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ABSTRACT

The single-row routing approach for layout has attracted a great

deal of interest and is in a position to become one of the fundamental

routing methods for high density multilayer printed wiring boards (PWB's).

A specific development has recently been accomplished on this approach

[12], namely: Necessary and sufficient conditions for optimum

routing have been obtained. Nonetheless, there still remains a funda

mental problem to be overcome, that is, to develop an algorithm to find the

optimum solution.

The present paper derives an alternate set of necessary and sufficient

conditions for the same problem. These are easy to check and are tailored

for algorithm development. An efficient algorithm in the special cases

of upper and lower street congestions up to two has been proposed. These

special cases are particularly of interest in the design of practical

PWB's.
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1. Introduction

In the assembly of digital systems, multilayer printed wiring boards

(PWB's) are used very often to provide the necessary interconnection

among circuit modules. Recent advances in the technology of micro

electronics have changed the design rule for these PWB's. The number

of etch paths between two consecutive pins of an ordinary dual in line

package (DIP) is allowed to be three or more. In such a case a set of

sophisticated routing schemes to realize 100 percent wiring would be one

of the most essential factors to reduce the cost and time incurred in

laying out wire patterns. Thus, development is continuing on further

sophisticated routing approaches for PWB's.

As is pointed out by [1], the deficiency common to conventional routers,

such as maze-running routers [2-4] and line-search routers [5,6], is that

they lack in "topological fluidity," that is, the capability to

defer detailed wire patterns until connections have been considered.

Especially for line-search routers, which are used to be executed track

by track, this deficiency is fatal when several etch paths are allowed

between two consecutive pins in a DIP. Thus, in the case of high density

wiring, of practical use are other routing approaches, which exhibit

more topological fluidity, such as the channel router [7] and single-row

routers [8-10].

The single-row routing approach, first introduced by So [8], has the

promise to become one of the fundamental routing methods and is attracting

a great deal of interest in terms of its applications not only to large-

scale backboard wiring [8,9], but also to circuit card wiring [1,10,11].

A specific development has been accomplished on this approach
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recently. Necessary and sufficient conditions for optimum single-row

routing have been obtained f12], However, there remains the key problem

of deriving an efficient algorithm for finding a realization with a pre

scribed set of upper and lower street congestions (or track numbers).

If this can be obtained, optimum single-row routing can be employed in

conjunction with the line-search router [5] in such a way that the search

for possible line segments is implemented channel by channel, with all

connections within each channel completed later by single-row routing.

In this case, of primary importance is the problem as to what is necessary

and sufficient for realizability of single-row routing with some specific

numbers imposed on upper and lower street congestions.

The present paper first considers necessary and sufficient conditions

for the single-row routing problem, and then describes an efficient routing

algorithm for the special cases of upper and lower street congestions up to

two. These have enormous potentialities to be extensively used in the

practice of PWB wiring.

The conditions obtained are alternate to that of in [12], but they

are particularly suited for algorithm development as illustrated in the

cases where the number of street congestions is small. For purpose of

clarity, necessary terminology and concepts are given in Sections 2 and 3.

Necessary and sufficient conditions for realizability are given in Section

4. Theorems and algorithms for the special cases with street congestions

2 or less are derived in Sections 5 and 6.

2. Preliminaries

Consider a set of r nodes evenly spaced on the real line R as shown

in Fig. 1, where each node corresponds to a pin (drilled-through hole to
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reach all layers) or a via (plated-through hole to be used for intercon

nection between layers), A set of nodes on R to be interconnected is

referred to as a net, and a set of nets is designated as a net list.

Given a net list L = {N1,N2,...,N } on R, the interconnection for

each net N± is to be realized by means of a set of paths, which consist

of horizontal and vertical line segments according to specification.

