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ABSTRACT

n.xn

This paper describes the algebra &(oq) x ° of transfer functions

of multivariable distributed systems; this is a multivariable extension

of the algebra &(o ) of scalar transfer functions studied in previous

papers [1], [2]: a detailed study of so called alright- and

o -left-representations is done: this is a generalization of coprime
o

factorization theory for proper rational transfer matrices. The paper

studies next feedback system stability of systems with transfer matrices

with elements in £>(a ): a closed-loop characteristic function is defined
o

and its importance discussed. Forthcoming applications are preconditioned

by studying a general problem which is encountered in compensator design:

this generalizes to the distributed case a technique used by Youla et al.

[3], [4]. Finally the problem of designing a feedback compensator for

robust stabilization, tracking and disturbance rejection of a plant is

defined and solved using the techniques of the paper.

Research sponsored by the National Science Foundation Grant ENG76-84522.



Some of the results contained in this memorandum have or will be

announced at three conferences:

1) At the 761st American Mathematical Society Meeting in Charleston,

S.C., Nov. 3, 1978 under the title, "Dynamic Output Stabilization of a

Control System".

2) At the 17th IEEE Conference on Decision and Control, San Diego,

Ca., Jan. 10, 1979, under the title, "Stabilization, Tracking and Distur

bance Rejection in Linear Multivariable Distributed Systems".

3) At the 4th International Symposium on Mathematical Theory for

Networks and Systems (MTNS 1979) Delft, Holland (July 3-6, 1979) under

the title, "Matrix Fraction Representation Theory for Convolution Systems"
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1. introduction: Mathematical Definition and Facts; Perspective and

Organization of the Paper

In previous papers [1], [2] we were concerned with the following

mathematical definitions and facts concerning scalar systems. (LTD)+

denotes the set of complex-valued Laplace transformable distributions with

support on ]R, .

For a em, and element f e (LTD) , is said to belong to CL(gJ
O ^ oo

iff, for t<0,f(t) =0and, for t>0,f(t) =f(t) + £ f± «(t-t.) ,where
i=0

» -a t

i)f(.)6L (mj:-{f; fim.-Hcf |f(t)|e ° dt <»}, (ii) tQ =o
a l,ao + JQ

and t > 0 for i = 1,2,..., (iii) for all i, f € <E and 6(-t ) is the
oo -at.

Dirac delta distribution applied at t., (iv) £ |f.|e < «>. It is
1 i=l

well known, [7, p. 248] that CL(o ) is a commutative convolution Banach

algebra with norm defined by

iifIL, ,=C|f (t)|e"V dt +£ |f.|e"Vi (l.D
^°o) J0 a i=0 1

and with unit element 6(0, the Dirac delta distribution; moreover this

algebra has no divisors of zero [5, Theorem 4.18.4;38]. Observe also that,

for a = 0, Oj(0) is identical to the algebra fl. described in [7, p. 246-247];
o

moreover, for a1 >_ aJJ, <X(°0) D<&a") •
For a Gl.an element f G (LTD) , is said to belong to #_(a ) iff

o "*"

there exists a a,e m , an < a , such that f belongs to #(cO . With the
1 ± o •*•

<X(o )-norm (1.1), <&Ja ) is a normed convolution subalgebra of #(c*0) with

unit element 6 and with no divisors of zero.

Let * denote Laplace transforms: i.e., f is the Laplace transform of

f. &((J ), <£_(<* ) denote commutative algebras with pointwise product of the

ffs where f € &(a ),& (a ), respectively: their unit is 1 and they have
o "" o

no divisors of zero.
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Let <E , := {s ^ <E;Res > o }, C , := {s G (C;Res > a }
a + — o a + o

o o o

and <E := {s £ (C;Res < a }.
a - o
o

The following are important properties of d(o ) and & (a ):
o — o

(i) f belongs to the convolution algebra (Xko )» id (<? )resp.), iff f belongs
o ^^~ o

to the algebra 4(a ), (tf (a ));
o — o

(ii) f is an invertible element of (Xk$ ), (tf_(tfQ)resp.) iff in both cases

inf{|f(s)|;s e (Ea +} > 0;
o

(iiia) if f G 0(1$ ) then is f is bounded in <E ,, indeed
O O T

O o

sup{|f(s)|;s € <Ca +} <_ ifH 0fa n, and f is analytic in «a +;
o o o

(iiib) if f ^Qlo ) then there exists a a. £ 3R , a., < a , such that f is
O X J. O

bounded in (D , and analytic in € 3 (D ,: as a consequence f has a finite
al+ al °o+

number of zeros in any compact set in <C +;
o

(iv) if f and g belong to#_(a ) then the pair (f,g) is aQ-coprime iff there

exist elements u,v in #_(a ) such that uf + vg = 1 or equivalently iff
2inf{|(f(s)~, g(s))|;s e «a +} >0where |(-,«)| is any norm in C.

A ° -
Let fiFCa ): = {f; f ^(X (cr ) such that f is bounded away from zero at infinity

«-*--x o - o
A ^

in (C ,}: BT(o ) is a multiplicative system, [6, p. 46], of d(o ) and each
a + - o °

° 4»element f of a. (a ) has a finite number of zeros in (D^ +.
o

o

fi(a ) is the convolution algebra corresponding to the pointwise
o

-1product algebra fi(cQ) =[(l.C^)] tflZC^)]" i.e. 6(aQ) is the algebra of

quotients f = n/d with n ^ 6c (a ), d *=CL (.o ) and where, without loss of
- o - o

generality, the pair (n,d) is a -coprime, i.e., |(n(s),d(s))j ^ 0 for all

s S <c : a pair (n,d) which satisfies these conditions is a a -representation
a +
o ^ ia

of f G £)(o ): there exists a bijection between the elements f £ ©(O
o

and the equivalence classes of a -representations {(n,d)> in which elements
A

are equal modulo a multiplicative factor invertible in <£_(a ).
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Important properties of V(oq) are:
a A A *

i) if f S 6(a ) and (n,d) is a a -representation of f then:
°

a) there exists o. > a such that f is meromorphic in <E , -> <C +,
10 1 o

is bounded at infinity in (E and has a finite number of poles in (E^ +;
0 A o

b) p€ (E ,(respectively z£ (Da +),is a pole, (zero), of f iff
°o o

d(p) = 0, (n(z) = 0);

(ii) f is an invertible element of $(a ) iff f is bounded away from zero

at infinity in (E +.
o

Let (E (s) denote the algebra of proper rational functions in s with
P

A

complex coefficients and let for a €E ]R: &(a ):= <E (s) ^ U (o )
r o o p — o

= {f; f e (C (s) such that f has no poles in G ,),IC(a ) := {f;f ^ &(a )
p O T o o
r o

such that f is nonzero at infinity}. H (o ) is a multiplicative system

[6,p.46] of the algebra fcoQ) and <E (s) =[faoj] [(C(aQ) l"1 i.e. Cp(s) is
an algebra of quotients f = n/d with n £ °Ua0) aru* d £ tf\. (a )•

It follows that 4_(oo),4Z(a0), $(ao) =[4.^a0^ ^(a^]"1 are
1-1

transfer functions of distributed linear time invariant systems

extensions of dKoQ),(J\T(aQ) ,,<Ep(s) = [#.(aQ)] [4C(ao)]~ for representing

Note also that if f 6i(o ) then f = f, f« where f. is an invertible
*~ o 1 z 1

>* A aOO AOO /\CO

element of (£ (a ) and f0 belongs to ov (a ): "# (a ) and (K. (a ) are
— O 2. OO O

essentially the same": in particular tt)(a ) = [# (0 )][# (a )]
o — o — o

=[£?_<%> hA^)]"1.
We shall now be concerned with transfer matrices of

multivariable distributed systems i.e., with matrices with elements in

(LTD)+, d(aQ), fi_(ao), 0(oq). (LTD)^Xn, A,(ao)nXn, 6(aQ)nXn are all algebras
with a non-commutative pointwise product and unit I . F €=&Xa )nxn,

n o

,* , Nnxn x . . ^.._ . ?., Nnxn ,* , xnxn » .,.,. .
(fl._(o" ) resp.), is invertible in tt(a ) , (# (a ) resp.), iff in

both cases inf{|det F(s) I;s £ <C ,} > 0. F G §(a )nXn is invertible in
1 ' a + o

^ nvTi ^
(£)(o ) iff det F is bounded away from zero at infinity in C ,.

o

nxn
, i > u. a *= ©^a j
r O

o

/• from zero at infinity in C
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It is the purpose of this paper to establish a procedure which for
a n xn.

a given plant P € 6(a ) ° 1,-(see Fig. 3.1), finds an output feedback
n xn

compensator C £ 6(a ) such that the resulting feedback system S,

a) is ^-stable while having a prescribed set of closed-loop poles

in «0 + '
o

b) tracks asymptotically a class of reference signals and

c) rejects asymptotically a class of disturbance signals.

This task is realized as follows: in section 2 we establish for matrices with

elements in &(o ) a representation theory in terms of matrix fractions:
A

the results on 6(a ) of [1], [2] are hereby extended to multivariable
o

systems; in section 3 we study feedback system stability of systems with

loop matrices with elements in $(a ): we adopt hereby results of [18],

[32] and define a closed loop system characteristic function; in section 4

we study a preliminary algebraic problem for compensator design which

extends to matrices with elements in S._{oq) atechnique used by Youla

et al. [3], [4] involving polynomials or polynomial matrices; in section 5

we search for and find a compensator design for stabilization, tracking

and disturbance rejection, using a set up inspired by [3]-[4] and [31]-[34]:
A.

we handle here a plant with transfer matrix with elements in (B(oq) .

