

Copyright © 1977, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

A DERIVATIVE-FREE ALGORITHM FOR A CLASS OF

INFINITELY CONSTRAINED PROBLEMS

by

R. Trahan and E. Polak

Memorandum No. UCB/ERL H78/75

8 September 1977

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A DERIVATIVE-FREE ALGORITHM FOR A CLASS OF INFINITELY CONSTRAINED PROBLEMS

by

R. Trahan and E. Polak

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

ABSTRACT

This paper presents a derivative-free algorithm, based on local varia

tions and phase I-phase II methods of feasible directions for solving

optimization problems with distributed constraints. Such constraints

normally arise in the transcription of engineering design specifications.

Research sponsored by National Science Foundation Grant ENG73-08214-A01
and National Science Foundation (RANN) Grant ENV76-04264.

-1-

I. Introduction

It has been pointed out in [1] that an important class of engineering

design problems can be transcribed into optimization problems of the form

min{f°(z)|gi(z) <0, j=l,2,...,p; fj(z)<0, j=l,2,...,m} (1)

where f :B.n -*• Rf and gJ: Rn -•It1, j = l,2,...,p, are continuously differen-

tiable functions, while the f (•) are of the form

fj(z) = max <J>j(z,o>) (2)
cQ^

where <}H: RnxE -* R, with (fr(-,») and V <J) (*,'), j = 1,2,... ,m,continuous.
z

The set Q is assumed to be an interval. The algorithm in [1] and the more

refined version of this method given in [15] both require the explicit

computation of the gradients V <J>(z,u)), at certain values of to. Now, quite
z

commonly, to compute V <J>(z,a)), one has to integrate a linearized differen-
z

tial equation, in the usual manner of computing sensitivities. This opera

tion generally turns out to be very expensive and, in the case where the

dynamics of a system exhibit hysteresis, quite difficult to program (see

[14] for a description of these calculations in steel framed structures).

Hence, there is great incentive to construct an algorithm for solving

problems of the form (1) and (2), which uses function values only. In the

case of unconstrained optimization there are well known direct search

methods such as the method of local variations [5,8], the method of Hooke

and Jeeves [9], and the method of Rosenbrock [10]. These methods use only

local searches based only on function values of the cost, without regard

to any derivative information. This is in contrast to descent methods in

which gradients, or their approximations, are used. The steepest descent

•2-

method is one example of a descent method. The above mentioned uncon

strained direct search methods cannot be applied to constrained problems

because they can jam up at nonstationary points. In Fig. 1, it can be

seen that the method of local variations jams up at the nonstationary

points xn because a feasible step along any coordinate direction is

Impossible.

In this paper we use a modified local variations method in which we

generate spacer steps using a derivative-free modification of the algorithm

in [15]. In this way we ensure that the new algorithm cannot jam up and

also that it cannot converge to nonstationary points. The modification of

the algorithm in [15] was obtained by following the theory of adaptive

approximations given in [7,5],

To be more specific, we use a modified local variations method on (1)

until the step length falls below a certain value. Then, using the func

tion values obtained in the last iteration of the local search, the gradients

of the constraints and the cost are approximated by difference formulas and

a feasible search direction is computed using the same method as in [15].

A step is taken in this direction according to the step length rules in

[15]. Using the new point, a local variations type search is again

initiated and carried out until the step length once more decreases beyond

a certain point, and the whole process is repeated. Hence, the feasible

directions steps become spacer steps between local variations steps.

Given a design problem, of the form (l)-(2), in which gradient calcu

lations are impossible or are prohibitively expensive, the new algorithm

presented here gives the designer a greater flexibility in determining an

*A spacer step is one which is repeated infinitely often and ensures con
vergence. See section 7.9 in [11].

-3-

acceptable design. For example, in earthquake resistant building design

problems, such as the one in [3], the designer may be satisfied to simply

gain some improvement over his initial design. In problems such as these,

the gradient calculations may be very difficult to obtain and the designer

may wish to use a simple local variations type method. In this case,

various parameters may be set to allow our new algorithm to spend much more

time in the local variations steps than in the more complicated feasible

directions steps. On the other hand, the algorithm can be forced to take

many more feasible directions steps. In practice, it will be desirable to

use an algorithm interactively so as to use the local variations option to

a greater extent in early iterations and then switch to more feasible

directions iterations as greater precision is required towards the end.

II. Definitions and Assumptions

We shall make use of the following notation. Given z G]R , we define

if* :]Rn •> m by

t//(z) = max{ga(x),j G £ ; fJ(z), j G m} (3)

where p_ = {1,2,... ,p} and m = {1,2,... ,m}. Then we define ^ :F + 1 by

^(z) = max{0,iKz)} (4)

For any e >_ 0, we define the e-active constraint sets by

jf(z) = {j G m|fj(z) -* (z) >-e} (5)
e — o —

jf(z) ={j ^£.1^(2) - ^0(z) 1 -e} (6)

^(z) ={a> e fi|<j>J (z,a,) - ^ (z) >-e}, j Gm (7)

-4-

By following the same procedure as in Chapter 2,we define an "approximation"

of fi^(z) by

J^(z) = {o> € £r(z)|u> is a left local maximizer of 4>J(z,')} (8)

where a point w £ Q is a left local maximizer of <j>J(z,0 if there exists

a p > 0 such that

^(z.o)) < <j>j(z,uj) Vw e (w-y,w) H fl (9)

^(z,a)) _> <j)^(z,tu) Vo) € (w,io-Hi) Ha (10)

The following hypotheses are assumed to be true.

