
 

 

 

 

 

 

 

 

 

Copyright © 1978, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



DESIGN GOALS FOR RELATIONAL AND DBTG DATABASES

by

E. Wong and R.H. Katz

Memorandum No. UCB/ERL M78/89

15 December 1978

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Design Goals Wong> & Katz

Design Goals for Relational
and DBTG Databases

E. Wong and R. H. Katz
University of California, Berkeley

Abstract

In this paper the goals of logical design for rela

tional and DBTG databases are stated in terms of the opera

tional requirements of database maintenance and redesign. A

set of mapping rules for attaining these goals are then

secified. The .relational schemas that result from an appli

cation of the mapping rules are shown to be in the fourth

normal form.

J. • Introduction

The semantic sparseness of the relational data model,

while responsible for much of its power in retrieval and

data manipulation, works against it in update operations.

This defect has long been recognized [C03D71]. One approach

to its correction is to augment the semantics of the rela

tional model with functional dependencies and multivalued

4e£eJl!en_?le_s, and through these structures define normal

forms for relations.

The idea of normalization in database design was pro

posed by Codd [C0DD71], and subsequently two distinct varia

tions to this approach have emerged. One, called

^..5^ea!Ic? suPP°rted by the U.S. Army research Office Grant
DAAG29-76-6-02M5 and the U.S. Air Force Office of Scientific
Research Grant 78-3596.

-1-



Design Goals ., „ „ t

decomposition, is a refinement of Codd's normalization

[FAGI77b]. Here, one starts with a collection of relations

having atomic values (i.e., in first normal form) and a

specified list of multivalued dependencies among the attri

butes of these relations. The design proceeds by decomposing

the relations in the initial collection, until every rela

tion is in the fourth normal form (4NF). It is important to

note that a multivalued dependency is defined in the context

of a specific relation. As such, it is a property of the

attributes of a relation, not their underlying domains.

An alternative to decomposition is synthesis [RERN76].

Here, one begins with a set oV functional dependencies,

somewhat modified in the definition so as to be independent

of the context of specific relations. The design then

proceeds by synthesizing a collection of relations in the

third normal form (3NF).

Fagin [FAGI77b] has elaborated on the difficulties of

synthesis as a design procedure. Yet, there is much about it

that we like. It seems to us unsatisfactory that the princi

pal semantic objects of the design model should depend on

the context of the specific relations, which after all are

only convenient ways of grouping data.

The difficulty with synthesis, we believe is due to the

fact that even augmented with functional dependencies, the

relational model is still semantically inadequate for

design. Semantic objects that should be distinguished are

-2-



Design Goals Wonf, A Katz

not, with the result that simple ideas become difficult to

explicate. This fact was clearly recognized in [SCHM75] and

they proposed a "basic semantic model" in order to distin

guish between "characteristics" and "associations" among

primitive object types. They showed that violations of 3NF

are results of combining in the same relation different

semantic objects which are independent.

Normal forms for DBTG data models do not appear to have

been considered, but clearly such models are also not immune

from update anomalies.

In this paper our primary objective is to state some

explicit and operational design goals for both relational

and DBTG data models and to propose a procedure by which

such goals can be realized. In the process both normal

forms and the relational-DBTG schema translation problem are

illuminated. While we believe that a data model used for

design must have sufficient semantics to allow the goals of

design to be clearly stated, we also believe that excessive

semantics is a burden, and every semantic object introduced

should be justified by a specific operational purpose. Our

concern is with the operational effects of semantics and not

semantics per se.

.?• A Q®ai8jl M°del

Our point of departure is to choose a basic semantic

data model which is to be used to specify a design schema.

_-3_



Design Goals
Wong & Katz

The model as such is not new, being essentially a simplifi

cation of both the entity-relationship model [CHEN761 and

the semantic data model introduced in [SCMM75]. BY a "data

model" we shall mean a collection of data object types

introduced to represent data, while by a "schema" we shall

mean a specific choice of data objects to represent a data

base. Thus, for example, the relational data model consists

of: rlation, domain, tuple, attribute, etc.,while a rela

tional schema consists of a specific collection of rela
tions.

For each instance of time t, let E.U), E (t),

En(t) be n distinct sets, which we shall call entity sets.

An entity set, usually referenced by name, is in reality a

family of sets which change as members are inserted and

deleted.