The paper is therefore organized as follows: 1. the present introduction;

2. matrix fraction representation theory; 3. feedback system stability;

4. preliminary algebraic problem for compensator design; 5. compensator

design for stabilization, tracking and disturbance rejection.

Before starting we shall mention the following convention in order to

avoid the multiple use of the superscript * to indicate Laplace transformed

quantities: quantities represented by script letters are Laplace transformed
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unless specifically mentioned. We need also the following definitions.

Definition l.lr. Let fte Ajo^™"1 and #€tf_(ao)nXn. We say that the

pair (1\Jd) is a -right coprime (a -r.c.) iff there exist elements

He & (a )nxm and Ve<2 (a )nXn such that 2tfl+2/# = I.
— o — o n

Definition 1.1&. Let 8^CL (a )nxn and H€ # (a )nxm. We say that the
- o - o

pair (0,TO is a -left coprime (a -Jt.c.) iff there exist elements

U<=a(c )mxn and Ve 0. (c )nxn such that^+M^ I .
— o - o n

2. Matrix Fraction Representation Theory.

lo2n_xn±
Definition 2.1r. Let F € (LTD)^ ; the pair (-ft ,ft ) is said to be

_i_ &r ^r
n xn

a o -right representation (a -r.r.) of F if 71 e #_(<* ) and
a n-xn.

#r G#_(<>0> such that

(i) F=^ /gr1
(ii) the pair (ft ,0) is a -right coprime (a -r.c), i.e., there exist

a n-sxnn a n^xn-
elements # ^ (Xjo ) 1 and^G^_(o) x 1 such that

- o

»^c + M? = In.
1

(iii) det^ G#>Q).
a

A a -left representation (a -£.r.) of F, F € (LTD) ,is by

definition a pair (J&,7L) which is similarly defined as (7?,^)') in

definition 2.1r: change subscripts r for A, interchange the order of the

factors above, choose appropriate dimensions with Jj and Tf of dimension
X* AJ

n x n : refer to this as Definition 2.1&.
o o

Remark R2.1 Observe that if n = n. = 1 then a -representations (left and
: oi o

right) reduce to a a -representation of F = f, [1], [2].
a n xn.

Lemma 2.1 If F G &(o ) ° 1, then

F = R + G (2.1)
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where

A n xn,

(i) G<Zd(o ) ° X
- o

n xn.

(ii) R is a strictly proper element of C(s) ° 1 which is zero if and
A n xn.

only if FG &_(o )° 1,
Z n0xn-

(iii) if F ^ (L_(o ) then R is the sum of the principal parts of the

Laurent expansions of F at its poles in (C , where in particular F has
o

an m-th order pole at p G <c if and only if R has an m-th order pole at

p e % +•
o

Proof: F = [f..].,--. .,=- where for all i = l,2,...,n , for allij i£n ,j€3i * * * o*

j = l,2,...,n., f.. €= (5(a ), i.e. according to theorem 3.3 of [1],

f±j =^±j +8±:j where (i) g±. €= &_ (oq),(ii) r±.. is astrictly
proper rational function which is zero iff f.. ^ CL (a ), (iii) if f. . ?^l (o )

13 - o ij - o

then r.. is the sum of the principal parts of the Laurent expansions of f at

its poles in G ,. H
o

Remark R.2.2 The importance of the sum decomposition of Lemma 1 lies

in the fact that it permits to find a a —Jl.r. or a o -r.r. for
r 00

A n xn.

F €= £(c ) ° """by finding first such a representation for "its rational

principal part" R. Now observe that, with [2],

fi^o ): = {f GC (s); f has no poles in <C +} = <D (s) n(LJoQ) (2.2)
p o

fC(o ): ={f G((l(a); f is non-zero at infinity} ^(f{o ) (2.3)
00 — o

<C (s) is a quotient ring [4((a )][ft (a )]" of R.(a ) with respect to its
p 000

multiplicative system $C(o ), [2], i.e. if f £ C (s) then f can be written

as f = n_/d. with n. €= <jl(a ) , d,. €= ({ (a ) by using a scaling polynomial
r £ f or o

e.g. f(s) =(s-l)/(s-2)2 =nf/df with nf(s) =(s-1)/(s-ao+l)2 and
2 2

d_(s) = (s-2) /(s-a +1) : observe that in this way one obtains a 0 -

representation (nf,d ) by making (nf,d ) a -coprime, [1], [2], cancelling
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common factors (s-z)/(s-a) with z€ (Lq +, a€ <Cg _: here a pair
o o

(nf,df) with nf S(t(oo), df S(jC^) and (nf,df) c^-coprime is aoq-
representation. Observe also that (ft(a ) is a Euclidean ring, [9], [10],

see also Appendix I. It follows that every matrix with elements in
n xn.

#Ia ), say ^.^(a ) ° 1, has a Hermite form [8, p. 32] obtainable through

elementary operations [8, p. 34, Th. 22.4]. Hence the same must be true

for triangularization. Also every compatible pair of matrices 71 and &

with elements in &(a ) has a greatest common right divisor (g.c.r.d.), R.,
o

[8, p. 35], expressible in the formt(TL+V&=ft where %L and Y are matrices

with elements in 6{.(o ); furthermore if $_is invertible in fUo ) we
o °

say that Ti and J&are right coprime w.r.t. fiSoQ); note that the matrices

*lL,V,9\can be obtained through elementary operations [8, Chapter III,

pp. 33-36], a variant of this procedure being described in [11, pp. 8-9]

and [7, p. 65]; it is also easily seen that 71 and # are right coprime w.r.t

(R.(o ) iff the matrix 1t
has full rank for all s in C , and at infinity;

a +
o

moreover if Tland £are right coprime w.r.t. QdoJ then they are 0Q-right

coprime as in Definition l.lr. Similar Facts hold for a greatest common

left divisor (g.c.r.d.) and left coprimeness w.r.t. (ft(aQ). The above

suggests that it should be relatively easy to find a rational aQ-r.r. of

the principal rational part R. of F in (2.1), once we can express R as
n xn n.xn. m

R=ftj£~ with ^ e<K(ao) ° i#r€ifc(go) x \ det[#r] €^(oQ). These
suggestions are exploited in the proof of the following theorem.

a n xn.

Theorem 2.1 If F £ 6(a ) ° 1, then F admits a a -r.r. and a a -£.r. .
o o o

A

More precisely, there exist matrices with elements in #_(o ), namely

7lr>frr>\>Yr
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such that

(i) (7^,%) is a aQ-r.r. of F;

(ii) (#0,7O is a a -x.r. of F;
x x o

n. n n. n
i o 1 o

(iii)
n.

l r I *r

n -ft ! ft
o U 'x • "x-J

*r :-k

,«t ; vJ

n.
1

n J

rlwhere if we call the matrices on the left hand side of (2.3),V and b)

respectively, then obviously Wis an invertible element ("unit") of
(n.+n )x(n +n )

/( (a ) and without loss of generality

det tJ= det UT = 1.

A n0xni
Proof: Without loss of generality we assume F %u. (a ) ; otherwise

choose

flT =* ; <% • rn ;K • ° ; K =x»
i i

o °

Use now lemma 1 and recall that each element r.. of its rational principal

part R admits according to remark R.2.2 a rational a -admissible repre

sentation (n ,d ) with n £ ^.(o ) and d £ 4L (a ). Recall also
r.. r. / r.. o r.. o
13 ij i3 i3

the structural properties discussed in Remark R.2,2 and apply the following

procedure:

Algorithm 2.1 Given is F, G and R as in Lemma 2.1.
n xn. ^ n.xn ^ m

Step 1. Find # S 6L(o )° x and fi € A(a ) 1 * with det fl €^ (0 )
c— cr o r o r o

and such that

Lr r

~ nie.g. by setting & = diag[d.]._1 where the d. are column least common

denominators of R w.r.t. (Pv(a ).
o

-10-
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Step 2. Consider the (n +n.) x n± full rank matrix

n

VI :=
n

ui
_ A* .

J«rJ

(n_,+n )xn.
e«(a) i ° x (2.5)

By performing elementary row operations based on the Euclidean algorithm

performed in the ring $UaQ)» e-S- t8» PP- 33-36], [11, p. 8-9], [7, p. 65],

upper triangularize #?, i.e. find an (n.+n ) x (n.+n ) matrix Ulinvertible
(n.+n )x(n +n )

in R(a ) X ° and a full rank upper triangular matrix
o

n.xn

(ft_G ${(o ) 1 1 such that
o

•a#i=

n 1^
(2.6)

n

and where scaling (multiplying rows by "units" in $_(a )) can be used to get

det 20= 1.

Step 3. Partition tO and tp into

n.

to-
n

n. n
i o

% %

cni ff.
;W'1 =

ni

n

n. n
i o

'&. -^

A Y.8,-J

(2.7)

_ A

Comment: the eight matrices with elements in ff\(oo) c^__(aQ), namely

1\T98T9tUr9Yr

A. A

satisfy the conclusions of Theorem 1 provided F has been replaced by R

Step 4. Recalling (2.1), define

t ~ (n.+n )xn ^ m
Ttfe R(o ) 1 ° is full rank because by assumption, det & e ^v (a ),

° ~ /> r o
hence det $ is not the zero-element of </ucj ).

r o
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K-K-^6 V%:=\-^% (2-8)

•Ur ••• %. y.% '•' \

and stop.

A

Comment: the eight matrices with elements in # (a ), namely

satisfy the conclusions of Theorem 1. n

We shall now show that Algorithm 2.1 works.