For example, given a net list

L = {NlfN2,N3,N4};

Nl ={WV7}' N2 ={v2'V' N3 ={v3'V> N4 ={v6'V»
(1)

the interconnection for each net is realized as shown in Fig. 2. This way

of realization for a given net list on R is called single-row (single-layer)

routing [9], where upward and downward zigzagging is allowed, but not

forward and backward zigzagging. In this realization, the space above

the real line R is designated as the upper street, and the space below

R as the lower street. Given a realization, the number of horizontal tracks

necessary in the upper (lower) street is called the upper (lower) street

congestion. For example, in the realization of Fig. 2, the upper and

lower street congestions are one and two, respectively.

Using these terms, the problem to be considered in this paper is

formulated as follows: Given a net list L defined for r nodes on real

line R, and integers Ku and Kw, find a realization with the upper and lower

street congestions equal to or less than K and K , respectively.

Henceforth, without loss of generality, this problem is discussed under

the following assumptions;

I. every net of a given net list contains at least two nodes,
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II. every node belongs to a net, and

III. any net does not contain a pair of consecutive nodes v and v
i i+1

With respect to III, some explanation is necessary: If any net N

contains a pair of consecutive nodes v and v , then delete node v
i l+l i+1

from Nk and seek a realization. After that we can complete the realization

by connecting v± and v±+1 by means of a straight line segment on R, without

changing the upper and lower street congestions.

3* Interval Graphical Representation

Associated with an ordered sequence s- (N ,N ,...,N. ) of a given
1 X2 1n

net list L - IN^N^...,!^}, the interval graphical representation is

defined [12]. For example, given a net list L of Eq.(l), consider

a sequence s = (N2,NrN3>N4), then the interval graphical representation

associated with s is depicted as in Fig. 3, where each horizontal line

segment represents the interval covered by a net, and they are arranged

according to the order in s. Nodes which pertain to a net are marked

as shown. Obviously, there are n! ordered sequences for a> net list of n

nets, and hence there are a total of n! interval graphical representations.

In an interval graphical representation, let us define the reference line

[12] as the continuous line segments which connect the nodes in different

nets in succession from left to right. For example, the reference line

for the interval graphical representation of Fig. 3 is shown by the

broken lines in Fig. 4(a). Now, let us stretch out the reference line

and map it into the real line R. Associated with this topological mapping,

let each interval line be transformed into a path composed of horizontal

and vertical line segments, as shown in Fig. 4(b), where the portions

above and below the reference line are mapped into paths in the upper
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and lower streets, respectively. As readily seen, this topological mapping

yields a realization of a given net list. Thus, for each interval graphical

representation, there corresponds a unique realization.

Given an interval graphical representation, let us draw a vertical

line at each node v±, and let us define the cut number c(v.) as the num

ber of interval lines cut by the vertical line at v±, ignoring the one

to which v± belongs [9,12]. Let us also define the upper and lower cut

numbers for a given ordered sequence s, cf(v.) and cS(v,) as the numbers
u 1 w l

of interval lines cut by the vertical line above and below v., respectively

[12]. Obviously, c(v ) = c*(y.) + cs(v.) for all v.. Let
-L U 1 W 1 1

.s a r S,„ X1 _ _, scu A max [c (v ).] and c* Amax [cV)], (2)
i i w x

be referred to as the maximum upper and lower cut numbers, respectively

[12]. Then, c* and c® represent the upper and lower street congestions,
respectively, in the realization corresponding to this interval graphical

representation.

Thus, given a net list L and integers K and K , there exists a
u w

realization with the upper and lower street congestions not greater than

Ku and V resPectively, if and only if there exists a sequence s such
s s

that cu 1 Ku and cw <Kw. Hence we can formulate the following decision

problem on single-row routing.