A property of an entity set E(t) is a one-parameter

family of functions ft, mapping at each t E(t) into some set

V of values. Observe that implicit in this definition are

the requirements that: (a) at each t ffc is defined on all of

E(t), and.(b) for every e in E(t) the value ffc(e) is unique.

As an example, consider the following entity sets and

properties:

entity set
emp

dept
job

-4-

properties
enarne, birthyr
dname,location
title, status,salary



Design Goals Wong & Katz

A relationship R, among entity sets E-(t), ... , E (t)
u in

is a time-varying relation, i.e., at each t Rfc is a subset

of the cartesian product E^t) X E?(t) X ... X E (t). For

example, the following two relationships specify respec

tively the employees qualified to hold each job, and the

jobs allocated to each department:

qualified (job,emp)
allocation (dept,job)

A relationship may optionally have a property defined on it.

For example, "number allocated" is such a property for

"allocation." We assume that the'relationships specified in

a design schema are independent and indecomposable. Indepen

dence means that no relationship is derivable from other

relationships, and indeoomposability means that no relation

ship is equal to the join of two of its projections for all

time.

We shall say that a binary relationship R on entity

sets E^t) and E2(t) is single-valued in E-(t) if each

entity of E^t) occurs in at most one instance of R If

each entity in E.,(t) occurs in exactly one instance of R

we shall call Rfc an association. At each t an association

R^E^t), E2(t)) is afunjction which maps E^t) into E2(t).
For example, consider the binary relationship mgr(dept,emp).

If each dept is required to have one and only one manager at

all times, the mgr(dept,emp) is an association. If a dept

can be temporarily without a manager, then mgr(dept,emp) is



Design Goals
Wong & Katz

single-valued in dept, but not an association. As we shall

see, the distinction between an association and other rela

tionships is important for both relational and DBTG schemas.

The distinction between single-valued relationships and

other relationships is important in the DBTG data model,

where the set construct provides a natural support for the

single-value property.

We shall assume that neither- an association nor- ..

single-valued relationship has a property defined on it. A

property of an association is necessarily a property of the

domain entity set of the association so that the concept is

superflous. To provide automatic integrity support for a

single-valued relationship, we shall represent such a rela

tionship by a single DBTG set, and doing so precludes the

relationship from having a property.

The design model that we have outlined distinguishes

among the following semantic objects:

(a) entity set
(b) properties of entity sets
(c) associations
(d) single-valued binary relationships
(e) relationships
(f) properties of relationships

An example of a design schema is the following:

Example 2.1

entit_y set
emp

dept
"job

properties
enarae,birthyr
dname,location
title,salary

-6-



Design Goals WonR & Katz

associatiqns
works-inTemp,dept)
assignment(emp,job)

1!LLa?A°JlshiP status properties
mgr(dept,emp) single-valued *-'"-_"
qualified(emp,job) general
allocation(dept,job) general number

Our task now is to state the design goals and to specify the

mapping rules by which these goals can be realized.

i- Operational Goals for Design

Our goals are related to database redesign and updates.

We define a database redesign operation as the addition or

removal of one of the following semantic object types:

(a) entity set
(b) property
(c) association
(d) relationship

The removal of an entity set causes the automatic removal of

all its properties and associations, and all the relation

ships in which it participates.

Design Goal /M A redesign shall have no impact on programs

that reference only those data objects which survive the

redesign.

For example, if the relationship "qualified" is eliminated,

a program to find all the employees assigned to a given job

would be unaffected.

-7,



Design Goals Wong & Katz

We define an update operation as one of the following:

(a) inserting or deleting an element of an entity set
(b) adding or removing an instance of a relationship
(c) changing the value of a property or an association

of a single entity

When an entity e is deleted, any entity having e as its

value in an association must also be deleted to preserve the

integrity of the association. The induced deletions are con

sidered additional update operations, and not as a Dart of

the deletion of e. Similarly, the removal of any instances

of relationships in which e participates is also considered

to be additional updates. The remaining design goals per

tain to update operations.

^5LSn Goal //? An update of type (b) cannot spawn additional

update operations.

In particular, no entity can be caused to disappear as

the result of the removal of an instance of a relationship,

and the insertion of an entity does not require that it par

ticipate in any relationship.

?§s*£!2 Gqal_ #3 A single update affects a single tuple in the

relational case and a single record occurrence for DBTG.