Step 1. Since all elements r.. of R in (2.1) are elements of <E (s) and
i3 p

have poles only in <D , they admit a rational a -admissible representation
o °

O* ><* ) with n E (ft(a ) and d G 0C(a ) with n and d coprime
r. . r.. r..o r.. o r r
13 i3 13 ij ij rij

w.r.t. R.(cr ), and it is possible to construct a least common multiple

d G^~(a ) of all denominators d.. €/fC(o ) of column j, [12, Ch. IV,
3 o ij o J' * '

§10]. Hence setting r = ii. /d we get that ^ = [ii..] and
A/ H,

fy = diag[d.]. _ satisfy the conditions of step 1.
r j j=l

Step 2. Since Wlis full rank because by assumption det & £ v\- (a ), hence
r o

is not the zero element of ft.(a ), step 2 is self explanatory.

Step 3. The comment of step 3 is true as follows. Observe that all matrices

A *C
in (2.5)-(2.7) have elements in flXo ) C^L(a ) with det fif and

_ ^00 — — 1

det 0v.€=0v, (a ); moreover from °Jf[= "U)

hence

A. /V AS -I — — "1

From yj"l)f - I we have
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Hence (fj ,# ) is a a -r.r. of R, with IK a g.c.r.d. of 7?r and <©r, [8, p. 35].

Observe that from fiffif~ = I, we get also

o

Furthermore since by construction %fis an invertible element of
(n +n )x(n +n )

fi^a ) ,det V(s) tends to a nonzero complex constant as

s -> ». From the partition of 2/", (2.7), then [-^ifi^l =-^tRj 1^ ]is

full rank at infinity; hence det & G rf?.(a ) tends to a nonzero constant at

infinity. Thus (F£»^) is ac^-x.r. of R.

Step 4. Checking the comment of step 4 follows easily using (2.8) and

simple computations, in particular

n n

1iT=

n vr ;k

b«x ;^
S"

n
i J

n

ni nc

*n i °
V

•; t~~
-G j I

o

G i I
n -J

o

n

n

n. n n. n
i O 1 0

—V

i
I i

nii
0 pr: -% i |

n.
11

0

*• i
„__ i _ ~ i

o LG ! I
n -J\nr\ ru G . I

n

y~x =ti/1

Remark R2.3 Observe that in algorithm 2.1, used in the proof of

Theorem 2.1, we actually obtain that

n.xn.
i l

fll G for )

det ft e(K"(a )

n xn.
o i

x o'

det #0 eC(c )
X o

i.e. the "denominators" of the aQ-r.r. (Jfi^.T^) and the aQ-x.r. Cfe£»#£)

are rational! The uniqueness of the representations will be treated below.
n
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We have also

n xn.

Corollary 2.1. Let F G (LTD) ° 1, then

a n xn.

F € fco ) ° X
o

if and only if

F admits a a -r.r. 07?,/$) or a a -x.r. Cft'jft).

Proof: Only if: this is an immediate consequence of Theorem 2.1.

If: Observe that F = [f..].a* .& . Moreover since F = 1\ ST it follows by13 1^,3^ 'r^r J
Cramers rule that for all i and j

fy" [^^[AdJ^l./det^
where from the closure properties of $__(a ), [1], [#]. [Adj<$;] . belongs

to fl. (a ) and by definition det fif belongs to^£_(a ). Hence for all i and

j,-£ belongs to fi(a0) =^(a^lI^C^)]"1, [2]. n
Remark R2.4 From Corollary 2.1 it is obvious that we can identify

A n xn. n xn

©(a )° 1={F:Fe(LTD)+° i and Fadmits

a a -r.r. or a a -x.r.} (2.9)
o o

This is a suitable generalization of [1, Definition 3.1] where n = n. = 1.

In the sequel we shall not make any distinction between the two classes.

Noncommutative fraction rings, are treated in [13]. a

A consequence of Corollary 2.1 is

Corollary 2.2. Let (1^9&)9 (resp. (J^,^)) be a pair of matrices such that
n xn. A n xn. a nrtXnrt

i) i\. s<2joo) ° \ £Tr r-ajoj ± \ (resp. »t 6d_(oo) °,
n xn Aoo

H^<2 (a ) ° 1), and ii) det # belongs to & (a ), (resp. det ft belongs
x — o r — o a*

to^"(ao)).
Under these conditions the pair (/^,JS£) is oq - r.c, (resp. the pair
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n j^w

(fr Sft ) is a -x.c), if and only if rank
xx o

n •r^w
= n for all

s £ <E ., (resp. rank
a +

n
^ o

fifnC")

n

f>£(.>

ni

= n for all s € (E ).
O 0 +

o

Proof: We shall restrict ourselves to the right-coprime case.

: follows from [Y \ %L^ &

i '<r
l. j

(s) = I for all s e <e and Sylvester's
ni V

rule.

A n xn-
<=: Let F = "ft # and observe that F G 6(a ) ° 1. Hence by Theorem 2.1

rr __ - A n xn. _ a n.xn
Fadmits a ao - r. r. (7?r ,#r) , i.e.,flr £#><>) ° \ #r €= a_(oQ)

such that F =7? 8 , there exists ft. ^ 6L (a )
•l- •*• ' IT — Or r r _"- o

"=• A.

n.xn —a n xn

1 ° andrre^„^0) ° °
0.-1,with 2L°ft +/"ft. =1 » and det ft &CC°S0o^ • Let (H =£f ^ and observe with

r r r r n. *- _ ___
n.xn.
i i&=& fi +yrJ^ that (f^belongs to^(aQ) * 1with det (H in{X"(aQ).Further

more for all s £ <D , by assumption n. = rank
o

= rank

Fffr(s)"

&(*)

Hence by Sylvester's rule, det (R_(s) ^0for all s^ <c^ +. From the above
o

A n.xn

it follows that (ft- is an invertible element of #_(°*0) ^ and there exists

and^ =d\"1^e^(ao)

Mr+W =xn >i^- <^^r> is V^'
i

For future applications we have also
A n xn

Corollary 2.3. Let FG$(oq) ° iadmit acjQ-r.r. (7?r,#.) and aaQ-x.r.
(& j^) where a £0. Then (fl ,fr) is a pseudo-right-coprime factorization

At At O it

(p.r.c.f.) of F and (ft,ft) is a pseudo-left-coprime factorization
At At

(p.x.c.f.) of F in the sense of [7, pp. 87-88].

n xn _ _ A n xn

% =GL%edAoo) t ° and ^ =OT1^ 6^.<oc) such that

-15-



A A A

Proof: Apply the definitions and the fact that #_(a ) C^Z(0) =#. for all

a < 0. n
o —

a n xn

We shall now discuss poles of F £ |p(a ) °
o

A n xn

Definition 2.2. Let p be a pole of F belonging to @>(o ) ° . Then the

MacMillan degree of the pole p of F is its maximal order as a pole of any

minor of any order of F.

Remark R.2.5 The definition of MacMillan degree here is based on the
n xn.

following properties which are true when F£t (s) , i.e. is a proper
" n xn.

A o i
rational transfer matrix. The characteristic polynomial of F G ^ (s)

is defined to be the least common denominator of all minors of any order

of F and is the characteristic polynomial det[sI-A] of any minimal

realization [A,B,C,E] of F, [16], [14]; the MacMillan degree of
n xn.

FGC (s) ° is the degree of its characteristic polynomial, [14], [15],

[16]: hence the order of a pole p of F as a zero of its characteristic

polynomial is its maximal order as a pole of any minor of any order of F:

this can be called the MacMillan degree of the pole p because this is

exactly the MacMillan degree of the term due to p in a partial fraction

expansion of F [14], [15]. Moreover let (Nr>Dr), ((D^N^resp.), be a

right coprime, (resp. left coprime), polynomial matrix factorization of
n xn. _1

F € <E (s) ° 1, i.e. F = N D~ , det D £ 0, (N ,D ) right coprime,
p ' rr r rr.

(resp. F = D~~TT, det D t 0, (D ,N ) left coprime), then det D ,
X X X X> X *•

(det D resp.), is equal modulo a nonzero constant to the characteristic

polynomial of F, [11], [17]: hence the MacMillan degree of the pole p of

F is the order of p as a zero of det D , (det D resp.). Something
. n xn.

