr(z1»z2)Dr1(z1»z2) =D^1(zi»z2)Nil(zl,z2) With
N , D two-dimensional right coprime and N«, D« are two-dimensional left

coprime, then

det DR(Z1»Z2) = det D£^zi'z2) (167)

Considering the above facts and assuming we have the right coprime

factorization of G(z..,z ), i.e.

G(zrz2) =NR(z1,z2)D;1(z1,z2) (168)

the following theorems present useful procedures for testing BIBO stability

as proven by Humes-Jury [37].

Theorem 34 [37]. The pair (z^zp is a 'pole' of G(z ,z ) if and only if

^Z1'0 is a zero of det D (z ,z ).

Theorem 35 [37]. Let G(z-,z ) be the transfer function of a two-dimen

sional "MIMO" digital filter written in one of the following forms:

or

G(z1,z2) = nr(z1»z2)]Dr ^zi»z2^ with NR» DR 2"D R-c°Prime

G(z1,z2) = D~ (z1,z2)N£(z1,z2) with N£, D^ 2-D Jl-corpime
(169)

If det D0(zn,zo) = det D (z ,z ) has no zeros inside the unit bidisc
X> 1 Z K 1 Z

-2U = {z ,z9: |z |£l, |z9|£l} then the system is BIBO stable. On the

other hand if G(z ,z«) is the transfer function of a BIBO stable system,

-2
then det D(z.,z9) has zeros in U and G(z-,z9) has no non-essential
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—2 2singularities of the second kind on U except possibly on T = ^zi»z2:

|z |= |2 |=l}. In this case the non-essential singularity of the second

kind must occur in all entries of the matrix

N(z.,z )adj D(z ,z2)

*<VZ2> 'det DC,..,) (1?0)
Remarks

1. To determine if det D-(z1,z ) = det DR(Z1>Z2^ has no zeros on the

unit bidisc U , we can invoke any of the stability tests for two-dimensional

polynomials (scalar case) discussed in (III).

2. From now henceforth, we assume that the critical case of singu

larities of the second kind on the boundary of the bidisc is avoided, as we

did for the two-dimensional scalar case, and therefore we refer the reader

to the necessary and sufficient condition of "BIBO" stability as structural

stability.

c. Lyapunov Test

This test was developed by Piekarski [121] for the n-dimensional matrix

case for both continuous and discrete forms. In the following we will

present only the two-dimensional version of this test and in the next

section the general form will be presented.

Two-Dimensional Discrete Case. Suppose gU-^z^ =<*et(A -A^) is
a two-dimensional characteristic polynomial of an arbitrary n^^ complex

matrix An ,where AQ =^ +z2Xm is an n2 Xn2 diaSonal »*tTi* W±th
diagonal complex variables zy z^ where +denotes the direct sum of matrices

The following theorem follows:
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Theorem 36 [123j.The necessary and sufficient condition that the two-

dimensional characteristic polynomial g(z.,z«) have all its eigenvalues

inside the unit bidisc if and only if there exists a positive definite

Hermitian matrix

W = W +W > 0, with (W =W* ), i=l,2 (171)
n2 mx m2 m± m±

such that

A* W A -W < 0 (172)
n2 n2 n2 n2

Two-Dimensional Continuous Case. The two-dimensional characteristic

polynomial g.(sn,s0) = det(A -A ) is Hurwitzian if and only if there
1 1 z n9 n9

exists a positive definite Hermitian matrix

W = W +W > 0, with (W =W* ), i= l,2 (173)
n« m. nu m. m.

such that

*W A +A W < 0 (174)
n2 n2 n2 n2

Remarks

The application of the Lyapunov tests to Roesser's model is not

yet developed. However, Attasi [114] has developed a two-dimensional

Lyapunov test for his model. In his case, one simply needs to check the

one-dimensional systems along vertical and horizontal lines. This lead to

one-dimensional Lyapunov equations which do not constitute any noted new

results.
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d. Some Necessary and Sufficient Conditions for Stability