Problem P(L,K ,K ):
u w

INPUT: Net list L and integers K and K .
u w

PROPERTY: There exists a sequence s such that cS < K and
ii — iiu — u

w — w

In what follows, we consider necessary and sufficient conditions
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that Problem P(L,K ,K ) be true.
u w

4. Necessary and Sufficient Conditions

Let ^vi»v2' **•»vr^ °e a set or" r nodes evenly spaced on R, as shown

in Fig. 1, and denote by I= [v±,v ] (i<j) a closed interval on R between

v^ and v.. Given a net list L defined for these nodes on R, let an

interval I *= [v±,v ] such that c(vfc) _> h for all v. on I and c(v. )

~ c^vj+i^ = h"l» be referred to as an h-interval. For any interval

I = [v±,v ] on R, let L(I) denote a set of nets which have no node on I,

but have two nodes vfl and vfe such that a <i and j < b; and let L(I)

represent the union of L(I) and a set of nets having nodes on I. The

definition and properties of an h-interval I together with the sets of

nets L(I) and L(I) are illustrated in Fig. 5(a)

Given a sequence s of nets of the form s = (..,N.,..,N.,..), let

N± (or Nj) be said to precede (or follow) N, (or N±) in s. With the use

of these notations, we can obtain the following necessary conditions

for Problem P(L,K ,K) to be true,
u w

LEMMA 1: If Problem P(L,K ,Kw) is true, then

(i) for any h-interval Iwith h >min [K ,K ], |L(I)| >_ 2h -
u w

(K+K ), and
u w

(ii) for any sequence s such that P(L,K ,K ) is true, there are at
u w

least h - Kw nets in L(I) which precede the other nets of L(I)

in s, and at least h- Ku nets in L(I) which follow the other

nets of L(I) in s.

Proof: Let sbe any sequence for which P(L,Ku,Kw) is true, and consider

an h-interval I. Let N e L(I) - L(I) be the one which precedes all the
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other nets of L(I) - L(I) in s, and let N G L(I) - L(I) be the one which
w

follows all the other nets of L(I) - L(I) in s. Assume that there are x

nets in L(I) which precede N in s and y nets in L(I) which follow N
u J s w

in s. Then, as readily seen, these x + y nets belong to L(I). Since

N and N £ L(I) - L(I) , N has a node on I, say v , and N has anode on
u w u u w

I, say v (see Fig. 5(b)). Then, by definition we have
w

c(v ) > h and c(v ) > h, (3)
u w

K > cS > cs(v ) = c(v ) - x,
w — w — w u v u' '

K > cS > cS(v ) = c(v ) - y.
u — u — u w w J

(4)

Thus, we have

and

K > h - x, or x > h - K ,
w — — w

K >h-y, ory>h-K,
u — J J — u

(5)

x + y > 2h - (K+Kw). (6)

Hence the lemma. a

It should be noted that this lemma is a generalization of the necessary

condition stated in [9] which was considered under the assumption that the

upper street congestion is equal to the lower street congestion.

As in [9], let us define the cut number q(N ) of net N. as the max

imum of the cut numbers of nodes belonging to N., i.e.,

q(N.) A max [c(v.)] . (7)
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Let

q = max [qfa.)]. (8)
k 1

Then, we have the following lemma without proof.

LEMMA 2 [123: Assume that P(L,Ku,Kw) is true, then there is at least

one net N± such that q(N±) < Ku, and at least one net N. such that q(N.)

< K , and for all N G L, q(N, ) < K + K - 1.
K it U W

Thus, the necessary conditions so far stated for P(L,K ,K ) to be
u w

true are summarized as follows.

& *M i Ku + Kw " *• (9)

A2: For any h-interval I (q>h>min[K ,K ]),
M— u w

|L(I)| >2h- (K+Kw), (10)

A3: There exists a sequence s for a given net list L such that for

any h-interval I (q^t^min [Ku,KwJ), there are at least

h " Kw nets in L^1^ which precede all the other nets of

L(I) in s, and at least h-Ku nets in L(I) which follow

all the other nets of L(I) in s.

Note here that the condition stated in Lemma 2 that there is at least

one net N. (N..) such that q(N±) <Ku (q(Nj)<Kw) can be readily derived
from A3, and hence it is not explicitly described above.

