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ABSTRACT
n n xn
This paper describes the algebra O(oo) © of transfer functions

of multivariable distributed systems: this is a multivariable extension
of the algebra éﬂoo) of scalar transfer functions studied in previous
papers [1l], [2]: a detailed study of so called oo-right- and
co—left—representations is done: this is a generalization of coprime
factorization theory for proper rational transfer matrices. The paper
studies next feedback system stability of systems with transfer matrices
with elements in exoo): a closed-loop characteristic function is defined
and its importance discussed. Forthcoming applications are preconditioned
by studying a general problem which is encountered in compensator design:
this generalizes to the distributed case a technique used by Youla et al.
[3], [4]. Finally the problem of designing a feedback compensator for

robust stabilization, tracking and disturbance rejection of a plant is

defined and solved using the techniques of the paper.
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1. Introduction: Mathematical Definition and Facts; Perspective and

Organization of the Paper

In previous papers [1], [2] we were concerned with the following
mathematical definitions and facts concerning scalar systems. (LTD) +
denotes the set of complex-valued Laplace transformable distributions with
support on ]R

For o, € R, and element f € (LTD) is said to belong to a.(c )
iff, for t < 0,£(t) = 0 and, for t > 0,£(t) = £_(£) + Zo £, 8(t-t,), where

i=

ot
1)f()€L (]R)—{f £ ]R-HIZI |£(t) |e © dt < =}, (i) £, =0

and €, > 0 for i = 1,2,..., (iii) for all i, fi € ¢ and 6(°—ti) is the
ol -0 ti
Dirac delta distribution applied at t,, (iv) 2 Ifile ° 1t <w, Itis

well known, [7, p. 248] that C(,(cro) is a commutative convolution Banach

algebra with norm defined by

el = lef (t)le- o* dat + Z If |e \ (1.1)
6(,(00) o 2 i=0

and with unit element 8(+), the Dirac delta distribution; moreover this
algebra has no divisors of zero [5, Theorem 4.18.43;38]. Observe also that,
for o = 0, G(0) is identical to the algebra ( described in [7, p. 246-247];
moreover, for 0(') > 0:)', &(0;) 2> C((cg) .

For o_ € R, an element f € (LTD)+ is said to belong to Cl_(oo) iff
there exists a o, €ER, 0y < 9y such that f belongs to 6{(01). With the
C((co)—norm (1.1, a,_(oo) is a normed convolution subalgebra of a(oo) with
unit element & and with no divisors of zero.

Let © denofe Laplace transforms: i.e., f is the Laplace transform of
£f. &(co), & ,(co) denote commutative algebras with poinvtwise product of the

f's where £ € C((oo) s a_(co) , respectively: their unit is 1 and they have

no divisors of zero.



N -]
Let € := {s € C;Res > oo}, C

o+ s + = {8 € G;Res > oo}'
o

) (o]
and ¢°o_ := {s € C;Res < Go}.
The following are important properties of ﬂ_(oo) and a_(ao):
(i) £ belongs to the convolution algebra a,(oo), (Q(Go)resﬁ-), iff f belongs
to the algebra d(oo), (ah_‘»(oo));
(ii) f is an invertible element of 6((00), ([(_(oo)resp.) iff in both cases
inf{|£(s)|;s € ¢ .} >0;
o
(iiia) if £ € C(_(o ) then is f is bounded in € +, indeed
(= .
sup{|f(s)|,s Cco+} < el Ao ), and f is analytic in d: o+,
(iiib) 4if £ GQ_(GO) ‘then there exists a oy ER, 01 < Ogs such that f is
o ~
bounded in C and analytic in ¢ 2 ¢ : as a consequence f has a finite
ot op %'
number of zeros in any compact set in Co 45

(iv) if f and g belong to {_ (co) then the pair (f,g) is oo-coprime iff there
exist elements u,v in a_(co.) such that uf + \?é = 1 or equivalently iff
inf{|(E(s), 8(s))]|;s € c, +1 > 0 where ](‘,.-)I is any norm in €.

Let ﬁ::_(oo):% {£; £ Gé_(ob) 0such that f is bounded away from zero at infinity
in Go +}: &t(oo) is a multiplicative system, [6, p. 46], of &(oo) and each .
element f of &o_o(co) has a finite number of zeros in d:o +°

6(00) is the convolution algebra corresponding to the pointwise
product algebra é(oo) = [&,_(Uo)][a:(.oo)]-l i.e. B(co) is the algebra of
quotients f = n/d with n € d‘\,_(ooj , d G&f(co) and where, without loss of
generality, the pair (ﬁ,&) is cro—coprime, i.e., |(ﬁ(s),&(s))| # 0 for all
s € (Bo 4 @ pair (n,d) which satisfies these conditions is a oo—representation
of £ € é(oo): there exists a bijection between the elements fe é(o;)
and tﬁe equivalence classes of oo-representations {(ﬁ,&)} in which elements

A
are equal modulo a multiplicative factor invertible in Q_(Go) .
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Important properties of @(00) are:
i) if fe ‘ﬁ(o ) and (ﬁ,&) is a o -representation of f then:
o o ) .
a) there exists 9, > 9, such that f is meromorphic in d:o oc¢

+’
1+ c’o

is bounded at infinity in 030 + and has a finite number of poles in ¢00+;
b) .p e d:o +,(respective1y z € G:O +), is a pole, (zero), of £ iff
i) = 0, (B(z) = 03 ’
(ii) f is an invertible element of é(oo) iff f is bounded away from zero
at in‘finity in 020 +°
Let Gp(s) denote the algebra of proper rational functions in s with

A
complex coefficients and let for ¢ € R: (V\(co) = Cp(s) n d_(do)

= {f; £ € Cp(s) such that £ has no poles in 020 +},(ﬁw(oo) = {f;f Glﬂ/(co)
o

such that f is nonzero at infinity}. (f’\m(oo) is a multiplicative system
[6,p.46] of the algebra ﬁ(oo) and d:p(s) = [0{(00)][6{00(00)]-1 i.e. cp(s) is
an algebra of quotients f = n/d withn € ﬁ(oo) and d € ﬂw(oo).

It follows that & (o), 47 (o), B0 ) = 14 (6 V1A (6 )1 ™" are
extensions of (ﬂ,(oo) . 6‘8(00) , ,(Ilp(s) = [Q(oo)] [Ko'(co)]-l for representing
transfer functions of distributed -linéar time invariant systems.

Note also that if f G&t(oo) then f = flfz where %l is an invertible
element of ('i_(oo) andf2 belongs to J’C(oo): "aoz(oo) and &m(co) are
essentially the same": in particular @)(oo) = [&_(00)][&0:(00)]—1
= [4_(e )R e )17

We shall now be concerned with transfer matrices of
multivariable distributed systems i.e., with matrices with elements in
(L/'E\D)+, &(Go) s &_(oo) R é(co) . (f,l})):xn’&_(oo)nxn’ é(oo)nxn are all algebras
with a non-commutative pointwise product and unit In. F eé.(oo)nxn,
(&_(oo)m‘“ resp.), is invertible in ZL(co)mm, (&_(O’O)nxn resp.), iff in

~ A A
both cases inf{ldet F(s)l;s € «:0 +} > 0. FE€E @(co)nxn is invertible in
o

+°
o

a nxn . g
65(00) % iff det F is bounded away from zero at infinity in Co
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It is the purpose of this paper to establish a procedure which for

, . R n xn
a given plant P € 6(00) ° i,.(see Fig. 3.1), finds an output feedback

n,.xXn

~ compensator C Ef@(oo) io such that the resulting feedback system S,
N .

a) 1is ((-stable while having a prescribed set of closed-loop poles

in mo + 0
o

b) tracks asymptotically a class of reference signals and

¢) rejects asymptotically a class of disturbance signals.

task is realized as follows: in section 2 we establish for matrices with

A
elements in &(co) a representation theory in terms of matrix fractioms:

A
the results on ﬁ(co) of [1], [2] are hereby extended to multivariable

systems; in section 3 we study feedback system stability of systems with

loop matrices with elements in @(oo): we adopt hereby results of [18],
[32] and define a closed loop system characteristic function; in section 4

we study a preliminary algebraic problem for compensator design which

extends to matrices with elements in éi(oo) a technique used by Youla
et al. [3], [4] involving poiynomials or polynomial matrices; in section 5

we search for and find a compensator design for stabilization, tracking

and disturbance rejection, using a set up inspired by [3]-[4] and [31]-[34]:

we handle here a plant with transfer matrix with elements in'ékoo).

The paper is therefore organized as follows: 1. the present introduction;
2. matrix fraction representation theory; 3. feedback system stability;
4. preliminary algebraic problem for compensator design; 5. compensator
design for stabilization, tracking and disfurbance rejection.

Before starting we shall mention the following convention in order to
avoid the multiple use of the superscript " to indicate Laplace transformed

quantities: quantities represented by script letters are Laplace transformed

-6-



unless specifically mentioned. We need also the following definitions.

Definition 1l.1r. Let N E CL_(cro)mXn and ﬁea_(oo)nxn. We say that the

pair (,0) is o -right coprime (oo-r.c.) iff there exist elements
Ye a_(oo)nxm and VEQ_(Go)nxn such that YN+UR = L-

A -~
Definition 1.1%. Let ﬁea_(oo)m‘“ and NLE d,_(oo)nxm. We say that the

pair (R,T) is o -left coprime (oo-n.c.) iff there exist elements
. ®

U e2(_(00)mxn and /€ a__(oo)mm such that TUY+BV = L.