In concluding the analytical tests, it is pertinent to mention a useful

necessary condition for stability as developed by Alexander and Pruess

[122]. It is based on the description of the "MIMO" two-dimensional digital

filter whose transfer function is represented by

G(m,n) = BnG . + B0G - + AF (175)
' 1 m-l,n 2 m,n-l m,n

The above model is a particular case of Fornasini-Marchesini [115] when

A« = 0 in equation (158). The following theorem follows:

Theorem 37 [123]. The two-dimensional system described by equation (175)

is unstable if any one of the spectral radii, p(B ), p(B ), p(B +B ) is

greater than or equal to one. Note in this case the two-dimensional z-

transform definition of Alexander and Pruess [122] is in terms of negative

powers of z and z . Based on this definition, a necessary condition for

stability is that all the spectral radii are less than unity.

Remarks:

(1) The spectral radius of the matrix B is defined as the magnitude

of the largest magnitude eigenvalue of the matrix B.

(2) It is computationally convenient with the present available methods

to compute the spectral radii of matrices. Hence, the above theorem serves

as a quick method for checking for instability.

(3) Dr. Alexander in his Ph.D Thesis [122a] had presented some sufficient

conditions for (BIBO) stability and, herein, one of these conditions:

The system given by equation (175) is stable if:

^[abs(B1)+abs(B2)] <1 (175a)
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where abs(B ) represents the matrix made up of the absolute values of the

corresponding elements of the matrix B, i.e.,

abs(B) = tlbjj] (175b)
(4) In as yet unpublished results by Dr. Humes, a sufficient condition

for asymptotic stability for the Roesser model given in equation (55) is

obtained. It is given as follows:

A sufficient condition for asymptotic stability of the system given by

the first two equations of (155) is given by:

llA1ll + Da4B - IlA^lllA^I + (lA20ilA3il <1 (175c)

where 0»!l represents the norm of the matrix.

It is of interest to note from equation (175c) that for the 1-D matrix

case, we obtain

llAil < 1 (175d)

which is both the necessary and sufficient condition for asymptotic stability,

B. Graphical Stability Tests [123]

In this test, we will apply the Nyquist-like test discussed in

(III-D-g) to the two-dimensional matrix case in connection with the diagonal

dominance condition.

From the determinant test discussed earlier, the structural stability

is determined by

det D(z1,z2) ^0, for all z^z Gu2 (176)
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The objective of the following discussion is to show that if D(z ,z9)

2
is diagonal dominant on the distinguished boundary T , then we can deter

mine stability by applying the Nyquist-like test to the elements of the

diagonal of D(z ,z9).

Diagonal Dominance Conditions [123]. Amatrix Q(z ,z )Gl(z ,z?)nXn
2

is diagonal dominant on T if

2
(a) q#i(z ,z2) has no "poles" on T ,i = l,2,...,n

(b) for all Z;L,z2 GT2

|qii(VZ2}| >

either £ q (z ,z ) , i=l,2,...,n
i^i J2T (177)

or I (^-i(zi»z9) » i=l,2,...,n
j*i j± X 2

From the above definition, we arrive at the following theorem by Humes-

Jury [123].

Theorem 38 [123]. Let G^z^ =N^^z^D^^)"1 be the transfer
function of a MIMO two-dimensional digital filter, with N and D being

o

two-dimensional right coprime. Let D(z ,z ) be diagonal dominant on T .

Then G(z1,z2) is structurally stable if and only if the Nyquist-like test

of all the diagonal elements of D (d1±(z ,z2), i=l,...,n) do not encircle

or pass through the origin.

