

Copyright © 1978, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

.. *

REPORT ON THE

DESIGN OF A SIMULATOR PROGRAM (SAMPLE)

FOR IC FABRICATION

Sharad Narayan Nandgaonkar

Memorandum No. UCB/ERL M79/16

June 1978

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Y

Part 1

CONTENTS

Design Documentation

- i -

Chap. _ Aii Overview

1. Introduction

2. Organization of the Report

Chap. 2 The Simulator

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

1. Structure of the Simulator
2. Some more discussion on the

Structure of the Simulator
1 On the State-Variable Characteriz

ation of the System
2. On the Input/Output of the Simulated

Machines within the Lab

3. On the Actual Program Structure
4. On the Design of the Input Interface

1. Syntax and Semantics
2. Error Handling Philosophy

Chap. 3 Miscellanea

1. Validity of the Simulation
2. Usage of the Program

1. Computer Time and Memory Requirements
2. The Programming Language Used

3. Management of the Program Code
4. Graphical Output Option
5. Some History of the Program

1. Contributions to the Program
2. Documentation of the Program

Appendix 1A : Some Statistics on the Program Size

1. Source Code Size
1. Size of Interface
2. Size of the Core of the Program

2. Object Code Size
1. Data

2. Instructions

Pictorial View of the Program
Material Flow Model for Real Machines
Information Flow in the Simulated Lab
Control-Structure of the Program
Information flow structure of The Program
Control Structure + Information Flow in the Program

References

Acknowledgements

- ii -

(Contents - contd.)

Part 2) Implementation Documentation for the User Interface

The documentation files forming part 2 of this report are as follows

Lexical Analyzer Definition etc. -

Parser Definition etc.

Prettyprinter documentation

<ex-stmt-subr>s

for machinel

for machines 2, 3, and 4

Some features of the program

docul (='lexdeff)
lexvar

lexfea

pardef
parvar

prprdocu

m01var

m01varb

mO 1varc

errmesmOl

data234_org
errmes234

progfeal

{Organization of the source code and the source code
are given at the end of the Implementation documentation,
i.e. at the end of part 3}

\ (Contents - contd.)

Part 3) Implementation Documentation for the Machines
and Components

The documentation files in part 3 are as follows

Documentation of Default Values for all Machines

£ * and Components - defaultdocu

Machinel documentation - maddod

The Organization of all the source code
for the program (both the User Interface,
and the Core) is given in - sc_org

The source code itself is given in the
same sequence as the files aDpear in sc_org.

(

y

Part 4) User Documentation

The Files in part 4 are as follows

index

exdatafile

example
howto

pargram

trialdocu

pfaudit

- iii -

4 *

i

Part J[

Design Documentation

/

Chapter ^ An overview

J_•J.• Introduction

In the manufacture of integrated circuits a major step
is to etch a particular geometric pattern onto a semiconduc
tor chip using photolithographic techniques. Traditionally
this has been aided by various part by part analyses of some
of the substeps involved in these processes. A project has
been undertaken to create a unified user-oriented simulation
program for this process as a whole.

Clearly, such a project is necessarily a part of the
total manufacturing process. It has to be linked with the
analytic, and experimental work done by other workers in the
field, and its vatuYpe determined from the validity and use
fulness of the results. A first version of the simulation
program, SAMPLE (Simulation and Modelling of PhotoLithogra-
phy and Etching!, developed at the University of California,
Berkeley, has been up for the last few months and is being
continuously expanded further. The results are quite
encouraging and more ideas are on the agenda for incorpora
tion into the program.

This report presents the idea behind the program, its
design, specification, and other details along with the
source code of the user-interface, as it stands at present
(June 1978). Also included in the report is the documenta
tion prepared for its users. The organization of this
report is sketched in the following section.

!•£• Organization of this Report

This report is organized as follows.

Part 0)

Abstract

Contents

(The contents give a more detailed sectionwise outline
of the report.)

Part]_) Design Documentation

In this part an overview of the program is given. The
basic ideas behind its design, and its top level structure
are discussed.

Part £) Implementation Documentation for the User Interface

This gives the details of the input interface. The
syntax and semantics of the input language are defined, and
the User Interface code is presented.

Part 3) Implementation Documentation for the Machines and
Components

This gives the details of the core of the program i.e.
the machines and components in "the simulated lab. The
models used for the machines, the formulae used for_computa-
tion, the discretization and other constraints imposed by
numerical analysis/calculation considerations etc. are dis
cussed. Also listed are the detailed documentation of the
data-structure of the program core, error-messages, defi
ciencies, improvements, and bugs. A list of the default
values of the relevant parameters describing the lab is also
included.

Part 4) User Documentation

This gives an example of a typical set of input data to
the program, information for using the TRIAL-statement, and
other material helpful for using the program.

Chapter 2 : The Simulator

?•!• Structure of the Simulator

A simulator for a physical process should model the
process as closely as possible. Preferably, it should be
more convenient to use than actually running the physical

^ v process, and should provide easy ways to monitor the pro
gress of the process by providing various types of informa
tion about the simulated process which may be difficult, or

Y f even techinally impossible, to obtain from the corresponding
actual prooess. Also, it should allow a better control over
the process so that the effects of varying individual fac
tors should be easily discernible in the outcome of the pro
cess, and should give a better insight into how to control
the actual process. In short, it should approach the ideal
of a highly controlled and instrumented set-up in which to
study the process. Especially, when the processes under
consideration interact with each other in a multitude of
ways the value of such a simulator for understanding the
interactions is quite obvious.

A digital computer program is the most promising way to
fulfill the above expectations from a simulator. Once the
models of the physical phenomena are properly formulated in
terms of equations in the various parameters involved, the
desire for 'controllability' and 'observability' can be con
veniently realized in such a program. Also a program allows
one to handle not only the closed form solutions of static
systems but also the flow of time in a dynamic process that
can only be described by a differential or difference equa
tion.

Such a program, SAMPLE, was designed for simulating the
lithography and etching processes used in the fabrication of
semiconductor wafers.

Design of SAMPLE

The processes in semiconductor lithography typically
•' involve the image formation of a particular pattern on a
^ photoresist coated wafer. For highest resolution work,

positive photoresist is used. The image formed on the pho-
toresist layer causes local bleaching in the layer to vari-

* ous degrees depending on the intensity distribution. The
exposed wafer is put in a developing solution which etches
out the bleached portions of the resist. In between these
two main processes of bleaching and development, the resist
may be deliberately modified, e.g. by baking in an oven, or
by putting it in chlorobenzene solution.

To simulate such a processing sequence, the user tells
SAMPLE about the components, like the imaging system or the

radiation source, that he wants to use, what the configura
tion of the system is, what layers are present on it and how
thick they are, what kind of pattern is present on the mask,
how much radiation dose does he want to expose the wafer
with, what kind of developer does he want to use, and so on.
He also tells what he wants done with the components, what
processes should they be subjected to, whether the wafer
should be exposed or not, whether the exposed wafer should
be developed or not, and if the wafer is to be baked how
long should it be baked. All these things he specifies by
giving the physical dimensions of the components involved,
the characteristic parameters describing the processes, and
any.other relevant input parameters that describe what he
has in mind. Finally, he also specifies the sequence in
which the the operations like bleaching (exposing the wafer
to the image) and etching, or baking are to be carried out.
And what resultant aspects of the resulting product he wants
to monitor.

To make the above communication between the human user
and SAMPLE suitable for both of them they must understand
each other. In particular, the user should know what SAMPLE
can do, how he does it and what should he told to him and in
what way. SAMPLE takes this information and processes it
according to his understanding of the actual phenomena,
which is nothing but the models described in the literature
[see Bibliography].

The situation can be described in a more pictorial way
as shown in figure 1.

The user gives SAMPLE four types of information to con
trol and observe the process :

control :

1) The static specification of the components like mask,
imaging system, wafer etc. which just involves the line
size, space size, lens parameters, and layer
thicknesses etc.

2) The parameter specification for the dynamic processes
as characterized by their models, e.g. the A, B, C
parameters for describinng the bleaching processes, the
development rate as a function of bleaching (M-
parameter) for the etching process.

3) The sequence of operations performed on the components,
e.g. telling the controller to proces the.components in
the exposing machine, etching machine etc.

observe :

^

User

/^S^ Input

Output

»•»» * n i *

The Simulator Program

-*\ Input
Interface

Output
Interface

Controller

(The User-Interface)

Lab

•
an
Machines

and

Components

(The Core of
the Simulator)

Fig. 1 Pictorial View of the Program Usage
(Information-flow)

: vUsery

CT»

4) What parameters are to monitored.

Naturally, the controller can be viewed as a person in
charge of a lab where he gets the components to the specifi
cation of the user, gets the machines to process the com
ponents (e.g. to expose the wafer in the imaging machine, or
etch it in the etching machine). And finally carries out
the operations that the user tells him to carry out in the
sequence that he tells SAMPLE to perform them.

It is precisely the above picture that was implemented
m the program SAMPLE. The core of the simulator is the lab
and the machines in the lab which are represented in the
program as the values of the parameters that specify the
components. The processing is carried out as a numerical
time-step simulation on those values by program subroutines.
The controller is that subroutine in the program which gets
the information from the user through the input interface
subroutines and then puts it in the proper place for the
components (e.g. the appropriate subroutines to carry out
the individual component-process (e.g. bleaching, or etch
ing) simulation. Also, the controller controls certain out
put from the program*

Once the above theoretical model was recognized for the
program, it was built to fit other limitations and con
siderations of a practical nature, like the available memory
space and cost of computer time used. To keep the input
format convenient to the user the form of input statements
was designed to have mnemonic keywords like CONTACT, PROJ,
DOSE, ETCHRATE, RUN etc. with the corresponding numerical
parameters following them. [For exact details see the
implementation documentation in parts 2 and 3.] Also most
of the information about the system need not be specified if
it has some standard value (e.g. the standard wavelength,
the standard etchrate relation for the standard developers
with the standard photoresists etc.). Any system parameter
that is required but not specified in the input has this
standard value by default (but the number of items in a
given form of input statement cannot be changed arbitrarily, *
except as specified in the documentation). A table of the
standard values used is given in part 3 of this reDort.

The one important difference between the models
envisioned above for the real machines (see fig. 2) and the
actual models implemented in the program for the simulated
machines is the decomposition of the bleaching process into
three subprocesses in order not to repeat some lengthy cal
culations unnecessarily when a single parameter is changed.
The program considers the exposure (bleaching) process as
consisting of three different and somewhat 'orthogonal'
(i.e. independently executable) subprocesses :

* s

\

• •

y

Chip
Exposed chip

Etched

Imaging
Machine
v. w v c>os'r><3

Etching
Machine

chip ^
I

1

1

i

* .» Other

machines

e.g.

Baking Oven,
Plasma ash,
etc.

L

The simplest path

Other variations

Fig. 2 Material Flow Model for

Real Machines in a Lab

1) Image formation on the resist surface

2) Calculation of a table which gives a relation between
the image intensity at a point on the resist surface
and the bleaching produced (the M-parameter) at the
points below it, in the resist layer. This calculation
proceeds through the intercoupled computations (coupled
differential equations) of the standing wave formed in
the PR layer and the energy absorption dependent on it.
The M values which represent the bleaching, as well as
the rate of absorption are both dependent on the total
amount of energy absorbed at that point till that time.

3) The calculation of the actual bleaching (M-values) in
the resist layer from the horizontal image intensity
pattern found in (1) and the table calculated in (2).

The image formation on the resist surface is indeed
independent of the bleaching process inside the resist
layer. The horizontal image intensity computation can be
carried out independently of the bleaching produced because
of it. Further, the bleaching process itself can be decom
posed into two separate calculations as mentioned above.
This is possible because of the approximation that inside
the wafer the light travels as a plane wave normal to the
surface. This implies that the light intensity at any point
inside the layers, in particular in the resist layer, can be
found from the image intensity at the single point above it
on^ the surface. Thus the bleaching effect at that inside
point is dependent on the image intensity at only one single
point on the surface of the layer (after the horizontal
image intensity calculations). This makes possible the
division of the bleaching calculation as indicated above.
Moreover, because of this the standing wave and bleaching
calcultions in subprocess (2) above reduce from a 3-
dimensional case to much simpler 1-dimensional case and the
calculations in (3) can be carried out by using simple
interpolation on the values obtained in (1) and (2).

Thus the individual machines available in SAMPLE are :

1) Horizontal image intensity distribution calculation

2) Standard-bleaching calculation

3) Actual-bleaching calculation

4) Etching calculation

5) Other machines for diffusion and M-degradation calcula
tions to simulate the effect of baking or a chloroben-
zene soak.

When the user tells SAMPLE to run a particular machine,
say machine 1 (by by a RUN 1 statement in the input), the
controller runs that machine and prints out the output for
the user. This printout gives information about the many
relevant parameters used in the program that represent the
actual processes and machines, as well as the parameters
used for discretization of time and space in the simulation
for the numerical routines. Various portions of the output
may be turned on or off by specifying so in the input [see
the implementation documentation]. An example of the input
(and comments on the output) is shown in part 4.

Also apart from the standard routines available in the
system, a facility is provided in the system to carry out
some user-defined processing through the TRIAL-statement
[see part 2, and 4], The TRIAL-statement allows the user to
introduce temporarily his own special purpose routines in
the program. The TRIAL statement is used by putting in two
more simple subroutiones to integrate the user's routines
with the rest of SAMPLE [see part 4].

In the case of an error in the form of an input state
ment the input interface provides the proper diagnostic mes
sages and just prints out the rest of the input statements
as far as it can recover from the confusion created by the
error. This helps in pointing out to the user as many syn
tactic errors in the input format as possible in the first
run itself.