2. Matrix Fraction Representation Theory.
n_Xn

i . .
Definition 2.1r. Let F € (LTD)+° ; the pair (7 ,ﬁr) is said to be
n_xn
- . - LR = ~ 0 i
a o -right representation (00 r.r.) of F if ‘nr a,_(oo) and

2 i~
5 € (o) such that

(ii) the pair (ﬂr,ﬁr) is g -right coprime (6 -r.c.), i.e., there exist

A N4 Xn A n.xXn
elements Z{r e6{_(00) ™70 and ?/r ea_(oo) 1M1 Such that

Uy ¥ = Ty,
(ii1) det £, Eﬁf(oo). y |

A co—left representation (oo—z.r.) of ﬁ', F € (LTD)+noxni, is by
definition a pair (K& ,'722) which is similarly defined as (72r,43’r) in
definition 2.1r: change subscripts r for %, interchange the order of the
factors above, choose appropriate dimensions with "62, and '(/2 of dimension
n oxmn;: refer to this as Definition 2.1%.
Remark.RZ.l Observe that if n,=mn, = 1 then co-representations (bleft and
right) reduce to a g, representation of F = f, [11, [2].

. A noxn.
Lemma 2.1 If F € B(oo) 1, then

F=R+2¢ (2.1)



where
A A n_xXn
(1) €A () ° *
n xn,

(ii) R is a strictly proper element of €(s) ° ' which is zero if and
A~ A n_xn
only if F € CL_(GO) ° i,
. oA n_Xn, .
(iii) if F i&_(oo) © % then R is the sum of the principal parts of the

Laurent expansions of F at its poles in (Bc , where in particular F has

+
o
an m-th order pole at p € 010 + if and only if R has an m-th order pole at
o
(S
P wc + '
0o

Proof: F = [fij]ieﬁo,jeﬁi where for all i = 1,2,...,n 5 for all

j= 1’2,'--ani, fij € @(co), i.e. according to theorem 3.3 of [1],

m Rt R ) 8. €4 )z, i
ij r1j 81] where (i) gij A (oo), (ii) riJ is a strictly

>

,\ A N ~
proper rational function which is zero iff fij € a_(oo), (iii) 4if fij ¢Q_(oo)

then fij is the sum of the principal parts of the Laurent expansions of f at

its poles in ¢o°+' n
Remark R.2.2 The importance of the sum decomposition of Lemma 1 lies
in the fact that it permits to find a oo-f..r. or a o _-Tr.Tr. for
FE é(co)noxni by finding first such a representation for "its rational
principal part" R. Now observe that, with [2],
(R_(oo): = {f e Cp(s); f has no poles in ¢°o+} = Gp(s) n&_(oo) (2.2)
d‘\w(oo): = {f € (R_(oo); f is non-zero at infinity} C&j(oo) (2.3)

Cp(s) is a quotient ring [R(oo)][e\‘_’o(oo)]—l of 0\(00) with respect to its
multiplicative system ﬂm(co), [2], i.e. if fe Cp(s) then f can be written

as £ = ﬁf/&f with n_ € @\(00) s &f € Kw(oo) by using a scaling polynomial

£
A ~ "~ ~ 2

e.g. f(s) = (s—l)/(s—2)2 = nf/df with nf(s) = (s—l)/(s—oo+l) and

&f(s) = (s-2)2/(s-—o°+1)2: observe that in this way'one obtains a o, -

representation (ﬁf,af) by making (ﬁf,af) co—coprime, [1], [2], cancelling

-8-



o
A ~ ~ ~ <] ~ ~ .
(nf’df) with o € 6{(00), df € R (oo) and (nf,df) o -coprime is a o,-

o
common factors (s-z)/(s-a) with z € G:o 40 @ € ¢U : here a pair
(o]

representation. Observe also that (P\(oo) is a Euclidean ring, [9], [10],
see also Appendix I. It follows that every matrix with elements in

n xng
Rec ), say MER( )

elementary operations [8, p. 34, Th. 22.4]. Hence the same must be true

, has a Hermite form [8, p. 32] obtainable through

for triangularization. Also every compatible pair of matrices ‘4 and X
with elements in &(oo) has a greatest common right divisor (g.c.r.d.), K,
[8, p. 35], expressible in the formzc7}_+VU= R where U and Vare matrices
with elements in ﬁ(oo); furthermore if ®_is invertible in ﬁ(cxo)nxn we
say that % and X are right coprime w.r.t. ﬁ(oo); note that the matrices
“&L,V,@\ can be obtained through elementary operations [8, Chapter III,

pp. 33-36], a variant of this procedure being described in [11, pp. 8-9]
and [7, p. 65]; it is also easily seen that ‘N and ﬁ'are right coprime w.r.t.
d{(oo) iff the matrix [.?{] has full rank for all s in Co + and at infinity;
moreover if land ﬁaré right coprime w.r.t. 6\(00) the‘:x they are o _-right
coprime as in Definition 1.lr. Similar Facts hold for a greatest common
left divisor (g.c.ﬂ,.d;) and left coprimeness w.r.t.ﬁ(oo). The above
suggests that it should be relatively easy to find a rational oo-r.r. of

the principal rational part R of F in (2.1), once we can express R as

-1 (?\ noxni nxn, -
R = i S € €

R nxﬁr with 7 (oo) B’r R(oo) , det[ﬁ;] R (oo). These
suggestions are exploited in the proof of the following theorem.

n_xn

o 1

A
Theorem 2.1 If F € ﬁ(oo) , then F admits a g -T.T. and a oo-z.r. .

A
More precisely, there exist matrices with elements in d_(oo) , namely

N B LT

r

A



such that
(1) (‘ﬁr,ﬁr) is a O ~T.T. of F;

(i) (Bz,“rll) is a oo-f,.r. of F;

n. n n, n
. 1' l' 2(o I |
n v N, -
i) L xvr || Prah 1m0 (2.3)
r i 0 l—I—-
_ i
o Uy By LR 7 |y

where if we call the matrices on the left hand side of (2.3),U and Zd_l

respectively, then obviously W is an invertible element ("unit") of

n (ni-!-no)x(ni-l—no)
A_() : and without loss of generality

det /= det Z(}-l = 1.

N n_xn
Proof: Without loss of generality we assume F $d_(oo) ° j'; otherwise

choose
Mo 8=t 2= 05 U m
i
M =Fs =T, 5 4=0:7," % -

0 [o}
Use now lemma 1 and recall that each element Eij of its rational principal

part R admits according to remark R.2.2 a rational oo—admissible repre-

sentation (n ,d ) withn € [ﬂ_(o ) and d € lﬁfo(o ). Recall also
r,. T T,. o r,. o
ij “ij ij ij

the structural properties discussed in Remark R.2.2 and apply the following

procedure:

Algorithm 2.1 Given is ﬁ, ¢ and R as in Lemma 2.1.
» n _xXn, . n xn, ~ -
Step 1. Find ‘ﬂr € (K(cfo) © 1 and ﬁr € 0’{(60) * with det ﬁr el (00)

and such that

R =7 FL (2.4)

r™r
~ L0y .
e.g. by setting ﬁr = diag[dj]j=1 where the dj are column least common

denominators of R w.r.t. ?\_(co).

-10-
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Step 2. Consider the (no-l-ni) x ny full rank matrix

i
o ny L7 (n,+n )xn,
o= |alefe)y BT (2.5)
o Ul

By performing elementary row operations based on the Euclidean algorithm

performed in the ring Rﬁoo), e.g. [8, pp. 33-36], [11, p. 8-9], [7, p. 65],
n —

upper triangularize 7, i.e. find an (ni+no) X (ni-l'no) matrix %/invertible

(niho)x(ni.mo)
in ﬁ(oo) and a full rank upper triangular matrix

(2.6)

and where scaling (multiplying rows by "units" in (ﬁ(oo)) can be used to get

det %)= 1.

Step 3. Partition il). and Z—U—l into

ni n-(2 ng | n,

- ™M r : -1 oy Br =2

w = —:-:-:_-- s = - = - (2.7)
n |-7, ! ﬁ' nol_'ﬂr }7/2

Comment: the eight matrices with elements in ﬂ(oo) - dh_(do), namely
ﬁr’gr’ﬂr’-yr
Ry % 7,

satisfy the conclusions of Theorem 1 provided F has been replaced by R

Step 4. Recalling (2.1),define

(nl-l-no)xni ~ o
‘Me R(o ) is full rank because by assumption, det ﬁ’r ER (oo) ,

hence detﬁ is not the zero-element of (ff_(o‘ ).

-11-



ﬁ1: et ﬁl T M
Np =M+ 6l Ty =T +BG
- — A . — (2.8)
Vr:—'Vr-rG V,Q.=7/£-Gu2
U = U Uy =dy
and stop.
A
Comment: the eight matrices with elements in Q_(oo), namely
28 U sV
KRR A
satisfy the conclusions of Theorem 1. n

We shall now show that Algorithm 2.1 works.

Step 1. Since all elements fij of R in (2.1) are elements of dlp(s) and

have poles only in d:o 42 they admit a rational oo—admissible representation
o
(n ,d ) withn €R(c ) and d €ER (s ) with n and d coprime
r.. r r.,. o r,. o r,. r..
i3 i3 ij ij ij ij
w.r.t. (ﬂ.(cro), and it is possible to construct a least common multiple

&j E?\?(oo) of all denominators d e(f{fo(oo) of column j, [12, Ch. IV,

1]

§107. Hencz setting iy = nij/dj we get that ‘7[1_ = [nij] and
~
’Gr = d:Lag[dj]j:_i'__l satisfy the conditions of step 1.

Step 2. Since ‘ﬁLis full rank because by assumption det ’ér eR” (oo), hence

is not the zero element of ﬂ_(cfo), -step 2 is self explanatory.

Step 3. The comment of step 3 is true as follows. Observe that all matrices
in (2.5)-(2.7) have elements in K(co) C&'-(Oo) with det ér and

det EE (K,w(co); moreover from Y= “I,-U-l E&.