A /> o i
similar can be done for poles of F G ^(°0) *n ®a +'

o

-16-



n xn

Theorem 2.2. Let F€£>(aQ) ° and let (#r>£r), (Gfy.fl^resp.) be a

a -r.r. of F, (resp. a -x.r. of F). Under these conditions:
0 o

a) P E <E . is a pole of F, if and only if det .fr(p) = 0,
o

(det ^(p) =0).

b) If p€j is a pole of F, then the order of p as a zero of
o

det jy, (det ft resp.), is its MacMillan degree,
r Xt

A

c) There exists r an invertible element of d (o ) such that

det ft = r det ft..
r £

Proof: For a) and b) we shall restrict ourselves to a o -r.r.
' o

-1 A nira0a) Using F = 1)ft and the existence of matrices %L e^_(<0
n.xn

and V ed_(o ) such that fttt + 7£££ = I , where all matrices have
A

elements in #. (c )» it follows that

g^F+Tr-j^1 (2.10)

:this expression and F are meromorphic in an open half plane (E ,, some
1o -*•

O- < o ; furthermore 9/ and 1/ are analytic in (D , and bounded in <E ,.
1 o ^r ¥r a..+ a_ +

Let V(p) now be a neighborhood of p £ (E , within C ,, then F has a pole

0 ^ -1
at p iff F is unbounded in V(p). Now if det ft (p) =0 then ft" is

unbounded in V(p) and, because of (2.10), the same must hold for F:

otherwise the left hand side of (2.10) would be bounded there. Conversely

A, —^ A. _ ^—J_
if F is unbounded in V(p) then det & (p) = 0, otherwise F = 7c ft would be

bounded there.

b) Observe that (#.,$•) is a -r.c. implies

^r(s)~
rank

Lftr(s)J
= n. Vs £ (E ,, some o^ < o . (2.11)

l o-+ 1 o

-17-



We follow now the method of [18, proof of Fact 2, p. 518]. Let us express

-1
any minor of order p of F = 7>ft in terms of minors of order p of 7) and

ir r 'r

minors of order n.-p of ft . By well known methods and notations,
i r

A,

[19, pp. 19-21], we consider the minor of F made of the intersections

of rows i-, i0,...,i and columns k-,k_,...,k , denoted by
1 2 p 1 2 p

Jh h ••• \\
\kl k2 "• \)

=E^(v'''-*p) *"'(S--kp) "lthn!-»to<vni>
1<£ <x <...<£p<n (2.12)

P

/i1i2... i\ 2^ VN /klk2'"' kn±_p
x k i-p

l<x.<x0<...<x <n
__ — 1 2 Q^2

det 0
r

where JL<x0<.. .<x and ll <£!<.. .<xf , k-<k„<...<k and k'<k*<...<k*
12 p 12 n.-p 12 p 12 n.-p

form a complete system of indices of {1,2,...,n.}. Observe that the

numerator of the above expression is proportional to the Laplace expansion

T T T
[20, Exercise 7.2.3] of the minor of order n of [&Tflr] by adjoinging rows

ii...i of ftr to rows 44...kn _p of ffT- For a11 sG^ +' <2,11) implies
that at least one such minor order n is nonzero. Hence for s = p € (E +,

1 o

at least one numerator of an expression (2.12) is nonzero and b) follows

using Definition 2.2.

c) Consider r = det J3" (det #0)~ . Since det <fr and det £f both
r x r x

belong to CL°(o ) it follows that r is an invertible element of

B(ao) = \{L£o )] [?C(c )] , [1], [2]. Moreover because of b) r has neither
A /v—1 A H

poles nor zeros in <E ,. Hence r and r belong to (X ( J » [1] » [2].
c o + — o

o
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Remark R2.6 By a similar reasoning as in the proof of Theorem 2.2c),

i.e. by using Theorem 2.2b), it is easily shown that if (?£,/%) and
a n xn. y,

(iTtff) are two o-r.r.'s of FS fooj ° then there exists r an

invertible element of&jaj such that det ^ =rdet fr., and similarly
a nQxn^

if Gfy^) and (Aj^) are two c^-x.r.'s of Fe^(aQ) then there
exists ran invertible element of ^_(oQ) such that det ft% =rdetfl^.

Moreover the latter elements r, (including the one mentioned in

Theorem 2.2c)), will invertible elements of tfK^) if the denominator

determinants actually belong to tfC(a) . This is the case in algorithm 2.1.

We are now ready to look at the uniqueness of aQ-admissible representations
A n xn.

of F G {5(o ) ° . This is a generalization of Theorem 3.4 of [1],
° a n xn.

Theorem 2.3. Let F G #(a ) ° 1 and let (#.,&) and <fi\fi\) be two
1— o r j. t jl

a-r.r.'s of F, (respectively let C#£»#£) and (ftj^J) be two c^-x.r.'s

of F). Under these conditions there exists

a n.xn. „ a nxn
aea(o)1 i, (resp.^ed (a )° °) (2.13)

— o — o

such that

A n.xn. jj
^ is invertible in #_(aQ) 1,(resp.£. is invertible in

a n xn

a.(o0) ° °) <2-14>
and

%-%&.%- *£«. (reap. ^ =/^, ^ =tftj - (2'15>

Moreover if ^ , #f, jftn, #1 have elements in i.(o ) then &and £have
r r x x o

elements in 6^0 ) .
o

Proof. We shall restrict ourselves to o -r.r.'s with elements in CL_iaQ)'
* f a n.xn;

Define ft = (ft') ft. Observe that, since ft and ft belong to & (a ) 1 x
r r r r <->

with det fr and det ft1 in#~(a ), it follows by Cramer's Rule that/Land

-19-



a —1 A n xn
(fL are elements of (E)(q ) . Moreover from # = Fjfr' and 7>r = FJ9f

o "r t r r

it follows that (2.15) holds. Observe finally that £/# + Yft. = I and
a i

iCjy + 1[U? = * where all matrices have elements in CL (q ): hence by
1 1(2.15), Uft + Vft a#C and $£ fl + ff £} =^ where all matrices on the

A A

left hand sides have elements in & (a ): so since CL (a ) is an algebra,
- A n.xn.

/Rand (IC belong to <£_(q ) 1 x, i.e. (2.13)-(2.14) hold. «

We give now a definition and a corollary needed for further developments.

Definition 2.3. We say that the pair (f) 9Jfr ), ((>& ,# )resp.) , is an
~—"*-^-^~—r r x x

n x n a -right representation (n xn. a -r.r.), (resp. is an n x n.

q -left representation (n xn a -x.r.)), iff

A n xn A n xn A n xn

(i) ^ e &_(qQ) ° i and ^ ^d_(oQ) ± \ (resp. fr^&joj ° ° and
a n xn.

(ii) the pair (/? ,# ) is q -r.c, (resp. the pair Oft,,ft,) is a -x.c);
r r o x x o

(iii) det^- ^Ci(a ), (resp. det ft0 ^Ci(a )). • n
r - o x - o

Remark R.2.7 It follows from Cramerfs rule that if (# 9ft) is an
_, a n xn.

n x n, q -r.r. then F =# vjT G $(q ) ° ; moreover if we define two
o i o r r o

n x n q -r.r.'s (1} 9ft) and (•#',ft) to be equivalent if there exists

(f^an invertible element of CLJoQ)n± ±such that (1^,%.) = (f±fi>ftjd
then according to Theorem 2.3, there exists a bjection between the set of

equivalence classes of n x n. a -r.r. fs {(/J ,ft)} and the elements F
* o i o r r

n xn

of fe(q ) . As a consequence, modulo an equivalence class, one n x n

° A noaiq -r.r. represents one element F G fc(o ) and vice-versa. Something
o o

similar is also true for an n x n. q -x.r. ($„9i)0).
o i o xx

nrtxn
Corollary 2.4x. Let F € b(o ) x. Then for any_ qQ-x.r. (ft^Jly) of F

A

there exist matrices with elements in CL (a )» namely

t^. ^;r?r,^r,ar,rr

-20-



such that

(i) <# ,Ji£) is a aQ-r.r. of F

n

n

n. n n
i o i

n

Vri V*' X\-%?

CA\ *t. 1%: rj

n • o
n i

o ,

L o ' i
n

o

(2.16)

where if we call the matrices on the left hand side of (2.16), 'Z/respectively
(ni+no)x(n±+no)

%r , then obviously &/is an invertible element of &_(c )

and without loss of generality

det V= det U1 e 1. (2.16a)

Proof: Apply Theorem 2.1 and use Theorem 2.3 for identification purposes.

Remark R2.8 It is obvious that a similar Theorem is valid when we

start from any q -r.r. (fl >A>) of F: call this Corollary 2.4r. n

3. Feedback System Stability

Consider the multi-input multi-output feedback system S shown in

Fig. 3.1, where all relevant expressions are described in the frequency

A, A,

domain: i) usually P and C are the plant and controller transfer functions

with respective inputs u , u and outputs y , y ; ii) u is the system

input and w .the plant input disturbance; iii) y = y is the system output

and e = u - y = u the system error.
s s s c —*•

Note that if we had additive disturbances applied at the plant output,

say w , then their effect is equivalent to an additional system input -w .

From Fig. 3.1 the system equations are

-21-



Let

n u. n u n

n w.
PJ

n.
1

n n.
o i

i ! p-

~aT t

1

u n.
l

G =

n
o

n

o

~0

n.
l

P~"

n.
l

-C 0
, J =

n n.
o l

n r ° ! I -|
o n

o

n. -I 0
i L n. J

and observe that

-1-
= J G.

n n

n. n

n
o

A>

"C '
1

ni
0~

0 ' p
J

u

(3.1)

(3.2)

Hence the system's input-error transfer function H : (u ,w ) \—»• (u ,u )
J * e s p v c p

and input-output transfer function H : (u ,w ) •—*• (y ,y ) satisfy
r yspcp

A. A, —1He = (I+G) X,

JH = I - H .
y c

We have also the following:

System Assumptions

Al) For some a < 0
o —

A n xn. a n.xn

P <E(£>(q ) ° x and 6e6(q ) X °
o o

where

P has a qQ-x.r. (^,7^^),

C has a q -r.r. (/) ,© ).
o lcr cr

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

A2) det[I +£6] = det [I +CP] is bounded away from zero at infinity in
no ni (3.8)

Cq +•
o
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AAA p
Consequently by the properties of the algebras &.= $.(0) ,#,_(<J0) cd

for q < 0, &(q ), [1], [2] and by (3.1)-(3.8):
o — o

(n.+n )x(n +n )
GG|g(ao) X ° x ° (3.9)

A (n +n )x(n +n ) A(n +n )x(n +n )
Jand J"1 belong toA_(ao) * ° X ° C^L i ° i °, (3.10)

det[I+G]_1 =det[In +PC]"1 =det[In +CP]"1 ^&(oq)9 (3.11)
o i

(n.+n )x(n.+n )
H and H belong to <£>(q ) x ° X ° , (3.12)
e y °

A(n.+n )x(n.+n ) „(n +n )x(n +n )
fi ea i ° ± ° oh ea X ° X ° , (3.13)

e y

(n +n )x(n +n ) . A (n +n )x(n +n )
He^(a)io 10~He&(a)i0 • (3.14)

e ^^ o y - o

It makes therefore sense to have the following:

Definition 3.1[18]. The feedback system S described by (3.1)-(3.8) is said

to be #.-stable iff both its input-error transfer function He and its

input-output transfer function H belong to (X

Remark R3.1 From (3.13) once system S is ^-stable then its input-output

map (u ,w ) \—+ (u = e ,u ;y ,y = y ) will (i), for any p G [1,«],
sp c spcp s

take L -inputs into L -outputs with finite gain and (ii) will take continuous
P P

and bounded inputs, (periodic inputs, almost periodic inputs, resp.)

into outputs belonging to the same classes, [7], [21], n

By (3.5)-(3.7) the function x defined in <E (for some q. < a ) by:

X==detVcr+W <3-15)
A

is an element of (k (o ) and is called characteristic function of S

(in <Ca +).
o

The importance of x Is discussed next.
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Theorem 3.1. Consider a feedback system S specified by (3.1)-(3.8).