10

2.2. Some More Discussion of the Program Structure

2.2.J_. On the State-Variable Characterization of the system

The central part of the program is the (simulated) lab,
and the components and machines in it. They have been
represented by values of certain parameters that character
ize them, and hence the conceptual and operational structure
of the program revolves around them. Since the values of
those parameters specify the state of the system at any
given moment, they are the state-variables of the system.
Once this state-variable nature of the system (real or simu
lated) is recognized, various known concepts from state-
variable theory of control systems (e.g. for linear electri
cal networks) could be applied consciously and hence sys
tematically (before that recognition there was a tendency to
put things into the program on a 'newly-discovered-need' or
•trial-and-error' basis without any guideline for assessing
how naturally they fit into the program structure). Also,
this identification of the system as a state-variable con
trol le6r~^ysTelirTwhit else can any system be?) * clarified
further the nature of variables that should be stored glo
bally (i.e. the data-structure) (in COMMON blocks in FOR
TRAN) for the system. Also the user-specifiable operations
(the unit-operations = the primitives) to be performed on
the values of these variables., by any numerical calculations
or otherwise, were clearly identified by trying to achieve
the aims of good controllability and observability ** for
the system. And while developing and debugging the system,
these concepts indicated techniques which helped spotting
out errors before they caused too much trouble.

11

* [With due respect to other types of models and charac
terizations of systems :] For analog systems the
state-variable theory of control systems is well-known
but also for digital systems it is known in the form of
Huffman model for sequential circuits (in this model a
set of D-Flipflops acts as the state-variable memory)
and various other similar models, in operating systems
it is recognized by concepts like 'a process is defined
by the data which represents it', in programming]
languages 'the semantics itself is given by an inter
preter which describes how the state-vector changes as
the computation progresses' (John McCarthy, 1967), and t
so on. !

** Informal Definitions :

Controllability - The system can be taken from any
state to any other state in a finite time by a suitable
input to it.
Observability - The state of the system can be inferred
by observing its output for a finite time.
In the program many state variables are also the input
variables, or the output variables themselves, thus
simplifying the controlling or observing actions.

Another decision was to give both the programmer and
> the user the same controllability and observability so that

there are no 'under the table deals' in the system to which
the user doesn't have an access. This is useful to keep the
programmer from any temptations to make the system unneces
sarily complicated to manage or maintain.

Being a simulated lab it can easily be made 'over-
- . controllable' than the real system (i.e. a state "inaccessi

ble" in the real system - like a diffractionless image - can
be simulated). But the temptations for such non-real over-

, g control were firmly resisted (though even now it can be
• obtained by using the TRIAL-statement of the program) and

that must have saved a lot of irrelevant playing with the
program (unlike extra observability which is very convenient
to have if it can be switched off when not wanted).

The above concepts have not only given the guidelines
for the structure of the program but they give a good formal
and informal terminology to communicate various aspects of
the program.

2.2.2^. On the Input/Output of the machines within the lab

From the information flow of the simulated lab as shown
in fig. 3, it is clear that the machines are interfaced to
each other through their common data structure. Hence, to
make the system modular, the machines should not have any
more interconnections than those arising from a well-defined
interface. But at the same time, it is convenient to have
some redundant information in this interface between
machines for clarity in the user output, e.g. when running
machinel its wavelength input should be copied onto its out
put data-structure interfacing it with machine3 so that
machine3 can tell the user about the wavelength at which its
input was derived, without constraining mahchinel to keep
its input wavelength unchanged till machine3 is finished
with the intermediate output of machinel. This can be gen
eralized to more machines interconnected at one point and
may be useful if the state of the system is to be saved on

j some temporary output file (not possible at present) for
continuation of the run at some future time, but it is easy
to overdo it.

2.2^3,' On the actual program structure

It is only fair to say that the discussion in the two
subsections above presents the design guidelines which were
consciously followed, rather than a strict workshop discip
line that was rigidly adhered to. There are some very small
deviations but still the correspondence between the program
and the above structure is quite an exact one.

12

INPUT

from User

Stmts

Object (Mask)

System

Spectrum

(lambda)

Layers

Resmodel

Exposure

(Dose)

Devmodel

(Etchrate)

Devtime

Run

End of input

Trial

Information in the program
(Machine configurations,
parameter values, etc.)

(1)
Horiz.

Image

Formation

Horizontal Image Intensity

J

(2)

Standard

Bleaching

Action

decided by
>the

controller

etc.

M

(3)

Actual

Bleaching

Switches to

control output
P

Other

machines

~*

Fig. 3 Information-flow in the Simulated Lab

OUTPUT

to User

Input cards echo

£=£>• Input stmts listing

'"t:rr'y' (Error messages)

(RUN 1)

(RUN 2)

Etch profiles
>

(RUN 4)

tS*

u>

. 4

With that structure for the core of the simulator, the
actions and properties of the user-interface follow straigh
taway from the concepts of controllability and observabil-
lity except for the exact formal definitions of its input
syntax and semantics. These are given in detail in part 2.
The control structure of the input interface and the infor
mation flow in it are shown in figures 4, 5, and 6, in the
context of the system as a whole. Also these figures show
the structure of the output interface more clearly than the
way it is shown in fig. 1. That 'output interface' in fig.
1 stands for the 'centralized' components like the pretty-
printer for statements, the diagnostic error-message subrou
tines of the input interface, and the implicit (trivial)
'prettyprinter' to echo the cards on the output (these dif
ferent outputs should either go to differnt output files
and/or the user should be able to turn them on or off
(except for the error messages) by an input statement to
that effect). It does not consider the 'distributed' output
coming from the various machines in the lab. Indeed figures
4, 5, and 6 are more precise in showing this.

One deficiency of the figures is that they do not indi
cate clearly the position of the subroutines which 'execute'
the input statements (by either storing the components in
the lab or by setting the various (output) swithches (infor
mation flow action), or by running the machines (by calling
other subroutines) according to input commands. In the fig
ures these commands are considered to be just a part of the
'controller' because doing otherwise causes more loss in
simplicity and clarity than the resultant gain in precision.

A comment : Note that the above models of the simulated
processes, and hence the program, are completely "deter
ministic" i.e. they involve no random variables, probabili
ties, or stochastic processes.

2.2.4. On the Design of the Input-Interface

2.2.4.J_. Sy/ntax and Semantics

The input language is a very simple 2-level and non
procedural language designed in a standard straightforward
manner [see figure 5]. After the card input is implicitly
converted to a single character-stream by subroutine gcard
(which also prints out the card images on the output file (-
'prettyprints' them i.e. marks them to be recognized as the
echo of the input cards)) the lexical analyzer can get the
characters in the character stream by calling subroutine
gchar (see figures 4, 5, and 6). The first level of the
input grammar, for the lexical analyzer (scanner), is a sim
ple type 3 (i.e. regular) language defined by a BNF syntax
[see part 2]. The lexical analyzer forms the lexical
tokens, like keywords and numbers, and passes them on with

14

C
o
n
t
r
o
l
l
e
r

P
a
r
s
e
r

/
L
e
x /

s
u
b
r
s

g
c
h
a
r
,

&
g
c
a
r
d

p
r
i
n
t

\
e
x
e
c
u
t
e

it
\
i
t

p
p

w
h
e
r
e

L
e
x

=
L
e
x
i
c
a
l

A
n
a
l
y
z
e
r

p
p

=
P
r
e
t
t
y
p
r
i
n
t
e
r

(
f
o
r
s
t
m
t
s
)

(a
)

:
G
r
a
p
h
i
c
a
l
l
y
(
e
x
a
c
t
l
y
a
s
i
t

is
)

F
i
g
.

4
C
o
n
t
r
o
l

S
t
r
u
c
t
u
r
e

o
f

t
h
e
P
r
o
g
r
a
m

,
m

b
e
g
i
n

i
n
i
t
i
a
l
i
z
e

v
a
r
i
o
u
s

t
h
i
n
g
s

;

r
e
p
e
a
t

[
g
e
t

a
s
t
m
t

f
r
o
m

i
n
p
u
t

;
p
r
i
n
t

i
t
o
u
t

i
n
a
n

e
x
p
a
n
d
e
d

f
o
r
m

;

i
f

(
(
n
o
p
r
e
v
i
o
u
s

e
r
r
o
r
)

o
r

(
'
e
n
d
-
o
f
-
i
n
p
u
t
-
s
tm
ts
'

s
t
m
t
)
)

t
h
e
n
e
x
e
c
u
t
e

i
t

;

u
n
t
i
l

(
e
n
d
o
f
i
n
p
u
t

st
mt
s)

e
n
d

g
e
t

a
s
t
m
t

Cb
)
:

'E
qu
iv
al
en
tl
y'

fo
r

(a
)

(
a
s
a
h
i
g
h

l
e
v
e
l

c
o
d
e
)

C
o
n
t
r
o
l
l
e
r

P
a
r
s
e
r

L
e
x

p
r
i
n
t

it
\ P
P

(c
)

:
'
E
q
u
i
v
a
l
e
n
t
l
y
'

f
o
r

(a
)

(
G
r
a
p
h
i
c
a
l
l
y
)

<
v
»

u
«

Physical
Input from
User

cards
subrs

gcard, gchar
chars

Lex
lexemes

!ppcard |
error-

messages

card

images

where

ppcard = Implicit 'prettyprinter*
for cards ("quotes" the
card image to distinguish
it from other output).

pp = The prettyprinter for stmts
(= "ppstmt")

Parser
stmts
—*!—H

\
\

error-

messages

Controller

PP

Y
stmt

listing

Output to the User

Fig. 5 The Information-flow Structure of the Program

Machine

outout

o*

c
a
r
d
s

l
e
x
e
m
e
s

c
h
a
r
s

s
u
b
r
s

g
c
h
a
r
,

&
g
c
a
r
d

L
e
x

s
t
m
t
s

p
a
r
s
e
r

c
o
n
t
r
o
l
l
e
r
a
n
d

e
x
-
s
t
m
t

s
u
b
r
s

p
r
e
t
t
y
p
r
i
n
t
e
d

s
t
m
t
s

m
e
s
s
a
g
e
s

i
p
p
c
a
r
d
•

c
a
r
d

i
m
a
g
e
s

p
a
r
a
m
e
t
e
r

v
a
l
u
e
s

L
a
b

Fi
g.
6

C
o
n
t
r
o
l
-
s
t
r
u
c
t
u
r
e
+
I
n
f
o
r
m
a
t
i
o
n
-
f
l
o
w

o
f

th
e
P
r
o
g
r
a
m

(
Ba
se
d
o
n

fi
g.

4(
c)
,

an
d
5
)

•*
•

V
a
r
i
o
u
s

_^
m
a
c
h
i
n
e

o
u
t
p
u
t
s

r
«
<
»

their values (meanings), as lexemes to the parser. The
parser forms the input statements from these lexemes accord
ing to another regular grammar [see part 2] and finally the
controller uses these statements in an interpreter-like
fashion - performing the suitable actions indicated by their
meanings.

2.2.4.2. Error Handling Philosophy

The error handling philosophy of the input interface is
based on a simple idea. The input grammar is 'fully
defined' over all the possible combinations of the input
characters. This completeness is achieved by attaching a
meaning of the type "erroneous form" to any <item> which is
"illegally" formed. Thus at the first three levels # there
are defined <erroneous-char>s, <erroneous-lex-token>s, and
<erroneous-stmt>s which are nothing else but <item>s to be
formed at that level that are not correctly-constructed in
the user input. When these <erroneous-item>s are detected
in the input to that level, an error-handling routine (each
level has its own) is called. That error-handling routine
prints out a proper diagnostic message for the user,
attaches the meaning of 'error-value' to that item (each
level has only one 'error-value' for the <erroneous-item>s
formed at that level) and then increments a private counter
keeping track of how many errors were detected at that level
in the current run (and if the number of detected errors at
that level exceeds a certain limit then the program is
stopped right there by executing a STOP-statement).

In the same spirit, the controller 'executes' an
<erroneous-stmt> by setting up an error-flag in the lab
which causes the processing in the lab to stop. The user
interface continues its job so that the user may know how
the rest of the input is going to be accepted.

This scheme of treating the errors by associating a
separate "meaning" to them has resulted in a very simple,
clean, and modular design for the input interface. The
interface does not panic or get off-balance because of any
simple input mistakes but goes on performing its job in a
smooth manner.

{There are a few small deviations from the above design
in the actual code because of the way it was first written.}

(see fig. 5). The first three levels are the recogni
tion and formation levels for (1) card to characters,
(2) chars to lex-tokens, (3) lex-tokens to stmts; and
the forth level is the interpretation level for (4)
stmts to action

18

Chapter 3 Miscellanea

3.1. Validity of the Simulation

The validity of the results obtained in the simulator
is discussed in the papers given in References {section
'Usage' }.

3.2. Usage of the Program

At present the program is still being expanded, and
hence it is mostly being used by a small group within
University of California at Berkeley, on the CDC 6400 com
puter with the CALIDOSCOPE operating system of the
University's Computer Center.

I*.?.'! Computer Time and Memory Requirements

An Average run of the
sequences for two chips costs
mal CJ*) priority, and approx
deferred ('D') priority (CPU t
if the diffusion machine is us
30 seconds of the CPU time
priority. The Program require
(in octal = 37838 in decimal)
to load and a little less than
detailed statistics of the pro

exposure

about $ 2.0
imately $ 1.
ime approx.
ed then it t

and costs ab

s slightly
words (60 bi
that to exe

gram size se

and dev

to 2.5 at

0 to $
4-7 second
akes about

out 3 doll
less than

ts each) o
cute. For

e appendix

elopment
the nor-

1.50 at

s). But

25 to

ars at D

112000

f memory
a more

1A.

The memory and time requirements should get reduced by
using some manual optimizing in the source code, and in par
ticular the time requirements should get reduced signifi
cantly by rewriting some critical sections in the program
and using an optimizing compiler like FTN, or RUNW.