0
R T TR

5. -

hence

R

R A -

r'r

From U/ -1 I we have

-12-



%‘ﬁ; + Zérﬂr = In:,L ¢
Hence (;)-r,ﬁr) is a O "r.T. of R, with(Ra g.c.r.d. of 7'?: and ‘br’ [8, p. 35].

Observe that from ?7/217-1= I, we get also
~ Hel w1
R = ﬂrﬁr _52 @
MU + By = 1, -
o

Furthermore since by construction W is an invertible element of

(ni-mo)x(ni-i-n ) _
, det W(s) tends to a nonzero complex constant as

Acs,)
|s| + ». From the partition of &/, (2.7), then [-%255'2] = Bg,[ﬁiln ] is

- (o)
full rank at infinity; hence det ,9;' GR(GO) tends to a nonzero constant at
infinity. Thus (,%,'1&) is a co—!t,.r. of R.
Step 4. Checking the comment of step 4 follows easily using (2.8) and

simple computations, in particular

n n n n
~ |"'o | ° |
ng ’Vr "ZLE In' 0 In " 0
_ 1 i o i
w= '.:‘FB'."':T"“- b ulhriinte
o 'ﬂz LS | G A ¢ ‘Ino
ni n ni‘ 30 |
i
ng (1,0 0 )[R~ I 10
i S | PR N I . S [/ A n
A i - ) —_— .
no G lIn ‘nr: —VJ?, G lIn

Remark R2.3 Observe that in algorithm 2.1, used in the proof of

Theorem 2.1, we actually obtain that
n, Xn n_xn
i1 o i
S €
5, € fe)) 8, €6,)
ER” ER”
det Q’r R (c,) det ﬁ'z A (o)

" s " _ _
i.e. the "denominators" of the o _-r.r. (,B'r,'nr) and the o _-%.r. (722,32)

are rational! The uniqueness of the representations will be treated below.
=

-13-



If:

We have also
n_xn,
Corollary 2.1. Let F € (LTD)+ 1, then

. A n Xn,
F G(ﬁ(co) o 1

if and only if

"

F admits a o T.T. (7%,ﬁ;) or a ¢ _-L.r. (AZ’ZQ)'
Proof: Only if: this is an immediate consequence of Theorem 2.1,
A _ - . 4 — _l 3

Observe that F = [fij]ieﬁo,jeﬁi' Moreover since F = ﬁ;ﬁ& 1t‘follows by
Cramer's rule that for all i and j

£15 = [R1; [ad3R] /det £

. A
where from the closure properties of(Z_(oo), [11, [ﬂ;]i.[AdeZ].j belongs
A
to d_(oo) and by definition det ﬁ; belongs to d_(oo). Hence for all i and
A

. 2 A o0 -1
35855 belongs to B(o) = (4 (G IA (6 )1, [21. H
Remark R2.4 From Corollary 2.1 it is obvious that we can identify

Xxn, n_xXn

~r n ~ -~
@(oo) © t-y(r:FE (LTD)+o i and F admits

a g -r.r. or a g —=L.r.} (2.9)
o o

This is a suitable generalization of [1, Definition 3.1] where nO = ni = 1.

In the sequel we shall not make any distinction between the two classes.

Noncommutative fraction rings are treated in [13]. R

A consequence of Corollary 2.1 is

Corollary 2.2, Let (1E,ﬁ¥), (resp. (£&;T&)) be a pair of matrices such that
N n Xn, r . n xn, A n xn_
DN €AY ° N8, A (o) T T, (resp. b €A (o) ° 7,
- n
N, €A ()
Ao
toczh(oo)).

Under these conditions the pair Cﬂr,ﬁz) is Gy = TeCos (resp. the pair

xn
o i), and ii) detlb; belongs toéff(oo), (resp. det E& belongs

14—



& M) is o -2.c.), if and only if rank |7~~~ = n, for all
272 (o] n (s) i
o Tk
n
: o ' "y 1
)
€ | - € .
s ﬂlco+, (resp. rank [,Bz(s): ﬂg(sgl n for all s (I:Go+)

Proof: We shall restrict ourselves to the right-coprime case.

=: follows from h{r Eﬂr][ﬁr (s)

-

I for alls€ ¢ and Sylvester's
n g _+

| i
-

rule.
~ _1 ~ A n _xXn,
<: Let F = "f?rﬂr and observe that F € §(c ) © %, Hence by Theorem 2.1
n_xn, n, xn,

F admits a o, - r.r.(’l-?r,@), i.e.,f_}r E&_(00) o 1 3 ea (0 ) i

A —

_ — A n — n
such that F =7/, rl, there exists'l( Ed (o) 7% and Vr Ed_(ﬁo) o™

with 2¢r‘77 + ﬁr = I , and det ﬁ’ GCL (o ). Let (K=E;loe; and observe with

R = 2( +Y) that (f\,belongs toa (0 ) ! with det R in Am(o ). Further-
r -*"0

ﬂ‘,(s) . (s)
more for all s € ¢ by assumption n, = rank|----- = rank{ |--<5-" g(s)) .
+
% 1 o.(s) ()
Hence by Sylvester's rule,det K.(s) # 0 for all s € d:o + From the above

o
A Ry
it follows that (. is an invertible element of a._ (o ) and there exists

nxn

-lzlred‘(o) " and'V ﬁlVea(cw 1 guch that
z(r‘ﬂr +Vrﬁ;.‘ = Ini, i.e., (ﬁr,ﬁr) is o _-r.c. .

For future applications we have also

A n _xn
Corollary 2.3. Let F € @(oo) °© 1 s4mit a g, "r.T. (V}r,ﬁ;_) and a oo-—JL.r.
(ﬁl,‘ﬁz) where g, < 0. Then (ﬁr,ﬁ;) is a pseudo-right-coprime factorization

(p.r.c.f.) of F and (ﬁg,ﬁg) is a pseudo-left-coprime factorization

(p.2.c.f.) of F in the sense of [7, pp. 87-88].
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A A A
Proof: Apply the definitions and the fact that a_(oo) cd) = for all

g <0, o
o —
oA n_xn,
We shall now discuss poles of F € 8(00) ° .
. A n_xn,
Definition 2.2. Let p be a pole of F belonging to @(co) © 1. Then the

MacMillan degree of the pole p of F is its maximal order as a pole of any

minor of any order of F.

Remark R.2.5 The definition of MacMillan degree here is based on the

n xm,
o 1

, 1.e. is a proper

n xm,
o 1

following properties which are true when FE ¢p(s)

rational transfer matrix. The characteristic polynomial of F E cp(s)

is defined to be the least common denominator of all minors of any order
of f and is the characteristic polynomial det[sI-A] of any minimal
realization [A,B,C,E] of ﬁ, [16], [14]; the MacMillan degree of

Xn,
°© 1 is the degree of its characteristic polynomial, [14], [15],

FEC (s
p( )

[16]: hence the order of a pole p of F as a zero of its characteristic

polynomial is its maximal order as a pole of any minor of any order of F:

this can be called the MacMillan degree of the pole p because this is

exactly the MacMillan degree of the term due to p in a partial fraction
expansion of F [14], [15]. Moreover let (Nr’Dr)’ ((Dz,Nz)reSP-), be a

right coprime, (resp. left coprime), polynomial matrix factorization of
n_xn A

~ 1 . —1 .

F € mp(s) ° 1, i.e. F = Nr D, det D 0, (Nr,Dr)‘right coprime,

(resp. F = D;lNz, det Dz £0, (DQ,NQ) left coprime), then det Dr’

(det Dz resp.), is equal modulo a nonzero constant to the characteristic
polynomial of ﬁ, [11], [17]: hence the MacMillan degree of the pole p of

F is the order of p as a zero of det Dr’ (det D, resp.). Something

n _Xn,
o 1

L

~ "N
similar can be done for poles of F € 6(00) in"¢o 3+
o
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o n xn
Theorem 2.2. Let F E(ﬁ(ob) o 1 and let (‘ﬁr,ﬁr), oL ,ﬁz)resp-) be a

oo-r.r. of f‘, (resp. oo-JL.r. of f"). Under these conditions:

a) p€ C,6 ,is a pole of f‘, if and only if det B;(p) = 0,

+
o
0).

(det B (p)

b) If p € mo + is a pole of f‘, then the order of p as a zero of

. o
det ,,0;, (det Bi' resp.), is its MacMillan degree.

a A
c¢) There exists r an invertible element of a,_(co) such that
det ﬁ; = r det ﬁ;‘

Proof: TFor a) and b) we shall restrict ourselves to a O T.r.