Consequently (3.9)-(3.14) hold. Under these conditions:

(i) the system S is ^-stable if and. only if

X(s) * 0 for all se (c+ ; (3.16)

(ii) p £ C , is a zero of x(') (3.17)
q t
o

if and only if

pe <c ^ is a pole of 5 (3.18)
r q + r e

o

if and only if

p e <D ^ is a pole of H ; (3.19)
v a + r y

o

A A,

(iii) the MacMillan degrees of p€ (E^ + as a pole of H£ and H are the
o

same and equal to the multiplicity of p as a zero of x(*)»

Proof of (i): First from the definition (3.15) and (3.5)-(3.7)

X=det[In +PC] detj&;r det# (3.20)
o

. *•00 a.

Hence by (3.8) and since both det ft ^ and det & ~belong to&_(qo), x is

bounded away from zero at infinity in (E ,. Thus (3.16) is equivalent to
o

inf{|x(s)|: s € c } > 0. Now the conclusion follows by condition (35) of
A A. *

Theorem 1 of [18]: indeed G and G2 of [18] correspond to the present C

and P; by Corollary 2.3 (ft ^tJ 9 (Mcr>A%r) ,resp.), is a pseudo left-

coprime factorization of P, (resp. pseudo right-coprime factorization of C);

finally, as indicated in the conclusions of [18], Theorem 1 of [18] applies

to rectangular systems (i.e. n ^ n.).
a n xn.

Proof of (ii) and (iii): Since P€(&(qQ) ° ,by Theorem 2.1 it follows that

Phas aco-r.r. <^r./3£r). (3'21)

moreover by (3.21), (3.6) and Theorem 2.2c):
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A

there exists r an invertible element of#_(%) ysuch that

det£ -r det^pr. (3.22)

Recall now relations (3.2)-(3.4), (3.21), (3.7) and consider the following
A

matrices with elements in^_(qo), namely:

n

?H
n

n n.
o i

'0 Upr

-ii i o
L cr i

n

, £f~
n

n

fccr

0

n.
l

ftpr

Then it follows easily using Corollary 2.2:
(n.+n )x(n4+n^)

(tlJV) is a q -r.r. of G 6 $(o )
l , Til .

i o

and similarly, using H = (I+G) = ft(R+Tl) and

H = J^Gd+G)"1 = j"1/?^/))"1:
A (ni+no)x(ni+nQ)

(ft,JD+7)) is a a -r.r. of H£ e £(qQ)

(J_1^,6+7» is a 0Q-r.r. of Hy € ft(qQ)

Now, since by (3.23), (3.21) and (3.7)

n n

n

&+n=

n n.
o i

i .-a ->

jbu: ^'cr pr
n

n «

A I

-c , I

(ni+no)x(n.+no)

i %
"ft

cr

n.
i

o ' ft
» pr_Jn "^. ! Ai L "cr pr.

n
iL r n J

det [8+fl] = det [I +PC] det^cr det #pr .
o

Hence on comparing (3.20), (3.26) and (3.22):
A

there exists r an invertible element of tf_(oo) such that

X = r det[J&+tf].

Recalling that r is bounded and bounded away from zero in Qq +9 some o± < oq9

it follows by Theorem 2.2a) and (3.24), (3.25), (3.27) that the

equivalences (3.17) <=* (3.18) <=* (3.19) hold; similarly conclusion

iii) is a consequence of Theorem 2.3b) and (3.24), (3.25), (3.27).
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Remarks. R3.2 Equation (3.15) defining x is not the only possible

expression for a characteristic function of S in (E .: observe that any
q + J

A A o A
element rx of (X (o ), where r is an invertible element of CL (a ) can be

— o — o
Ak

used instead of x for having the defining properties of a characteristic

function required in Theorem 3.1. We call therefore characteristic

function of S in (E , any element of the equivalence class of elements of
o

d (q ) being equal to x> defined by (3.15), modulo an invertible element of
— o

A

Q_(gQ). Observe that such a characteristic function is obtained if in (3.15)

i) the <JQ-x.r. (fi^^Ti^) of Pis replaced by another a-*.r. GB1^/?^) or if the
a

tfQ-r.r. (flcr»JE£r) of C is replaced by another a -r.r. (fl' ,#* ) (use

Theorem 2.3), and ii) if we use left or right a -representations
A, A,

for P and/or C, (use (3.20) and Theorem 2.2c), see also Theorem 1 of [18]).

The characteristic function x given by (3.15) was chosen because it suits

best our present purposes.

R3.3 Condition (3.16) can be checked by the graphical methods, [22], [23].

R3.4 Note that according to [32, Theorem 3], the ^-stability of

closed loop system S is robust. n

4. Preliminary "Algebraic" Problem for Compensator Design

a n xn.

We are given F £ &(o ) ° where

* n xn

°W ±S any ao~*"Tm °f *e^>(a0) ° °* (4-i)
a n xn A n xn.

Recall from Definition 2.1 that ftn e CL (o ) ° °, fl e CL (a ) ° 1,
X - O X - O '

the pair (ft^H^) is qQ-x.c. and det &£ Ed^a0)-

We want to solve problem (COMP) defined by
a n xn

(COMP) : Under assumption (4.1) for any $£Q-._(o ) ° ° solve the equation
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for

*.*+$#-#

A n xn A n xn

9Ge^_(ao) i °and/p<£_(qo) ° °

(4.2)

(4.3)

Preliminary information: because of (4.1), according to Corollary 2.4x,

A

there exist six matrices with elements in^_(q ) namely

V^^r'Ar'^r'K

such that

(i) (Hr,ftr) is a aQ-r.r. of F

(ii)

n

n

n, n n. n
i o i o

i ~rA UA p-rl-^1
u. __ _ i_ _ =

o LAi AJL*r j*lj
w °

1

o ; i
I n -J

o

where if we call the matrices on the left hand side of (4.5) \nf9

respectively 2i/~~ , then obviously hfis an invertible element of

Ci (o ) and without loss of generality

det'i^= det If1 = 1.

(4.4)

(4.5)

(4.5a)

Recall further by remark R2.7) that,modulo an equivalence class, one n± x n(
a n xn

q -r.r. (il9ft) represents one element of $)(a )
o o

We are then lead to the following:

Theorem 4.1 Consider the problem (COMP). Under the assumptions and

notations specified above:

(i) All the solutions U£iL] of (COMP) are given by

n

n n
o o

i r-aq TL

= ^-i

o LtJ L#J

7L/ n

i i.e.-X=%tl-^;^ =̂ +r£l9' (4.6)
n n
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n.xn
i owhere "71 is an arbitrary element of /7 (q )

— o

Moreover, by (4.5), (4.6) is equivalent to

n,

n

and

n

"VlI r-xi

-V .___.

[_erj IhI

n.
l

i.e. n= -rrx+^ ft =\x+ftzif

(0C>tf) is q -r.c. if and only if (11$) is q -r.c.

(ii) If in addition

F(s) +0

then

as s -»• «» in C ,
n xn. • ' q +
oi o

(OQW is an n x n a -r.r. if and only if (72,&) is an

n. x n q -r.r.
i o o

(4.7)

(4.8)

(4.9)

(4.10)

n

Hence according to Remark R2.7) all solutions (XiU) of (COMP) resultingf
• nAin elements of (£>(q ) ""• w are generated by (4.6) by the class

a n xn

m^CL (cr ) x °; (7?,fr) is an n, x n o -r.r.} (4.11)
— O 1 o o

Proof of(i): Note that if (X,ip is given by (4.6), then using (4.5),

OCM) is a solution of (4.2)-(4.3), i.e. of (COMP). Now let (X*ft) be a

solution of (COMP), i.e., of (4.2)-(4.3). Then a particular solution is

OCU) = (a^,]^ft): indeed by (4.5) #^ +ft^ = *n • Xt remains to
^ o

add to this particular solution the general solution of the homogeneous

equation corresponding to (4.2), namely

#oX+#0& = 0 (4.12)

We claim that any solution (X,^) of (4.12) can be put into the form
n xn

(X,^) = (-J^,7?r7\) for some 71E cL_(oQ) i °. To prove this, let (JC,U) be
any solution of (4.12) and define 1\E £>(a ) i ° by:

(4.13)
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Hence by (4.12), (4.1) and (4.4)

tf-ftyAA-Wl- (4,14)
(4.13) and (4.14) show that any solution has the required form but it remains

n.xn

to be shown that T\€ CL_(o0) 1 °. Use (4.5), (4.13) and (4.14) to obtain

~YX + Yfy =yi> where all matrices on the left hand side have elements in
a* r « n.xn
<$.(a). Therefore ft^d (a ) °.
KA~- o - o

The equivalence of (4.6) and (4.7) is a consequence of (4.5).