Assumption 1. f°(0 and g3(-), j e2are continuously differentiable;

♦ (•»•) and V <J>J (•»•)» j e B are continuous. n

Assumption 2. For all zG]Rn, for all j £ m, fiJ(z) is a finite set.
o n

Assumption 3. For all ze]Rn, e>0, and j€J (z), fi^(z) is afinite

set. H

Assumption 4. For all zGIRn, {V <fr* (z,w), u€ft^(z), j€JQ(z); Vg3 (z),

j £ J8(z)} is a set of positive linearly independent vectors. n

Because we shall make use of a feasible directions type algorithm,

we must have some form of gradient information for the cost and each

constraint. Unlike the algorithm in Chapter 2,we do not require exact

gradient calculations but only an approximation to each gradient. For

any z G lRn, T _> 0, let Vf°(z;T), VgJ (z;x), j € _p_, V<j>3 (z,w;x), u € ft,

j Gmbe approximations to the gradients of the cost and constraints

We say a set of vectors {n.}.=1 is positive linearly independent if the
n

zero-vector is not contained in the convex hull of {n.}. _. This
J 3=1

assumption is related to the Kuhn-Tucker constraint qualification [12].

-5-

respectively, in which x indicates the precision of the approximation.

Regarding this precision, we assume the following hypotheses hold.

Assumption 5. Given any compact set CC mn, and any y > 0, there exists

a x > 0 such that for all z G C, and for all x G [0,x],

Ilv^(z,o);x) - V <^(z,w)ll <y Vw G ft, jG m

il^gj(z;x) - Vgj(z)ll IP j£p_

IVf°(z;x) - Vf°(z)ll < y

(ID

(12)

(13)

Assumption 6. For all x>0, Vf0(-;x), VSj(.;t), jG£and V<|>J (•,•;x),

j 6i, are continuous functions.

An example of an approximation which satisfies the above assumptions

is the simple difference formula, which, for Vf°(z;x), would be

<(f°(z+x1e1)-f0(z))/x1

(f°(z+x2e^-f°(z))/x2
Vf°(z;x) = (14)

v(f0(z+xnen)-f°(z))/xn)y
where e, is the jth column of the nxn identity matrix and x G (0,x],

j J

j = l,2,...,n, x > 0 are positive constants. For x = 0, we simply define

Vf°(Z;0) = Vf°(z).

For notational convenience we define

C max <V<|>j(z,u>;x),h> if j G j (z)

Dfj(z,h;x) =S

aj6ftJ(z)
e

— 00 otherwise

-6-

(15)

, A/<Vgj(z;x),h> ifjGj8(z)
Dg^(z,h;x) &(

l-oo otherwise (16)

where, z G mn, h G mn, x >_ 0, and e j> 0.

In the descent part of the new algorithm to be presented here we

make use of the following functions which define linear programming (LP)

and quadratic programming (QP) problems respectively. For any z G]R ,

e >^ 0, and x 21 0> define

9 (z;x) = min max{<Vf (z;x),h> - yty (z);
6 llhll <1 °

00—

Dff(z,h;x), j Gm;5g^(z,h;x), j G£} (17)

62(z;x) =min{ \ llhll2 +max{< Vf°(z;x) ,h>' - y^(z);
e z o

Dfj(z,h;x), j Gm; Dg|(z,h;x), j G2)} (18)

-1 -2where Y2.1 is a constant. Let h (z;x) (h (z;x)) denote a solution of

—1 2the program defined by 6 (z;x) (3 (z;x)). Note that because of

Assumption 3, the programs defined by (17) and (18) are easily solved by

conventional LP and QP computer codes.

In the algorithm to be presented here, we use a direct search (a

modified local variations method) in which we must ensure that the step

length can be made arbitrarily small in a finite number of iterations.

Therefore, we require the following to be true.

Assumption 7. For all zq G3Rn, the set C(zq) ={z G 3Rn|i|;o(z) <. *Q(zo)}

is bounded.

III. An Algorithm Model

Because we are considering the use of approximations for the

-7-

gradients,we require a more complicated algorithm model than that in

Chapter 2. Our new requirements, therefore, are (i) the algorithm must

be parameterized by an accuracy parameter, and (ii) the combined phase I

- phase II feature of the previous model in Chapter 2 should be retained.

These considerations motivated the development of a new algorithm model.

This new model is a modification of 1.3.34 in [5] in which a combined

phase I - phase II feature has been incorporated.

Given a set F C mn, a set of desirable points A C F, and cost

functions C, :F+ 3R and C2 :FC +1R ,we consider the following algorithm
n IRnmodel in which the map A:3R+ x]R -> 2 is used.

Algorithm Model

Data: x >0, a>0, zq G lRn.

Step 0; Set i = 0.

Step 1: Set x = x .

Step 2: Compute a y G A(x,zjL).

Step 3: (i) For z± G F, if C^y) - C1(z±) < -ax, set z±+1 = y, x± = x,

i = i+1, and go to step 2; else, go to step 4. (ii) For z± G F , if

C2(y) -C2(Zi) <-ax, set z±+1 =y, t± =t, i=i+1, and go to step 2;

else, go to step 4.

Step 4: Set x = x/2 and go to step 2.

We assume that the following hypotheses regarding the map A(-,•), and

the cost functions C^O and C2(-), are true.

Assumption 8. For A:TR+ x]Rn +2* ,FC]Rn, C±:F+TR,O, :F° -3R,
A C mn,

(i) C,(*) and C2(*) are continuous,

(ii) A(x,F) C f for all x > 0.

-8-

(iii) for every z G A, there exist a y(z) > 0, a p(z) > 0 and a

x(z) > 0 such that

C1(z") - C1(zt) < -y(z) Vz1 G B(z,p(z)) H F

Vz" G A(x,z')

Vx G (0,x(z)] (19)

C2(z") - C2(z') <-y(z) Vz' G B(z,p(z)) n Fc

Vz" G A(x,z')

Vx G (0,x(z)] (20)

where B(z,p) = {z'G mn|Hz-z'll <p}. *

In the proof of the convergence theorem,we shall make use of the

following lemma.

Lemma__l. Suppose Assumption 8 is satisfied. If the Algorithm Model
00 i 00

constructs an infinite sequence tz.}, Q, either xi ->• 0 or ^z±^±sQ

has no accumulation points.