Graphical Construction of Diagonal Dominance [123]. This construc

tion is done by using the parameterization of T = {(e ,z?): |z |£.1,

aG[0,2ir)}. By this procedure for each a we reduce the problem to a single

variable z2. Thus the techniques of Rosenbrock [97] discussed in section V

can be applied.
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Let d map {(eJ ,z ): |z |£l, aG[0,2ir)} into T (a) for each i. Now

consider circles for each |z9| such that |z9| = 1, with centers at

d.,(eJ ,z9), i = l,2,...,n and radius given by

r±(a,z2) =
either £ d (e? ,z„), 1=1,2,... ,n

&1 (178)
or * * '~jaI d (eJU,z2), i=l,2,...,n

When z? varies along the unit circle, the corresponding circles sweep

out a band which can be represented by a finite number of bands. Those

bands are called Gershgorin's bands. If for every a and i, these bands

2
exclude the origin we readily ascertain that D is diagonal dominant on T .

In checking stability these bands are drawn for each parametrized Nyquist

plot, similar to Rosenbrock's [97] construction for the one-dimensional

matrix case.

2
If D fails to be diagonally dominant on T , we can proceed in either

of the following ways:

(1) Apply the Nyquist-like test to each entry of D.

(2) Evaluate det D and then apply the Nyquist-like test to it.



90

VII. Stability of Multidimensional Polynomials (Matrix Case)

In this section we will generalize the theorems of the preceding

section to multidimensional polynomial matrices. Some of the theorems are

readily extendable, while others are not. We will discuss some of the

difficulties of such extensions in more detail.

If we have n spatial dimensions, we can generalize Roesser's model [116,116a]

to the following:

K_lK,...,K /
11 n "Bi

Ri(kl,k2'" •>v - IA1,1-Ai.n>
•

•

R \k,»•.•»k)
•— n 1 n—'

+
•

•

•

B
•— n-1

u(k ,...,k )
1 n

R-i (k. >.. • >k )

yO^,. -V = [VC„> • + Du(k1,...,kn)
R (k-,... ,k )

"—n 1 n —

(179)

for i = l,...,n, each A is a matrix of dimension n xn (j=l,...,n), B ,

C. are matrices of dimension n. x p and mXn., respectively, and D is of

dimension mx p.

By applying the n-dimensional z-transform to equation (179), we obtain

the n-dimensional transfer function (corresponding to equation (157)),

G(z ,z ,...,z ) = [C ,...,C ]
i z n l n

i-> -1,

(Z1 Inl7All) "A22 Aln
-A,,, (z^I^-A,,,,) -

21x 2 12 22
-A

2n

-1.
^A.-A. (z I -A ) _
*- nl n2 n n nn-* *-

n

+ D

B
(180)

Extending the stability theorems of the preceding section, we obtain

following Humes-Jury [37] the following:
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Theorem 39 [37]. A "MIMO" n-dimensional linear system described by equa

tion (179) is "BIBO" stable if and only if there exists a real y < » such

that for all positive integers (m,n,...,r)

m n r

I I ••• I llG(k,*,,...,s)ll £Y <• - (181)
k=0 Jt=0 s=0

where G(k,&,...,s) is obtained in a similar but generalized form as equa

tion (162).

Theorem40 [37]. A "MIMO" n-dimensional linear digital system whose

transfer function is given by the matrix G(z ,...,z ) is BIBO stable if and

only if each entry of G(z.,...,z ) corresponds to a single-input-single-

output system which is BIBO stable.

Theorem41 [37]. A system whose transfer function is given by equation

(180) is BIBO stable if every entry of G(z1,...,z ) has no 'poles' in the

region Un = {(z,...,z ): |z |£l, |z |£l,...,|z |£l>. On the other hand

if G(z.,...,z ) is the transfer function of a BIBO stable system, then no
1 n

entry of G(z.,...,z ) has poles on u or non-essential singularities of the
1 n

second kind, except possibly on the distinguished boundary of U (i.e.

when |z1| = |z^| =••• =|zj =1).

Remark. Similar to the two-dimensional discussions, we will ignore

this type of singularity and we refer to "BIBO" stability as structural

stability. Thus the above theorem will give the necessary and sufficient

condition for structural stability.