Equivalence (4.8) is also a consequence of (4.5) and Corollary 2.2.

Proof of (ii): Observe that by (4.1) and (4.9)

det &z ed!!(a0) (4'15)

and

7?„(s) -»• 0 as IsI -> - in C . (4.16)
<xv ' n xn. ' ' q +

o i o

where (4.16) follows by •# =j^F, (4.9) and because all elements of ft%
are in CJL (o ), therefore are bounded in <E .. Now by (4.7) and (4.16),

- ° o

for any sequence (s.)^ c«a +with \s±\ -»•<», i•»- «, we have
o

lim inf |det &{b±)|=lim inf |det ^(Sj)||det ^(s±) |: since by (4.15)
det O is bounded and bounded away from zero at infinity in VQ +9 it

* o

follows that

tet%^Cf_(aQ) if and only if det Jfr^tf"^). (4.17)

Hence equivalence (4.10) is established using equivalences (4.8) and

(4.17). *

Remark R4.2. Problem (COMP) discussed above is a generalization of a

method for compensator design in the lumped case found in [3], [4]. In

the sequel the solution of this problem will be used to show constructively
A n xn. A

that any plant PG&(o )° for some o < 0, with P(s) ^ 0 as |s| + «>
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in C ,»can be stabilized by dynamic output feedback in the sense of
o

Fig. 3.1: more precisely a compensator C, (see Fig. 3.1), should be

found such that the closed loop system S is CL-stable and both the
A, A.

input-error- and input-output transfer functions H resp. H have a given

set of poles in the vertical strip [q ,0) with specified MacMillan degrees.

Moreover we would like that C would be such that the closed loop system S is

a robust servomechanism. Known stabilization techniques in the lumped case

include the design of a state estimator and the use of state feedback

or the design of a controller, [16], [24], [25], [26], Multivariable

servomechanisms are discussed in [27], [28], [29], [30], [31], [32], [33],

[34].

5. Compensator Design for Stabilization, Tracking and Disturbance

Rej ection

A

We are given a plant P such that

A n xn

P £ <B(q ) ° for some q < 0
o o

where

n xn
o oPhas aoQ -*.r.C0 t^pt) with J3p£ 6KoJ

the elements of P = £" [p] are real-valued Laplace

transformable distributions with support onl+;

P(s) -*• 0 as Is -* «> in <E
n xn. ' ' q +
o i o

Reference signals (to be tracked) are generated as follows:
n

x (0) is an arbitrary vector in ]R and
s

i(t) = a x (t), u (t) = c x (t), vt e m,
s s s s s s +

where

thus

n n xn n xn

x (t) e m s, a ems s, c em0 s
s ' s ' s

(C ,A ) is a completely observable pair;

u(s) = C(sl-A)""1x (0).
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Disturbance signals (to be rejected) are generated as follows:
n
w

x (0) is an arbitrary vector in ]R and
w

*„(t) - v«(t)» wP(t) =Vw(t) • vt e m+
where

thus

(C ,A ) is a completely observable pair;
WW

w (s) =C (sI-A )-1x (0)
p W WW

-\

J

(5.6)

Furthermore, with q(...)denoting the spectrum of the square matrix between

the parentheses, we assume that

q(Aw) U q(Ag) C (D+. (5.7>

Let now i|k and \J>. denote the minimal polynomials of A respectively Aw
'\,

and let

<j> := monic least common multiple of i|>. and \\>

q = degree of (j> =: 3<j>

(5.8)

(5.9)

Let Z.M denote the list of zeros of <j>, i.e., let z. be a zero of <|>, m

denote its multiplicity and let <f> admit k distinct zeros, then

*-[$] — (z.|»...z.,; Zn,...,z«; ... ; z, ,...,z,)^i—3 ^_—j ^

"l m2 *k

{z1,...,zk> = q(Aw) Uo(Ag),

q = 2 m , z 6£[<}>]«=> z G2[«
i=l x
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and

the maximal order of z as a pole of any element

-1 l nof Cr(sl-As) xr(0) and C^sl-A^) xw<0) any xg(0) GS S \ (5.13)
n

any xw(0) G]R w is m± (see Appendix 2) .

For tracking and disturbance rejection purposes, [33], we assume for
n xn

pe6(o0) ° i:

ni>no (5.14)

rank[7Jp£(s)] =nQ V s e oCA^ U0(A8). (5.15)

Let finally A be a given finite list of points of the

vertical strip [o ,0) with the property that JlGA^IeA.

We shall now discuss the

Stabilization, Tracking and Disturbance Rejection Problem (STDP): For

n.xn

the given data (5.1)-(5.16) find a controller CG 6(q ) , corresponding

to real valued distributions, such that the feedback system S, (3.1)-(3.8),

(Fig. 3.1):

(i) is ^.-stable;

(ii) j£[X;tt ] i.e., the list of zeros of x (the characteristic function
°o+

of S defined by (3.15)) in (E is exactly A;
q +n o n^

(iii) Vx (0) G3R S, V xw(0) €]R the reference signals u (•) defined by

(5.5) will be tracked asymptotically and the disturbances w (*) defined

by (5.6) will be rejected asymptotically; more precisely, with Fig. 3.1 in

mind: the system error e (•) generated by (u (*)»w (•)) defined by (5.5)

and (5.6) satisfies, for some o < 0,

e (t) = o(e ) as t •>•»
s

i.e. (5.17)
lim e (t)/ea = 0;

s '
t-x»
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n xn.
— * o i

(iv) property (iii) is maintained for any perturbed plant P G @(o_)

for which the feedback system S, (3.1)-(3.8), remains ^-stable.
A n xn

Remarks. R5.1 C is required to be in 8(0 ) °9 hence 6 is bounded at

infinity in <E . This corresponds to C being a proper rational matrix in
o

the lumped case.

R5.2 Assumption (5.4) is satisfied by all realistic models of physical

plants: it reflects the inertia-like properties of physical plants: it
n xn

implies also that, for CGfto) , det[I +PC] = det[I +CP] -j- 1 as
r on n.

o 1

A nixn0
as IsI -»• 00 in <E :hence, for any C £ sd(o ) ,condition (3.8) will be

°+ °
satisfied and the input-error- and input-output transfer functions He

a (ni+no)x(ni+no)
and H of system S (see section 3) will belong to 6(0 )

R5.3 According to the Theorem 3.1,condition (ii) of the (STDP) guaran

tees that simultaneously the input-error- and input-output transfer func

tions H and H of feedback system S (Fig. 3.1) will have a prescribed

set of poles in (E with specified MacMillan degrees namely the distinct
o+

points of A with their given multiplicities. Observe that in the lumped

case a similar pole specification is done for all of (E. The intuitive

idea here is to place the "dominant poles." Finally it should be stressed

A. A,

that we place here poles of H and H considered as matrix-valued func-
A, A.

tions: we cannot say which element of H and H will obtain a pole.
e y

R5.4 Condition (iii) of the (STDP) will not only guarantee that feedback

system S is a servomechanism: it, in fact, guarantees that the system error

e (•) due to the reference and disturbance signals convergesto zero faster
s

ot
than e as t •>« for some a < 0.

R5.5 Condition (iv) is a robustness property guaranteeing that as long

as the feedback System S remains ^-stable then reference signals will be

tracked and disturbances will be rejected asymptotically: see also [32,

Theorem 3].
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In order to solve the (STDP) we start by giving a preliminary defini

tion and result.

For q G]R consider the function space

{00

e"at|f(t)|dt< co} (5.18)
0

Lemma 5.1. Let q < 0. Let g G tf(a). Let u G L and u G <2(q) . Then the
l, q

convolution y = g * u satisfies

y(t) = o(e° ) as t+ «. (5.19)

-qt
e aeiinea Dy x \zj := e

y = g * u and y = g * u, we obtain

Proof. For any f G d(a), let f be defined by f (t) := e f(t). From

ya=ga*ua (5.20)

ya = 8a * ua (5.21)

J°°

ly (t^ldt1 -*• 0
q

as t -*- co and y_(t) -*• constant, say, b as t + ". From (5.20), y G L.
o q j. ,q

since u G L-. Consequently the constant b = 0; equivalently, y (t) -> 0

as t -)• ». Since y(t) = e0ty (t), (5.19) follows. «

We are now ready for the solution of the (STDP). We shall denote by

2[f ;Q] the list of zeros of the function f in the set Q, and by £[f] the

list of zeros of f.

Algorithm 5.1.

A

Data: We are given the description of a plant P, of reference- and distur

bance-signals (u («),w (•)), of the polynomial <J> and the lists 2I<}>] and A:
s p

see (5.1)-(5.16).

Step 1. Pick

d any monic polynomial in ]R[s] such that
(5.23)

8d = 3d) = q and d(s) ^ 0 for all s G <EqQ+
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Comment 1: Observe that

^•G ft (q ) CQ°(o ) with real coefficients,

zt|] =zw with xez[fi "f *G a£.
Step 2. Pick

a n xn

<0 G u (q ) ° °, corresponding to real valued distributions,
- o

ftoo

(5.24)

(5.25)

(5.26)
such that det <£>G#(q ) and Z[det*0;<E ] = A.