K

Proof. Let z be an accumulation point of {z }; i. e., z^ •+ z for some

K CZ where^ = {0,1,2,...}. Because {x.} is a monotonically decreasing

sequence it must converge. Suppose x -> x > 0. Then, by construction,

x. = x > 0 for all i > i for some i G IL .
i — +

Case 1. z4 G F° for all i Gl For all i > i
1 -r

C2(zi+1) -C2(«t) £— (2D

and, hence,

lim [C2(zi+1) -C2(z±)] <-ax <0 (22)

-9-

Since {C«(z)} is a monotonically decreasing sequence, it must converge;

i.e. C2(z.) -»- C2(z). Consequently, lim [C2(zi+1) - C2(z±)] = 0, which
i-*«>

is a contradiction to (22).

Case 2. z.1 G f for some i* _> i. By Assumption 8(ii), z± G F for all

i 1 if. Thus, for all ±> i1

C1(zi+1) - C1(z±) <-ax (23)

and, hence,

lim [C, (z...,) - C,(z.)] < -ax < 0 (24)
1 l+l 1 l —

Since {^(z.)} is a monotonically decreasing sequence, it must converge,

i.e. C],(zi) ->- C,(z). Consequently lim [C^z^) - C1(z±)] = 0 which is
i-x»

a contradiction to (24).

Thus, in either case we obtain a contradiction and we conclude that

x. -*- 0. n
i

We now state themain convergence result for the Algorithm Model.

Theorem 1. Given a sequence {z.} constructed by the Algorithm Model, if

it is finite then its last element is desirable, or else it is infinite

and every accumulation point of {z.} is desirable.

Proof; Suppose the sequence {z } is finite and zc- is the last element.

The algorithm then constructs an infinite sequence {y.} where

x-j xA

y, GA(-i=i z«), j=0,1,2,... . If z; GF, then C..(y.) - C, (z?) >-a -^,
j 23 i i x tj x i 2j

j=0,1,2,... . If zj GFc, then C2(yj) -^(zj) >"^-^y1, j=0,1,2,... .
Suppose, contrary to what is to be proved, that z? G A. By Assumption 8

-10-

(iii) there exist a y(z?) > 0, p(zj), and a x(zj) > 0 such that (19) and
Ti-1 Vi (zA)

(20) hold. Let j G ~L be such that —— < min{ — , x(zA)}. Hence, if
+ c — a i

2JZ£ e F,

T~ 1C1(yj) -C1(zj) <-y(z±) <-a -^ ,v.. >j (25)

or if zj G Fc

Ti-1i i „. . . (26)
C2(yj) " C2(zi) - -V(zi> 1 ~a ~~f" »vJ 1 J

This is a contradiction, and we conclude that z* G A; i.e. z? is desirable.

Now suppose {z.} is infinite and has an accumulation point z. Let K C Z.
K ^

define a subsequence such that z. ->• z. Suppose that z G A. By

Assumption 8(iii) there exist a y(z) > 0, a p(z) > 0, and a x(z) > 0 such

that (19) and (20) hold. By Lemma 1, x. -*• 0 and therefore, there exists

a k- G K such that x. <_ x(z) for all i >^ k . Let k >_ ^ be such that

z. G B(z,p(z)) for all i >_ k, i G K. We now consider two cases.

Case 1. z G Fc for all i GX . From (20) we obtain

C2^Zi+l^ " C2^zi* - ""v^ Vi >_ k, iG K

and hence, lim [C2(zi+1) -C2(z±)] <. -y(z). But {^(z^}"^ is a
iGK

monotonically decreasing sequence and, therefore, it must converge.

Hence, lim [C2(z.+1) -C^)] =0. Consequently, lim [C2(zi+1) -C2(z±)]=»0
i-x» iwC

which is a contradiction.

Case 2. z^ G F for some i G X . By Assumption 8(ii), z. G F for all
i + i

i > i. Hence, z. G F, for all i >. max{i,k> and we obtain from (19),

A

CAz.^) - CAz.) < -y(z), Vi>max{i,k}, iGK
1 l+l 1 l —

-11-

(27)

(28)

Hence, lim [C^z^) -C1(z±)] l-y(z). But ^(z^^ is amonotonically
i^K

decreasing sequence and, therefore, must converge. Hence, lim tc1(zi+1
J->00

- C..(z,)] = 0. Consequently, lim [C-U.,,) - C^z)] = 0 which is a
1 i iGK

contradiction.

Because we obtain a contradiction in either case we conclude that

z G A; i.e. z is desirable.

IV. The Algorithm

As explained in Section I, the algorithm to be presented here is a

hybrid direct search - feasible directions descent method. The direct

search part will be given here as two subprocedures, each of which is

called from the main algorithm which is a feasible directions type method.

The first subprocedure is a modified local variations method in which a

feasibility condition is imposed at each iteration. The second subprocedure

is a local variations method applied to the unconstrained problem of

decreasing ty (z) whenever ty (z) > 0.

A A A
For notational convenience we define d.. = e^, d2 e^, d^ - e2»

d, = -e„,..., dn , = e , d0 = -e , and we denote the feasible region
4 2 2n-l n 2n n

by F= {z G]Rn|i|;o(z) =0}.

Subprocedure 1.

Input: xQ, t; Output: S1(xq,x).

Data: p >0.

a

Step 0: Set i = 0, x = xq, pq = xp.

Step 1: Set j = 1.

Step 2: Compute f^x+p^)and ^(x+p^).
Step 3: If f^x+p^.) <f°(x) and ^OHd^) =0, set x=x+P±dj and

go to step 1; else, go to step 4.

Step 4: If j < 2n, set j = j+1 and go to step 2; else, go to step 5.

-12-

Step 5: If p. <. t, set S_ (x ,x) = x and stop; else, set x. _ = x,

p. - = p./2, i = i+1 and go to step 1. n

It is assumed that t[> (x) = 0 whenever S, (x ,x) is to be computed.

See Fig. 2 for an example of the application of Subprocedure 1.

Subprocedure 2.

Input: x , x; Output: S2(xq,x).

Data: p > 0.

A

Step 0: Set i = 0, x = xq, pq = xp.

Step 1: Set j = 1.