The change in the value of one function (property or

association) of one entity should reflect in the change of a

single tuple for the relational data model and in a single

record occurrence for the DBTG data model.

-R-



Design Goals Wong & Katz

The insertion/deletion of an entity should correspond

to the insertion/deletion of a single tuple in the rela

tional data model and a single record occurrence in the DBTG

data model.

The addition/removal of a single instance of a rela

tionship should correspond to the insertion/deletion of a

single tuple in the relational data model, and for the DBTG

data model it should correspond to the insertion/deletion of

not more than one record occurrence.

The goal of minimality is not merely one of minimizing

storage. Indeed, that is not the primary issue. Instead,

the main issues are: (a) ease of maintaining consistency

through a one-fact-one-place rule, and (b) an economy of

expression in the update programs.

Our next design goal is achievable only for the DBTG

data model, and it pertains to automatic propagation of

entity deletions. When an entity e is deleted, any entity

having e as its value in an association must also be

deleted. For example, in the design schema of example 2.1,

if a job with title "accountant" is deleted, then all

employees having job assignment as accountants are also

deleted. This is a necessary consequence of "assignment"

being an association. Similarly, when e is deleted any

instances of relationships in which e participates must be

removed. The structures of a DBTG schema can be used to sup-

-9-



Design Goals ..„„ . „ .
Wong & Katz

port automatic propagation of these induced deletions.

5i?.iin Goal #5 For a DBTG schema the command to delete one

entity suffices to effect all induced updates.

For the DBTG data model the deletion of an entity

should cause all induced deletions and removals to be

effected without explicit instructions to do so in the

applications program.

Our final design goal is also restricted to the DBTG

data model.

Design Goal //5 The integrity of being single-valued of .any

relationship is to be automatically preserved on updates for

a DBTG schema.

Here, we want to take maximum advantage of the one-to-

many nature of DBTG sets to obviate explicit integrity sup

port for single-valued relationships.

i- Mapping Rule for a Relational Schema

We define an idenU^ier as a one-to-one property of an

entity set, designated to represent the entities. As such,

the value of the identifier for a given entity cannot be

changed[HALL76]. A primary function is a property or an

association specified in the design schema. A primitive

^.l^ct is either a relationship, or an entity set in its

role as the domain of a primary function. We propose the

-10-



Design Goals Wonr? & Katz

following rules for mapping a design schema into a rela

tional schema. *

(4.1) Each entity set has an explicit identifier which

represents it globally in the relational model.

(4.2) The identifier(s) of a primitive object together with

all the primary functions of the primitive object are

grouped in the same relation of the relational schema.
*

(4.3) There is one and only one primitive object per rela

tion of the relational schema.

Comments:

(1) it is clear that an application of (4.1)-(4.3) yields a

relational schema consisting of one relation for each entity

set, and one relation for each relationship. The domains of

a relation representing an entity set consist of: its iden

tifier, the identifiers of its associations, and its proper

ties, a relation representing a relationship has as its

domains; the identifiers of the participating entity sets,

and any properties of the relationship.

(2) Often, an entity can be identified by a combination of

associations and/or properties. For example, (dname.mgr) may

well identify dept uniquely. We shall assume that even in

such cases, an explicit identifier is assigned. Arguments in

favor of an explicit identifier are many and to us per

suasive: (a) Values of properties and associations can

change, and such changes can propagate if they are used in

identifiers, thus violating the minimal update design

-11-



Design Goals
Wong * Katz

objective, (b) An identifier is an incarnation of an entity
and as such should only be inserted and deleted, not
changed, (c) Finally, it usually takes more than one associ

ation and/or property to uniquely identify an entity set.
For global representation, such a combination is too ver
bose.

(3) The concept of an "identifier" is not the same as that

of a "key" in the framework of "normalization." A key is
defined in terms of the attributes of a specific relation,
while we have defined an identifier in terms of an entity
set and nothing else. An identifier is more than a one-to-

one function, its role is to stand for the corresponding
entity.

(4) Mapping rule (4.2) is clearly designed to minimize

updates. By choosing to represent an association as a rela

tionship, a designer can circumvent the automatic deletion

property of an association, but at the price of sacrificing
some economy in expression for updates.

(5) We believe that mapping rule (4.3) by itself captures

the essence of normal forms. A violation of any one of the

normal forms can be interpreted as a violation of rule

(4.3).