Given a net list L satisfying conditions Al and A2, let us assume

that there is a sequence s which satisfies condition Al, and consider

the interval graphical representation associated with s. Since any

node Vj for which c(Vj) =h>min [K^Kj, is on an h-interval I, for
such v. we have

<(Vj) >h-Kw and c^(Vj) >h-Ku> (11)

and hence
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Cu<V =h-<<V iV
s (12)

CW(V -h - CU<V i v

On the other hand, for any node v. for which c(v.) < min [K ,K ], it can
j 3 ~ u' w

be readily seen that

Cu(V ±Ku and Cw<V 1KW <13)

Hence, in the realization corresponding to the interval graphical re

presentation with respect to s, the upper and lower street congestions

are equal to or less than K and K , respectively; and therefore P(L,K ,K )
u w u w

is true.

Thus, these conditions Al, A2, and A3 are also sufficient conditions

for P(L,Ku,Kw) to be true; and hence we have the following theorem.

THEOREM 1: Problem P(L,KuKw) is true if and only if Al, A2, and

A3 are satisfied.

Hence the main problem here is how to construct an efficient algorithm

to generate a sequence s so as to satisfy A3 for a given net list L

satisfying Al and A2.

In the following we restrict ourselves to the special cases of (i)

Ku » 2and Kw =1 and (ii) Ku =Kw = 2, which are of practical use in

high density wiring for PWB's.

5. Special Case of K = 2 and K = 1
—=^tt —w

Given anet list L such that q < 1, then P(L,2,1) is obviously

true, and therefore we consider only the case of q = 2. We first prove

the following lemma.

LEMMA 3: Given a net list L such that q = 2, |L(I)| < 1 for any
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2-interval I.

Proof: Since qM = 2, |l(I)| j< 2 for any 2-interval I. Assume that

there is a 2-interval I' = [v ,v ] for which |l(I')|= 2. Since c(v ,)
p q ' ' P_l

= 1, the net N^ to which v belongs has a node v, with k > p + 1. Thus,

N. and at least one of L(I') pass over node v , and hence c(v ,,) >
1 p+1 P+l _

2, which implies that v . is on I'. However, any net in L(I') has no

node on I', and hence c(v +-) = 3, which contradicts to the assumption

of q - 2. Hence the lemma. a

Thus, for this special case of K = 2 and K =1, the necessary
u w

and sufficient conditions Al, A2, and A3 can be rewritten as follows.

B2: por any 2-interval I, |L(I)| = 1. (Equality sign due to

Lemma 3 and Eq. (10)).

B3: There exists a sequence s such that for any 2-interval I,

the single net of L(I) precedes the other nets of L(I)

in s.

Among these three conditions, B3 has much room to be simplified.

In the following we consider this simplification.

LEMMA 4: Given a net list L such that qM = 2, let I = [v ,v, ] and
2

1 s ^Vc,Vd^ (b<(0 be two consecutive 2-interval, such that there is no

other 2-interval on [v,_,, ,v J, then we have
D+± C-l

1° ILCI1) H L(I2)| <2, and

2° if Im1) nL(I2)| = 2, then for the interval I12 = [v, .. ,v J,
D+i C—1

UI1) UL(I2) CL(I12) =Ld1) OL(I2). (14)
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Proof: Suppose that JlCI1) nL(I2)| >3, then for anode v on I12
j *

c(Vj) > 2, contrary to the assumption. Thus, 1° holds. Now, consider

the case of |l(I )nL(I2)| =2. We can easily see that LCI1) OL(I2)
CL(I ). Suppose that LCI1) nL(I2) is aproper subset of L(I12),
then there is anode v on I12 which belongs to anet not in LCI1)

2

nL(I ), which implies that c(Vj) >2, contrary to the assumption.
Hence, L(I )=LCI1) Ol(I2). Furthermore, we have LCI1) CL(I12)
and L(I2) CL(I12). Thus, 2° holds. n

LEMMA 5: Suppose that qM =2and for any 2-interval I, |l(I)|= 1.

If there are two consecutive 2-intervals I1 and I2 such that IlCI1) n
2 • i o

L(I )| = 2and L(I ) j L(I ), then Problem P(L,2,1) is false.

Proof: Let {N^} ALd1) nL(I2), then we may assume from 2° of Lemma
4that Id1) =: {Na} and I(I2) ={^j. Then, in order that B3 must be
satisfied, Na should precede Nfo in sand at the same time Nfe should precede
Na in s, which is impossible. Hence the lemma. n

Using Lemmas 4 and 5, we can prove the following theorem.