3.2.2 The Programming Language Used

The program is written in ANSI Standard FORTRAN [see
References] to be easily transportable to other machines.
(The few, very small deviations from this standard are
listed in the 'Implementation Documentation' (Parts 2, and
3), and should get removed soon.)

3.3.' Management of the Program Code

The source code was entered on the UNIX interactive
Operating System on the PDP 11/70 computer at the Computer
Center, UCB. The hierarchical directory structure of UNIX
is used to store the various modules of the source code kept

19

m separate files. The fort compiler on UNIX for standard
Fortran was used to detect simple syntax errors in the
source code when newly entered. Then the code was sent on
the •rcslink' to CDC 6400. There it was first checked by
using the 'AID' compiler and then with 'RUN'. The RUN-
compiled object code is kept (modularly) on the 'Permanent
Files' of 6400, and loaded from them for each run.

No memory overlaying is done for loading and executing
the program.

After the program code settles down sufficiently, an
optimized object code kept in a single permanent file for
fast loading and execution should cut down the usage cost
even further.

There are plans to put this program on some of the new
minicomputers for wider usage.

3.4. Graphical Output Option

For human engineering reasons, some of the output, like
the etch-contours, is plotted out on the printer output,
rather than just printing the co-ordinates numerically. But
since the precision of a character-positioned printer-plot
is not very high, an input selectable option is provided if
more accurate plots are desired. Under this option, a set
of cards with the co-ordinates of the points on the curve
and some other information relevant for the plot is punched
out on the 6400. Then a precise plot is obtained from these
numbers using a digital plotter driven by a desk calculator
interfaced with a card reader.

{Actually such storing of information on an intermedi
ate output file for postprocessing by a different program is
a generalization of the same simple idea (as mentioned in
sec 2.2.2) of outputting the state-variables of the program
for later use by the simulator program itself for a con
tinuation run.}

3.5. Some History of the Program

1-1-1 Contributions to the Program

This program is one part of the work being done at UCB
in the field of semiconductor processing. The original idea
to have a such a user-oriented, unified simulator program
for photolithography is due to Prof. Andrew R. Neureuther,
and Prof. William G. Oldham (spring 1977). After starting
in July 1977, the first complete version was ready on
December 31, 1977 (10 p.m.). Before that, isolated routines
to simulate the exposure and etching were written by Dill

20

and coworkers [See References : July 1975], Neureuther and
coworkers ^^976], and by Jewett and coworkers [June 1977].
Now the^p IVave'been adapted for use in this program by
Michael O'Toole. Mike has extensively modified the core
routines (the lab) , added some more to handle the optical
phenomena based on models of his own, and also various plot
ting routines to generate a desirable graphical output. The
syntax of the User Interface was designed by Prof. Oldham,
and so also was the diffusion program. The overall organi
zation of this program and its data-structure are due to
Sharad N. Nandgaonkar. And also the • User Interface was
written by him.

3.5.2 Documentation of the Program

The documentaion of the program, in its basic details,
was sketched out as the program was developed but was put in
this form only when writing this report. Putting it in a
final form should have been done along with the writing of
the program code.

The editing and document preparation facilities avail
able on UNIX were a great help in assembling it in this
final form.

Cox y<g cM oV>_s fcro secH'T* 3 •5 • J. -

I yv< fl"aJ H is. fcov^ •

po.b!."sv*eel

2) fur* I-*-. &* o- o i±- rrr o;,) p'• "c* A-' or r <*/ <* r by

21

Appendix 1A

Some Statistics on the Program Size

The Program is considered to be made up of the parts :
interface, and core (= the lab routines to simulate the
machines). Hence the size of the program is given decom
posed as

sizeof[program = interface {= (lex + parser + prpr
+ <ex-stmt-subr>s}

+ core {= (lab) }

where prpr = the prettyprinter for the statements, and
♦<ex-stmt-subr>' is used to denote the subroutines in the
user interface that 'execute' statements, along with the top
level controller (but not including the machines in the core
of the program).

{Note : The program has not settled down fully and hence
some of the numbers are not final. Also the numbers are
quite accurate for the current status (June 1978) of the
program, though not exact, so the results shown for addition
may differ slightly from the arithmetic sum.}

VA.J_. Source Code Size

The source code size is given as number of lines (=
cards) for the routines. The numbers in parentheses are for
the code without the comment cards, and are estimates that
should be accurate to within 3 to 8 %. The source code is
kept in UNIX files.

IA*1*1 For the Interface

Lex = 356 (190)
Parser = 360 (500)
Prpr = 265 (200)
<ex-stmt-subr#>s=635 (350)

Hence total size for the input interface = Total(sl)
= 2116 (1240) lines

J_A.J_.2 For the Core of the Program

mac 1 = 500 (250)
mac 2, 3, and 4= 1000 (925)
mac 5 (diffus) = 150 (75)

22

23

Hence total size for the lab = total2
= 1650 (1250) lines
= total size for the core of the program
= total(sC)

IA-1-1 I°tal Program

Hence the size for the total program
= total(sP) = total(sC) + total(sl)
= 2116 (1240) + 1650 (1250)
= 3766 (2490) lines

J_A.2. Object Code Size

The size for the RUN-compiled object code is given here
in terms of the memory words (60 bit each) for the CDC 6400
computer. A suffix "B" following a number tells that the
number is in octal (i.e. base 8), all other numbers are
represented in the usual decimal system.

Obviously, like the source code these are not the final
sizes and not exact. Moreover, a couple of routines get
duplicated under different names in the compiled code
because of the way the program was developed. Hence the
total size is slightly larger than what is really necessary.

object code = Data {global data (in labelled COMMON blocks)
+ The BLANK COMMON block}
+ Instructions { For the program code +

for the standard FORTRAN 4
subroutine library, and the
system routines, etc.}

_U.2.J[For the Data-Structure

1A.2.1.1 Labelled COMMON Blocks

The global data kept in labelled COMMON blocks (about
33 of them) stores the variables used from more than one
routine.

Lex = 420 B = 272 words
Parser = 41 B =33 words
Prpr = 0 B = 0 words
<ex-stmt-subr>s= 0B = 0 words

Hence total size of the data in the input interface is
= 461 B = 305 words

Plus the "state-variables" of the machines and com
ponents in the lab take up 10177 B = 4223 words. Out of
which "COMMON /EXPTBL/ EXP0S(21), RMZDOS(51,21)" for the

output of machine2 takes 2104 B = 1092 words, and "COMMON
/MVSPOS/ RMZD0S(52,52)" for the output of machine3 takes
5220 B = 2704 words. So the rest take up only 653 B = 427
words.

Hence total number of words used in labelled COMMON
blocks is : Interface + Lab = 461 B (=305) + 10177 B (=4223)
= 10660 B (=4528) words.

1A.2.U2 Blank COMMON Block

The Blank COMMON Block is used for temporary storage of
big character arrays for plotting the various curves in the
printer output. Its size is 30605 B = 12677 words.

Hence total number of storage used for data in -£=aks£is£
COMMON blocks is 41465 B = 17205 words.

1A*2»2 Instructions

IA'2.2.1^ For the program code

Lex :

Parser :

Prpr :

1214 B =

2040 B =

1504 B =

652
1056
834

subtotal = 5040 B = 2592 words

Plus the <ex-stmt-subr>s take 1453 B = 311 words.

Hence the total instructions in the User Interface take
6513 B = 3403 words of memory.

The Machines in the lab take :
mad = horiz. image = 1537 B = 863
mac2 = std. bleach = 4751 B = 2537
mac3 = actual bleach= 631 B = 409
mac4 = etching = 4641 B = 2465
mac5 = diffusion = 366 B = 246

subtotal for the 5 machines = 14570 B = 6520

Hence, {User interface} + {machines}
= {1453 B (=811)} + {14570 B (=6520)}
= 16243 B (= 7331) words

Further, program plpsp, and subroutine outitl take 4457 B =
2351 words (this is because of the buffer for tape21 - which
was intended for use with the CALCOMP). So the total is

24

22722 B = 9682 words.

lA-£-£-l EPJI the System

The 100 B = 64 words in low core are used by the sys
tem, and the subroutines from the standard FORTRAN 4
library, and the operating system take up another 6400 B =
3323 words. Hence, together they take 6500 B = 3392 words.

Thus the total memory requirement for the instruction part
is :

22722 B (= 9682) + 6500 B (= 3392)
= 31422 B (= 13074) words.

Hence the total memory requirement for running the program
is

41465 B (= 17205) + 31422 B (= 13074)
= jm&? B (= 30279) words

TilO-T

Actually, some routines no longer used in the program but
still present in the object files etc. make the memory
requirement to be somewhat larger than the above, at
present.

The program requires, at present, 103053 B (= 34347)
words to load (the loader sits in the blank COMMON area
while loading), and 111425 B (= 36653) words to execute.

25

References

Standard FORTRAN

1. FORTRAN vs Basic FORTRAN (FORTRAN IV vs FORTRAN II) -
Communications of the ACM, v. 7, no. 10, Oct 1964, pp
591-625.
{This was the one that was adhered to}

2. "Clarification of FORTRAN Standard - Second Report",
CACM, v. 14, no. 10, Oct 1971, pp 628-642.
{This gives references to other relevant documents}

Photoresists, Optical Models, etc.

1. F.H.. Dill, A.R. Neureuther, J.A. Tuttle, and E.J.
Walker, "Modelling Projection Printing of Positive Pho
toresists", IEEE Transc. on Electron Devices, vol. ED-
22, no. 7, pp~T56-466, juiy 1975.
{And its references}

2. Discussions with

Prof. William G. Oldham,
Prof. Andrew R. Neureuther,

and Michael O'Toole.

Etching Simulation Algorithms

1. R.E. Jewett, P.I. Hagouel, A.R. Neureuther, and T. van
Duzer; "Line Profile Resist Development Simulation Tech
niques", Polymer Engineering and Science, June 1977,
vol. 17, no. 6, pp 381-384

2. A.R. Neureuther, R.E. Jewett, P.I. Hagouel, T. van
Duzer; "Surface-Etching Simulation and Applications in
IC Processing", Proceedings of the Kodak Microelectron
ics Seminar, 1976, pp 81-91

Design Philosophy

1. Bernard P. Zeigler, "Theory of Modelling and Simulation"
(A Wiley-Interscience Publication, John Wiley & Sons,
1976) Library of Congress no. QA 76.9C65Z44
{A post facto reference. It presents many ideas, but
was found after the program was already written and
working.}

26

Usag£ of the Program

1. A.R. Neureuther, M. O'Toole, W.G. Oldham, S.N. Nandgaon-
kar; "Use of Simulation to Optimize Projection Printing
Profiles", Meeting of the Electro-Chemical Society of
America, at Seattle, Washington, May 21-26, 1978.

2. W.G. Oldham, S.N. Nandgaonkar, A.R. Neureuther, and M.
O'Toole, "A General Simulator for VLSI Lithography and
Etching Processes, Part I - Application to Projection
Lithography", to be submitted to IEEE Trans, on Elec
tron Devices, VLSI issue.

27

Acknowledgements

I take this opportunity to thank Prof. William G. Old
ham for proposing this project to me. Apart from the finan
cial support, he gave me a chance to design a product using
the principles learned in both Electrical Engineering as
well as in Computer Sciences, something I wanted to do when
looking with awe at the SPICE program, and when musing, as
the Teaching Assistant of EECS 133A (Power Systems Labora
tory) in Winter 1977, about the design of an interactive
program to simulate just one or two electrical machines
(motors and generators) that a student could play with.
Also, his screening out of minor issues made it possible to
get this program up so fast.

Equally grateful am I to Prof. Andrew R. Neureuther for
his support, guidance, and encouragement. (And above all,
he liked the idea first.)

So also I appreciate the help of Michael O'Toole for
patiently adapting his routines to the interface, and for
various other suggestions regarding, and not regarding, the
program.

Many of the concepts that went into this program sug
gested themselves in the various discussions that we have
together.

This work was supported in parts, by grants (NSF)
ENG77-14660 from the National Science Foundation, and other
grants from the Hughes Aircraft Co., Intel Corp., and Sig-
netics Corporation.

28

Part 2

Implementation Documentation for the User Interface

Jun 19 02:13 1978 File docul (= lexdef) Page 1

Implementation of an User Interface

The input to the program is considered to be formed according to a two
level language. The first level will be recognized by a lexical
analyzer, and the second level will be recognized by a parser.
Then a simple statement by statement interpretation will be done of
the input statement stream.

The Lexical Analyzer for the input language is based on the following
grammar.

{The input characters are taken from the
zed by the ANSI Standard FORTRAN, i.e.
following special characters : " ", "+"
"(", ")", "$", "=", "*", and "/". }

character set recogni
A. .Z 0..9 and the

?t i» ti

<end-of-ip_char>
<letter>

<digit>
<sign>
<cont_symb>
<separator>
<start_symb>
<period>

$|{detected
!Z

9

by the eof of input}

= 0 !1 i

= +i-
= /

- *

(!)