- A n.xn
a) Using F = ﬁrﬁrl and the existence of matrices 24? €A (o o) o
,‘ n xn,
and /. €A (5)) such that ernr + Y [ =1, where all matrices have
r -0 rr n,
elements in a_(oo), it follows that
- _ el
Q(rF + 'Vr = .ﬁr (2.10)
:this expression and f‘ are meromorphic in an open half plane Co 4> Some
1
o
gp <03 furthermore Z(r and ']/r are analytic in Gol 4 and bounded in ﬁlol +
° ~
Let V(p) now be a neighborhood of p € 0:0 within cc + then F has a pole

+
at p iff F is unbounded in V(p). Now ifodet ﬁ;(p) =10 then ﬁ;l is
unbounded in V(p) and, because of (2.10), the same must hold for F:
otherwise the left hand side of (2.10) would be bounded there. Conversely
if F is unbounded in V(p) then det b‘r(p) = 0, otherwise F = 7%__9;1 would be
bounded there.

b) Observe that (ﬁr,ﬁr) is g -T.c. implies

Q;:(s)

- - = e
rank ny ¥s (Bo 4> Some o, < o . (2.11)

A, (s) 1

=17~



We follow now the method of [18, proof of Fact 2, p. 518]. Let us express
any minor of order p of F = 721.}3';1 in terms of minors of order p of 7(71: and
minors of order n,-p of ﬁ; . By well known methods and notations,

[19, pp. 19-21], we consider the minor of F made of the intersections

of rows il, 12,...,1 and columns kl’kz”"’kp’ denoted by
ﬁ il 12 1p
kl k2 kp

i 2fnenad
172 -1 ({7172 p s
= 2k <z 2 > & (k kz...kp) with n:= min(n ,n,)

1
1<8,<8)<e <2y <n ; (2.12)
p
11, ¢ 1
Lyl 2, 4tk fkjkg..kp
DI AV L 2 D P\ erer z'l-p
1200.p V 12000 n.
i-p
det ﬁr
1 ] ' ]
where 21<£2<...<3L and 2,1<22<...<2,ni k1<k2<...<k and k1<k2 kni—p

form a complete system of indices of {l,2,...,ni}. Observe that the
numerator of the above expression is proportional to the Laplace expansion
T T.T )
[20, Exercise 7.2.3] of the minor of order n, of [P N1 by adjoinging rows
eook! . F 11s€EC 2.11) implies
11,004 of N, to rows kiky...k - of ff . TFor all s o+’ (2.11) dimp
that at least one such minor order ni is nonzero. Hence for s = p € (I:o 4
at least one numerator of an expression (2.12) is nonzero and b) follows
using Definition 2.2.
¢c) Consider r = det ﬁr(det ﬁl)_l. Since det ﬁr and det D; both
A ~
belong to CLO:(oo) it follows that r is an invertible element of
A _1 Aco _ R )
6(dc,) = [a-—(co)] [ﬂ.__(oo)] l, [1], [2]. Moreover because of b) r has neither

poles nor zeros in (l:or 4 Hence r and f~1 belotig to a_( o)’ [11, [2]. ®

o
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Remark R2.6 By a similar reasoning as in the proof of Theorem 2.2c),

i.e. by using Theorem 2.2b), it is easily shown that if (7%,/3;) and

n xn
o i

A A
(‘ﬂ;,ﬁ;) are two co—r.r.'s of F € ﬁ(oo) then there exists r an

invertible element of &-(00) such that det ﬁ; = r det ﬁ;, and similarly
if wﬂ.ﬁﬂ.) and (ﬁ’;‘,‘ﬂ;‘) are two oo—z.r.'s of F Gé(oro)noxnfL then there
exists an invertible element of &_(Go) such tﬁat det )3;' = r det ﬁ;‘
Moreover the latter elements ;:, (including the one mentioned in

Theorem 2.2c)), will invertible elements of (ﬂ(co) if the denominator
determinants actually belong to (f{w(co). This is the case in algorithm 2.1;l

We are now ready to look at the uniqueness of oo—admissible representations
of F E é(co)nomi. This is a generalization of Theorem 3.4 of [11.
Theorem 2.3. Let F € 0’3\(00)110):ni and let (7)]:,}3;) and (ﬂ;,ﬁ]':) be two
co-r.r.'s of f‘, (respectively let (32,7?2) and (ﬁi,ﬂ;‘) be two oo-z.r.'s

of ﬁ‘). Under these conditions there exists
A nixni A noxn
R € a._(co) , (resp. £ ea._(cro) ) (2.13)

such that

,‘ n xn,
d{ is invertible in a_(oo) ,(resp. i is invertible in

n xn

Z’L-(oo) ° 9 (2.14)

and

R, =DLR> M, = MR (resp. N =Lpy» Ty = LM - (2.15)

Moreover if ,@; s ﬁ';, /3’2, ﬁ; have elements in ﬁ(oo) then R and 2 _have
elements in G\_(oo) .

Proof. We shall restrict ourselves to oo-r.r.'s with elements in &_(co).
Define R = (ﬁ;)-lﬁ; . Observe that, since ﬁ’r and /9'; belong to &_(oo)nixni

A
with det ﬁr and det ﬁ’; ina_f(oo), it follows by Cramer's Rule that {_and
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&_1 N n,¥n, - .
are elements of (b(oo) . Moreover from 74 = F‘B; and 7)1'. = Fb;_

it follows that (2.15) holds. Observe finally that Z[tﬁr + ’(4@ = In and
i

A
Z(;f);_ + ]/{ﬁ]’: = In. where all matrices have elements in a_(oo): hence by

i
(2.15), Z(rn:: + Vrﬁ]': =R 1 and &;__7)1_ + V;:Br =R where all matrices on the
left hand sides have elements in &_(oo): so since 52‘_(00) is an algebra,
-1 AU a1

R and R = belong to a_(oo) , i.e. (2.13)-(2.14) hold. H
We give now a definition and a corollary needed for further developments.

Definition 2.3. We say that the pair J), (&M )resp.), is an
: TVr el A

n_xn, 0 -rig -r.r. | i
I ht representation (noxni oo r.r.), (resp. isann_xXn

o -left representation (n xn, o -2.r.)), iff
-0~ [o] o

i

R n_xn, A n xm, R n xn
(1) €a(c) ° and . €4 (0) , (resp. P, €A (c) © 9 and
o r o 2 o
xn

z no i
N €A () )3
(ii) the pair ('/Zr,.e'r) is o -r.c., (resp. the pair (ﬁz,ﬁz) is 09-2,.c.);
(iii) det ;6;: e&f(oo), (resp. det ﬁz G&f(oo)). ' n

Remark R.2.7 It follows from Cramer's rule that if (ﬂr,ﬁi_ ) is an

- -1 A no:mi
no X n, oo-r.r. then F = ”rﬁr € ﬁ(oo) s moreover if we define two

- ] 1 .
n_ Xmn O-T.r.'s (ﬁr,ﬁr) and (ﬂr’b;- ) to be equivalent if there exists

R _an invertible element of &—(Uo)nixni such that (ﬁr,la;:) = (ﬂ;k,ﬁj\)

then according to Theorem 2.3, there exists a bjection between the set of

equivalence classes of n, Xmn; 0-r.r. 's {(ﬂr,Br)} and the elements F
R n_xn,
of (o) °

A
O, "L.T. represents one element F € 15(00)

. As a consequence, modulo an equivalence class, one n xn,
n_xn
o i

and vice-versa. Something

similar is also true for ann_ x n, o _-f.r. (92’“”9)-

~ A nomi ~
Corollary 2.4%. Let F € (’J(oo) . Then for any o _-2.r. (Qg,’ﬂg,) of F

A
there exist matrices with elements in a_(oo), namely

U,» ’VSL; 7?r’ ‘&r’ 2(1:’ ?/r

-20-



such that

(1) (ﬂ;,ﬁé) is a G "L.T. of F

U | PR =|_ % __ (2.16)

where if we call the matrices on the left hand side of (2.16),7b/respectively
-1 a (ni+n°)x(ni+no)
W ~, then obviously W is an invertible element of ﬂ_(oo)

and without loss of generality
det W= det 2u'1 = 1. (2.16a)

Proof: Apply Theorem 2.1 and use Theorem 2.3 for identification purposes.
Remark R2.8 It is obvious that a similar Theorem is valid when we

start from any SR 2 CZ;,E;) of F: call this Corollary 2.4r. H

3. Feedback System Stability

Consider the multi-input multi-output feedback system S shown in
Fig. 3.1, where all relevant expressions are described in the frequency

domain: i) usually P and 6 are the plant and controller transfer functiomns

with respective inputs ﬁp, ﬁc and outputs yp, y 3 ii) ﬁs is the system

c
input and %ﬁ the plant input disturbance; iii) § = §p is the system output

and e =u_ -y = u_the system error.
s s s c

Note that if we had additive disturbances applied at the plant output,

say &o, then their effect is equivalent to an additional system input —ﬁo.

From Fig. 3.1 the system equations are
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) n 'ni ) n o,
|
nol ug n Ino : P e | % yc n, n, C ‘ Ol u )
nk-Ouk IR el St i 3 ek I D N e (3.1)
n -
1% n, C IIni up n, yp n, nj 0P uP
Let
n n:’E n o,
n{ 0 ' P n 0!I
. o] ! o : n
G= |777r"7, J=  |---5--4, (3.2)
n|-C ' O n, |-T ' 0
i ! i nil

----- = 51,

Hence the system's input-error transfer function He: (ﬁs,ﬁp)|—+ (ﬁc,ﬁp)

and input-output transfer function ﬁy: (ﬁs,ﬁp) — (§c,§p) satisfy

i = 1+ 7L, (3.3)
J =1-1. ' (3.4)
y c

We have also the following:

System Assumptions

Al) TFor some co <0

. oa n xn, LA n.xn
PEB) ° * and C €6 , (3.5)
where
P has a 0'0—2.]'.'. (ﬁpg’a%n)’ (3-6)
C “r.r. . 3.7
C has a o -r.r Cncr’ﬁLr) (3.7)
A2) det[I +PBC] = det[I_+CP] is bounded away from zero at infinity in
"o "y (3.8)
s+ : H
o
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. A A A A
Consequently by the properties of the algebras d= a(O),a_(co) cd

for o, < 0, B(oy), [11, [2] and by (3.1)-(3.8):

A (n,+n J)x(n 4+n )

¢ €B() 170010 (3.9)
A~  (@An)x(m,4n) (o4 )x(n4n)
J and J—l belong toa_(oo) o o CcCAa i o io , (3.10)
det [T+8] 7} = det[I #3817 = det[1 +p717L Eé(o ), (3.11)
no ni [o]

- N ~ (n,+n )x(n,+n )
H and H_ belong to B(c ) 10 1o . ‘ (3.12)
e y o
i e QTR i, RN B . (3.13)
- a (n,4n )x(n,+n ) . " (n,+n )x(n,+n )
i €4y Ot *H €d_(o) L (3.14)