THEOREM: Problem P(L,2,1) is true if and only if

Cl^Sl): qM<2,

C2 (=B2): |l(L)| = 1 for any 2-interval I, and

C3: there do not exist any two consecutive 2-intervals I1

and I such that |L(I )OL(I2)|=2and Kl1) ^L(I2).
The necessity is evident from lemmas stated above. To prove the

sufficiency we have only to show that given anet list Lsatisfying CI,

C2, and C3, we can always find an ordered sequence s of nets as stated

in B3. To this end, we can construct an algorithm to generate such a

sequence s correctly, as follows.
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ALGORITHM I

1°: Given a net list L, check whether or not the following conditions

hold,

(ii) there is at least one net N. such that q(N ) £ 1, and

(iii) for each 2-interval I, |L(I)|= 1.

If L satisfies all these conditions, then go to 2°. Otherwise halt;

at this stage P(L,2,1) is proved to be false.

2°J If there is no 2-interval, then halt; at this stage P(L,2,1) is true

and an arbitrary sequence s is a solution to our problem. Otherwise,

let G = [V,E] be a null graph such that a set of V of vertices and a

set of E of edges are both empty.

ll: If for all 2-intervals the following processes are conducted, then

go to 6°. Otherwise, let I* be the left most 2-interval for which the

following processes have not been conducted, and associated with it,

let us construct a directed graph G* = [V*,E*] such that

(1) V* = L(I*), that is, each N± G V* corresponds to N. G L(I*) ,and

(2) E* -((Na,Nk) |{Na> =L(I*), Nk GL(I*) -L(I*)}, that is, there

is an edge (Na»Nfc) incident from N into N if and only if

{Na> » L(I*) and Nk G L(I*) - L(I*).

Then, d) if |V O V*| <1, then go to 4°, and (ii) if |v Hv*| = 2, then

go to 5°.

4^: Let G<-G UG*, where for two graphs G1 =[V^E.^ and G2 =[V^Ej,
Gl U G2 A [Vx ^ V2,E1 U E2]. Then return to 3°.

5^: Let G +• G U G*. If G is an acyclic graph, then return to 3°.

Otherwise halt; at this stage P(L,2,1) is proved to be false.
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6°: Halt: At this stage P(L,2,1) is proved to be true. Let L be a

set of nets such that the corresponding vertices are contained in G.

Then let VQ A L""LQ, and add VQ to G, where V_ constitutes a set of

isolated vertices in G. Then, as seen from the construction rule of G,

G is acyclic, and hence we can construct a sequence s of the nodes in G

such that for any edge (N±,N.) G e, N± precedes N. in s, which forms

a solution to our problem.

Noting that if at the stage of 5°, G is found to contain a cycle,

then C3 and therefore B3 are proved to be violated, it can be seen that

ALGORITHM I always seeks a desired sequence if CI, C2, and C3 are satisfied

6. Special Case of K = K = 2
—fc u w

Given a net list, if qM<2, then P(L,2,2) is obviously true.

Henceforth, we consider the case of q = 3. First, we can prove the

following lemma similarly as Lemma 3.

LEMMA 6: If qM = 3 for a given net list, then for every 3-interval

I, |I(I)| < 2.

Thus, for this special case of K = K =2, the necessary and
u w

sufficient conditions Al, A2, and A3 can be rewritten as follows.

D2: |L(I)| = 2 for each 3-interval I. (Equality sign due to

Lemma 6 and Eq.(lO)).

D3: There exists a sequence s such that for any 3-interval I,

one of L(I) precedes all the other nets of L(I) in s, and

another One of L(I) follows all other nets of L(I) in s.

The following lemmas can be readily verified similarly as Lemmas 4
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and 5.