Example 4.2

Consider the design schema given in example 2.1. Let us

introduce the following identifiers for the entity sets: eno

-12-



Design Goals Wong & Katz

for emp, dnq for dept, and jid for job. The primitive

objects for this example together with their functions are

given as follows:

primitive objects
emp

dept
job
mgr

allocation
qualified

functions

ename,birthyr,works-in,assignment
dname,location
title, salary

number

These are mapped into five relations according to the map

ping rules as follows:

EMP(eno,ename,birthyr.assignment,works-in)
DEPT(dno,dname,location,mgr)
JOB(jid,title,salary)
ALLOC(dno,jid,number)
OUAL(jid,eno)

5. Normal Forms

A violation of one of the normal forms can always be

interpreted as a violation of mapping rule (4.3). Different

ways in which (4.3) are violated correspond to different

normal forms, and these can be classified as follows:

A. Putting two primitive objects which have no entity set

in common in the same relation. This violation of (4.3)

results in a relation not in. 2NF.

Example: Cartesian product of JOB and DEPT

B. Putting a function of an entity set and a relationship

involving it in the same relation. This too results in

a relation not in 2NF.

-13



Design Goals
Wong Sc Katz

Example: Equijoin of JOB and QUAL on jid

C Putting two functions with different entity sets as

their domains in the same relation. If this violation

is not one of category (A) then it must involve func
tion f1 and f2 of the form

f1 f?E1 --> E? -£> S

This results in a relation not in 3NF.

Example: The equijoin EMP(assignment=jid)JOB

D. Putting two relationships with a common entity set

together in the same relation. This violation results

in a relation not in 4NF.

Consider the equijoin AQ of ALLOC with QUAL. As it

stands, AQ is not in 2HF because of the partial depen

dence of "number" on the key (dno,jid,eno) of AQ. The

projection AQ[dno,jid,eno] is in 3NF (and hence also

2NF), but not 4NF. There are two multivalued dependen

cies: "eno on jid" and "dno on jid- in AQfdno,jid,eno].

Theorem 5.1 A relational schema resulting from applying the
mapping rules (4.1) - (4.3) to a design schema is in 4NF.

proof: By rule (4.3), there is one and only one primitive

object per relation. One possibility is that the primitive

object is an entity set E serving as the domain of a collec

tion of primary functions. In this case its identifier is a

-14-



Design Goals ,,nn„ 9 „ .
Wong ?i Katz

key of the relation, and every attribute, being a represen

tation of a primary function of E, is a full function of the

identifier. There can be no multivalued dependency in such a
relation.

The other possibility is that the primitive object is a

relationship. The identifiers of the entity sets making up

the relationship comprise a key of the relation, and every

non-key attribute is a function of the key. Suppose that

contrary to the assertion of the theorem the relation is not

in 4NF, then it is equal to the join of two relations

[FAGI77a]. Either the identifiers making up the key are

split between these two relations or they are not. If they

are split then the relationship must be decomposible, con

tradicting the assumption that each relationship in the

design schema is indecomposable. If the key resid

entirely in one of the component relations, then attribut

of the other component relation cannot be functions of the
key, contradicting (4.2). QED

A- !l£P_Ping Rules for a DBTG Schema

The following mapping rules are introduced to convert a

design schema into a DBTG schema so as to achieve our design
goals:

(6.1) Each entity set has an explicit identifier.

(6.2) For each entity set E define a record type r(E). The

data items of r(E) are made up of the identifier of E

.-in.,.

es

es



Design Goals
Wong & Katz

and the properties of E.

(6.3) For an association or single-valued relationship R(E

E2) where E1 i E?, define aset type s(R) with r(E?)
as the owner record type and rCE,) as the member-
record type.

(6.4) For an association or single-valued relationship
R(E,E) define a record type r(R) having no data item,

and a pair of set types s^R) and s2(R) forming a
cycle between r(E) and r(R). The assignment is dep-
icted below:

s~(R)

(6.5) For ageneral relationship R(ErE2 Ef|) define a
confluent hierarchy, consisting of a record type r(R)

with only the properties of R as its data items, and n

set types s^R), s2(R), ... , s^r) as snown below.