It makes therefore sense to have the following:

Definition 3.1[18]. The feedback system S described by (3.1)-(3.8) is said

to be/d-stable iff both its input-error transfer function ﬁe and its

,\(ni+n0)x(ni+no)

input-output transfer function ﬁy belong to a .
Remark R3.1 From (3.13) once system S is ([-stable then its input-output

map (us,wp) — (u, =e Y0¥, = ¥,) will (1), for any p € [1,=],

c’’p
take Lp—inputs into Lp-outputs with finite gain and (ii) will take continuous

u
S, p,

and bounded inputs, (periodic inputs, almost periodic inputs, resp.)
into outputs belonging to the same classes, [7], [21]. o

By (3.5)-(3.7) the function )A( defined in mc + (for some oy < co) by:

1
X := det [%R,'Bér+7§)£ncr] (3.15)
A
is an element of 0L__(c°) and is called characteristic function of S
(in t]lo ).
o

The importance of )2 is discussed next.
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Theorem 3.1. Consider a feedback system S specified by (3.1)-(3.8).
Consequently (3.9)-(3.14) hold. Under these conditions:

(1) the system S is q—-stable if and only if
x(s) # 0 foralls€c ; (3.16)

(ii) p € C, .+ is a zero of x(*) (3.17) ¥
o

if and only if
p E Co + is a pole of ﬁe (3.18)
)
if and only if
p € q:00+ is a pole of ﬁy; (3.19)

(iii) the MacMillan degrees of p € (Bo 4 a8 a pole of ﬁe and ﬁy are the
o
same and equal to the multiplicity of p as a zero of x(°).

Proof of (i): First from the definition (3.15) and (3.5)-(3.7)

%= det[Ino+PC] det fr detﬁ; . (3.20)

Hence by (3.8) and since both det B; r and det ﬁi) 1y belong to (Lo_o(go), )'E is
bounded away from zero at infinity in mo +° Thus (3.16) is equivalent to

o
inf{|x(s)|: s € C+} > 0. Now the conclusion follows by condition (35) of

(9}

Theorem 1 of [18]: indeed él and 62

and P; by Corollary 2.3 (%2,7?1)2), ((ﬂcr,ﬁér),resp.), is a pseudo left-

of [18] correspond to the present

coprime factorization of f’, (resp. pseudo right-coprime factorization of ¢);
finally, as indicated in the conclusions of [18], Theorem 1 of [18] applies
to rectangular systems (i.e. o # ni).

A n xn
Proof of (ii) and (iii): Since P € (ﬁ(co) ° i, by Theorem 2.1 it follows that

P has a o -r.r. (ﬂpr’%r)’ (3.21)

moreover by (3.21), (3.6) and Theorem 2.2c):
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>

A
there exists r an invertible element of 0 (co) such that
- \

det B’pz =r detﬁpr.

(3.22)

Recall now relatiomns (3.2)-(3.4), (3.21), (3.7) andv consider the following

A
matrices with elements in a,_(oo) , namely:

n n n mn,

i o i

n | 8. 0
ol O :"npr o|®cr !

n -ﬁcrl oy 0 :ﬁpr

Then it follows easily using Corollary 2.2:
s (o im)x(ntn )
n,Y) is a g -r.r. of G € @(co) o °,
and similarly, using ﬁe = (I+G)-1 = B+ -1 and
A= semd) T - e

) R (n.+n )x(n,+n )
(R,HY is a O, "T.T. of Heeb(oo) 1o Lo >

= A A (n +n )x(n,-l-n )
@] 172,R5+7}) is a o "I-T- of Hy € @(00) io 1o

Now, since by (3.23), (3.21) and (3.7)

%o 4 o I:i no‘ ny
' |
o | ®er ' ‘npr %o Ino- P ‘Bér; 0
L R R e S e
_ | _a ! \
"y zcr' ﬂpr o 7€ ',In, 0 »ﬁpr
i

det [J+N)] = det[I_ +PC] det o, det p .
o]

Hence on comparing (3.20), (3.26) and (3.22):

~ A
there exists r an invertible element of a_(oo) such that

)2 =t det[H.

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

Recalling that % is bounded and bounded away from zero in (BG 4o Some 9 < O,

1

it follows by Theorem 2.2a) and (3.24), (3.25), (3.27) that the
eqﬁivalences (3.17) < (3.18) <> (3.19) hold; similarly conclusion

iii) is a consequence of Theorem 2.3b) and (3.24), (3.25), (3.27).
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Remarks. R3.2 Equation (3.15) defining )2 is not the only possible

expression for a characteristic function of S in GIG 4 observe that any
o

- A N A
element ry of a_(ao), where r is an invertible element of d_(oo) can be .
used instead of )2 for having the defining properties of a characteristic

function required in Theorem 3.1. We call therefore characteristic

function of S in go 4+ 2ny element of the equivalence class of elements of

4_(00) being equal to )2, defined by (3.15), modulo an invertible element of

& (6 ). Observe that such a characteristic function is obtained if in (3.15)
—__9

. - 5 - v ]

i) the G, =%.T. (’51;2’7?1)2) of P is replaced by another o = LT, (ﬁpz,ﬂpz) or if the
o -r.T. (ﬁcr”oér) of C is replaced by another o -T.T. (ﬁcr,ﬁér) (use

Theorem 2.3), and ii) if we use left or right O, ~representations

for P and/or 6, (use (3.20) and Theorem 2.2c), see also Theorem 1 of [18]).
The characteristic function )2 given by (3.15) was chosen because it suits

best our present purposes.

R3.3 Condition (3.16) can be checked by the graphical methods, [22], [23].

o

R3.4 Note that according to [32, Theorem 3], the {-stability of
closed loop system S is robust. H
4. Preliminary "Algebraic' Problem for Compensator Design

R A noxni
We are given F € ﬁ(co) where
. A noxno
(/&2,722) is any co-z.r. of F E&(oo) . (4.1)

A n xn_ N n_xn,
Recall from Definition 2.1 that % € d_(oo) R 7’?1 € Q_(oo) .
* o Am
the pair (bl,'nz) is 6 _-%.c. and det 92 €d_(c ).
We want to solve problem (COMP) defined by

N n m
(COMP): Under assumption (4.1) for any '€ a__(oo) © 9 solve the equation
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7L + B Y= (4.2)
for
N n_xn n_xn
LEQ (o) ¥ ° and YE€Q (o) © °. (4.3)

Preliminary information: because of (4.1), according to Corollary 2.4%,

there exist six matrices with elements in dA_(oo) namely

Up» Vi3 o B U 7
such that
(1) (ﬁr,;&r) is a o -r.r. of F (4.4)
(i)
n, n n, n
i | \
! -
ny Yr} T ’G/r! %L Ini: 0
_.__.;...__ __:_._._ Sl = o -~ (4-5)
!
no 712')3}, %rl?/z 0 lIno
where if we call the matrices on the left hand side of (4.5) W,
respectively w—l’ then obviously W is an invertible element of
A (ng4n )x(n;4n ) ,
a_(co) and without loss of generality
detW = det WY = 1. (4.5a)

Recall further by remark R2.7) that,modulo an equivalence class, one n, xn
: o nixno
O ~T.T. (71,A) represents one element of @(oo) .

We are then lead to the following:
Theorem 4.1 Consider the problem (COMP). Under the assumptions and
notations specified above:

(i) All the solutions (SI,.’J%) of (COMP) are given by
n n
o T
n - n
o]t otee. XS R - Uy =nn+T, W (4.6)
o, LY 58 n,

(o]
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4 ¥
where ]is an arbitrary element of 67__(00) .

Moreover, by (4.5), (4.6) is equivalent to

n n
(o]

o ..
n.[ N =X |n,
’ W " nN=-V,X+§y &= nx+M,y (4.7)
== =W]----- i.e. N= - = .
r T {) L
) Lot / ~
and
(x’,‘lt) is o _-r.c. if and only if “7,0) is o "T.c. (4.8)

(ii) If in addition

F(s) ~ 0 <. 35 |s| > « in Coo_l_ (4.9)
then

(x,‘%) is an n; x o o -r.r. if and only if (7,R0) is an

n, Xxn 0 -T.r. (4.10)

i o o

H
Hence according to Remark R2.7) all solutions (x,ca,) of (COMP) resulting
a n,xn
in elements of (B(oo) T 0 are generated by (4.6) by the class
R n xn
{ﬂea_(oo) °. ¢,M) is an n, xn oo-r.r.} (4.11)

Proof of (1): Note that if (I’lj') is given by (4.6), then using (4.5),
(’L‘,%) is a solution of (4.2)-(4.3), i.e. of (COMP). Now let (x,Laf) be a

solution of (COMP), i.e., of (4.2)-(4.3). Then a particular solution is

(x,%) = (L,Ly,%, Vlﬁ): indeed by (4.5) Ny +)3’2VR’ = Ino. It remains to
add to this particular solution the general solution of the homogeneous

equation corresponding to (4.2), namely

NI+ ﬁl% =0 (4.12)
We claim that any solution (x,%,) of (4;11;2(31 can be put into the form
(Zr,’y) = (-9’1,72,7)1"{\) for some NE &_(oo) i o, To prove this, let (30,23,) be
any solution of (4.12) and define NE K“}(cxo)nixno by:

M= (4.13)
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Hence by (4.12), (4.1) and (4.4)

Y= B MBI - (4.14)
(4.13) and (4.14) show that any solution has the required form but it remains
to be shown that NE &_(oo)nixno. Use (4.5), (4.13) and (4.14) to obtain
—K;X + ‘\/r%= N, where all matr:.lc;-zusl on the ;eft hand side have elements in
&_(oo). Therefore NE &_(oo) 1 °,

The equivalence of (4.6) and (4.7) is a consequence of (4.5).