30

{In this simple language identifiers and keywords
to be the same at present, i.e. <id> = <kwd> }

are considered

<kwd> := <letter>j<kwd><letter>
<unsigned_int> :
<fractional_part>
<unsigned_real> :

<unsigned number>

<lexical

0 : : =

1

2

<digit>|<unsigned_int><digit>
= <unsigned_int>
<unsigned__int>. j ,<unsigned_int> |

<unsigned__int>.<fractional part>
_ = <unsigned_int>|<unsigned_reaT> |

<separator><unsigned__real>
<number> ::= <sign><unsigned number>
<eof_lex__token> ::= <end-of-Tnput__char>

The numbers at the left of the BNF definition of the first 8 nonterm
inals are their associated ip_char__type (their 'meaning'). And
the only three types of nonterminals that are considered to be
legal <lexical__token>s are

token> {= <lex__token>}
<eof__lex__token> |
<kwd>

<number>

{The numbers on the left tell
have some meaning associated
meaning is as follows :

<eof_...> has no meaning assoc
<kwd> ~ the keyword formed;
<number> ~ the value of the number formed }

their type
with them,

They
and that

with it;

At this stage the lexical analyzer performs an additional function. It

Jun 19 02:13 1978 File docul (= lexdef) Page 2
31

checks whether the <kwd> belongs to a set of reserved words or not. It
filters only the reserved words out to be sent to the parser. And these
<reswd>s are { with their associated values {'rswdvl'}}

<reswd> ::=

1 LAMBDA

2 DOSE

3 TO
4 PROJ

5 CONTACT

6 LINE

7 SPACE

8 LINESPACE
9 ETCHRATE

10 ANALYTIC

11 CURVE

12 DEVTIME

13 RESMODEL
14 RUN

15 LAYERS
16 TRIAL

Now with these <reswd>s {which form a subset of the set of <kwd>s}
the legal input is defined to be {at this lexical analyzer level,
i.e. level 1} :

Legal__input = stream of the legal input lexical tokens
{as a regular expression}
::= <sep>*<lex_token>{<sep>+<lex_token>}*<sep>+<eof_lxtoken>

or rather

<sep>*'{<lex_tokenXsep>+}*{lambda i<lex_token> }<eof__ltoken>
{in somewhat ad hoc notation}
{The <lex_token> in the above means a non<eof_ltoken>.}

Also, for brevity, a physical input card may be considered to be
<start_char>{<lex_token>*}<end-of-card_char>

{Which has some implications on the implementation {e.g. fixed finite
physical length} .}

At present no comments are allowed. But they can be easily introduced
{at various levels {of input}, e.g.

1) after a special character to the end of the physical card
2) as a string of characters enclosed between special character(s)

{3) as a statement of the language }

Also a special symbol to mark the end of an input-statement (optionally)
can be introduced. {The repetition of such symbol generates the
empty sentence which will have to be handled properly}.

The parser will take the stream of legal input <lex_token>s and parse
it to form <statements>s = <stmt>s of the language. That becomes the
second level of the definition of the language.

Jun 19 02:22 1978 File lexvar Page 1 32

^ List of variables in the lexical analyzer (scanner) subprogram.

Common Blocks :

/lexsca/ {For lexical scanning (some variables)}
icsign = input char sign as a value in { +1, -1 }
ricsgn = real form of icsign
jrswdt(<max_length>, <num_of reswd's>)

= jreswdOO, 16)
= reserved words table (16 reswd's, each at most 10

characters long)
kwdarr(<max_length>)

= kwdarr(10) array to form the current keyword as
a lexical token,

nmrswd = the constant <num_of_reswd's>
= 16 {Initialized by a data-initialization-stmt}

/lexsem/ {lexical analysis semantics. This is the only data
communication link between the scanner and the
parser.}

kwdval = keyword value
rnmval = real number value

intval = integer_part value
fraval = fractional_part value
rintvl = real form of intval

lxtkty = lexical token type

/charac/ {character handling functions (the lowest level)
i.e. the physical level.}

iprptr = input physical record pointer (i.e. pointer to the
character in the 80 column card (with 82 column
image) that will be the next input character.)

ipchar = holds the current input character
ictype = tells the type of the character in ipchar

(as associated in the input grammer)
ipcard(80 +2) = ipcard(82) image of the physical input card

/errfla/ {holds various values of error indices}
ierflg = error flag ??
iersvi = (int) error severity indicator
ismesi = (int) sum of the esi's (error severity indices)

/endofx/ {logical flags for end-of-x}
noipdk = end of input physical deck
noipr = end of input physical record
noilr = end of input logical record
noicst = end of input character stream
nologi = end of logical input

/prtime/ {for cpu time used etc. not implemented,
program day, date, time, timer etc.}

Local variables and temporary variables

33

Jun 19 02:22 1978 File lexvar Page 2

tmpsgn
idigvl
tdigvl
ntenpr
itempl

temp_var for sign (multiplier +1.0, or -1.0) in subr glexem
input digit value in subrs fumint, and frmfra
real(idigvl) in frmfra
negative power of ten (in frmfra)
temp index for do-loop in subr frmkwd (2)
temp val of funtction (in function idgval) (11)
for implied do on read and write in subr gcard

Range of variables and their meaning for specific values
{i.e. some of them should be declared as constants of the program
used for symbolic reference with initialization by DATA stmt.}

and

/lexsca/.ictype = input character type
= 0 $ end of logical i/p string
= 1 letter

= 2 digit

= 3 sign
= 4 period

= 5 separator
= 6 start symbol (*)
= 7 continuation symbol (/)

(-1 < ictype < 8 esp

symbol

-1 => not from

set. (i
the above

e. "="))

/lexsem/.lxtkty = lex_token type
= 0 <end-of-input_lex_token>
= 1 reserved word (kwd)
= 2 number

-1 <invalid lex-token> = <erroneous lex-token>

kwdval = kwd (reswd) value

1 LAMBDA 2 DOSE 3 TO

4 PROJ 5 CONTACT 6 LINE

7 SPACE 8 LINESPACE 9 ETCHRATE

10 ANALYTIC 11 CURVE 12 DEVTIME

13 RESMODEL 14 RUN 15 LAYERS

16 TRIAL and -1 for unknown kwd (<invalid kwd

Subroutines and their arguments, call structure (as a tree (notation
for writing down is by indentation , and arrows)), and naming
conventions etc.

Subroutine names

gxxxxx => get<~xxxxx>
fxxxxx => fetch<~xxxxx>
frmxxx => form<~xxx>

Jun 19 02:29 1978 File lexfea Page 1 34

Some features of the scanner

1) Machine Dependent Features
1) common /prtime/

and related features {CAL RUN FORTRAN p11-6}
2) program statement with tape declarations etc.
3) eof(input)

esp. reading a blank card at the end of input which appears
in the output (but the program is not dependent on it).

4) function ipchty comparing hollerith data will have to be
reduced to a giant .or. stmt.

5) all character data constants used in the expressions will
have to be replaced by variable(constant)s initialized by
a DATA stmt.

6) seems to assume at least one input card as input,
(see subr gcard) (verify carefully) (March 9, 1978)

2) Improvements possible
1) In recognizing numbers
2) Scale factors for numbers
3) for scanning errors locating the position of the error

by an up_arrow.
4) include comment stmt in the language
5) numbers should be recognized as real numbers and integers.

(and used as such in the parser input grammer).

3) Redundant Features
in handling some errors which can never arise,
in subr glexem ictype = 5 is not possible
in subr frmint first char will be a digit (always

etc .

4) Side-effects, bugs, etc.
Two kwds must be separated by at least one separator
123.456.789 will be recognized as two numbers 123.456 and

.789

E--i Xe Pgygfef 35

Defining the Syntax and Semantics for the Parser

The parser input language is defined to be a simple
type 3 (regular) language (so is recognizable by a finite
state machine). It's semantics is based on the intended
meaning of the statement by the user. This input language
is defined over all possible combinations of the lexical
tokens obtained from the lexical analyzer.

The definitions of syntax and semantics are given
below. In the syntax definition upper case letters are used
for the keyowrds in the input and lower case letters are
used for other tokens (i.e. numbers, <end of input char
stream> lexical token, and the <error lex-token>).

In the definitions the <erroneous-stmt> is not expli
citly shown. An <error lex-token> occurring in a statement,
or any arrangement of lexical-tokens other than the ones
shown below is considered to be generating the <erroneous-
stmt>. Erroneous-stmts are handled by the error-handling
routine in the parser and another routine which skips over
the current <erroneous-stmt> till the next sensible begin
ning for a statement (i.e. a proper keyword or the <end of
input char stream> lexical token is found.

The semantics, i.e. the meaning, of all other state
ments is given immediately after the syntax definition in
terms of the parameters in the statement. The various dif
ferent keywords that start a statement are considered to
form a different type of input statement (totally there are
11 different types, numbered from 0 to 10 (both inclusive)).
And within a particular type of an input statement the vari
ous different forms allowed are considered to be forming
different kinds within that type of input statement.

To summarize, the <input-stmt>s are considered to have
different 'type's (as shown below by the integer value to
the left of the syntax definition) of input statements, and
within each type are considered various different 'kind's of
input statements possible within that type (indicated in
their name in the definitions below).

* # *

{All numbers are considered to be real, unless explicitly
mentioned to be integers}

-1) <erroneous-stmt> (= <invalid-stmt>)

0) <end-stmt> ::= <end of input char stream lex-token>

36

This statement informs the end of input statements to be
processed, so various things to be done at the end of the
?-un can be done.

<lambda-stmt kind 1> ::= LAMBDA number

this tells that there is only one wavelength present in the
input spectrum, and it is equal to the value of number in
microns.

<lambda-stmt kind 2> ::= LAMBDA numberl number2
i <lambda-stmt kind 2> number number

where the number pairs are the wavelength followed by its
relative intensity. The wavelength (numberl) is in microns
and the relative intensities are all internally normalized by
the program to get a sum of 1.0 . Upto 10 such pairs are
allowed.

1) <lambda-stmt> ::= <lambda-stmt kind 1>
! <lambda-stmt kind 2>

with their meanings as defined above.

<dose-stmt kind 1> : := DOSE numberl

where numberl is the total dose at the main wavelength in
units of (mJ/(sq.cm.)).

<dose-stmt kind 2> ::= DOSE numberl TO number2 number3
where numberl is as above and number2 is also another dose
specification {numberl < number2}, and number3 is an integer
which tells how many values of dose are to be selected in the
interval [number 1,number2]. These values are selected to cover
the interval uniformly.

2) <exposure-stmt> ::= <dose-stmt kind 1> i <dose-stmt kind 2>
with the meanings above for the right hand side components.
{This is the •<dose-stmt>'}

<proj-stmt kind 1> ::= PROJ numberl
which tells that the imaging system is a projection type
imaging system, with its Numerical Aperture = numberl.

<proj-stmt kind 2> ::= <proj-stmt kind 1> number2
where the meaning of <•> is as above and moreover the
wavelength at which this value of numberl holds is given
by number2 (in microns).

<proj-stmt kind 3> ::= <proj-stmt kind 2> number3 number4
| <proj-stmt kind 3> number

where the number3 is an integer telling that that many
values for the MTF weights are going to follow number4
which is the cutoff frequency of that MTF. So the values
of frequencies at which those values of MTF-weights holds
are the number3 values spread at equal intervals between

37

the zero (spatial) frequency to the cutoff freq. number4
(both inclusive).

<contact-stmt kind 1> ::= CONTACT numberl

where this tells that the imaging system is a contact type
imaging system with the separation between chip and mask
being numberl microns.

<contact-stmt kind 2> ::= <contact-stmt kind 1> number2 number3
where this tells that the contact-type imaging system
specified as before has an additional specifications that
the parameters C1 and C2 (see part 3 of this report) are
given by number2 and number3 resp.

<system-stmt kind 1> ::=
<system-stmt kind 2> ::=
<system-stmt kind 3> ::=
<system-stmt kind 4> ::=
<system-stmt kind 5> ::=

with meanings as above

<proj-stmt kind 1>
<proj-stmt kind 2>
<proj-stmt kind 3>
<contact-stmt kind

<contact-stmt kind

3) <system-stmt> ::= <system-stmt kind 1>
<system-stmt kind 2>
<system-stmt kind 3>
<system-stmt kind 4>
<system-stmt kind 5>

with meanings as above.

1>

1>

<mask-stmt kind 1> ::= LINE number

which tells that the mask is a single line with width
equal to number microns (A line is a fully opaque region)

<mask-stmt kind 2>

which tells that

equal to number microns (space = fully transparent region)

<mask-stmt kind 3> ::= LINESPACE numberl number2
which tells that the mask is a periodic pattern of lines and
spaces with linewidth = numberl microns, and spacewidth =
number2 microns.

:= SPACE number

the mask is a single space with width

<object-stmt kind 1>
<object-stmt kind 2>
<object-stmt kind 3>

= <mask-stmt kind 1>

= <mask-stmt kind 2>

= <mask-stmt kind 3>
with meanings as above.

4) <object-stmt> ::= <object-stmt kind 1>
! <object-stmt kind 2>
! <object-stmt kind 3>

with their meanings as above.

<er-analytic stmt> ::= ETCHRATE ANALYTIC numberl number2 number3
where (er = etchrate), numberl, number2, and number3 are the

38

E1, E2, and E3 parameters that specify the etchrate as an
analytic function of the M-parameter (see part 3 of this report)

<er-curve stmt> ::= ETCHRATE CURVE numberl
i <er-curve stmt> number

which tells that the numbers following the keyword CURVE are
to be interpreted as follows : numberl = the number of
number's that are going to follow in that statement. And the
following number's are the values of the etchrate as a function
of M-value at the equispaced numberl points (hence (numberl - 1)
divisions) on the closed interval on M = [0,1]. The etchrate
is specified in units of Angstroms/sec.

<devmodel-stmt kind 1> ::= <er-analytic stmt>
<devmodel-stmt kind 2> ::= <er-curve stmt>

with meaning as above.

5) <devmodel-stmt> ::= <devmodel-stmt kind 1>
<devmodel-stmt kind 2>

with meanings as above. So a <devmodel-stmt> specifies the
development model to be used in the etching machine.

<devtime-stmt kind 1> ::= DEVTIME numberl
which tells that the chip is to be developed for numberl
seconds with final etch-contours output at the end of the
development (i.e. the etching).

<devtime-stmt kind 2> ::= DEVTIME numberl TO number2 number3
which tells that the chip is to be developed for number2
seconds, with totally number3 (an integer) outputs, at
equispaced points from numberl to number2 (both inclusive),
(numberl < number2)

6) <devtime-stmt> ::= <devtime-stmt kind 1>
<devtime-stmt kinf 2>

with their meanings as above.