To generalize the determinant method discussed in VI-A-b, we will

first present the following definitions.
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Definition [118]. The n-dimensional polynomial matrices N and D are

n-dimensional right coprime if and only if N and D are one-dimensional right

coprime in

t5R[zi](z1,z2,...,zi^1,zi+1,...,zn), for i = l,2,...,n .' (182)

The following theorems were developed by Humes-Jury [124] as a

generalization of the two-dimensional case.

Theorem 42 [124]. Given an n-dimensional rational matrix G(zn,...,z ),
1 n

suppose

6<«r••-.«„> "W"-,zn)VV"->Zn)~1 =VZl'"-'Znr\(zl Zn}

where N , D are n-dimensional right coprime n-dimensional polynomial

matrices and N«, D. are n-dimensional left coprime n-dimensional polynomial

matrices. Then

det D = det D (mod. constant) (183)

Theorem 43 [124]. Let G= ND"1 where GG3R(z,,... ,z )pXq, NGl[z z ]pXq
In 1 ' n

and D €H[z.,...,z ] . Furthermore assume N and D are n-dimensional right

coprime. Then

(z. ,...,z ) G <t is a zero of det D <* (z-,... ,z ) G 6n
In In

is a non-essential singularity of G.

Note. (z ,...,z ) is a non-essential singularity of G if (z. ,...,z )
in In

is a zero of the denominator of some entry of G.

t
D. Youla with G. Gnavi in a recent work entitled, "Notes on n-dimensional
System Theory," to be published, has introduced three definitions of
coprimeness different than the above.
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Based on the above theorem and assuming that we are given the n-dimen

sional right (or left) coprime factorization of the transfer function of the

system G = ND j we can ascertain the necessary and sufficient condition

for structural stability by testing the zeros of

det D(Zl,...,zn) = 0 (184)

To test the stability of the n-dimensional scalar polynomial of equa

tion (184), we can apply any of the stability tests discussed in section (IV).

Remarks
f

1. It is shown by a counterexample constructed by D. Youla in as yet

unpublished notes that the primitive factorization applicable for the two-

dimensional matrix case no longer exists for n _ 3. The author is grateful

to Dan Youla for supplying him with these unpublished notes.

2. Because of (1), one is not able to obtain the (GCRD) factoriza

tion in a similar fashion as for the two-dimensional case. Indeed, the

meaning of the (GCRD) factorization for the n-dimensional case is an open

question as well as the existence of an algorithm for obtaining it. This

question will be posed as an open research problem in the next section.

3. If the n-dimensional polynomial matrices N and D in ND are not

n-dimensional coprime, then to test stability, we may resort to testing stability

of each entry of the n-dimensidnal polynomial matrix G(z ,...,z ).

Lyapunov Test [121]. We will present the general n-dimensional form

of the Lyapunov test as developed by Piekarski [121]. First we present

the discrete and then the continuous case.

n-Dimensional Case. Suppose g(z ,z ,...,z ) = det[A -An ] is a n-
r r

dimensional characteristic polynomial of an arbitrary n xnr complex matrix

A , where
n

r ...

A = z,I +z0I +---+Z I (185)
n 1 m, 2 m0 r mr 1 2 r

^Another counterexample was independently obtained by B. Levy.
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is an n xn diagonal matrix with diagonal complex variables z^z^... ,zr,

where + denotes the direct.sum of matrices. The following theorem follows.

Theorem 44 [121]. The necessary and sufficient condition that the n-

dimensional characteristic polynomial gCz^z.^,... ,zr) to have all its

eigenvalues inside the unit polydisc if and only if there exists a positive

definite Hermitian matrix

w = W 4-W + ••• +W > 0 (186)
n m.. m0 m
r 1 z r

with (W =W* ), for i = 1,2,...,r such that
m. m,
l i

A W A -W < 0 (187)
nr nr nr nr

Remark. The above theorem is applicable for stability when one uses

the classical definition of the n-dimensional z-transform (i.e. with nega

tive powers of the z 's).

n-Dimensional Continuous Case [121]. The n-dimensional characteristic

polynomial g^s^s^... ,sr) =det(An -An )is Hurwitzian if and only if

there exists a positive definite Hermitian matrix

W = W +W + ••• +W > 0
n mn m0 m
r 12 r

with (W = W* ), i = l,2,...,r such that
m. m.