Equivalence (4.8) is also a consequence of (4.5) and Corollary 2.2.

Proof of (ii): Observe that by (4.1) and (4.9)
)
det 92 Ga_(co) (4.15)

and

N, (s) >0

n_xn as |s| + » in C°o+ (4.16)

i
where (4.16) follows by '7?2 = I&zf, (4.9) and because all elements of /S}'

are in f(_(oo), therefore are bounded in G:o + Now by (4.7) and (4.16),
o .
for any sequence (s;);_, C coo_'_ with |Sil + w, i + =, we have
lim inf|det ﬁ(si)l = 1lim inf|det ]3'2'(81) | |det ?ﬂ(si) |: since by (4.15)
det D;L is bounded and bounded away from zero at infinity in G!G + it
o

follows that
A Py A ©
det %ea_wo) if and only if det bea_(oo). (4.17)

Hence equivalence (4.10) is established using equivalences (4.8) and
(4.17). H
Remark R4.2. Problem (COMP) discussed above is a generalization of a
method for compensator design in the lumped case found in [3], [4]. 1Im
the sequel the solution of this problem will be used to show constructively

n xn
o 1i

~ A A
that any plant P € db(oo) for some o, < 0, with P(s) - 0 as lsl +> ©
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in Gc 4> can be stabilized by dynamic output feedback in the sense bf

Fig. 3.1: more precisely a compensator C, (see Fig. 3.1), should be

found such that the closed loop system S is ({-stable and both the
input-error- and input-output transfer functions ﬁe resp. ﬁy have a given
set of poles in the vertical strip [00,0) with specified MacMillan degrees.
Moreover we would like that ¢ would be such that the closed loop system S is
a robust servomechanism. Known stabilization techniques in the lumped case
include the design of a state estimator and the use of state feedback

or the &esign of a controller, [16], [24], [25], [26]. Multivariable
servomechanisms are discussed in [27], [28], [29], [30], [31]), [32], [33],
[34].

S. Compensator Design for Stabilization, Tracking and Disturbance

Rejection

We are given a plant P such that

A A n mi
P E (co) ° for some o < 0 (5.1)
where
- R 35
- (= . 5.2
P has a o l.r.wpz,ﬂpg‘) with ‘Upﬂ, (oo) : (5.2)

the elements of P = Ifl[ﬁ] are real-valued Laplace

transformable distributions with support on R ; (5.3)

P(s) ~ 0noxni as |[s| >« in co + (5.4)

Reference signals (to be tracked) are generated as follows:

n
xS(O) is an arbitrary vector in IR $ and A

:'cs(t) = Ax_(t), u(t) =cCx (t), ¥t € R,

where

n n_xn n_xn

x (t)ER®, AL €er® 5, ¢cer® S > (5.5)
s s s

(CS,AS) is a completely observable pair;

thus

a(s) = C(sI—A)-le(O) .
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Disturbance signals (to be rejected) are generated as follows:

n
w
xw(O) is an arbitrary vector in R and )

3 _ = . e R
x,(£) = Ax (€, wp(t) %, (), ¥t +
where &
(c ’Aw) is a completely observable pair; (5.6)
w

thus

~ -1
wp(s) = CW(SI—AW) xW(O). )

Furthermore, with o(...)denoting the spectrum of the square matrix between

the parentheses, we assume that

o(A,) Vaa) Cc,. (5.7)

Let now ¢, and wAw denote the minimal polynomials of AS respectively A
s

and let
¢ := monic least common multiple of wAw and wA (5.8)
s
q = degree of ¢ =:93¢ (5.9)

Let Z[¢] denote the list of zeros of ¢, i.e., let zg be a zero of ¢, m,

denote its multiplicity and let ¢ admit k distinct zeros, then

Z[¢] = (zl,...z 3 zelii;:f}; ver 3 iE:;;;:iF) (5.10)
! B e
{zl,...,zk} = o(Aw) U o(As), (5.11)
k —
qa= ) m, z€ZH]I= z € Z[y] (5.12)
i=1
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and

the maximal order of z jasa pole of any element

_ _ n
of C_(sI-A) "x (0) and C_(sT-A)"x (0) any x_(0) €R ° (5.13)

n
any xw(O) ER Y is m, (see Appendix 2).

For tracking and disturbance rejection purposes, [33], we assume for

iy noxni
PE G(oo) :

n, >n (5.14)

rank[ﬂpz(s)] =n ¥s & G(Aw) U o(AS). (5.15)

Let finally A be a given finite list of points of the

_ (5.16)
vertical strip [00,0) with the property that A € A<= )\ € A,

We shall now discuss the

Stabilization, Tracking and Disturbance Rejection Problem (STDP): For

. n_ xn
the given data (5.1)-(5.16) find a controller C € @(oo) 1 o, corresponding

to real valued distributions, such that the feedback system S, (3.1)-(3.8),
(Fig. 3.1):

(1) 1is A-stable;

(11) Z[;(;Go +] i.e., the list of zeros of )2 (the characteristic function
of S defined gy (3.15)) in (I:o + is exactly A;
(1ii) ¥ x_(0) e]Rns, ¥ xw(O‘)oG]R‘ the reference signals u_(*) defined by
(5.5) will be tracked asymptotically and the disturbances wp(-) defined
by (5.6) will be rejected asymptotically; more precisely, with Fig. 3.1 in
mind: the system error es(~) generated by (us(-),wp(-)) defined by (5.5)

and (5.6) satisfies, for some o < O,

es(t) = o(ect) as t +»

i.e. (5.17)
1lim es(t)/eot =0

£

-
b4
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— P i
(iv) property (iii) is maintained for any perturbed plant P € B(oo) °

for which the feedback system S, (3.1)-(3.8), remains {~stable.

. ~ n xn
Remarks. R5.1 C is required to be in B(co) 1 0, hence ¢ is bounded at

infinity in GG + This corresponds to c being a proper rational matrix in
o

the lumped case.

R5.2 Assumption (5.4) is satisfied by all realistic models of physical

plants: it reflects the inertia-like properties of physical plants: it

implies also that, for C € B(oo) 1 °, det;[In +PC] = det:[In +CP] + 1 as
o i
| c e B %%
as |s| + = in 0:0 +: hence, for any C Eﬁ(oo) scondition (3.8) will be

satisfied and thz input-error- and input-output transfer functions i

. A (o4 )x(n,+n )
and Hy of system S (see section 3) will belong to B(oo) 1o io
R5.3 According to the Theorem 3.1,condition (ii) of the (STDP) guaran-
tees that simultaneously the input-error- and input-output transfer func-
tions H e and ﬁy of feedback system S (Fig. 3.'1) will have a prescribed
set of poles in ¢°o+ with specified MacMillan degrees namely the distinct
points of A with their given multiplicities. Observe that in the lumped
case a similar pole specification is done for all of €. ‘The intuitive
idea here is to place the "dominant poles." Finally it should be stressed
that we place here poles of ﬁe and ﬁy considered as matrix-valued func-
tions: we cannot say which element of ﬁe and ﬁy will obtain a pole.‘
R5.4 Condition (iii) of the (STDP) will not only guarantee that feedback
system S is a servomechanism: it, in fact, guarantees that the system error
es(-) due to the reference and disturbance signals convergesto zero faster
than eOt as t + » for some ¢ < 0.
R5.5 Condition (iv) is a robustness property guaranteeing that as long
as the feedback System S remains {{-stable then reference signals will be

tracked and disturbances will be rejected asymptotically: see also [32,

Theorem 3].
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In order to solve the (STDP) we start by giving a preliminary defini-

tion and result.

For ¢ €R consider the function space

L 4= {3 f:ng_»-¢ s.t.j e OF|£(t) |dt < =} (5.18)
0]
Lemma 5.1. Let 0 < 0. Let g €d(g). Let u € Ll o and u € A(s). Then the
) b
convolution y = g * u satisfies
t
y(t) = o(eCI ) as t » o, (5.19)

Proof. For any f € d(0), let fc be defined by fo(t) := e-Otf(t). From

Y=8*uand:;'=g*\'1,weobtain

(5.20)

<
]
09
%
e

(5.21)

<
]
o0
*
<]

Since 8, and 1'10 € d(o), )'70 € ad(o), [7, App. DI, hences l}'fo(t') |at’ -+ o0
t
as t + » and yo(t) -+ constant, say, b as t + », From (5.20), Vs € Ll o
]

since u €L Consequently the constant b = 0; equivalently, yo(t) >0

1.
as t + », Since y(t) = eotyo(t), (5.19) follows. "

We are now ready for the solution of the (STDP). We shall denote by
2[£;Q] the list of zeros of the function £ in the set Q, and by Z[£f] the

list of zeros of f.

Algorithm 5.1.

Data: We are given the description of a plant f, of reference-~ and distur-
bance-signals (us(-),wp(-)), of the polynomial ¢ and the lists Z[¢] and A:
see (5.1)-(5.16).

Step 1. Pick

d any monic polynomial in R[s] such that
(5.23)

9d = 3¢ = q and d(s) # 0 for alls€E0+.

o
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Comment 1: Observe that
%.G ] (o) C&w(oo) with real coefficients, (5.24)
0 -—

Z(91 = Z(6] wich » EZI3] 168 X € LG (5.25)
Ste2.2. Pick

oA n_xn
Je d_(oo) © ©  corresponding to real valued distributions,

such that det D Gﬂ“’:(oo) and Z[det ﬁ;dﬁo +] = A,
o
¥
Comment 2: The conditions for £ can be met by choosing £ ER(UO)
corresponding to real-valued distributioms.