- o q +
o

Comment 2: The conditions for JO can be met by choosing D GR(o )

corresponding to real-valued distributions.

Step 3. Observe that

, A n xn

F=P?6*«0> ° with ao -t.r.C^.iy:- C0pJl±,7?p,>

n xn
o o

corresponding to real-valued distributions,

and find, using the technique of Corollary 2.4l9

six matrices with elements in d (o ) corresponding to
— o

real valued distributions, namely

%> ifa nT> £>T, %> vT

such that:

i)

n

n

ni

"V.

n
o

n.
i

r

n
o

-\ V nx .*. n

•— •"*

I

ni
0

0 I
n

o_

(5.27)

"N

(5.28)

(5.29)

where if we call the matrices on the left hand side of (5.23) "^respectively

rl%) , then obviously iJ is an invertible element of$__(q )

without loss of generality we can scale it so that

t1.det 2/= det[&J ] = 1 ;
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ii)

Wr»«Q.) is a q -£.r. of F. (5.30)

Comments 3: In (5.28) elements in CL (o ) corresponding to real-valued
"" o

distributions are obtained by grouping complex conjugate poles and corres

ponding residues.

Step 4. Observe

F in (5.27) satisfies F(s) -> 0
n xnJ
o i

as IsI •> * in (E

ao+
(5.31)

and,using (5.26)-(5.31), solve (COMP), defined by (4.2)-(4.3), as follows:
n.xn

i) Pick 7?G CL (o ) i °
- o

corresponding to real-valued distributions in

the class

A n xn

{TiedjoJ 1 ° : 0ft9P) is an n.xn q -r.r.}
i o o

ii) Set -X := £±71 -\*>i Ui=yjl+ 1^0.

(5.32)

(5.33)

Comment 4: (i) the choice (5.32) is equivalent (by Corollary 2.2), to

niXnopicking 7? e#_(q ) corresponding to real valued distributions such

that

n.

rank

n

r- ° -*

J0(s)
= n for all s G A.

o

(ii) (X,^) as given by (5.33) is an n.xn a -r.r

corresponding to real valued distributions

(iii) Using (5.29) one has also by (5.33):

7? =- 1/X+ 2^ ; <0 =7? #+ JD Tf. .
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Step 5. Set

7iCI'-= as.-Dcr'-H • (5'37)

C:=7? .O"1 , (5.38)
cr cr

and STOP.

Comment 5: (i)

A n xn

CGB(o)1 ° with qo - r.r. (7? .<£> )
o o cr cr

(5.39)
corresponding to real valued distributions

(ii) C solves the (STDP). n (5.40)

Theorem 5.1. Consider Algorithm 5.1. The C, as given by (5.38), belongs

a n4Xn
to ©(o ) ° with q - r.r. (7? 90 ) and solves the (STDP).

o o cr cr

Proof: We shall show that algorithm 5.1 works.

Step 1 and Step 2: These steps are self explanatory.

Step 3. Because of Corollary 2.4£ we only need to show (5.27). Since by

* A n XI^ A n xnl
(5.24), 4 e &(a ) and since P G8(o )° it follows that F = P^-G <B(q )° 1,

(J) O O (J) o

Moreover (C Ajl J is a q - £.r. of P^-. Indeed P^= C0 A)"1?? „and by
v pAd>/lpr o <J) (j) pfcd p&

(5.2), (5.8)-(5.15) det^^e^^a^ and rank[eOpA(s)|^-|7?p£(s)] =nQ for

for all sG (E , i.e. by Corollary 2.2 (P n^97l ) is a - Jl.c. .qQ+* ' ' p£d p^ o

Step 4. Because of Theorem 4.1 and Corollary 2.2, we need only to show

(5.31). Now observe that this follows from (5.24), (5.27) and (5.4).

Step 5. a) (5.39) is true by the fact that (3C^4) is an n±xno oq -r.r. .
Indeed observe that the equation describing (COMP) is given by
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<o =7^+4?= v*+i^P*

where we used (5.27) and where by (5.25) and (5.10)-(5.11) J3(s) = "ft 0(s) 3T(s)
px,

¥s G a(Ag) Uq(Aw). Therefore by (5.7), (5.26), (5.16), (5.14), (5.15),

rankbOCs)] = n , V s G c(A ) U a(A ). Hence this and (5.35) imply that

n

rank

n

n
o

0C(s)

v>ss
= n V s G (D

V

Now (5.35) and (5.24) imply that det [ft |-] G$~(a ), and hence by Corollary

A.2.2 the pair (X,^J) is q - r.c

b) We show now that (5.40) is true.

i) First for the feedback system S (3.1)-(3.8) (Fig. 3.1), (where the

plant transfer function P is is given by (5.1)-(5.4) and (5.14)-(5.15), and

where the controller transfer function satisfies (5.37)-(5.39)), the

A, A. /V

transfer functions H. and H are well defined and have elements in C(a )
e y v o

(see Remark R5.2).

ii) The equation (4.1) of (COMP) reads here:

<D = 7? X+ £>Ur= 71 71 + JO A , (5.41)
I l\j p£ cr pit cr' x '

where we used (5.27) and (5.37). Hence the characteristic function (3.15)

of S satisfies here:

X = det 3 , (5.42)

such that by using (5.26)
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Hx;« J =?[detiO;« J = A- (5.43)
o_+ q_+
o o

Hence also by (5.16):

X(s) * 0 V sG <E+. (5.44)

It follows that by (5.43) property (ii) of the (STDP) is verified, while

property (i) follows from (5.44) and Theorem 3.1.

iii) We shall now show that the tracking property (iii) of the (STDP)

holds.

If H resp. H denote transfer functions of System S (Fig. 3.1)
es "

defined by:

es,us e^»w«

H : u H" e with w = 0 , (5.45)
e ,u s s p
s' s r

H : w "" e with u = 0 , (5.46)
e ,w p s s
s* p

then using (5.2), (5.39), (5.37), (5.41),

K.„ "t1^"1 -̂ cr^pAr-Vcrl^p* "Ij^pt (5'47)
s s

H =- [I+PC]'1^ =-8 „L0 nJ) +7? 07) rhf 0=-4^""^ o <5'48>e ,w L J cr^pflrcr 'p& cr p£ do p£
s p

Observe now that by (5.26) and [7, Appendix D], det<# belongs to
n xn /»

CL(o) ° ° for some q G (q ,0). Now, since 6 (o ) C^?(q), it follows there-
o — o

a n xn

fore, by (5.2) and since Ij Gd_(oQ) ° °, that

t a n xn

n xn

-F Veaw ° * (5-50)
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Furthermore by (5.5)-(5.13) and (5.23):

Vxs(0),^1[|cs(sI-As)-1 xs(0)] GL^ ^
n ( (5.51)

and its derivative belongs to C((o) ° ,

Vxw(0),^-1[^w(sI-V-1 ^(0)] Gl"^ 1
and its derivative belongs to Ct(a) .

(5.52)
n

Consider now the system error e due to (u ,w ) given by (5.5)-(5.7), then
s so

V xs(0)' V *W(0)

A A, A, A, ^

e = H u + H w
s e ,u s e ,w p

s s s p ^

=^V [d Cs(sI"As)"1 x(0> 1+If\l t| Cw[sl-Aw)-Ixw(0) ]
(5.53)

when we used (5.45)-(5.46), (5.47)-(5.48), (5.5)-(5.6).

Therefore by (5.49)-(5.53) and Lemma 5.1

V xg(0), V xw(0), eg(t) =o(e0t) ast+«. Q.E.D.

iv) Property (iv) of the (STDP) is shown to be true as follows.

— 3 noXniLet P G 8(a) be any perturbed plant for which the feedback

system S (3.1)-(3.8) remains ^-stable. By Theorem 2.1 P admits

o - A.r.CO fTl) and the characteristic function x (3.15) becomes

X = det JO ,

where
- — — nxn

o o

•°-V>cr+Vke«-(°o)

Moreover (3.8) and (3.20) read now respectively
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det[I +PC] is bounded away from zero at infinity in <E ,
o j^a. _ ao+

X = det[I +PC]det jO det JO ..
n cr p£
o r

A

It follows that x is bounded away from zero at infinity in <E and by

U-stability and Theorem 3.1 x(s) f 0 for all s in d. In fact more is
A *^

true: since x can only have a finite number of zeros in the strip [o ,0),
o

it follows that ]a£ toQ,0) such that x(s) i 0VsG <c_ . Hence 7, i.e.

det ^ is bounded away from zero in <E q<0: this implies, [7, Appendix D],
q+

-_-1 A _ noXno A A
that ft belongs to QXo) , (observe also that CL (c ) c #(q) such that

A _ n xn - o
#G<£(q) ° °). Observe now that the transfer functions in (5.47) and (5.48)

read

\,us =W%. -* \,„p= -i?r\t
--- A_nxn __ A__n xn

where jtf"1^ €<2(o) ° ° and^Xrty Gtf(G) ° i; and qG[aQ,0).

The reasoning of (ii) can now be repeated to show that V x (0), V x (0),

eg(t) = o(e ) as t -> « with o ^ [a ,0). Hence property (iii) of the

(STDP) is maintained. n
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Appendix 1: R(a ) is a Euclidean Ring

Recall that a principal ideal ring R, [12], is called a Euclidean

ring. [8], if the following properties hold:

1. Associated with every nonzero element of R is nonnegative number y(a)

called the gauge of a;

2. For every pair a, b of R, b £ 0 there exist two elements r and q of R such

that a = bq + r and either r = 0 or else y(r) < y(b).

Recall that (ft(q ) is a principal ideal ring, [9], and that the follow

ing fact holds.