-16-



Design Goals
Wong & Katz

All the object types in the design model have now been

mapped into object types in the DBTG data model. Two kinds

of record types have resulted from the mapping: ones which

contain an identifier data item and those which do not. We

shall call the former sel/_-identified record types, and the

latter link record types. Self-identified record types

represent entity sets while link record types represent

relationships and possibly associations.

For set types the logical concept of total membership

would be useful in our context. A record type r is a total

member of a set type s if every occurrence of r is a member

of an occurrence of s. A member that is not total is said

to be partial. The membership of a link record type in any

set type should always be total. The membership of a self-

identified record type should be total in any set which

represents an association but not otherwise. The concept of

••total" membership in sets does not exist in the current

version of the DBTG model although a related concept appears

-17-



Design Goals Wong & Katz

to have been suggested by [NIJI75],

Natural enforcement for "total" membership is provided

by the mandatory/automatic option for delete/insert in DBTG,

except when a sequence of set types form a cycle. In that

case one set type in the cycle is required to be "manual" on

insertion. Under our mapping rules a cycle of set types each

having a ^total member can arise in only two ways: (i) a

two-set cycle representing a self-association, (ii) a cycle

of associations. In the first case we shall make the set

type s2(R) mandatory/manual. In the latter case we choose

any one of the set types to be mandatory/manual.

Summarizing our discussion on set membership, we have

the final mapping rule for DBTG:

(6.6) The membership of a link record type in any set type

is total. The membership of a self-identified record

type in any set that represents an association (or is

a part of the representation of a self-association) is

total, but not otherwise. All set membership that are

not total are optional/manual. All total memberships

are mandatory/automatic, except for a self-association

or a cycle of associations. For the exceptions one of

the set types in the cycle must have a

mandatory/manual membership option, and the property

of being "total" must then be supported procedurally.

Application of rules (6.1)-(6.6) to example (2.1)

yields the following DBTG schema:

-18-



Design Goals
Wong & Katz

mgr

assigned
dept

<

>• .

emp 1 1 ^ u |
...

H job

1works- in

7 /
/•J

alloc

—-—«

qual

Except for the partial membership of "dept" in "mgr," all
memberships are total.

1* Schema Translation and Equivalence

In section 6 we introduced a distinction between self-

identified records and link records, and between total and

partial memberships in a set. These distinctions can be

deduced from existing constructs of the DDL, but it may well

be desirable to make them explicit in the DBTG schema. With

this bit of semantic enhancement in the DBTG data model, the

process of mapping a design schema into a DBTG schema using

rules (6.1) - (6.6) becomes reversible, as is shown in the

following correspondences:

self-identified record type —> entity set
data items except id —> properties

set type between two self- -> association or single-valued
identified record types relationship, according to

whether membership is total
•,.,_, or partial
link record type (member of —> relationship

two or more set types)
a two-set cycle between a -> association or single-valued

self-identified record relationship between an entity
type and a link set and itself, differentiated

-19-



Design Goals Wong h Katz

by set membership

It follows that a DBTG schema derived from a design

schema by following our mapping rules can be translated into

a relational schema which is the same as what would be

obtained ,by directly mapping the design schema. The rules of

translation are rather simple and given below.

For a self-identified record define its key to be its

identifier. For a link record define its key to be the col

lection of the keys of the owners of all sets in which the

link record is a member. For a DBTG schema obtained from

using our mapping rules link records can only be owned by

self-identified records, so that the definition of key is

not circular. We propose the following rules for DBTG to

relational schema translation.

(7.1) For each self-identified record type r define a rela

tion R(r). Each data item of r is a domain of R(r).

The key of the owner of every set in which r is a

total member is also a domain of R(r).

(7.2) For each link record type k that is the member of two

or more set types, define a relation R(k). The domains

of R(k) consist of the data items of k plus the keys

of the owners of the sets in which k is a member.

(7.3) for each set type s which has a partial member, define

a binary relation R(s). The domains of R(s) are the

keys of the owner and the member of s.

-20-



Design Goals
Wong & Katz

In terms of the constructs of the design model, (7.1)

identifies an entity set, (7.2) a relationship, and (7.3) a
single-valued relationship.

We have identified a collection of DBTG schemas that

can be mapped into corresponding relational schemas while

preserving the design goals. The translation procedure can

be applied in general, but in doing so, we impose a semantic

interpretation on the schema to be translated. The success

of the translation depends on the extent to which the

interpretation is correct.