W A +A* W < 0
n n n n
r r r r

Remark. Similar to the remark mentioned for the two-dimensional case,

the above theorem for the n-dimensional discrete case was not shown to be

applicable for testing stability of Roesser's model or the Fornasini-
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Marcheslnl model either. Hence, the Lyapunov test is not as promising for

testing stability as other previously mentioned tests. It is of interest

to note that in recent works [125,126], the role of the various state space

models is still considered unclear.
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VIII. Conclusions and Recommendation for Future Research

In this paper a comprehensive study of two- and multidimensional systems'

stability was presented. In particular the various tests for stability are

applied to the various regions of analyticity which classify the particular

system. This classification which features one of the main contributions

of this paper enables the reader to deal with both continuous-discrete or

mixed systems in one unified approach. The complexity of the region of

analyticity depends on the stability requirements of the various applications.

It is shown in this paper that the stability tests of two- and multi

dimensional systems reduces to several applications of the stability tests

of one-dimensional systems. A comprehensive survey of such tests was

published in a companion paper by this author [1]. Hence, the earlier paper

and this one present a detailed survey of the stability tests for linear

time-invariant one- or many-dimensional systems.

The area of two-dimensional digital filtering is increasing in impor

tance in recent years because of the many applications. A survey of this

work as done by Merserau and Dudgeon [22] three years ago included about

fifty references. In that survey the stability problem section was only

one of several other sections. In the present survey, we mention over a

hundred references only to the stability problem and these are by no means

exhaustive. This attests to the big strides made in the study of this

problem in the past three years. This surge of activity will undoubtedly

continue unabated in the years to come. Hence, it is felt that such a survey

is timely in order to integrate the widespread volume of publications into

a unified theme so that the researcher in this field can find it easy to

grasp and evaluate the various tests. It is hoped that this objective of

the author will materialize.
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In studying the history of the development of stability tests for one-

dimensional systems which span over 120 years and the present tests for two-

and multidimensional systems which spans about two decades, certain analogies

and differences are singled out. In this survey, it is pertinent to remark

on them.

1. Both the study of one- and multidimensional stability investiga

tions were motivated by practical applications. For instance Maxwell's

work on stability [2] as well as that of Vyschnegradsky in Russia was moti

vated by the steam engine regulators. The work of Hurwitz at the urging of

Stodola was motivated by the stability of turbine engines. Such a historical

review was recently presented by the author [59]. Similarly, the stability

study of two- and multidimensional systems was motivated by the effective

design of two- and multidimensional digital filters and other applications.

2. The early work on stability of one-dimensional systems was done

mainly by mathematicians or mathematical physicists. In contrast, the pre

sent work on multidimensional stability was done mainly by engineers. This

attests to the competence and insight of engineers in the mathematical

literature as well as to the solid mathematical education of the engineer

ing curriculae.

3. Most of the early research on one-dimensional stability was done

by European and Russian scientists, while the present research performed on

multidimensional systems is to a great extent done in the USA. This

is due mainly to the generous research support of the National Science Foun

dation and other governmental agencies to encourage and to give inpetus to

such study. It is also due to the advanced technology of recent years

especially in imagery which motivated the theoretical study connected with

these applications. This activity will undoubtedly increase in importance

and effort in the coming years.
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A major objective of this write-up is to single out some research

problems which remain unsolved up to the present time. These are itemized

as follows:

1. The study of the significance of the various definitions of

coprimeness of N-D matrix polynomials is warranted. Furthermore, the

possibility of extracting the common factor (right or left) when the

two N-D matrix polynomials are not coprime. This is needed for

system theoretic study of N-D matrix case.