Step 2: Compute ^ (x+p.d).

Step 3: If \\> (x+p.d.) < ty (x) set x = x+p d , and go to step 1; else,
*•— o 1 j o i j

go to step 4.

Step 4: If j < 2n, set j = j+1 and go to step 2; else, go to step 5.

Step 5: If p. < t, set S2(xq,x) = x and stop; else, set x±+1 = x,

P-t^-i = PJ2' ± = i+1» and 8° t0 step 1' Ui+1 i

Although it is not indicated, it is necessary to store the function

values in step 2 of either subprocedure, whenever p± <_ t. Then it is

possible to use these values in computing the approximations to the

gradients of each function.

The following lemma is an obvious consequence of Assumption 7.

Lemma 2. Given x G]Rn and x > 0, Subprocedure 1 (2) will construct
o

a point S„(x ,x)(S«(x ,x)) after a finite number of iterations. n
1 o z o

We can now state the main algorithm in which the subprocedures are

used in combination with a feasible directions, descent type, method.

+In the implementable version of this algorithm only a discrete subset of
ft would be used as in Chapter 2. Then only a finite number of function
values of <J>J(z,w) would be stored. In this chapter, however, we consider
only the conceptual computation over ft. The algorithm here can be
modified in an obvious way employing the same method as in Chapter 2.

The Algorithm

Data: *± €(0,1), a2 G (0,1), 3G (0,1), Y1 1, «>0, eQ >0, xq >0,

A, e (0,1], X >A ,yo e mn, tt G {1,2}.
min o mm o

Step 0: Set i = 0, t = xq.

Step 1: If y eFcompute zq =S^y^x). If yQ ^Fc compute zq =S2(yQ,x).
° j ._ *Store the function values computed at the points Z0+T±e*> 3 ~ 1,2,...,n.

Step 2: Set e = e .

Step 3: Compute Vf0(z.;x), Vu^x), j€j8(z), tyJ(z±><o;T), u> G&{z±)-9
jG jf(z), using the function values computed in the last subprocedure

call.

Step 4: Compute IT*(z.;x) and ^(z^t).

Step 5: If ^(z ;x) =0, compute ^(z^x) and go to step 6; else, go to

step 7.

Step 6: If ^(z^x) = 0, set y= z± and go to step 15; else, set c= e/2

and go to step 3.

Step 7: If ^(z.;!) <_ -Se, (set e(z±)=e) go to step 8; else, set e= e/2

and go to step 3.

Step 8: Set A = A .

Step 9: If * (z.) > 0, go to step 11.
* o 1

Step 10: If

f°<zi+XJEie<zi;T)) " f°(zi} - "al6Xe (29)

gj(zi+Ah^(zi;x)) <0 jG£ (30)

fj(z.+Ah7r(z.;x)) < 0 j Gm (31)
i e i — —

go to step 13; else, set A = $A and go to step 12.

4e

Whenever S2 is called, the cost function must also be computed at the
points z. +T3e., j = 1,2,...,n.

Do not store e(z.). This quantity is used only in the proofs.

Step 11: If

iKz^Ah^z^x)) -iKz±) 1- <»<5Ae (32)

go to step 13; else, set A = 3A and go to step 12.

Step 12: If A > x»A . , go to step 9; else, set y = z. and go to step 15.
f — nun 1

Step 13: Set z'± = z± +Ah^z^x).
Step 14: If z± GF, compute y=S^z^x). If z± GF°, compute y=S2(z^,x)
Store the function values computed at the points Zi +Tiej» J= l>2>«*'»n'

Step 15: For z± G F, if f°(y) -f°(z±) 1 -a2x, go to step 16; else, set

x=x/2 and go to step 2. For z± GFC, if i|»(y) -U*±) 1-a2x, go to

step 16; else, set x = x/2 and go to step 2.

Step 16: Set z±+± =y, x±+1 =x, i=i+1, and go to step 2.
n 91R

Steps 2 through 14 of this algorithm define a map A:]R+ * M + *

and step 10 provides the property that A(x,F) C F for all x > 0. We

define the two cost functions C± =f° and C2 =* on Fand Fc respectively.
With these quantities defined, it is clear that this algorithm is of

the same form as the Algorithm Model of the previous section. In order

to make use of the algorithm model it is necessary to also define the set

of desirable points A and then we must show that Assumptions 8 (i),(ii),

and (iii) hold. By the definition of C1 and C2 it is obvious that

Assumption 8(i) holds, and since A(x,F) C F for all x > 0, Assumption 8(ii)

is satisfied. In order to define A we state the following lemma which

is an obvious extension of Proposition 1 in [1].

n

n

Lemma 3. If zG F is optimal for (1) then e\z;0) = 9^(z) = 0, ir G {1,2},

where we define for zG]R,e>0, Y^.1

-15-

61(z) = min max{<Vf°(z),h> - yi{/ (z);
e llhil <1

00 —

Dfj(z,h), jGi; Dgj(z,h), 3 e2) (33)
e e

02(z) = min4 llhll2 + max{<Vf°(z),h> - Y^_(z);

Dfj(z,h), jGm; DgJ(z.h), jG£}} (34)

where

f max <V<J>J(z,U)),h> if j e J (z)
z e

ujGft3^)

Df^(z,h)^ £ OS)
— 00 otherwise

<Vgj(z),h> if j G J*(z)
Dg^(z,h) A < (36)

otherwise

,C rtTTFurthermore, for all zG f ,0Q(z) <0 for tt G {1,2}.

As a consequence of Lemma 3 we define the set of desirable points as

A&{z G IRn|e'?r(z;0) = 0, tt G {1,2}} (37)
o

Note that ^(ziO) =0 if and only if 62(z;0) = 0.

In order to show that the map A is well defined, we will require the

following result which is proved in Appendix A.

Proposition 1. For all zG iRn, x>0, tt G {1,2}, such that 6^(z;x) <0,

there exists an e > 0 such that ^(z^) < 0 (z;x) < 0 for all e G [0,e].
e — o

n

The following lemma is a consequence of Proposition 1 and it

demonstrates that the feasible directions part of the algorithm is well

defined.