LEMMA 7: Given a net list such that q^ = 3, let I = [v ,v, ] and
^M a b

2 -
I = [v ,v,] (b<c) be two consecutive 3-intervals, then we have

1° iLd1) n L(I2)| < 3, and

2° if ^(I1) nl(I2)|=3, then for the interval I12 A[v^.v^l
Id1) Ul(I2) CL(I12) = Ld1) nL(i2). (15)

LEMMA 8: Suppose that q = 3 and |L(I)| = 2 for any 3-interval I.

1 2
If there exist any two consecutive 3-intervals I and I such that

|LdX) n L(I2)| =3and Ld1) ^ L(I2), then P(L,2,2) is false.

We can also prove the following theorem corresponding to Theorem 2.

THEOREM 3: Problem P(L,2,2) is true if and only if

Kl (=D1)- qMl 3,

E2 (=D2): |I(I)| = 2 for each 3-interval I, and
1 2

E3: There do not exist any two consecutive 3-intervals I and I

such that (Ld1) HL(I2)| =3and Id1) t L(I2).

The sufficiency of the theorem is proved by showing an algorithm

to generate a sequence as stated in D3 for a given net list satisfying

El, E2, and E3.

ALGORITHM II

1°: Given a net list L, check whether or not the following conditions hold,

(ii) there are at least two nets of cut number less than or equal

to two, and

(iii) for every 3-interval I, |L(I)| = 2.
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If all these conditions are satisfied, then go to 2°. Otherwise halt;

at this stage P(L,2,2) is proved to be false.

2^: If there is no 3-interval, then halt; at this stage P(L,2,2) is true

and any sequence s constitutes a solution to our problem. Otherwise,

let G - [V,E] be anull graph such that V = fand E = <J>.

3_: If for all 3-intervals the following processes are conducted, then

go to 7°. Otherwise, choose the left-most interval I* for which the

following processes have not been conducted* Let us define a set V*

of vertices as V* = L(I*), that is, each N. G V* corresponds to N. G

L(I*). Then, (i) if |v O v*| < 1, then go to 4°, (ii) |v H v*| = 2,

then go to 5°, and (iii) if |v n V*| = 3, then go to 6°.

4^: Construct a graph G* = [V*,E*] such that for {N ,N, } A L(T*)
a b '

E* A KN^),^,!^) |Nk GL(I*) -1(1*)}, (16)

where we note that N is a source and N, a sink in G*. Then, let C <- C,
a b

U G*, and return to 3°.

5°: Let {N ,N } A V H v*.
— s t =

(i) If there is no directed path in G from N to N or from N
st t

to Ng, then construct G* by Eq. (16). Put G «- G U G*, and

return to 3°.

(ii) If there is a directed path between N and N , then let us
s t

suppose without loss of generality that its direction is from

N to N . If N G 1(1*), then for N AN and Nt G L(I*) -
& t s a '-' s b

(N ), construct G* by Eq. (16). If N G L(I*), then for N
° t b

A Nt and N& G L(I*) - {N }, construct G* by Eq. (16). On the

other hand, if N , N £ L(I*), construct G* for {N ,Nt} A L(T*)
=» c a b
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by Eq.(16). Put G «- G U G*, and return to 3°.

6°: Let (N ,N ,N } A V H V*, then there must be a directed path passing
— s w t = » °

these three vertices, as seen from the construction rule for G. Let us

suppose without loss of generality that there is a directed path in ('

passing N ,N , and N in this order. If {N ,N } = L(T*), then put N
s W t St »1

A N and N 4 N , and construct G* by Eq. (16) . Then, let G <- C. U c*,

and return to 3°. Otherwise, halt; at this stage P(L,2,2) is proved

to be false.

7^: Let L be a set of nets such that the corresponding vertices are

contained in G. Let V. U - L, and add this V to C. Then, as seen

from the construction rule for G, G is an acyclic graph, and hence we can

always find a sequence s of the nodes in G such that for any edge (N.,N.)

G E, N. precedes N. in s, which constitutes a solution to our problem.

Here, it should be remarked that if (N ,N } ± L(I*) in 6°, then K3
st

and therefore D3 turn out to be violated, and hence we can see that

ALGORITHM II always finds a desired sequence if Dl, D2, and D3 are

satisfied.