2. Extension of the Ekstrom-Twogood [69] cepstral method of testing

stability to the multidimensional case. This method was discussed in

section III of this survey.

3. Research in obtaining sufficiency conditions for stability for

two- and multidimensional systems. This is done in the one-dimensional

case and needs to be developed for higher dimensions.

In view of the computational complexity of the stability tests, such

conditions are indeed warranted.

4. In the stability tests of one-dimensional systems, it is known

that Levinson's algorithm can be used. This is shown by Berkhout [127]

and Viera and Kailath [128]. Although the two-dimensional Levinson's

algorithm was developed by Justice [129], Levy et al [126], it has not been

extended for stability tests of two-dimensional discrete systems.

5. Extension of the Lyapunov method for stability testing of Roesser's

model. This was indicated in the preceding section.

6. A method for testing non-essential singularities of the second

t
kind. Also if such singularities of both numerator and denominator poly

nomials exist on the unit bidisc (or polydisc), how can one ascertain

+
Such an existence test has been very recently obtained by T. Bickart in a
note entitled, "Existence Criterion for Non-Essential Singularities of the
Second Kind," to be published.
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the stability of the system? This was discussed in section III.

7. In this study the various regions of analyticity were presented

because of the various applications. It is of interest to extend these

regions to others not yet dictated by the practical applications and to

ascertain whether the present tests are still applicable.

8. Extension of the analyticity region of two-dimensional asymmetric

(nonanticipative) half-plane digital filters to the multidimensional case.

9. Extension of the Nyquist-like test for the testing of the sign of

the multidimensional polynomial on the distinguished boundary on the unit

polydisc. This was discussed in sections III and VI.

10. It was mentioned in section III that Shanks' conjecture is false

in general. However, it was conjectured by Jury [81] that if

the original unstable polynomial and its least-square inverse

areof the same degree, then Shanks' conjecture might be valid. So far,

no counterexample has been obtained for this conjecture. Hence,

it is of interest for effective design to either verify or refute this

conjecture and in the same vein, to obtain whatever additional constraints

needed to be imposed to verify the conjecture.

11. Extension of the Anderson-Bitmead [106] or Shieh and Sacheti [107]

method to the two-dimensional case. These methods were discussed in

section V.

12. In this survey, the emphasis of stability tests was on linear time-

invariant multidimensional systems. In practice the nonlinear effects of

quantization, round-off error, finite arithmetic and others should be taken into

account for stability and design. Hence, the extension of the methods presented in

this paper to nonlinear and time-varying multidimensional systems is a major
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task. For various practical applications, the recent book edited by

Oppenheim [130] is a noteworthy contribution.

The above research problems and other mentioned in the text are but

a few of the many more which surely exist and are not known to this author. Some of

the above problems are difficult and some are straightforward and indeed it

would give this author great satisfaction to see the above solved by

researchers in our life-time.

I would like to conclude this paper on a personal note. After the

publication of my earlier companion paper [1], I received many encouraging

and appreciative remarks from many readers, from all over the world. Hence,

I would like to take this opportunity to thank them all for their kind

remarks. Furthermore, encouraged by these remarks, I embarked on the for

midable task of writing this comprehensive paper. Because the area of

multidimensional stability has not yet matured as in the one-dimensional

case, I have some misgivings about such a write-up. However, I expect that

the point of view presented in this paper and the path of investigations

proposed will in the long run outweigh these misgivings.

Finally, I wish to convey my sincere thanks to the editorial board of

the Proceedings of the IEEE in encouraging me to undertake this task of

surveying the field. Needless to say, I was much aided by my students and

colleagues in many universities in this write-up and thus, I wish to extend

my thanks and appreciation to all of them and in particular to Professors

B. D. 0. Anderson, N. K. Bose, T. Bickart, T. Kailath and to my studiens

Mrs. Ana Humes and Dr. D. Goodman.
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