7) <resmodel-stmt> ::= RESMODEL numberl number2 number3 number4 number5
number6 number7

which specifies the photo-resist model to be used.
The numbers are interpreted as follows :
numberl = the wavelength at which this model holds (intended

for use when multiple wavelength case can be handled,
at present its value is ignored - but a number must
be present at this position)

number2 = The A parameter of the resist (see part 3)
number3 = The B parameter of the resist (see part 3)
number4 = The C parameter of the resist (see part 3)
number5 = The real part of the index of refraction of the

photo-resist at the wavelength of numberl microns.
number6 = The imaginary part of the index of refraction of

the photoresist to go with number5. At present
it's value is ignored; the imaginary component
of the index of refraction is found from the

39

expression k = the imag. part = -(A+3)(lambda)/(4 pi)
where lambda is the wavelength at which A, and B
are specified, and pi = 3.14159265... .

number7 = the thickness of the photo-resist film on the chip.

8) <run-stmt> ::= RUN

I RUN numberl
which tells to run the machine whose number is equal to numberl
(an integer) if numberl is in the interval [1,4]. If numberl
is equal to 0 then the machines 1, 2, 3, and 4 are run in that
sequence. If numberl is not present - as in the first variant
of this stmt - then it is considered to be equal to 0 and hence
the first variant is converted to the second variant internally.

9) <layers-stmt> ::= LAYERS numberl number2
! <layers-stmt> number3 number4 number5

where numberl tells the real part of the refractive index of
the substrate of the chip, and number2 tells the imag. part of
that index (The substrate is considered to be essentially
infinitely thick) . The following numbers tell information
about the other layers present on the chip (only a maximum
of 2 such layers (e.g. for oxide and/or nitride) is allowed)
in the following fashion :

number3 = real part of index of refraction for that layer
number4 r imag. part of the refractive index for it
number5 = the thickness of the layer.

The layer closest to the substrate is specified first, etc.
The photoresist layer is not considered to be a part of these
layers (it is specified in the resmodel-stmt as shown above).

10) <trial-stmt> ::= TRIAL numberl
i <trial-stmt> number

This stmt gives the numbers to the user-defined subr 'extria'
to handle them as it wishes• The intent of this stmt is to

be able to introduce new things in the program very conveniently
on a trial basis. Its use is limited only by the user's
ingenuity in writing the extria subr (etc).

Jun 15 14:31 1978 File p2/parvar Page 1
40

The Data-Structure for the Parser

The only data communication between the lexical-analyzer and the
parser occurs through the lexical analyzer COMMON block

common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, Ixtkty

Apart from this only the error flag that the lex sets on detecting an
error can affect the parser (because of lex). The block /lexsem/ is
explained in the lexical analyzer data structure (file docul (=
•lexdef)) .

The data structure used by the parser is as follows.

common /parsem/

istmty =

{Parser semantics. This is
lex. This block is for the

between the parser and the
prettyprinter) .}
(int) statement type {from the stmt-kwd}. Its values
indicate

similar to /lexsem/ for

communication of data

interpreter (and the

{-2 stmt synthesizing
-1 <erroneous-stmt>

0 <end-stmt>

1 <lambda-stmt>

2 <exposure-stmt>
3 <system-stmt>
4 <object-stmt>
5 <devmodel-stmt>

6 <devtime-stmt>

7 <resmodel-stmt>
8 <run-stmt>
9 <layers-stmt>

10 <trial-stmt>

(int) statement kind {i.
statement type} .

started (in subr gstmt)}
(= <invalid-stmt>)

istknd =

above

different kinds i.e. only o
stnmls(25) = list of numbers in the

(stmt.number.list)
nminst = pointer to the last number

the total number of numbers

nmpntr = number pointer (tells which
is considering at present)

(If

which flavour of the

the stmt formed has no

ne kind then 0)
statement

in stnmls { hence =
in the statement }
number the parser is

common /endfl2/ {all logical flags}
nostmt = end of stmt stream (flag for use by

= .TRUE, if <end-stmt> is executed,
lxused = if the current lexeme was 'used up'

else .FALSE.

the controller)
.FALSE, otherwise

then .TRUE.

common /errfl2/ {error flags}
lparer = (logical) parsing error (syntax not according to

the parser-expected ('good') grammar)
legstm = if the stmt (being) formed and (to be) returned

41

Jun 15 14:31 1978 File p2/parvar Page 2

by gstmt is 'legal' then .TRUE. ,
.FALSE, otherwise

Names of subroutines, and variables etc.

subr fsxxxx = subr to form-stmt-xxxx

Jun 12 03:52 1978 File p2/prprdocu Page 1

The prettyprinter for the statements is written to output the meanini
of the input statements in an expanded form, the way it is going to
be understood by the <ex-stmt-subr>s. It does not need any global
data-structure for itself. It gets the input stmt from the parser
in the COMMON block /parsem/.

A machine readable output can be outputted (e.g. on cards for 6400,
or just the normal output for use with Unix) which can be read
back as input and is nicely formatted, but the simplicity of the
input does not make this worthwhile.

Jun 19 02:36 1978 File mOlvar Page 1

The variables associated with the operation of machine 1 (the
horizontal imaging machine) are :

Common Blocks :

For getting the information from the input statements to the machine :

{All lengths are in microns.}
{CONSTANTS in each common block are in upper-case letters}
{default values of all variables are as in subr inirnOI}

/errlab/ {For any error in the 'lab'}
lnoerr = (logical) no error

when true => no error detected upto now

/math/ {Mathematical constants}
PI = pi = 3.14159265358979...
T2BYPI = 2/pi

/spectr/ {Illumination spectrum (in the normalized sense). For
each lambda-stmt and mc1 (= m01). Dose-stmt is a
separate one.}

MXNLMD = max number of lambdas (i.e. optical wavelengths) = 5
nmlmbd = actual no. of wavelengths
rlambd(MXNLMD) = rlambd(5) = the wavelengths
relint(MXNLMD) = relint(5) = relative intensity at the

corresponding wavelengths (so that their sum = 1.0)

/objmsk/ {The object (= mask) is described here}
{For object-stmt, and md (=m01)}

MLINE = mask is a line = 1
MSPACE = mask is a space = 2
MLNSPA = mask is a periodic pattern of line and space (i.e. a

grating) = 3
maskty = mask type (from the set {MLINE, MSPACE, MLNSPA})
rlw = (real var) line width
rsw = (real var) space width

/imgsys/ {The opto-mechanical image-forming system is described
here}

{For system-stmt and md (=m01)}
{Associated with and continued into /img2pr/, and /img3co/}

IMSPRO = 1 => projection type system
IMSCON = 2 => contact-type system
imsyty = (actual) imaging system type (from the set {IMSPRO, IMSCON}

/img2pr/ {For projection type ststem}
rna(MXNLMD, 2) = rna(5, 2) = NA for each wavelength (~,1),

and the wavelength (~,2).
{Note that this stores wavelengths}

Jun 19 02:36 1978 File m01var Page 2
43

MXNWTF = max no. of mtf weight factors = 21
{From zero frequency to a max freq}

nmwtfc(MXNLMD) = nmwtfc(5) = number of weight factors for
that lambda

{ 0 => none, so 0 => diffraction limited mtf }
rmtfwt(MXNLMD, MXNWTF) = rmtfwt(5, 21) = the mtf weight factors

for equispaced vn/vc at a given wavelength (upto the
spatial frequency specified in tospfr(i {= lambda-
index}) .

tospfr(MXNLMD) = tospfr(5) = to spatial frequency at that
wavelength (i.e. at that lambda, there are nmwtfc
weight factors given upto this spatial frequency,
including the two end points, and at equispaced
intervals)

{ at present this is in /imgsys/~ because it does
not fit in a single card (line) in the common stmt
for /img2pr/~}

/img3co/ {For contact type system}
sepmtc = mask to chip separation {in microns, as specified}

d = c1 { Of the formula for intensity as I = }
{ = 10 * d * exp(-c2 * x * sqrt(2/(lambda*sepmtc))}

c2 = c2 { in the formula above }

Jun 19 02:42 1978 File mOlvarb Page 1 ^

More variables for machine 1.

Common Blocks :

Variables internal to the system (lab) machines
{At present horizontal image = sum of all horizontal images at
all wavelengths * their relative intensities }

Spatial frequency components of mask and image are specified
by the parameters { relevant only for a projection type system }

frequency = {f0=0.0, f1, f2, ..., fn} = {fi} = {f[i]}
amplitude = {a0, a1, a2, ..., an} = {ai} = {a[i]}
{ phase is zero, (even symmetry of the mask)

i.e. all are cosine functions}
so that i = component number

={0,1,2,..., n}
'Normalized' means

frequencies converted to vn/vc = fn/fc = fn/vc
where vc is the cutoff frequency (spatial) at that
lambda for the lens,

amplitudes (, and phases) same as before.

/fouser/ {Fourier series parameters of the mask and image, and
associated parameters of tha lens.}

{continued into /fouse2/}
MXNMFR = max number of spatial frequency components (of the

mask, and image) = cardinality of i = 11 (so that
i = 0, 1, 2, ..., 10)

nmfrcm = number of spatial freq components (of mask, and image)
hence max value = MXNMFR - 1
{For each wavelength the calculations go on independ
ently. Hence this need not be an array indexed on
the wavelength}

fsfrqa(MXNMFR) = fsfrqa(11) = Fourier series frequencies
actual {for both mask and image}

fsfrqn(MXNMFR) = fsfrqn(11) = Fourier series frequencies
normalized {for both mask and image}

/fouse2/ {continuation of /fouser/}
fsamsk(MXNMFR) = fsamsk(11) = fs amplitudes for the mask
fsaimg(MXNMFR) = fsaimg(11) = fs amplitudes for the image

{fsaimg(.) is not used at all in this version. It is
implicitly calculated as local scalar variable}

The computation for each wavelength goes on separately and the results
are additively accumulated in the output (horint(.)). That gives the
proper output (for this version).

/lenspa/ {Lens parameters (for projection type systems)}
vc = the cutoff frequency of the lens (mtf) equation at

that lambda

Jun 19 02:42 1978 File mOlvarb Page 2

dlmtfnC MXNMFR) = dlmtfn(11) = diffraction limited mtf
at the (normalized) frequencies (vn/vc)

actmtf(MXNMFR) r actmtf(11) = actual mtf (at the normalized
or actual frequency components)

Output of machine 1

45

/horimg/ {Horizontal image}
del tax = (xgriun =) x grid unit
MXNGDV = max number of grid divisions = 50
MXNGPT = max number of grid points = (MXNGDV + 1) = 51
nmgrdv = actual number of grid divisions (= 40 at present)

{should be made user specifiable}
nmhpts = actual number of horizontal grid points = nmgrdv + 1

{changed nmhpts = nmgrdv = 40 (because of the new
convention that the grid points are at the midpoints
of the grid divisions rather than the endpoints of
the divisions)}

horint(MXNGPT) = horint(51) = horizontal intensity at the
grid points {i.e. at deltax * 'i'}

/ipstml/ {input state (relevant parts) information of machine 1
preserved at its output for keeping track of what
input does the output correspond to.}

{Hence information from lambda-stmt, system-stmt, and
object-stmt should be stored here}

[not implemented at present]
{From lambda-stmt}

{copy of ~ = c~ }
ncmlmd <- /spectr/.nmlmbd
crlmbd(10) <- / /.rlambd(MXNLMD)
crelin(10) <- / /.relint(MXNLMD)

{From object-stmt}
ncmskt <- /objmsk/.maskty
crlw <- / /.rlw
crsw <- / /.rsw

{From system-stmt}
{What other things are wanted here?}

46

Jun 19 02:50 1978 File mOlvarc Page 1

Local variables (temporary variables) for the horizontal image machine
i.e. machine 1 (= md = m01)

subr exlmbd

sumtmp = ...

Jun 19 02:55 1978 File errmesmOl Page 1

Error Message Summary for machined)

In case of an error detected by machine 1 the error message will be

_+- ERROR IN MACHINEO) =nnnnn

where the nnnnn is a decimal number. Its meaning is as follows :

10 (in function dmtfna(vnbyvc)) vnbyvc > 1.0

20 (in function dmtfna(vnbyvc)) vnbyvc < -0.00001

30 (in subroutine exrun) parameter to the run-stmt was out of the
legal range for it.

40 (in subroutine runmd) imsyty != imgpro, or imgcon
i.e. neither a projection type system nor a contact type system
(this error is not user-generatable)

50 (in subroutine runmd) mask is neither line, nor space, nor
linespace

60 (in subroutine runmd) like 10 (for contact type system)

70 (in subroutine exsyst) number of weight factors (= itemp2) is
outside the legal range of 0 < itemp2 <= mxnwtf

Jun 19 01:58 1978 File p2/data234_org Page 1

Documentation of the data-structure for interfacing machines 2, 3,
and 4 to the controller (through the <ex-stmt-subr>s) .