-16-

Lemma 4. The algorithm cannot cycle indefinitely in the loop defined by

steps 3 through 6 or in the loop defined by steps 3 through 7.

Proof. Let tt G {1,2}. For all z G]Rn, e > 0, x > 0,

e*{z;T) < e^T) < 0 (38)
o ' — e —

If 6f(z.;Tj = 0, we have from (38) that 0^ (z.;x) = 0 and the algorithm
Oil o

proceeds through steps 3 through 6 and then to step 15. Hence, the
— "IT

algorithm cannot cycle indefinitely in the given loops if QQ(Z^T±^ = °-

Suppose that S^Cz.;!.) < 0. Then by Proposition 1 there exists an
rr oil

e > 0 such that

e^T.) <±e\2,;T,) v£e[o,i] (39)
£11 — £ O 1 X

Let k > 0 be the smallest nonnegative integer such that

e= e 2 < min{e, - -js ®o^Zi;Ti^

We then obtain from (39)

^(z^x.) <-f ^(z.;x.) <-6e
e

tttThus, the algorithm will construct e(z±) >_ e such that 0£, \(Z±>T±)

< -6e(z.) in a finite number of cycles between steps 3 and 7.

(40)

(41)

The following lemma shows that Assumption 8 (iii) holds. The proof

is contained in Appendix A.

Lemma 5. For all z G mn such that ^(zjO) < 0, tt G {1,2}, there exist
o

p > 0, p > 0, and x > 0 such that

-17-

f°(z") - f (z1) < -y Vz' G B(z,p) H F

Vz" G A(z';x)

Vx G (0,x] (42)

iKz") - i{;(zf) < -u Vz' G B(z,p) n FC

Vz" GA(z,;x)

Vx G (0,?] (43)

n

We can now state the main convergence result, which, from the above

discussion, follows directly from the use of Theorem 1.

Theorem 2. If the algorithm constructs a sequence {z.} which is finite

then the last point constructed is desirable. If the sequence is infinite

then every accumulation point is desirable. n

V. Scaling

When using numerical approximations of derivatives it may be

necessary to take special precautions to ensure sufficient accuracy.

Curtis and Reid in [13] proposed a scaling method for choosing appropriate

step lengths when using difference formulas for first derivative

approximations. Their method is one in which a balance is maintained

between rounding and truncation error estimates.

We shall briefly describe the method in [13] by considering a single

function f :]R -»• 1R for which we wish to approximate — . As an estimate

of the truncation error we define

f(x+h)-f(x-h) _ f(x+h)-f(x) (44)
A =
t 2h h

As an estimate of the round-off error we define

-18-

Ar =hmax{|f(x+h>-f^|, |'<*-")-*<»> |} (45)

The justification of these approximations is given in [13] and will not

be repeated here. It should be noted, however, that these formulas are

based on heuristic arguments; i.e. the quantities A and A are really

only upper bounds on the truncation error and round-off error respectively.

According to Curtis and Reid these bounds are very conservative.

The balance of A and A is maintained by examining the ratio

u = r
r

The aim is to keep u in the range [u . ,u]. If, after calculating
min max

u for a given h, u G [u . ,u], a new vector h* is computed, where
min max

h1 = h/u . /max(u,l) (46)
aim

and u . is some selected value in the range [u . »u^QV]« Finally, the
aim min "^x

value of h1 is restricted to a range [h,^^11,,,^ •

In the algorithm of Section IV, we approximate the derivatives

(gradients) by using difference formulas in which the functions are

evaluated along each coordinate axis. In Subprocedures 1 and 2, the

steps along the coordinate axes are given by the value of p^ The

normal procedure could be to simply use the last value of p, £ x for

the step length in the derivative approximation formulas. One can then

insert a test to check if the ratio u = A /A is within a prescribed

range for each component of the approximated gradient. If so, then no

further calculations would be needed for the gradient approximations.

If u is not in the prescribed range for any component, additional function

evaluations would be needed with a step length, given by (46), along the

-19-

direction corresponding to that component. Note that a separate test

is performed for each coordinate direction.

The scaling technique proposed in [13] can be implemented in the

algorithm of Section IV with no effect on the convergence results. On

some well-scaled problems it may be unnecessary to include the additional

coding for this scaling. Depending on the required overall accuracy of

the final result the user of this algorithm should decide whether his

problem is scaled well enough.

VI. Conclusions

In this chapter we have presented a new, derivative-free algorithm

for solving a certain type of infinitely constrained optimization problem.

This new algorithm, unlike most other algorithms for constrained

optimization, uses a hybrid direct search-descent method. It gives the

user a greater flexibility when it is used in computer aided design

applications since it requires no explicit derivative calculations. Also,

if the algorithm is used interactively, the designer has the additional

flexibility of controlling whether the algorithm uses the direct search

more or less than the descent part of the algorithm.

This new algorithm may also be used without the direct search subpro-

cedures. In this case, the algorithm becomes a derivative-free implementa

tion of the algorithm contained in [15].

-20-

Appendix A.

In this appendix we shall present proofs for Proposition 1 and

Lemma 5. Without loss of generality, we shall assume that tt=1, p=l, and

m=l.

Proposition 1. For all zG iRn, x > 0, tt G {1,2}, such that 0Q(z;x) < 0,

there exists an e>0such that 0^(z;x) <_ 0^(z;x) <0for all eG [0,e].

_•«

Proof: Given z G m11 and x > 0 such that 0 (z;x) < 0, there exists a

y- > 0 such that

max <V>(z,u>;x),h> -Df (z,h;x) <-^0*(z;x) (Al)
ojGn (ft (z)) °

y v ov

Vh G s

where S = {h £ m^M^ <_ l}. This follows directly from Assumption 1.

By Proposition 2.1+ there exists an e1 >0such that for all eG [O.e^

a (z) c N (fi (z)) <A2>
e yl °

Thus, for all eG [O.e.J

Df (z,h;x) <Df (z,h;x) -\ 0\z;x) Vh Gs (A3)
e o t. \j

If S2 (z) = <p there exists an e > 0 such that ft (z) = * for all eG [0,e].