[Example] Let us consider a net list L = {N-,N ,... ,N1()} with four

3-intervals I1 =[v^], I2 =[v10,vu], I3 =[v14,v1&], and I4 =fv^v^],
as shown in Fig. 6(a). Apply ALGORITHM II to this L, then the acyclic

graph G* is constructed for each 3-interval and combined into the graph

G. Consequently, the graph G of Fig. 6(b) is generated, from which we

can obtain a desired sequence, for example, s= (N^N^N^N^N9»N1(),N6,N ,

N^,N2). Associated with this s, L is realized as shown in Fig. 6(c).

Here, it should be noted that for this L the algorithm proposed in [9]

can not find any realization with K = K =2.
u w
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Finally, suppose that a data structure is appropriately provided,

then ALGORITHMS I and II can be easily implemented in 0(n«r) time, where

n and r are the numbers of nets and nodes, respectively. \n the following,

we show this time complexity for the case of ALGORITHM II. For the case of

ALGORITHM I, we can show it in a similar way.

Let G. = [V.,E.] be the graph G* constructed at Step 4° in the ilh

iteration of loop 3°-6°, and let

i

G = [V,E] AUG,
i=l i

where I is the number of 3-intervals. Then, we can easily see that the

following is true:

|E.| = 2(|v.|-2),

I

|VI = IU V.I < n, and
i=l x

i-1

|v. n ( u v.)| < 3.
1 j=l J "

Therefore, we have

|vxl + |V2| + ••• + |V |<n+ 3(£-l), and

|E| = |E1| + |E2| +".+ |Ej <2n + 2U-3).

Noting that Steps 4°, 5°, and 6° are easily implemented in 0(|v|+|k|)

time, we see that the total time required by loop 3°-6° is 0(£»(|v|+|f|)),

therefore 0(£-(n+JO).

On the other hand, Steps 1° and 7° are easily implemented in O(n-r)

time and 0(n) time, respectively.

-18-



Thus, ALGORITHM II is implemented in 0(n«r) time, since I •' n < r.

7. Conclusion

In this paper we have first derived necessary and sufficient eondil ion:

for realizability of single-row routing with some specific numbers imposed

on upper and lower street congestions. Then, based on them, we have

considered the special cases of upper and lower street congestions up

to two, and proposed two algorithms. These have good possiblities to

be extensively used in the practice of PWB wiring, especially when lIn-

wiring density increases to such an extent that several etch pal lis art-

allowed between two consecutive pins in an ordinary DIP.

The extension of the algorithms to larger street congest ion:; :;l iII

needs to be worked out.

Finally, it should be pointed out that between-nodes congestion,

i.e., the maximum number of connecting paths between two consecutive

nodes on R, is often of practical interest. Although we have not dealt

with this, it can be readily seen, however, that the between-nodes

congestions is equal to or less than min[K ,K ].
u w
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FIGURE CAPTIONS

Fig. 1 A set of r nodes on R.

Fig. 2. A realization of net list L of (1).

Fig. 3. An interval graphical representation.

Fig. 4(a). The reference line for the interval graphical representation

of Fig. 3.

Fig. 4(b). A realization associated with the interval graphical

representation of (a).

Fig. 5(a). An interval I = [v.,v.] with h = 3, c(v. ^ = c(v, ,) =

2; L(I) = {NlfN3} and L(I) = [N1,N2,N3,N4,N5,N6}

Fig. 5(b). Nets N and N in interval I.
° u w

Fig. 6(a). Given net list L.

Fig. 6(b). Graph G.

Fig. 6(c). A realization.
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Fig. 4(a). The reference line for the interval graphical repre
sentation of Fig. 3.
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Fig. 4(b). A realization associated with the interval graphical
representation of (a).



(a)

Fig. 5(a). An interval I= [V±»VJ with h= 3» c(vi-l) = c(vj+l)
L(I) = {N1,N3) and L(I) =(N^N^N^N^N^}.
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Fig. 5(b). Nets N and N on the interval I

= 2;
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Fig. 600. Graph G
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