All the relevant data is kept in labelled COMMON blocks as folio

Exposure-stmt -> Exposure information

Kachine(3)

/exposu/

mxnmex

nmexpo

ncouex

dose 1

dose2

{Holds exposure information provided by the
user in the exposure stmt}

max number of exposure steps = 11
number of exposures (exposure steps)
number count of exposures finished by now
initial dose(for the first step)
final dose (for the last step)

{dosel, and dose2 are 'dial-setting's, dosel < dose2}
dose = actual dose 'already' given at present {i.e. the

current reading on the dial}
dosest = dose step = exposure step = (dose2 - dose 1)/(nmexpo

ws

47

- 1)

subr exexpo makes it possible to treat both kinds of <exposure-stmt>s
uniformly.
local vars for subr exexpo

temp = real(nmexpo)
and real(nmexpo) - 1.0

subr inim

{Contains all the common blocks for machines 2, 3, and 4 required
to communicate with the controller}

local vars

temp - for conversion from integer to real

Variables for subr exdvtm
devtime (etchtime) stmt ->
COMMON Blocks

dial setting in machine(4)

/etchtm/
mxneht

nmehtm

ncoeht

ehtml

ehtm2

ehtm

ehtmst

{etchtime (r devtime) information}
max number of etch-time steps = 11
number of etching steps (< mxneht)
(number) counter for etch steps
{ 0 <= ncoeht < (=) nmehtm }
initial etchtime (for the first step)
final etchtime (for the last step)
actual etchtime 'already' given at present
etchtime step = (ehtm2 - ehtml)/(nmehtm - 1)

(Like subr exexpo) subr exdvtm makes it possible to treat both the
kinds of the etch-time-stmts (=devtime-stmts) uniformly (in terms
a physical machine dial-setting).

/ethpar/ ~ {From Mike}

local var

Jun 19 01:58 1978 File p2/data234_org Page 2 48

temp = real(nmehtm) , and real(nmehtm) - 1.0

Handling the information coming from the resmodel-stmt.

/resmod/ {contains resist model information for bleaching
(and not for etching)}

rslmbd = the wavelength at which the A, B, C parameters, and
refractive index have been specified,

prthic = PR layer thickness
prpara = Photoresist parameter A
prparb = PR parameter B
prparc = PR parameter C

/resmo2/ {Continuation of /resmod/ ~ }
prparn = PR refractive index parameter n (the real part)
prpark = PR refractive index parameter k (the imag. part)

No local (temp) variables in subr exrsmo.

/ViJ per~< I -v J S
subr exlaye

/laystm/ {should put mxnlay, nmlaye etc.}
{not put in. see /chipar/ }

local vars

nlayet = number of layers (temporary)^
ilayer = index on layers, *r.J a'ro » l>o-.(oop >Mex
itempi = do-loop index (counting variable for number of layers)
iwvlen = index on wavelength (at present iwvlen = 1)
iparse = parser index (on parsem(25))

nmstra = number of strata (i.e. substrate, layerl, layer2, and
PRlayer make 3 strata)

= nmfilm = number of films^

For subr exdvmo

devmodel stmt = etchrate stmt

/erpara/ {Devmodel information = etchrate information}
{Etch rate parameters}

kerspe = etchrate specification type = {kerfun, or kercur}
kerfun = (constant) etchrate is specified as an analytic

function = 1
kercur = (constant) etchrate is specified by equidistant

points on a curve
etchel, etche2, etche3 should be in this common block but

at present they are also in Mike's /ethpar/ block.
These are the E1, E2, and E3 parameters for etchrate
analytic specification

/erpar2/ {continuation of /erpara/ }
mxnerd = max num of etchrate curve specifying divisions = 20

Jun 19 01:58 1978 File p2/data234_org Page 3 49

mxnerp = max num of etchrate points = (maxnerd + 1) =21
nerdiv = (actual) number of etchrate divisions
nerpts = (actual) number of etchrate points
etchra(mxnerp) = etchra(21)

= etchrate curve points specified by the user

/ethpar/ {From Mike}

local var it(mje}p1 = parsem(1)

The common block /simpar/ (from Mike) has the 'simulation parameters'
i.e. the discretization parameters

nprlyr, nprpts, nendiv, deltm, deltz
These are the discretization step sizes (variables) (or related to
them) necessary for the purpose of simulating a continuous process
on a digital computer.

The numerical accuracy of simulation (w.r.t. the continuous
model) is dependent on the va(G|])es of these variables, so also the
total computing time (and hence the cost) of the simulation.

Jun 15 14:56 1978 File p2/errmes234 Page 1

Error message numbers from the <ex-stmt-subr>s to indicate
errors in stmts for machines 2, 3, and 4.
(macnum = machine number)

subroutine^macnum, ierrnm)
produces the output.

macnum

ierrnm

= 2

10 the number of layers (=nmlayet) (including the
substrate, but excluding the photoresist layer
does not satisfy the condition

((1 .le. nlayet) .and. (nlayet .le. 3))
{The 3 is mxnlyr - 1}

called from subr exlaye

macnum = 3

ierrnm = 10 number of exposure steps specified in the input
(= nmexpo) is outside the legal range of
2 <= nmexpo <= mxnmex
where mxnmex = 1 1

20 tells that the condition (0.0 <= dosel < dose2) is
not valid in the exposure-stmt.

macnum = 4

ierrnm = 10, 20 are similar to machine3 case but for the etching
machine.

30 error in the input from the parser.
total number of numbers in the stmt is not as said
to be in the input first numerical parameter.

40 number of etchrate curve specification points (nerpts)
is outside the range

((2 .le. nerpts) .and. (nerpts .le. mxnerp))
where mxnerp = 21

50

51

Jun 15 15:01 1978 File p2/progfea1 Page 1

Some, features of the program

Change the RESMODEL stmt (in the next version) to two different
statements so that the geometric information (PR thickness) is
specified in one of them, and the A, B, C, parameters, the
refractive index (only the real part), and the wavelength at
which these values hold are specified in another.

Part 3

Implementation Documentation

for the Machines and Components

Default Values :

The simulation requires a specification of values for
various parameters used in the computation. These values
may be explicitly specified by the user or they may be
implicitly assumed by the program. SAMPLE has a relatively
complete set of default values stored for all the components
used in the computation. If the user respecifies a
parameter-value in the input then the new specified value
supersedes the previous value of that parameter. The
default-values were chosen to be a typical set of values
found in actual processes.

Apart from the above parameter values, SAMPLE also needs
to know various other control options for some actions to be
performed (e.g. output of certain variables, or punching
cards for the plotter etc.). These control switches (flags)
can be set by the user or may remain at tHe default value
(setting) assumed by SAMPLE. The default values for these
were chosen to satisfy the typical minimal need of the user.

Also the default sequence of operations to be simulated
when the user tells to run the machines by a 'RUN1 or 'RUN
0' statement in the input is fixed to be the usual sequence
of machines 1, 2, 3, and 4. i.e. (1) the horizontal image
computation, (2) standard bleaching calculation, (3) actual
bleaching calculation, and then (4) etching computation.

Since all the parameters and control switches are
represented by variables in the program, this default values
specification is done in the initializing subroutines (or
may be done with DATA-statements (in a BLOCK DATA subpro
gram)). The following is a paraphrase of that initializa
tion .

0) Miscellaneous :

The mathematical constant pi = 3.14159265358979 .
The no-error flag /errlab/.lnoerr is set to .true.

J.) The default system configuration, component sizes, and
other values f

1'J.) The Horizontal Image Calculation :

The illumination spectrum :-
Number of wavelengths Tlnaximum = 5, default = 1 .
The wavelength = 0.4047 microns,
with relative intensity = 1.00 (obviously).

The object (mask) :
a linespace pattern with linewidth = spacewidth = 1.0
microns.

53

54

The imaging System :
A projection type system with Numerical Aperture (NA) =
0.125 and maximum number of weight factors for the MTF = 21,
default = 0 (i.e. diffraction limited MTF).

For a contact type system : C1 = 0.25, and C2 = 2.00 .

Discretization for Numerical Calculations :
The maximum number of frequencies to be used in the computa
tion of Fourier components of mask and image = 11 (=
default).

For the horizontal image representation, the x-axis grid
unit = 1.0 microns (this gets superseded in the computa
tions) , maximum number of grid divisions on the x-axis = 50,
and the maximum number of grid points = max. no. of grid
divisions + 1 . Default of the number of grid divisions and
the grid points is 40 (for both).

_K2) The Standard-Bleaching Calculation :

Positive Photoresist (PR) Model :
At wavelength of 0.40TT microns, the parameters of the
resist are A = 1.055 (1/microns), B = 0.094 (1/microns), C =
0.02 (sq.cm./mJ). The refractive index = (n,k) a complex
number = (1.70, -0.02) and the value of k gets superseded by
the value calculated from the Aand B parameters. {/<^ -Cft*gjj_ }

The Chip Configuration :
Maximum number of layers in the chip, including the PR layer
and the substrate, is 4, default = 2 (for the PR and the
substrate only). The PR layer is 0.8 microns thick. The
substrate has (n,k) = (5.613, -0.19).

Discretization parameters :
The number of PR grid divisions in the vertical direction,
z-axis, is = 50 . The no. of grid points = no. of PR divi
sions + 1. The number of Energy divisions r 15, the rela
tive inhibitor concentration M is divided on the basis of
(0.4/(no.of energy divisions -1)) units to have a uniform
coverage of the etch-rates. The grid unit in the z-
direction = PR layer thickness/(no. of PR divisions).

J_«3) Actual Exposure and Bleaching Calculation :
A single exposure (max = 11), with a dose of 50
milliJoules/(sq.cm .) at the mask.

1.4) Etching :
The default etchrate is an analytic fuction of M, with the
parameters E1 = 5.67, E2 = 8.19, E3 = -12.5 . If curve of
rate vs. M is to be specified then the max no. of etch rate
divisions = 20 (for 21 points of M in [0,1]), default = 0 .
The profiles are output 4 times from 20 seconds to 80
seconds.

2) Control switches (for output) :

Most of the relevant intermediate values are always printed
out. But some lengthy output (for arrays) is not printed
out by default. Also, the default option for the punching
of cards for a plotter for the etch profiles is no.

55

Description of Machinel : (Horizontal Image Formation)

Machinel simulates the horizontal image formation on the
resist surface from a given simple geometric pattern on the
mask. The models used to characterize the process of image
formation (which is not a time sequential process) are based
on wave optics, and can be found in various textbooks and
journals (see the References). Only the relevant assump
tions, and final formulae as used in the program are given
here. Also noted, where significant, are the modifications
and approximations of the analytic formulation because of
numerical analysis/calculation considerations and program
time/memory constraints. Finally, the actual FORTRAN source
code for the machine follows. Thus, in a sense, this is the
definition of the models used for the real machine and the

simulated machine.

Model for the process :

Modulation Transfer Function (MTF). The incident radia-
tion is assumed to be fully incoherent. The topmost surface
on the chip (i.e. te upper surface of the photoresist layer)
is assumed to be at the image plane.

The information processing ocurring in the machine is as
follows.

The illumination spectrum is specified by the number of
discrete wavelengths in it and their relative intensities
(sum total of relative intensities = 1.0).

The parameters of the illumination spectrum are :
Wavelengths in microns,
Relative intensity (as fraction of total intensity) at
that wavelength.
The total radiation dose (mJ/(sq.cm.)) at the mask is
not relevant here.

The mask is specified by its linewidth and/or spacewidth in
microns.

Imaging system : Projection Type or Contact Type

For the Projection type imaging system

1) Numerical Aperture, NA
2) MTF for diffraction limited, incoherent, well-
focussed case :

Vc = 2(NA)/(wavelength)
V = a spatial frequency (1/microns) of mask or image

56

s = V/Vc = normalized spatial frequency
MTF(s) = (2/pi)(arccos(s) - s*sqrt(1 - s*s))

3) If the assumptions of incoherence, and well-focussing
do not hold then the MTF can be specified as weight fac
tors by which the above MTF(s) should be multiplied.
These weights are specified at some equispaced points in
the range of s r [0,1], and the program calculates the
weights at intermediate points by linear interpolation
of weight between two neighbouring points, and then mul
tiplies the MTF value calculated from the above formula
by this weight to get (an approximation of) the actual
MTF at that frequency s.

The 1D (spatial) Fourier Transform of the mask multi
plied by the MTF gives the Fourier transform of the image.
For the periodic pattern the Fourier transform becomes the
Forier series, and calculations get simplified. But even
for the single line or single space case, because of the
cutoff frequency of the MTF, the pattern can be approximated
by a periodic pattern of a reasonably long spatial period
since at the higher frequencies the components diminish very
fast in amplitude.

The Fourier series amplitudes and frequencies are found
by the following formulae : (Because of the symmetry of the
pattern around the axes chosen the phase is identically zero
i.e. only cosine components are present)

L = Line width (microns)
S = Space width (microns)
(See Figure 1.)

Ao = (m>

So V = Fourier Series Frequencies are

v0 = °» vn = ITT-S n = 1' 2>'-
Where the last term is the largest term less than the
cutoff frequency Vc of the MTF. The image intensity
distribution along the x-axis is found by

Kx) =A0+ 2Anoos(T^)

Thus the horizontal intensity distribution for the pro
jection type printers can be calculated.

For the contact type imaging system :

Mask to chip separation = h (microns)
(See Figure 2)

57

Mask

Pattern

Line

Normalized

Intensity :::n

1 r
1 r

1 i

• i
i

x = 0

Linespace

-L-

x=0

i-

o

Space

t—s—J

x = 0

i j

-«.X L---J

Fig. 1 Specification of a Mask

umitiu
'Space' Region ' ,T<-'Line Region

/////////////////////////////////S/////////////

Mask

x=0

Fig. 2 Horizontal Image Intensity Distribution
For a Contact Type System

58

♦•x

The Intensity I(x) is approximated by

I(x) =C1IQexp(C2sqrt(^))
and is extrapolated backwards from the shadow region
till it becomes equal to Io (units of mJ/(sq.cm.)).

Thus from the input illumination spectrum, mask
geometry, and characteristics of the imaging system the hor
izontal image intensity distribution is found.

Note :

1)

2)

The ability of machinel subroutines to handle multiple
wavelength case is not well matched with the input
interface yet,

Michael O'Toole has written a new version of this
machine which treats partial coherence and defocus
analytically rather than using weight factors. It will
soon supersede the above version.

References : (for machinel)

1) Levi, Leo, "Applied Optics : A Guide to Optical System
Design / vol. 1ft, John Wiley & Sons, 1968, (pp. xviii +
620)

2) See references in part 1 of this report.