Fact Al. Let a G <fl(q ), let tt(s) = s - a +1, then

a= en ,/TrY(a) (Al.l)
a a*t*

where e is an invertible element of fl(q ),
a o '

n is a polynomial which is zero at all zeros of a

in € and nowhere else,

y(a) = number of zeros of a in (E and at infinity. (A1.2)
v

Comment: If a is invertible in fl(o ), then y(a) = 0.
w o

Proof: a = n /d where n and d are coprime polynomials. Factorizing
1 CL ci cL cl

n = n n where n (respectively n ) takes into account the zeros of a
a a+ a— aT a—

o

in <E (respectively (E ), and observing that d = d and y(a) = 3(n ,)
o" , n

+ 9(d ) - 3(n ) « 3(d ) - 3(n ),we get a = e n /irY^a; with
a a 3. a~• a a*i

e = TTY(a)n /d . (A1.3)
a a- a

+We use Siglerfs term "gauge," [36], instead of MacDuffee's "stathm," [8]:
"degree" could also have been used but would be misleading since we handle
polynomials at the same time.
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Observe that eo is invertible in fl(q ). n
CL O

We are now able to define a Euclid Algorithm for (L(oq) with the gauge

defined by (A1.2).

Euclid Algorithm for (R,(qo): Given aand bin 6{(oq),b^0, find rG6{(oq)
and q efi(o ) such that

o

a = bq + r where r = 0 or y(r) < y(b) .

Step 1. If y(b) _< y(a) go to step 2, else

a = bO + a

i.e. r = a,q = 0 and y(r) = y(a) < y(b).

Stop.

Step 2. Apply Fact Al.l to a and b, i.e.

Step 3. Develop na+/irY(a) and nb+/irY(b) as polynomials in w:= it =
(s-o +1)~ , i.e.

, na+ ,,. _ v k Y(a)-k „w* nk
(^aT)(W)" £„ na+W

where n , G C,
a+

3(n,.)

(Jfe<-)- E ^(b)'1 where n^-

and observe that the degree in w of these polynomials is the gauge of a and

b resp..

n + "in-
Step 4. Divide the polynomial (—frr) « by the polynomial (—fcj) (*):

—T V<*/ TT
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then there exist polynomials x(w) and y(w) such that

(~^aT)(w) =<-^oy>^)x(w) +y(w) (A1.5)

nh+with either y=0or 3(y(w)) <W-^yMw)) =Y(b). (A1.6)

Step 5. Reintroduce the invertible elements e and e, of (A1.4) to obtain

a = bq + r

ea(s) 1where q(s) =—^ x(^-^j-) , (A1.7)

r(s) =ea(s) y(7^I) , (A1.8)
o

and observe that either r = 0 or Y(r) < Y(b). (A1.9)

Stop. a

Justification of the Euclid Algorithm

We check the result of Step 5.

Observe that q and r as given by (A1.7)-(A1.8) are ft(o ). Hence we

must show that if r ^ 0 then Y(r) < y(b).

Observe now that by (A1.2) V a, b G (S((a ), a 4 0, b i 0,

Y(ab) = Y(a) + y(b). Hence by (A1.8), with y(e ) = 0 we get Y(r) =
a

Y(y( +7"^* Hence, in view of (Al.6), if we can show that
o

Y(y) = Y(y(s,Q +1))£ 3(y(w))
o

then we are done.

Now y G ${(o ), so we get by Fact Al .1
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y= en7TrY(y).y y+

Also by Step 4, with w = it , we get

_ „ / a(y(w))
y = n /tt

y

.9(y(w))

proof of Fact Al.l,

with n and ir y coprime polynomials in s. Hence similarly as in the

n«n, /n \/ n
y= y- y+ =I—z^-r.\. I . yf.

3(n )
gives e =n Jir y~ and Y(y) ° 8(y(w)) - *(\J •

y y~* *

Now 3(n ) >. 0, so we have Y(y) <. 8(y(w)) Q.E.D. n

Hence by the above we established

Theorem Al.l: /R(o ) is a Euclidean Ring with gauge given by (A1.2).
N o

Final Comment: Our sources of inspiration here were [8], [9], [10], [36],

[37].
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Appendix 2: Proof of Assertion (5.13)

The proof of (5.13) is based on the following consideration.

Consider the class of transfer function vectors

C(sl-A)"1x GlRP(s) (A2.1)

where

i) x is any element of 3Rn (A2.2)

ii)AG]Rnxn, CG]RPxn (A2.3)

iii) (C,A) is a completely observable pair

i.e.,

C

rank = n V s G <E. (A2.4)
sI-A

We have then the following theorem

*f*

Theorem A2.1: Let ty be the least common multiple (Lc.i.) of the least

common denominators (£,.c.d.fs) of all elements of the class of transfer

function vectors {C(sl-A)~1x; xG]Rn} defined by (A2.1)-(A2.4). Let \\>

be the minimal polynomial of A Gjr11 . Then

* D *A (A2.5)

Proof: 1) According to Gantmacher, [19], iK is the invariant polynomial of

highest degree of A. Indeed let A. denote the greatest common divisor

(g.c.d.) of the minors of order i of A and consider the ordered set

(A1,A2,...,An)

then we define the invariant polynomials of A as

+"The" Jt.c.m. means the manic Jl.c.m.; similarly "the" Jl.c.d. means the
monic £.c.d.

-46-



*i " Ai/Ai-1 ±= 1.»"*»n A0:= -1- (A2.6)

Hence we get the ordered set of invariant polynomials

(*1,*2,...,*n) (A2.7)

where ty. divides ij;. -, i = l,2,...,n-l, and \\> = iK. (A2.8)

Moreover there exist nonsingular matrices P G3R and Q G]R such that

P(sI-A)Q = S(s) = diag[^1(s),ip2(s),...,ipn(s)]; (A2.9)

where S(«) is called the Smith form of (sI-A).

Since, by (A2.6) and (A2.8) \\>k = \\> =A /A _l9 it follows

ib. = ib is the SL.c.d. of the elements of (sI-A)~* G]R(s)n (A2.10)
A n

2) Consider now for any x G]R

C(sl-A)'1x G]RP(s)

and denote the i-th component of this vector by

(C(sl-A) 1x)i.

Then

(CCsI-A)"1^)^^ «n^/d^ G]R(s) for i=1 p, (A2.ll)

where

n . and d .are coprime polynomials (A2.12)

and without loss of generality we take the convention

n 4 = 0 =* d . = 1. (A2.13)
xi xi
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Hence, if ^ denotes the Jl.c.d. of C(sl-A)~* x, then with this convention

4>K =^-c-m-^xi^! (A2.14)

such that it, the £.c.m. of the £.c.d.'s of all elements of {C(sl-A)~1x;

x G]Rn} satisfies

i> = l.c.m.{\b ; x G]Rn}

= £.c.m.{£.c.m.{dxi}P=1; x G]Rn}. (A2.15)

3) Apply now transformation (A2.9) to C(sl-A) x. Then

C(sl-A)_1x = CQS(s)~1Px =^(s)"1! = G(s)x

where

C=CQ, (A2.16)

x = Px is any vector lnln (A2.17)

Hence also

for i= l,...,p and for j= l,...,n ~g =^h^"

and

.1 » _ ..!_
for i=l,2,...,p (C(sI-A)'Xx)i =£ cij* jxj =nxi/dxi (A2.18)

where we used also (A2.11)-(A2.13).

Hence by using (A2.8) and (A2.11)-(A2.15) we have always the following

equivalent facts

V x G]Rn, Vi=l p d .is a divisor of \b = \bA
xi n A
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V x Gin, tp is a divisor of ip = \b.
x n a

\\> is a divisor of i|k . (A2.19)

Hence the claim of the theorem is equivalent to

iK is a divisor of \b. (A2.20)

4) Suppose now that (A2.20) is not true, then

\b is a proper divisor of iK

hence also

Vx G]Rn \b is a proper divisor of ^ = i|»

and

Vx GlRn Vi = l,2,...,p d ± is a proper divisor of \\>A = ^. (A2.21)

Pick now x G3Rn such that x = Px » (0,0,... ,0,1) \ Then using (A2.18)

Vi =1,2,... ,p Wsl-A)-1^ =c^'l =nxi/dx±

which by conventions (A2.12)-(A2.13) implies

V i= l,2.,,,.p either nx± =c^ * 0 and dxi = *n = *A

or nxi - Zin " ° and dxi E1*

It follows therefore by (A2.21)

V i = 1,2,...,p c^ = 0

i.e. the n-th column of C is zero.

Using transformation (A2.9) it follows now easily that
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I
p

d c

Q--

0 p sI-A diag^,^,...,^]^

where ty(s) = iK(s) = 0 V s G q(A), the spectrum of A.
n a

Hence combining the above we obtain

C

rank < n V s G a(A).
sI-A

This contradicts (A2.4). Hence the hypothesis that (A2.20) is not true

is false: (A2.20) is true and so by (A2.19), (A2.5) is true. n

The following is now an immediate consequence of Theorem A2.1.

Theorem A2.2: Consider descriptions (5.5) and (5.6) and let <j> be the

Jl.c.m. of the minimal polynomials \b. and \b. described by (5.8)-(5.12).
w s

Under these conditions <|> is the Ji.c.m. of the fc.c.d.'s of all elements of

-1 nthe class of transfer function vectors {C (sI-ACT)~ x (0), x (0) G ]r s} U
s s s s

{C^sI-A^'^O); xw(0) G3RW}. h
It is now seen that assertion (5.13) is an immediate consequence of

Theorem A2.2. n
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