Step 3. Observe that

o o 1 _ o
F=P b S 0(00) with 00 Lex, wz’nz) * wpz%"npz)

(5.27)
corresponding to real-valued distributionmns,
and find, using the technique of Corollary 2.42%,
A
six matrices with elements in a_(co) corresponding to
real valued distributions, namely (5.28)
—”2" 2’ ”r’ ZQ y
such that:
i)
n, n n, n
' v
ng | Ve YU ||B % a I , 0
U DU [ SN PR i ni {
: ! = ----:---— (5.29)
n, | Oy | |7 7/2 % 0 : Ino '

where if we call the matrices on the left hand side of (5.23) Vrespectively

-1 A (o 4n )x(n +n )
W=, then obviously i/ is an invertible element of ﬂ_(oo) and
without loss of generality we can scale it so that
det W= det[W] = 1; (5.29a)
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ii)

(ZQ,{;) is a o -f.r. of F. v (5.30)

a .
Comments 3: In (5.28) elements in @ (0 ) corresponding to real-valued

- o
distributions are obtained by grouping complex conjugate poles and corres-
ponding residues.

Step 4. Observe

+

F in (5.27) satisfies F(s) - 0noxni as |s| + = in mco (5.31)

and,using (5.26)-(5.31), solve (COMP), defined by (4.2)-(4.3), as follows:
o n xn
i) Pick 7?€Ea;(°o) 1o corresponding to real-valued distributions in

the class
A nixn
ME€A (o) * °: NP 1is an nxn_ o _-r.r.} (5.32)
1) Set -Xi= On-HD; Y= A+ YD (5.33)

Comment 4: (i) the choice (5.32) is equivalent (by Corollary 2.2), to
: . n xn
picking N Gd._(oo) io corresponding to real valued distributions such

that
n
(o]
n, | N(s)
rank | =n_ for all s €A. (5.34)
n_| D(s)

(ii) (X;%P as given by (5.33) is an n Xn 0 -T.r.

i (5.35)

corresponding to real valued distributions.

(ii1) Using (5.29) one has also by (5.33):
M= - VX+ %Y s O=NX+ 9z .

(5.36)
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Step 5. Set

o= = i
Ner'= LD =Y 7 > (5.37)
C=N ot (5.38)
crecr
and STOP.
Comment 5: (1)
Cefoy o
c (c,) with ¢ - r.r. (”cr"Q:r)
(5.39)
corresponding to real valued distributions
(11) € solves the (STDP). (5.40)

=4

Theorem 5.1. Consider Algorithm 5.1. The é, as given by (5.38), belongs
A nixno
to ﬁ(co) with o - 1:.1:.(72c r"ocr) and solves the (STDP).

Proof: We shall show that algorithm 5.1 works.

Step 1 and Step 2: These steps are self explanatory.

Step 3. Because of Corollary 2.4% we only need to show (5.27). Since by
n_Xn
o 1

d oA 5 ~_sd To™y
(5.24), Tb. € lﬁ(oo) and since P € é(oo) it follows that F = P-(;E 8(00) °

9 i - pd. pd - $y-1
Moreover (opﬂ;dmpﬂ.) is a o - 'f.r. of P¢. Indeed P¢ wpﬂ.d) 72p2, and by

(5.2), (5.8)-(5.15) det Dngeai(co) and rank[@pz(s)%g—%:inpz(s)] =n for

G Co . i - «eCe o
for all s Co°+, i.e. by Corollary 2.2 (Dpld"npz) is o = f.c
Step 4. Because of Theorem 4.1 and Corollary 2.2, we need only to show
(5.31). Now observe that this follows from (5.24), (5.27) and (5.4).

Step 5. a) (5.39) is true by the fact that (oc,yg-) is an n;xn O - T.T..

i
Indeed observe that the equation describing (COMF) is given by
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D = Tx+ Oy =npzx'+% Dpi?,y'

where we used (5.27) and where by (5.25) and (5.10)-(5.11) f(s) = /OR )
¥s € o(a) U o(A). Therefore by (5.7), (5.26), (5.16), (5.14), (5.15),

rank[;)C(s_)] =7, ¥ s € o(As) U o(Aw). Hence this and (5.35) imply that

n
o
n, A(s)
rank =n ¥s€EC .
TOEIO) I o
nO y 8 d(S)_J

Now (5.35) and (5.24) imply that det[q %]Gdo_o(oo), and hence by Corollary

2,2 the pair (X, %) is g, ~ T.C.

b) We show now that (5.40) is true.

i) First for the feedback system S (3.1)-(3.8) (Fig. 3.1), (where the
plant transfer function P is is given by (5.1)-(5.4) and (5.14)-(5.15), and
where the controller transfer function satisfies (5.37)-(5.39)), the
transfer functions f[é and ﬁy are well defined and have elements in 6(00)
(see Remark R5.2).

ii) The equation (4.1) of (COMP) reads here:

D=NX+ ‘oz(G: szncr + op Do (5.41)

where we used (5.27) and (5.37). Hence the characteristic function (3.15)
of S satisfies here:

X =det D, (5.42)

such that by using (5.26):
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e, 1= Zldet Ts¢_ = (5.43)
o o
Hence also by (5.16):

x(s) # 0 ¥ s € c,. (5.44)

It follows that by (5.43) property (ii) of the (STDP) is verified, while
property (i) follows from (5.44) and Theorem 3.1.

iii) We shall now show that the tracking property (iii) of the (STDP)

holds.
If H resp. H denote transfer functions of System S (Fig. 3.1)
egsug es,wp
defined by:
H :u " e withw =0 , (5.45)
e ,u
s’s
H : w_ Y e withu =0 , (5.46)
e ,w P s s
s° p
then using (5.2), (5.39), (5.37), (5.41),
A = A A -1 - - = i —1
Hes,uS [1+2C] Dcrwpz‘ocr-"”pﬂ,wcr] :bpz dy‘o °Op2, (5.47)

~ _ AN a1 A = _ - - _ i -
H, _ = - [1+eC) 13 O D +7?p2ncr] 177p2 dgﬂ l??pz (5.48)

s*¥p crplcr

Observe now that by (5.26) and [7, Appendix D],detﬂ-1 belongs to
n xn P
&(0) © © for some o € (00,0). Now, since 6?_(00) Cd(g), it follows there-
a n xn
fore, by (5.2) and since % €d (o) © © that

n_xXn
o

-1 A o
7}0 .am € d(o) . | (5.49)

2 n xXn
-3,0'1721)2 €dw) ° 1. (5.50)
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Furthermore by (5.5)-(5.13) and (5.23):

a .
¥ x5(0), °‘C“.‘L[%CS(SI-AS)-l x (O] € Ll?o
o (5.51)
and its derivative belongs to 4(s) °,
n
¥ x,0, L7 e (s1-a)t x (1€t
Xy aSutel™hy) Xy 1,0 | (5.52)

n
and its derivative belongs to d(0) 1,

Consider now the system error és due to (ﬁs,ﬁp) given by (5.5)-(5.7), then

¥ x (0), ¥ x (0)

- - - ~
e =H u + H 1
s e ,u s e ,Ww_p
s s s’ p

A

1 . -1 -1 -1
300,118 c s1-a) 7" x(0)] + [-457 7 1S Cylst-a) "x, 0]

(5.53)
when we used (5.45)-(5.46), (5.47)-(5.48), (5.5)=(5.6).
Therefore by (5.49)-(5.53) and Lemma 5.1
¥ x,(0), ¥ x.(0), e_(t) = 0(e”") as t + = Q.E.D.

iv) Property (iv) of the (STDP) is shown to be true as follows.
2 oA n_Xn
Let P € B(oo) °© 14 any perturbed plant for which the feedback
system S (3.1)-(3.8) remains ({-stable. By Theorem 2.1 P admits

o, - 2'r°(‘opg’7lp2,) and the characteristic function ¥ (3.15) becomes
):Z = det O,
where

- - n n xn
D = ‘Opﬂfocr +.7zp2,7z:r Ga_(co) *

Moreover (3.8) and (3.20) read now respectively :
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det[In +FC] is bounded atéay from zero at infinity in 0:0
o o A

X = det[Ino+PC]det ‘Ocr det op .

A

It follows that ; is bounded away from zero at infinity in d:o + and by

2 o
(-stability and Theorem 3.1 x(s) # 0 for all s in (l:+. In fact more is

’
(o]

true: since ; can only have a finite number of zeros in the strip [00,0),

it follows that J o € [o_,0) such that X(s) # 0 ¥ s € C_,. Hence X, i.e.

det JJ is bounded away from zero in G:a+ » 0 < 0: this implies, [7, Appendix D],

a1 A = 15", : 4=
that 5 = belongs to Qo) , (observe also that d_(oo) C A(o) such that
n
Ne A ° 0). Observe now that the transfer functions in (5.47) and (5.48)
read

~ A

-_— - .‘P. ~1 — - _ .‘2 =13
Hes,us dzd'ﬁ 5'1)% and Hes,wp d?f‘o L

A-1A 5 — o™ ~-1% - -
where yb_ ‘OpR, € A(o) and1j@"‘ ”pﬂ, € d(o) ; and o € [0 _,0).

The reasoning of (ii) can now be repeated to show that ¥ xS(O), ¥ xw(O),
es(t) = o(eot) as t > » with o € [00,0). Hence property (iii) of the

(STDP) is maintained. H
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Appendix 1: R(oo) is a Euclidean Ring

Recall that a principal ideal ring R, [12], is called a Euclidean

ring, [8], if the following properties hold:

1. Associated with every nonzero element of R is nonnegative number vy(a)

called the gauge of a;+

2. For every pair a, b of R, b # 0 there exist two elements r and q of R such

that a = bq + r and either r = 0 or else y(r) < y(b).

Recall that ﬂ(co) is a principal ideal ring, [9], and that the follow-

ing fact holds.