59

Source Code

Jun 20 04:59 1978 File sc__org : Source Code Organization Page 1

The Source Code Storage

The source code is arranged in the Unix login directory in various
(subdirectories.

The directories holding the source code are as follows

lex-an

parser

prpr

mad

ifm234

diffusion

- Has 1) The subrs gcard, and gchar
2) The code for the Lexical Analyzer

- The Parser code

- The Prettyprinter code

- Has 1) The <ex-strat-subr>s that deal with machinel,
2) The code for initializing the default values

for machinel,
3) The code for machinel itself

- Has 1) The <ex-stmt-subr>s that deal with machines
2, 3, and M. And a default version of the
'extria' subr to execute the TRIAL-stmt by
doing fnothing1.

2) The code for initializing machines 2, 3, & 4,
- Has 1) The current Extria1 subr

2) The diffusion machine (= machine5)

In these directories the source code is arranged as follows (some
files need rearrangement).

Some of the routines that were useful in getting the program up but
which are not in the final program code are also given below {in
curly brackets}. Similarly for some other similarly useful files.
The files holding CALIDOSCOPE control cards for CDC 6M00, and the
files holding shell commands to unix (for quickly putting together
the relevant files for that module) are just a matter of convenience
in using the system and hence not given here,
(prog = program, subr = subroutine, func = function)

1) Top level controller
Directory ifm234

Files subprograms

pplpsp - Prog plpsp (the main program)
subrtitle - subr outitl (for printing the title)
srunlab - runlab (the controller (see part 1, fig.4))

Now, the routines for the input interface.

2) The Parser routines
Directory parser

subr_1 subr initpa

gstmt

gflexem

61

Jun 20 0M:59 1978 File sc_.org : Source Code Organization Page 2
62

skpstm

errpar(iarg1, iernum, messap)
subr_2 - subr fslmbd

fsexpo
fssyst

subr_3 - subr fsobje
fsdvmo

fsdvtm

fsrsmo

fsrun

subr_Jl - subr fslaye
fstria

{ststpar - subr tstpar}
{decl - declarations of data-structure for the parser}
{pardrive - program main (to test parser - its driver)}

3) The Lexical Analyzer routines

Directory lex_an
{decldata - declaration of data-structure for lex_an}
lex_1 subr errlex(iernum, iargsi, messag)

fkwdvl

frmfra

-grmfewd

-frmfpu

frmint

frmkwd

gcard
gchar

glexem
gnsep

func idgval(iargch)
subr initla

func ipchty(jargch)
{ststlex - subr tstlex}

{ procrd}
{lexdrive - prog main }

k) The Prettyprinter (for stmts) routines
Directory prpr

pp - subr prprst
(tpp - subr testpp}

The following are the files having the <ex-stmt-subr>s, and the error-
handling routines, etc. They 'interface' the machines to the
controller.

5) For interfacing machinel
Directory mad

serrmOl - subr errmOKn)
subrinter2 - subr exlmbd

exsyst
exobje

Jun 20 05:07 1978 File sc_.org : Source Code Organization Page 3 63

6) For interfacing machines 2, 3» and 4
Directory ifm234

sifd - subr exstmt

exrun

sifc2 - subr errm(macnum, ierrnm)
exrsmo

sifc3 - subr exlaye
extria (The default version. Does nothing)
exexpo

sifc4 - subr exdvmo

exdvtm

7) For interfacing other things on a trial basis
Directory diffusion

trial1 - subr extria (The currently used version)

In part 3 of this report the machines in the core of the program
are given. Their organization is as follows.

The initializing routines (should be made BLOCK DATA subprograms,
and hence an integral part of the machines).

1) Initializing default values for the machines.
Directory mad

sinimOl - subr inimOl

Directory ifm234

sinim234 - subr inim

The machines themselves :

2) machinel
Directory mad

subrimage1 - subr runmd

subrmtf - func dmtfna(vnbyvc)
subr setmtf(ncomp, iwlen)
func (icompo, iwl)

subrimage2 - subr outmd

3) The machines 2, 3, and 4 are in Mike's directory.

4) Machine5
Directory diffusion

subrlbatpt - func df(r, sigma)
subr diffus(sigma)

Jun 20 05:15 1978 File ifm234/pplpsp Page 1 64

1 program plpsp(input, output, punch,
2 1 tape5=input, tape6=output, tape7=punch)
3 c

4 c the photolithographic processes simulation program.
5 c authors - sharad n. nandgaonkar
6 c michael o-toole
7 c and others

8 c (erl, eecs, ucb)
9 c may 6, 1978
10 c

11 call outitl

12 call runlab

13 stop
14 end

Jun 20 05:18 1978 File ifm234/subrtitle Page 1

1 subroutine outitl

2 c outputs the heading title to the output of the program
3 c

4 dimension kdash(80)
5 data kdash /1h1, 78*1h-, 1h0/
6 c

7 c output the lines in the output heading
8 c the output is centered for an 80 column printout ..
9 write (6, 9001) kdash ^-_ u,-, ••:-?. .b .^ o,v>
10 write (6, 9002)
11 write (6, 9003)
12 write (6, 9004)
13 write (6, 9006)
14 write (6, 9001) kdash
15 c ^ • ,. . . .
16 9001 format(1x, 80a1) - "~w '"' '* " ' "' '
17 9002 format(1x, 4x, 5h*****, 28x, 5hplpsp, 29x, 5h****«)
18 9003 format(1x, 5h****«, 12x,
19 1 46hphotolithographic processes simulation program,
20 2 12x, 5h***««)
21 9004 format(1x, 32x, l6h(erl, eecs, ucb))
22 9006 format(1h0, 23x, 34h(version 0.0.0.0 may 6, 1978))
23 c

24 return
25 end

'frmcom '»

"/Nob at \

Fig. 1 Call Structure

of the User Interface

Jun 20 05:22 1978 File ifm234/srunlab Page 1

1 subroutine runlab

2 c driver subroutine for running the whole lab (i.e. machines 1,2,?,4)
3 c of the photolithographic-processes-simulation-program.
^ c - (snn, erl, eecs, ucb) may 6, 1978
5 c

6 common /lexsca/ icsign, ricsgn, jrswdt(10,l6), kwdarr(IO), nmrswd
7 common /charac/ iprptr, ipchar, ictype, ipcard(82)
8 common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
9 common /errfla/ ierflg, iersvi, ismesi
1° common /endofx/ noipdk, noipr, noilr, noicst, nologi

12 common /parsem/ istmty, istknd, stnmls(25), nminst, nmpntr
13 common /endfl2/ nostmt, lxused
11* common /errfl2/ lparer, legstm
15 c

16 common /errlab/ lnoerr
17 c

18 c data-structure for machine 1 (horizontal image machine)
19 common /math / pi, t2bypi
20 c

21 common /spectr/ mxnlmd, nmlmbd, rlambd(5), relint(5)
22 common /objmsk/ mline, mspace, mlnspa, maskty, rlw, rsw
23 common /imgsys/ imspro, imscon, imsyty, tospfr(5)
211 common /img2pr/ rna(5,2), mxnwtf, nmwtfc(5), rmtfwt(5,21)
25 common /img3co/ sepmtc, d, c2
26 c

2? common /fouser/ mxnmfr, nmfrcm, fsfrqa(11), fsfrqn(11)
28 common /fouse2/ fsamsk(11), fsaimg(11)
29 common /lenspa/ vc, dlmtfn(11), actmtf(11)
30 c

31 common /horimg/ deltax, mxngdv, mxngpt, nmgrdv, nmhpts,horint(51)
32 c

33 common /resmod/ rslmbd, prthic, prpara, prparb, prparc
34 common /resmo2/ prparn, prpark
35 common /chipar/ mxnlyr, nmlyrs, rindex(5,4,2), thick(4)
36 common /respar/ wlabc(5,4)
37 common /simpar/ nprlyr, nprpts, nendiv, deltm, deltz
38 common /exposu/ mxnmex, nmexpo, ncouex, dose1, dose2, dose,dosest
39 common /dospar/ dos
40

41

42
common /erpara/ kerspe, kerfun, kercur, etchel, etche2, etche3
common /erpar2/ mxnerd, mxnerp, nerdiv, nerpts, etchra(21)

**3 common /ethpar/ label(20), tout, nout, e1, e2, e3
common /etchtm/ mxneht, nmehtm, ncoeht, ehtml, ehtm2, ehtm,ehtmst44

45

^6 common /exptbl/ expos(21), rmzdos(51,21)
47 common /mvspos/ rmxz(52,52)
48 c

49 c

50 logical lnoerr
51 c

52 logical noipdk, noipr, noilr, noicst, nologi
53 c

54 logical nostmt, lxused
55 logical lparer, legstm
56 c

66

Jun 20 05:22 1978 File ifm234/srunlab Page 2

57

58

59

60

61

62

63
64

65
66

67
68

69
70

71

72

73
74

75

76

77
78

79
80

81

82

83
84

85
86

87
88

89
90

91
92

93
94

95

96

97
98

99
100

101

102

103
104

105

106

107

108

109

110

111

initialize the keywords array (with lambda, dose, to, proj etc.)
data jrswdt

/1hl

1hd

1ht

1hp

1hc

1hl

1hs

1hl

1he

1ha

1hc

1hd

1hr

1hr

1hl

1ht

lha, 1hm, 1hb,

1ho, 1hs, 1he,
1ho,

1hr, 1ho, 1hj,
1ho, 1hn, 1ht,

Ihi, 1hn, 1he,

1hp, 1ha, 1hc,

1hi, 1hn 1he,

1ht, 1hc 1hh,

1hn, 1ha 1hl,

1hu, 1hr 1hv,

1he, 1hv 1ht,

1he, 1hs 1hm,

1hu, 1hn

1ha, 1hy , 1he,

1hr, 1hi , lha,

1hd, 1ha, 4*1h ,
6*1h ,
8«1h ,
6*1h ,

1ha, 1hc, 1ht, 3*1h ,
6*1h ,

1he, 5*1h ,
1hs, 1hp, 1ha, 1hc, 1he, 1h ,
1hr, lha, 1ht, 1he, 2*1h ,
1hy, 1ht, 1hi, 1hc, 2*1h ,
Ihe, 5*1h ,
1hi, 1hm, 1he, 3*1h ,
1ho, 1hd, 1he, 1hl, 2*1h ,

7*1h ,
Ihr, 1hs, 4«1h ,
1hl, 5*1h /, nmrswd / 16 /

(the calling program should print the fancy title to the output)

initialize the program processes, variables, etc., and also the
defaultable values of the photolithographic system to be simulated

first initialize the parser

call initpa

initialize the horizontal image machine (= machined))

call inim01

also initialize the other three machines

call inim

temporarily only

now process the input statements in an interpreter like fashion.

while the end of input statement stream has not been reached,

get an input statement
10 call gstmt

prettyprint it ...
call prprst

...and execute it (only if no previous errors occurred, or if this
is the end-of-stmts stmt)

if (lnoerr .or. (istmty .eq. 0)) call exstmt

if (.not. nostmt) goto 10

return

end

67

Jun 20 05:29 1978 File parser/subr_1 Page 1

1 subroutine initpa
2 c inits (the lexical analyzer,) the parser, and also the system
3 c (i.e. the two physical machines) to be simulated.
4 c

5 common /endfl2/ nostmt, lxused
6 common /errfl2/ lparer, legstm
7 c

8 logical nostmt, lxused
9 logical lparer, legstm
10 c

11 c

12 c first initialize the lexical-analyzer
13 call initla
14 c

15 c now initialize the parser
16 nostmt = .false.

17 c now to cause the first lexeme to be read in (0-th lexeme is used)
18 lxused s .true.
19 lparer = .false.
20 c legstm need not be initialized
21 c

22 c no parser processes have to be spawned (i.e. started).
23 c

2H c initialize the photolithographic system to be analysed (i.e.
25 c the defaultable variables (and their flags etc.)).
26 c

27 return

28 end

29 subroutine gstmt
30 c this gets a statement from the input statement stream, that is
31 c done by forming a sensible statement out of the lexemes in the
32 c input stream.
33 c in short this is the parser.
34 c

35 common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
36 common /parsem/ istmty, istknd, stnmls(25), nminst, nmpntr
37 common /endfl2/ nostmt, lxused
38 common /errfl2/ lparer, legstm
39 c

40 logical nostmt, lxused
^1 logical lparer, legstm
42 c

43 c
44 legstm = .true.
45 c preparation to form a new statement
46 c

47 istmty = -2
48 istknd = 0
49 nminst = 0
50 nmpntr = 0
51 c

52 c get a fresh (i.e. first in a stmt and not used up by the previous
53 c stmt) lexeme
54 call gflexm
55 c

56 c

68

Jun 20 05:29 1978 File parser/subr_1 Page 2 69

57 if (lxtkty .eq. -1) goto 2
58 if (lxtkty .eq. 0) goto 1
59 if (lxtkty .eq. 1) goto 1000
60 if (lxtkty .eq. 2) goto 2000
61 c
62 c if none of the above then a program error
63 call errpar(0, 1, 20hunknown It in gstmt)
64 return

65 c
66 2 call errpar(0,2, 20hinvalid lxtkty*gstmt)
67 call skpstm
68 return

69 c
70 1 istmty = 0
71 c - call fsend
72 return

73 c
74 c this branch means that a kwd heads the stmt, hence see what it is.
75 c (nmrswd in /lexsca/ = 16)
76 1000 if ((kwdval .It. 1) .or. (16 .It. kwdval)) goto 1999
77 c
78 c a giant case-stmt (with the help of a computed goto)
79 goto (1010, 1020, 1030, 1040, 1050, 1060, 1070, 1080, 1090, 1100,
80 1 1110, 1120, 1130, 1140, 1150, 1160), kwdval
81 c
82 c kwd = lambda hence a lambda-stmt (flavour found later)
83 1010 istmty = 1
84 call fslmbd