In this case Df (z,h;x) = Df (z,h;x) = -», for all e G [0,e]. Let
o e -»-

eG (0,e;L] be such that J^(z) =J^(z) for all eG [o,e]. The desired
result now follows directly from the definition of 0 (z;x). n

+We denote a proposition, lemma, etc. from another chapter by indicating
the chapter number followed by the proposition number, lemma number, etc,

-21-

Before proving Lemma 5 we require several preliminary results.

Proposition 2. For any zG]Rn such that ftQ(z) t 4>, and for any y> 0,

there exist a p > 0, e > 0 and a x > 0 such that

Df (z',h;x) < Df(z,h) + y Vh G s

Vz* G B(z,p), Vx G [0,x], Ve G [0,e*] (A4)

Proof: By Proposition 2.1 there exist a p > 0 and an e > 0 such that

Df (z* ,h) <Df(z,h) + £ Vh G S, Vz' G B(z,p)
e — ^

Ve G [0,e] (A5)

By Assumption 5, since B(z,p) is compact, there exists a x > 0 such that

llv<Kzf,a>;x) - V <Kz\<o)ll 1 — Vw G fi
z 2&

Vx G [0,x]

Vz1 G B(z,p)

Hence,

<V<J)(zf,a);x),h> - <Vz<j>(z,,w),h> <^ Va> Gq
Vx e [0,x]'

Vzf G B(z,p)

and it follows that for all e > 0,

Df (zf,h;x) < Df£(z,,h) +f Vz' GB(z,p)

Vx G [0,x]

Combining (A5) and (A8) we obtain

Df (zf,h;x) < Df(z,h) + y Vz' G B(z,p)

Vx G [0,x]
Ve G [Q9l]

-22-

(A6)

(A7)

(A8)

(A9)

Proposition 3. For any z G]Rn such that ft (z) # <j> and for any e > 0,

y > 0, there exist a p > 0, and a x > 0 such that for all zf G B(z,p)

Df(z,h) < Df£(z\h;x) + y Vh G S,

Vx G [0,x] (A10)

Proof: By Proposition 2.2, given zG]Rn such that ftQ(z) ^ <t> and e>0,

y > 0, there exists a p > 0 such that for all z1 G B(z,p),

Df(z,h) < Df£(zf ,h) +f Vh G s| Vh Gs (AH)

By Assumption 5, since B(z,p) is compact, there exists a x > 0 such that

llv^z^o))' - V4>(z* ,oi;t)D <-^- Voj G fi
2^

Vx G [0,x]

Vz' G B(z,p) (A12)

Hence,

j<Vcp(zf,a)),h> -<VMz**;T)9h>\ ±\ Vu Gn
Vx G [0,x]

Vz' G B(z,p) (A13)

and it follows that for all e > 0, x G [0,x],

lz' .n; * ur tz ,n;x; -r —
e

Vz1 G B(z,p) (A14)

DfJz' ,h) <Df£(zf ,h;x) +| Vh G s

Combining (All) and (A14) we obtain

Df(z,h) < Df£(z»,h;x) + y Vh G s

-23-

Vx G [0,x]

Vz* G B(z,p) (A15)

Proposition 4. For any z G iRn such that ft (z) ^ <J>, and for any e > 0,

y > 0, there exist a p > 0 and a x > 0 such that for all z1, z" G B(z,p)

Df(zn,h) <. Df£(z,,h;x) + y Vh G s

Vx G [0,x]. (A16)

Proof: By Corollary 2.1, given zG m11 such that fi0(z) ^ 4> and e>0,

y > 0, there exists a p > 0 such that for all z', z" G B(z,p)

Df(z",h) <Dfe(z' ,h) +^ Vh Gs (A17)

As a consequence of Assumption 5 there exists a x > 0 such that for all

e >_ 0,

Df (zf ,h) <Df (z* ,h;x) +% Vh G s

Vz1 G B(z,p)

Vx G [0,x] (A18)

Combining (A17) and (A18) we obtain

Df(z",h) < Dfe(z' ,h;x) + y Vh G s

Vx G [0,x]

Vzf, z" G B(z,p) (A19)
n

Proposition 5. For all z G mn such that 0tt(z;O) < 0, there exist a

p > 0, an e > 0, and a x > 0 such that

e(z,;x) > i Vz1 G B(z,p), Vx G [0,x] (A20)

where e(zT,x) is the value of e constructed by steps 1 through 6 of the

algorithm with z. = zf and x G [0,x].

-24-

Proof: Given z G]Rn such that 0 (z;0) < 0, let y > 0 be such that
o

0 (z;o) < -y < 0. (Consider it = 1 only.)

Case 1. if>(z) < 0.

By the continuity of i|/(*) there exists a p > 0 such that for all

z1 G B(z,p),

*(z») <^f- (A21)

Let e = - ^ z , then because ^ (zT) = 0, we obtain

g(zf) - ¥ (z') < -e (A22)

f(z') - * (z1) < -e (A23)
o

for all z' G B(z,p) and for all e G [0,e]. Consequently

Dg (zf,h;x) = Df (zf,h;x) Vh G s
fc fc

Vz' G B(z,p)

Ve € [0,e]

Vx >. 0 (A24)

Case 2. ^(z) _> °» ft (z) = ♦

By the same argument as in Lemma 2.2 there exist a p > 0 and an e > 0

such that

Dge(z',h) <DgQ(z,h) +| (A25)

Df (z',h;x) = Df (z,h) = -«.
e o

Vh G S, Vz' G B(z,p),

Vx > 0, Ve G [0,e] (A26)

-25-

By Assumption 5 there exists a x > 0 such that

Dg (zf,h;x) <Dg (z\h) +J Vz1 G B(z,p)
fc fc *T

Vh G S,

Ve G [0,i], Vx e [0,x] (A27)

From (A25) and (A27) we obtain

Dg (z',h;x) £DgQ(z,h) +^ Vz! G B(z,p)

Vh G s

Ve G [0,e], Vx G [0,x] (A28)

Case 3. i|>(z) >. 0, ftQ(z) ± 0.