Fact Al. Let a E(ﬂ(oo), let n(s) = s - o, + 1, then

as= eana+/ 'I'I'Y(a) (A1.1)

where e is an invertible element of ﬁ(oo) s

n_. is a polynomial which is zero at all zeros of a

in Co + and nowhere else,
o

v(a) = number of zeros of a in (Bc + and at infinity. (Al1.2)
0

Comment: If a is invertible in ﬁ(oo), then y(a) = 0.

Proof: a = na/da where n, and da are coprime polynomials. Factorizing

n n ,n_ where n_, (respectively n_ ) takes into account the zeros of a
a at a- a+ a-
o
in d:oo+ (respectively G:UO_), and observing that da =d, _ and v(a) = a(na+)
= _ - y(a) _.
+ a(da) - B(na) = a(da) a(na_), we get a eana+/1r with

- v(a@
e, =T na_/da. (Al1.3)

TWe use Sigler's term "gauge," [36], instead of MacDuffee's "stathm," [8]:
"degree" could also have been used but would be misleading since we handle
polynomials at the same time,
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Observe that e  is invertible in ﬂ(oo). -

We are now able to define a Euclid Algorithm for R&oo) with the gauge

defined by (Al.2).

Euclid Algorithm for (R,(oo): Given a and b in <R(oo), b# 0, find r Gﬂ(oo)

and q € R(oo) such that

[
0

bq + r where r = 0 or y(r) < y(b).

Step 1. If y(b) < y(a) go to step2, else

a=b0+a

i.e. T = a,q = 0 and y(r) = y(a) < y(b).
Stop.

Step 2. Apply Fact Al.l to a and b, i.e.

a=en /@ b= ebnb_'_lyﬂ(b) . (A1.4)

a a+t+

Step 3. Develop na+/wy(a) and nb+/ﬂY(b) as polynomials'in wiE=T =

(s-o°+1)-l, i.e.

. 5 @ K
at _ y(a)-k
Sy ™ - k“;‘,o n.,w where n_, € C,
a(nb+)
—2F 3 (w) = 2 y(b)-% k
(“Y(b)) w) = 2,=20 n_ v where n_, €c,

and observe that the degree in w of these polynomials is the gauge of a and

b resp..

n
Step 4. Divide the polynomial (—;ﬁ%ﬁﬂ(w) by the polynomial (-;%%Sﬁ(w):
™ m
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then there exist polynomials x(w) and y(w) such that

na+ _ n];.+
.C;;zESQ(wb = C;;zgji(w)x(W) + y(w) ' (Al1.5)
: _ "bt ~
with either y = 0 or 3(y(w)) < 3((—;(—,.»') W) = y(b). (Al.6)
w

Step 5. Reintroduce the invertible elements e, and e of (Al.4) to obtain

a=bq+r
ea(s) 1
where q(s) = . (3 x5 o (A1.7)
b o
r(s) = e_(s) y(—1) (A1.8)
a y s-0 +1 ? :
and observe that either r = 0 or y(r) < y(b). (A1.9)
Stop. "

Justification of the Euclid Algorithm

We check the result of Step 5.

Observe that q and r as given by (A1.7)-(Al1.8) are f{_(oo) . Hence we
must show that if r # 0 then y(r) < y(b).

Observe now that by (Al.2) ¥ a, b Glﬂ(oo), a# 0, b#0,
y(ab) = y(a) + y(b). Hence by (Al.8), with ,y(ea) = 0 we get y(r) =

Y(Y(-S‘gl_'.—l)). Hence, in view of (Al.6), if we can show that
o

YO = Yy ) < 3y (W)
(o]

then we are done.

Now y Eﬂ(oo), so we get by Fact Al.l
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y = eyny+/ﬂy(y).

Also by Step 4, with w= “—1’ we get

y = ny/“a(y(w)),

3(yw))

with ny and ™ coprime polynomials in s. Hence similarly as in the

proof of Fact Al.l,

By-"Ty+ "y~ v+
A TCTC N <T,a<ny_>>' EICIOMEICHD

a(n_ )
gives ey = ny_/w Y= and y(y) = a(y(w)) - B(ny_)-

Now a(ny_) > 0, so we have y(y) < 3a(y(w)) Q.E.D. H®
Hence by the above we established

Theorem Al.l: d{(oo) is a Euclidean Ring with gauge given by (Al.2).

Final Comment: Our sources of inspiration here were [8], [9], [10], [36]1,

[37].
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Appendix 2: Proof of Assertion (5.13)

The proof of (5.13) is based on the following consideration.

Consider the class of transfer function vectors

C(sI-A) 1x €RP(s) (A2.1)
where

i) x is any element of R® (A2.2)

11) A ER™", ¢ erP*® | (A2.3)

iii) (C,A) is a completely observable pair
i.e.,

C
rank |---| =n ¥ s €¢C. : (A2.4)
sI-A

We have then the following theorem

1.

Theorem A2.1: Let y be the least common multiple (R.c.m.) of the least

common denominators (L.c.d.'s) of all elements of the class of transfer
function vectors'{C(sI-A)-lx; x ER"} defined by (A2.1)-(A2.4). Let Yy

be the minimal polynomial of A ER™™. Then

AN (a2.5)

Proof: 1) According to Gantmacher, [19], wA is the invariant polynomial of

highest degree of A. Indeed let Ai denote the greatest common divisor

(g.c.d.) of the minors of order i of A and consider the ordered set

(Al,Az,c . -,An)

then we define the invariant polynomials of A as

T"The" 2.c.m. means the monic 2.c.m.; similarly "the" 2.c.d. means the
monic 2.c.d.
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Hence we get the ordered set of invariant polynomials
(wl’wz, seo ,‘Pn)

where wi divides ‘pi-i-l’ i=1,2,...,n~-1, and "’)n = q,A,

(A2.6)

(A2.7)

(A2.8)

Moreover there exist nonsingular matrices P ER™ and Q €R™™ such that

P(sI-A)Q = S(s) = diagly,(s),¥,(s),...,¥ (s)];

where S(-) is called the Smith form of (sI-A).

Since, by (A2.6) and (A2.8) Yy =¥ = An/An-l’ it follows

n
Ya

2) Consider now for any x ER"
-1 P
C(sI-A) "x ER"(s)
and denote the i-th component of this vector by

(C(sI-A)—lx)i.
Then

(C(sI—A)-]"x):L = nxi/d}d. €ER(s) for i=1,...,p,
where
n, and dxi are coprime polynomials

and without loss of generality we take the convention

nxiEO=>dxi.=.l.
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(A2.9)

(A2.10)

(A2.11)

(A2.12)

(A2.13)



Hence, if \px denotes the %.c.d. of C(sI-A)-lx, then with this convention

Y. = f.c.m.{d

)2/
X xi }i=l (A2.14)

such that y, the %.c.m. of the %.c.d.'s of all elements of {C(sI—A)—lx;

X G]Rn} satisfies

]

(] z.c.m.{npx; x €R™}

| n
z.c.m.{z.c.m.{dxi}i=l, x €ER}. (A2.15)
3) Apply now transformation (A2.9) to C(sI—A)-]'X.. Then

c(sI-a) "1k = cos(s) Lpx = Ts(s) Yx = G(s)x

where

4

]

cq, | (A2.16)

X = Px is any vector in R" (A2.17)

Hence also

for i =1,...,p and for j = 1,...,n Eij =Zijq,;1

and

n
for 1 = 1,2,...,p (C(sI—A)-lx)i =3, cijw';ij =0 /d (A2.18)
j=1

where we used also (A2.11)-(A2.13).

Hence by using (A2.8) and (A2.11)-(A2.15) we have always the following

equivalent facts

¥x€ER", ¥i=1,...,p, d, is a divisor of v =

xi Va
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¥ x €ER", ¢ 1s a divisor of 1pn =y,
X

¥ is a divisor of y, . (A2.19)
Hence the claim of the theorem is equivalent to

v, is a divisor of y. ' (A2.20)
4) Suppos-e now that (A2.20) is not true, then

y is a proper divisor of y,

hence also
¥ x ER" ¢ is a proper divisor of ‘pA = lpn
and
¥xERS ¥i=1,2,...,p dxi is a proper divisor of y, = ¢ . (A2.21)
Pick now x €R™ such that x = Px = (0,0,...,0,1)'. Then using (A2.18)
-1 -
¥i=1,2,...,p (C(sI-A) x)i = ¢

inwn_ x1i" x1i

which by conventions (A2.12)-(A2.13) implies

¥i=1,2.,,,.p either n Zin#o and d , =y =

x1i n wA

= 0 and d

1
(¢}
m
=

or nxi = xi

It follows therefore by (A2.21)

i.e. the n-th column of C is zero.

Using transformation (A2.9) it follows now easily that
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O | P sI-A diag[lpl,tpz,...,wn]

where wn(s) = wA(s) =0 ¥ s € g(A), the spectrum of A.

Hence combining the above we obtain

rank {-----| <n ¥ s € g(4).

This contradicts (A2.4). Hence the hypothesis that (A2.20) is not true
is false: (A2.20) is true and so by (A2.19), (A2.5) is true. =
The following 1s now an immediate consequence of Theorem A2.1.

Theorem A2.2: Consider descriptions (5.5) and (5.6) and let ¢ be the

L£.c.m. of the minimal polynomials Y, . and Ya described by (5.8)-(5.12).
W S
Under these conditions ¢ is the f.c.m. of the %.c.d.'s of all elements of
n
-1
the class of transfer function vectors {CS(sI-As) x (0), x_(0) € R °}U
-1 n
{Cy(sI-A ) "% (0); x (0) €ER “}. u

It is now seen that assertion (5.13) is an immediate consequence of

Theorem A2.2. "
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