8. Discussion

The focus of the design methodology that we have

described is on the preservation of basic semantic integrity

so as to prevent unwanted side effects in redesign and

updates. Issues of performance have not been addressed.

For the relational case, issues of performance relate only

to the storage schema and are rightly avoided in the design

of the conceptual schema. The situation is somewhat more

complex in the DBTG case. Constraints on set implementation

and the possibility of clustering members cause the logical

design to have an effect on performance. We shall try to
explain this issue through an example.

Consider a design schema containing entity sets: sup-

P±L*r± and" PiCts, and a relationship inventory (supplies,
parts). Following the mapping rules of section 6 results in

-21-



Design Goals Wong & Katz

a DBTG schema depicted as follows

Suppliers Parts

Inventory

where "inventory" is a link record type. It can be argued

with some cogency that if the only accesses are through sup

pliers, then the following design would be better for per

formance:

Suppliers Parts

The latter design can, in fact, be obtained with our

procedure by modifying the design schema. Instead of

"parts", introduce an entity set Pjarts-qf-suppliers, the

same part supplied by different suppliers being separate

entities. The "inventory" relationship is now single-valued

in "parts-of-suppliersu, so that an application of mapping

rule (6.3) results in precisely the second design. The

design goals are still satisfied but now have a different

-22-



Design Goals Wong & Katz

interpretation. For example, changing the property of a

part is no longer an atomic update operation, so that the

minimality goal, though attained, no longer guarantees that

only a single data-item value is changed. In short, one can

change the DBTG design by manipulating the design schema,

but there are consequences of doing so on redesign and

updates and these can be made explicit by a careful examina

tion of the design goals.

The semantics of our design model are still quite

sparse. A number of possible additional object types have

been deliberately omitted. Our criterion for inclusion is,

"does including it make a difference in operational terms?"

Examples such as "property of property" and "relationship of

relationships" fail on this ground. The answer in the case

of "dependent entities" is less straightforward. It can be

argued that there are natural examples, such as "children of

employee", of entities whose existence in the database

depends on that of others. Operationally, such dependence

is already provided for in our design model oy the construct

"association". The entity set "children of employee" would

have an association "parent". Deletion of the parent causes

deletion of the child in conformity with our rules on

automatic deletion. Insertion of a child cannot be made

until the parent exists. The only difference that the

semantic construct "dependent entities" might make on the

design relates to the choice of an identifier. It might be

-??.-



Design Goals
Wong & Katz

argued that the identifier of a dependent entity should

always be a concatenation of the parent-id and a local-id,

and there is no provision in our rules for enforcing such a

choice. However, it seems to us that the additional benefit

is small and does not warrant adding yet another semantic

object.

-24-



Design Goals Wong * Katz

References

[BERN76] Bernstein, P. A. "Synthesizing thxid normal form
relations from functional dependencies." Transac
tions on Database Systems 1,4 (Dec. 1976) dd 277-
298.

[CHEN76] Chen, P. P. "The entity-relationship model -
towards a unified view of data." Transactions on
Database Systems 1,1 (Mar. 1976), pp. 9-36.

[C0DD71] Codd, E. F. "Further normalization of the data base
relational model." Courant Computer Science Symposia
6» Data Base Systems, Prentice-Hall, New York, (Mav
1971), pp .""65-987

[FAGI77a] Fagin, R. "Multivalued dependencies and a new nor
mal form for relational databases." Transactions on
Database Systems 2,3 (Sep. 1977), pp. 262-278.

[FAGI77b] Fagin, R. "The decomposition versus the synthetic
approach to relational database design." Proceedings
1977 Very Large Data Bases Conference, 1977, pp.
441-446. ' MP

CHALL76] Hall, P., Owlett, J., and Todd, S., "Relations and
entities", Proceedings IFIPTC-2 Working Conference
on Modelling in Database Management Systems, North
Holland, 1976.

[NIJI75] Nijssen, G. M. "Set and CODASYL set or coset." Data
§M« D^JTApt_ton, B. C. M. Douque, G. M. Nijssen,"
eds., North-Ho'lland, Amsterdam, 1975, pp. 1-70.

[SCHM75] Schmid, H. A., Swenson, J. R., "On the semantics of
the relational data model." Proceedings ACM-Si^mod
Conference, (May 1976), pp. 9-36.

-25-


	Copyright notice 1978
	ERL-78-89