By Proposition 2 there exist a p- >0, x >0 and an e1 >0 such that

Df (zf,h;x) < Df (z,h) + •$ Vh G S
e — o l

Vz' G B(z,Pl)

VeG [0,^], VxG [0,x] (A29)

Using similar arguments to the ones used in the previous cases it can be

shown that there exist a pG (0,p1] and an £G(0^] such that

Dge(z',h;T) <DgQ(z,h) +| Vh Gs
Vzf G B(z,p)

Ve^[0,e], VT^[0,x] (A30)

Now, by the continuity of Vf (•) and ^ (.) and by Assumption 5

there exist a p G (0,p] and a x G (0,x] such that

<7f°(z';T),h) -^0(z') <<Vf°(z),h> - ij>o(z) +^ Vh G s, Ve G [0,£]

Vz1 G B(z,p), Vx G [0,x]

(A31)

-26-

Thus,

max{<Vf0(zf;x),h> - « (z1); Dge(zf,h;x); Df (z\h;x)}
O fc fc

lmax{<Vf°(z),h> - <J»o(z); DgQ(z,h); Df0(z,h)> +\ Vh GS, Vz1 GB(z,p)
Ve G [0,e], Vx G [0,x]

(A32)

Because (A32) holds for all h G s, it follows that

I^z'jt) <51(z;0) +-|l -•§• Vz1 G B(z,p)

Ve G [0,e], Vx G [0,x] (A33)

Let j(z) €l be such that e=eQ2"j(z) <min{e, ^ }. Then, from (A33)
we obtain

§i(z';x) < -6e Vz1 G B(z,p)
e —

Vx G [0,x] <A34>

/i x 0-j(zf;x)
In steps 1 through 6 of the algorithm, the quantity e(z ;x) - eQ£

is computed where j(zf;x) Gl,+ is the smallest integer such that

51, f. v(«';x) <-6e(z';x) (A35)
e(zf;x) -

for any z' G B(z,p) and xG [0,x]. Comparing (A34) and (A35) we conclude

that j(z';x) ^j(z), and hence, e(z';x) >£for all z' G B(z,p) and for all

xG[0,x].

Proposition 6. For all zG mn such that 0*(z;O) < 0 there exist a

p > 0, and a x > 0 such that for all x G [0,x],

(a) Df(zn,hf) < -a5e(z';x) if f(z) = *Q(z)

Vz", zf G B(z,p)

Vh' G S(z',x) (A36>

-27-

(b) <Vg(z"),h'> < -a6e(z';x) if g(z) = Vz)

Vz",z' G B(z,p)

Vh1 G S(z\x) W^

(c) <Vf°(z"),h,> < -a6e(z!;x) Vz' G B(z,p) ^

Vz" G B(z,p) , Vh' G S(z\x) (A38)

where S(z',x) is the set of all direction vectors which are solutions

to the program defined by 9 (z«. T\(z*JT)•

Proof: By Proposition 5 there exist a p± > 0, an e> 0, and a t1 >0

such that e(zf;x) > e for all zf G B(z,P;L) and for all xG [0^].

(a) If f(z) = ij> (z), by Proposition 4 there exist a p2 G (0^] and a

x0 G (0,xj such that for all z",zf G B(z,pJ
2 1 ^

Df(z",h') < Dfe(z',hf;x) + (1-a) Se

£ -6e(z';x) + (1-a) 6e

£-a6e(z';x) Vh' GS(z\x) (A39)

Vx G [0,x2]

(b) If g(z) = \\> (z), there exists a p3 G (O.p^ such that g(zT) - *0(z*)

_> -e for all z* G B(z,p3). Also, there exist a p^, G (0,p3J and a

T3 G (°»Til such that for a11 zll»z, G B(Z»P4)

<Vg(z"),h, > < (VgCz-jt)^') + (1-a) 6e Vh' GS(z,;x)

Vx G [0,x3] (A40)

Since g(z') - \\> (zf) >. -e >. -e(z';x) for all z1 G B(z,p^)

<Vg(z"),h» > < Dg , . ,(z',h',x) + (1-a) 6e

-28-

<_ -6e(z,;x) + (l-a)6e

£ -a6e(z';x)

Vz",z! G B(z,p4)

Vh' GS(z';x), Vx G [0,x3] (A41)

(c) By continuity and Assumption 5 there exist a p5 G (Ojp.^ and a

t, G (0,x,] such that

<Vf°(z"),h> < <Vf°(z';x),h> + (l-o)5e Vz",z' G B(z,p5)

Vh Gs, Vx G [0,x4] (A42)

If \\> (z?) = 0, then

<Vf°(z"),h'> < -6e(z';x) + (1-a) 6e

< -a6e(z';x) Vz' G B(z,p50 OF

Vz" GB(z,p5), Vh1 GS(z!,x)

Vx G[0,x4] (A43)

Let p=min{p2,P4,P5} and x=min{x2,x3,x4} and we are done. a

Lemma 5. For all zG3Rn such that 0^(z;O) <0 there exist a y >0,
p > 0, and a x > 0 such that

f°(z") - f°(z') <_-y Vz' G B(z,p) H F

Vz" G A(z';x)

Vx G (0,x] <M4>

c

^(z") - iKzf) £ -P Vz? e B(z,p) ° F

Vz" G A(zf;x)

Vx G (0,7] <A45>

-29-

Proof: Because the proof of this lemma is so similar to that of Lemma 2.3

we shall include only the case when *(z) < 0.

By Proposition 6there exist aPq >0, e>0, and axq >0such that
e(z';x) >efor all z' GB(z,Pq) and for all xG (0,xq].

Case 1. ^(z) < 0.

By continuity there exists aP± * (0,P()] such that ♦(*») <0for
all z' GB(z,Pl); i.e. B(z,Pl) CF. By Proposition 6there exist a
pG(0,Pl] and axG(O.xJ such that <Vf°(z"),h'> <-a5e(z';x), for all
h, G S(z',x), for all xG (0,x], and for all z",z» G B(z,p). It follows

from the definition of the directional derivative that for any z\h Gmn

and X •> 0,

f°(z'+Xh) -f°(z') =f<Vf°(z'+sh),h> ds (A46)
Jo

For z' G B(z,p/2), and for any h' G S(z',x), xG (0,?1, it follows that

z' + Ah' G B(z,p) for all XG [0, -*-]because llhMI <^. From (A46)
2Vn

and our choices of p and x we obtain

f°(z'+Xh) - f°(zf) < -Xa6e(z';x) Vz1 G B(z,p/2) _Kz +An; v)_ vh' G S(z',x), VX G [0,p/2^

(A47)

Because z' + Xh' G B(z,p) for all XG [0,p/2^, z' G B(z,p/2), and

h' G S(z',x), x G (0,x],

<Kz'+Xh') <0 Vh' G S(z',x), VX G (0,p*/2,/n] (A48)

Vx G (0,x].

Let X=min{X0,p/2,/n}; then let fc(z) GX+ be such that &Hz) <X< 3
In steps 8 through 12 (assuming X>x.Xmin) of the algorithm the smallest

integer k(z') GX+ is chosen such that X(z') ^XQ$ Z satisfies

-30-

f°(z'+X(z')hl) - f°(z') < -X(z') a6e(z',x) (A49)

^(z,+X(z')hl) < 0 (A50)

if z» G F, and h' G S(z',x). Comparing (A47) and (A48) with (A49) and

(A50) we conclude that k(z') £ k(z) for all z* G B(z,p/2). Hence

pk(zt) < -3k(z) and we obtain

f°(z'+X(z')h') -f°(z') £-3k(z)a6e(z';x)

< -3^(z)a5e (A5D

iKz'+X(z')h') < 0 ^2)

for all z' G B(z,p/2), h' G S(z',x), and for all x G (0,x].

Since Subprocedure 1 maintains feasibility and does not increase

the cost we obtain

f°(z") -f°(z«) <-3^Z)a6e ^

iKz") 1 0 (A54)

for all z' GB(z,p/2) where z" = S1(z'+X(z')h',x); i.e. z" GA(z';x),

x G (0,x].

Case 2. $(z) >_ 0. ^±s case is Proved in the same manner as case 1
using the arguments contained in the proof of Lemma 2.3.

If we let p=p/2 and y= 3k otfie, we are done. n

-31-

References

[1] E. Polak and D. Q. Mayne, "An Algorithm for Optimization Problems

with Functional Inequality Constraints," IEEE Trans. Auto. Contr.

vol. AC-21, pp. 184-193, April 1976.

[2] E. Polak and R. Trahan, "An Algorithm for Computer Aided Design

Problems," Proc. of the 1976 IEEE Conf. on Dec. and Contr.,

Dec. 1976, pp. 537-542.

[3] E. Polak, K. S. Pister, and D. Ray, "Optimal Design of Framed

Structures Subjected to Earthquakes," Engineering Optimization,

vol. 2, pp. 65-71. 1976.

[4] V. Zakian and U. Al-Naib, "Design of Dynamical and Control Systems

by the Method of Inequalities," Proc. IEE, vol. 120, no. 11,

pp. 1421-1427, Nov. 1973.

[5] E. Polak, "Computational Methods in Optimization: A Unified Approach,"

Academic Press, New York, 1971.

[6] G. Zoutendijk, "Methods of Feasible Directions," Elsevier, Amsterdam,

1970.

[7] R. Klessig and E. Polak, "A Method of Feasible Directions Using

Function Approximations, with Applications to Min Max Problems,"

Journal of Mathematical Analysis and Applications, vol. 41, no. 3,

pp. 583-602, March 1973.

[8] N. V. Banitchouk, V. M. Petrov, and R. L. Chernousko, "Numerical

Solution of Problems with Variational Limits by the Method of Local

Variations," Zh. Vychisl. Mat. Mat. Fiz., vol. 6, pp. 947-961, 1966.

[9] R. Hooke, and T. A. Jeeves, "Direct Search Solution of Numerical

and Statistical Problems," J. Assoc. Comput. Mach., vol. 8,

pp. 212-221, 1961.

-32-

[10] H. H. Rosenbrock, "An Automatic Method for Finding the Greatest or

Least Value of a Function," Computer Journal, vol. 6, pp. 175-184,

1960.

[11] D. G. Luenberger, "Introduction to Linear and Nonlinear Programming,"

Addison-Wesley, Reading, Mass., 1973.

[12] M. Canon, C. Cullum, and E. Polak, "Theory of Optimal Control and

Mathematical Programming," McGraw-Hill, New York, 1970.

[13] A. R. Curtis and J. K. Reid, "The Choice of Step Lengths When Using

Differences to Approximate Jacobian Matrices," J. Inst. Math, and

Applic, vol. 13, pp. 121-126, 1974.

[14] D. Ray, K. S. Pister and E. Polak, "Sensitivity Analysis for

Hysteretic Dynamic Systems: Theory and Applications," Comp. Meth.

in Appl. Mech. and Eng., vol. 14, pp. 179-208, 1978.

[15] C. Gonzaga, E. Polak and R. Trahan, "An Improved Algorithm for Optimi
zation Problems with Functional Inequality Constraints," University

of California, Electronics Research Laboratory Memorandum M78/56,

September 1977.

-33-

Feasible

Region

Direction of

decreasing cost

Fig. 1. A*.nonstationary point at which no feasible

step exists along the coordinate directions.

\

X K Jt* *

Feasible

Region

Vf

Ae2

V3!

(X's denote trial points.)

Fig. 2. Calculation of S (x ,x) with T=pQ/4. No feasible

step of length greater than or equal to T exists for

which f0(x.) can be decreased. Hence, x^S^Xq,!).

	Copyright notice 1977
	ERL-78-75