85 return
86 c kwd = dose hence an exposure stmt (flavour found later)
87 1020 istmty = 2
88 call fsexpo
89 return
90 c kwd = to cannot occur as a header kwd
91 1030 istmty = -1
92 call errpar(1, 1030, 20hilegl stmt structure)
93 c skip the present illegal stmt
94 call skpstm
95 return
96 c kwd = proj hence system-stmt (kind 1, 2, or 3)
97 1040 istmty = 3
98 istknd = 1
99 call fssyst

100 return

101 c kwd = contact hence system-stmt (kind 4, or 5)
102 1050 istmty = 3
103 istknd = 4
104 call fssyst

105 return
106 c kwd = line hence object-stmt (kind = 1)
107 1060 istmty = 4
108 istknd = 1

109 call fsobje
110 return

111 c kwd = space hence object-stmt (kind = 2)
112 1070 istmty = 4

Jun 20 05:29 1978 File parser/subr_1 Page 3

113
114

115

116

117

118

119
120

121

122

123
124

125

126

127
128

129

130

131
132

133
134

135

136
137
138

139
140

141

142

143
144

145
146

147
148

149
150

151

152

153
154

155

156

157
158

159
160

161

162

163
164

165

166

167
168

istknd = 2

call fsobje
return

c kwd r linespace
1080 istmty = 4

istknd = 3
call fsobje
return

c kwd r etchrate

1090 istmty = 5
call fsdvmo

return

c kwd = analytic
1100 istmty r -1

call errpar(1,
call skpstm
return

c kwd = curve hence error (as above)
1110 istmty = -1

call errpar(1, 1110, 20hilegl stmt structure)
call skpstm
return

c kwd = devtime

1120 istmty r 6
call fsdvtm

return

c kwd r resmodel

1130 istmty = 7
call fsrsmo

return

c kwd = run hence run-stmt
1140 istmty = 8

call fsrun

return

c kwd = layers
1150 istmty = 9

call fslaye
return

c kwd = trial

1160 istmty = 10
call fstria

return

hence object-stmt (kind = 3)

hence devmodel-stmt

hence error in the input from the scanner

1100, 20hilegl stmt structure)

hence devtime-stmt

hence resmodel-stmt

hence layers-stmt

hence trial-stmt

unexpected kwdval (not possible, ...yet)
the value of -1 for unknown kwds will not be encountered here
because at that time the value of the lexical token will be = -1
indicating an error in the lexical token.

1999 call errpar(1, 1999, 20hunkwn kwdval-gstmt—)
call skpstm
return

c a number is not expected as a first lexical token of a stmt
c hence -

2000 call errpar(1, 2000, 20hkwd expt in gstmt)
lxused = .false,

c so that the number gets printed in gstmt

70

Jun 20 05:29 1978 File parser/subrj Page 4 71

169 call skpstm
170 return

171 end

172 subroutine gflexm
173 c gets a fresh lexeme (i.e. a lexeme not used by the previous stmt
174 c esp. after a stmt which has a variable length), this is used in
175 c the normal course of actions by gstmt when no errors have been
176 c detected, and if errors have been detected then this is used to
177 c get the next lexeme (as if it is glexem).
178 c

179 common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
180 common /endfl2/ nostmt, lxused
181 c

182 logical nostmt, lxused
183 c
184 if (lxused) goto 10
185 c the current lexeme was not used in the construction of the previous
186 c stmt, hence do not get a new lexeme.
187 lxused = .true.
188 return

189 c
190 c

191 10 call glexem
192 lxused = .true.

193 if ((lxtkty .It. 0) .or. (lxtkty .gt. 2))
194 1 call errparO, 10, 20hilegl lxtkty -glexe)
195 return

196 end

197 subroutine skpstm
198 c this subroutine skips the present statement, called when an error
199 c is detected by the parser in the stmt being formed, this skips to
200 c a kwd which can head a stmt.

201 c

202 common /lexsca/ icsign, ricsgn, jrswdt(10,l6), kwdarr(10), nmrswd
203 common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
204 common /endfl2/ nostmt, lxused
205 common /errf12/ lparer, legstm
206 c

207 logical nostmt, lxused
208 logical lparer, legstm
209 c

210 write (6, 9000)
211 9000 format(1x, 50h—stmt to be skipped because of error (at level 2))
212 c

213 legstm = .false.

214 c now skip the stmt by skipping over the lexical tokens which cannot
215 c form the header of a legal stmt
216 c — should print out the previous lexical tokens to be skipped over
217 c - without forming the current stmt, then print out the message
218 c - saying that the error was detected here, then tell that the
219 c - rest of the lex-tokens to be skipped are = (etc.)
220 c

221 3 if (lxtkty .eq. -1) goto 2
222 if (lxtkty .eq. 0) goto 1
223 if (lxtkty .eq. 1) goto 10
224 if (lxtkty .eq. 2) goto 20

Jun 20 05:29 1978 File parser/subr_1 Page 5 72

225 c this is not possible. ...yet
226 call errparO, 2, 20hunknon lxtkty-skpstm)
227 lxused = .true.

228 call gflexm
229 goto 3
230 c

231 c the invalid-lexical-token is encountered

232 2 write (6, 9005)
233 9005 format(1x, 33h~the invalid-lexical-token found)
234 lxused = .true.
235 call gflexm
236 goto 3
237 c

238 c the =end of input stmts= token
239 1 lxused = .false.

240 goto 10000
241 c

242 c the current lexical token is a keyword
243 10 if ((kwdval .eq. 1) .or. (kwdval .eq. 2) .or.
244 1 ((4 .le. kwdval) .and. (kwdval .le. 9)) .or.
245 2 ((12 .le. kwdval) .and. (kwdval .le. 16))) goto 15
246 write (6, 9010) kwdarr
247 9010 formatOx, 5x, 10a1)
248 lxused = .true.
249 call gflexm
250 goto 3
251 c

252 c a proper header kwd for a stmt
253 15 lxused = .false.
254 goto 10000
255 c

256 c a number has been encountered, it cannot start a stmt.
257 20 write (6, 9020) rnmval
258 9020 formatdx, 10x, f15.5)
259 c when this is the number at which error was detected then this
260 c should not get thrown out twice, hence
261 lxused = .true.
262 call gflexm
263 goto 3
264 c

265 10000 write (6, 10001)
266 10001 format(1x, 2x, 29h=-=-=-= stmt skipping stopped)
267 return
268 c

269 end

270 subroutine errpar(iarg1, iernum, messap)
271 c called if an error in the statement structure is encountered.
272 c (i.e. an error at level 2)
273 c

274 common /parsem/ istmty, istknd, stnmls(25), nminst, nmpntr
275 common /errfl2/ lparer, legstm
276 c

277 logical lparer, legstm
278 c set the input stmt type to the invalid-stmt-type
279 istmty = -1
280 c

73

Jun 20 05:29 1978 File parser/subrj Page 6

281 legstm = .false.
282 c

283 c write an error message
284 write (6, 9000) iargl, iernum, messap
285 9000 format(//,1x,2h—,40herror in the current statement structure,
286 1 1x, 24h(detected by the parser), /,
287 2 1x,5x, 8hlevel = ,16, I4h, error line*=, i6, 2h, ,a20,/)
288 c

289 return
290 end

Jun 20 05:43 1978 File parser/subr_2 Page 1
74

1 subroutine fslmbd
2 c forms a lambda-stmt
3 c

j* common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
5 common /parsem/ istmty, istknd, stnmls(25), nminst, nmpntr
o common /endfl2/ nostmt, lxused
7 common /errfl2/ lparer, legstm
8 c

9 logical nostmt, lxused
1° logical lparer, legstm
11 c

12 c istmty r 1 (because of the context of the call) ...yet
13 c

I1* if (istmty .eq. 1) goto 1
15 call errpar(0, 0, 20herror in lambda stmt)
16 lxused = .false.
17 call skpstm
18 return
19 c

20 c a legal lambda-stmt header
21 1 call glexem
22 c a number is expected
23 if (lxtkty .eq. 2) goto 3
2* call errpar(1,2, 20hnumr expt in fslmbd)
25 lxused = .false.
26 call skpstm
27 return

28 c nminst and nmpntr were set to 0 in subr gstmt
29 3 nmpntr = nmpntr + 1
30 stnmls(nmpntr) = rnmval
31 c

32 call glexem
33 if (lxtkty .eq. 2) goto 5
31* c so this is a lambda-stmt of the first kind
35 istknd = 1
36 lxused = .false.
37 c nminst = nmpntr = 1
38 nminst = nmpntr
39 return
40 c

2,1 c now we have a lambda-stmt of the second kind
^2 5 istknd = 2
^3 nmpntr = nmpntr + 1
44 stnmls(nmpntr) = rnmval
45 c

46 c now look for more number pairs (lambdas and weights)
47 10 call glexem
48 if (lxtkty .ne. 2) goto 30
49 c a number hence a number pair should follow
50 nmpntr = nmpntr + 1
51 c only a max of 10 number pairs is allowed
52 if (nmpntr .le. 19) goto 20
53 call errpar(2, 15, 20htoo many nums-fslmbd)
54 call skpstm
55 return

56 c

Jun 20 05:43 1978 File parser/subr_2 Page 2 75

57 20 stnmls(nmpntr) = rnmval
58 c

59 c now one more number is expected to form a number pair
60 call glexem
61 if (lxtkty .eq. 2) goto 27
62 c not a number, hence error
63 call errpar(1, 27, 20hnum expt by fslmbd)
64 lxused = .false.

65 call skpstm
66 return

67 c
68 c put this second number in the stmt-num-list
69 27 nmpntr = nmpntr + 1
70 stnmls(nmpntr) = rnmval
71 c

72 goto 10

73 c
74 c not a number, hence

75 30 lxused = .false.

76 nminst = nmpntr
77 return

78 end
79 subroutine fsexpo
80 c forms the exposure-stmt
81 c

82 common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
83 common /parsem/ istmty, istknd, stnmls(25), nminst, nmpntr
84 common /endfl2/ nostmt, lxused
85 common /errfl2/ lparer, legstm
86 c

87 logical nostmt, lxused
88 logical lparer, legstm
89 c
90 c istmty = 2 (because of the context of the call) ...yet
91 if (istmty .eq. 2) goto 1
92 call errpar(0, 0, 20herror in exposu-stmt)
93 lxused = .false.

94 call skpstm
95 return

96 c
97 c a legal exposure-stmt header
98 1 call glexem
99 if (lxtkty .eq. 2) goto 3
100 call errpar(1, 1, 20hnum expt in fsexpo)
101 lxused = .false.

102 call skpstm

103 return
104 c

105 3 nmpntr = nmpntr + 1

106 stnmls(nmpntr) = rnmval
107 c

108 call glexem
109 if (lxtkty .eq. 1) goto 5
110 c if end of data reached (eof lex-token) then return

111 if (lxtkty .ne. 0) goto 4
112 c (end-the-run lex-token (hence stmt is complete, too))

Jun 20 05:43 1978 File parser/subr__2 Page 3
76

113 lxused = .false.

114 nminst = nmpntr
115 return

116 c

117 c so a number is present here (an error), hence
118 4 call errpar(1, 2, 20hkwd *to* exptd—fsex)
119 lxused = .false.

120 call skpstm
121 return

122 c

123 c either the kwd =to= is present or a new stmt starts here
124 5 if (kwdval .eq. 3) goto 7
125 istknd = 1

126 lxused = .false.

127 nminst = nmpntr
128 return

129 c

130 7 istknd = 2

131 c

132 do 10 itempl =1,2
133 call glexem
134 if (lxtkty .eq. 2) goto 9
135 call errpar(1, 7, 20hnum expt in glexem)
136 lxused = .false.
137 call skpstm
138 return
139 c

140 9 nmpntr = nmpntr + 1
141 stnmls(nmpntr) = rnmval
142 c

143 10 continue
144 c

145 c so the exposure-stmt has been properly formed
146 nminst = nmpntr
147 return
148 end

149 subroutine fssyst
150 c forms the ststem-stmt (header = proj, or contact)
151 c

152 common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
153 common /parsem/ istmty, istknd, stnmls(25), nminst, nmpntr
154 common /endfl2/ nostmt, lxused
155 common /errfl2/ lparer, legstm
156 c

157 logical nostmt, lxused
158 logical lparer, legstm
159 c

160 c istmty = 3 (from the context of the call) ...yet
161 if (istmty .eq. 3) goto 1
162 call errpar(0, 0, 20herror in ststem-stmt)
163 lxused = .false.
164 call skpstm
165 return
166 c

167 c a legitimate ststem-stmt header (proj or contact) ..
168 c istknd = 1, or 4

Jun 20 05:43 1978 File parser/subr_2 Page 4
77

169 1 if (istknd .eq. 4) goto 100
170 c the header kwd is proj (and istknd =1 (, or 2, or 3))
171 call glexem
172 if (lxtkty .eq. 2) goto 3
173 call errpar(1,2, 20hnum expt in fssyst)
174 lxused = .false.

175 call skpstm
176 return

177 c .. followed by the first number
178 3 nmpntr = nmpntr + 1
179 stnmls(nmpntr) = rnmval
180 c

181 call glexem
182 if (lxtkty .eq. 2) goto 5
183 lxused = .false.
184 nminst = nmpntr
185 return
186 c .. followed by second number
187 5 istknd = 2
188 nmpntr = nmpntr + 1
189 stnmls(nmpntr) = rnmval
190 c

191 call glexem
192 if (lxtkty .eq. 2) goto 7
193 lxused = .false.

194 nminst s nmpntr
195 return

196 c

197 c .. followed by third and fourth numbers
198 7 istknd = 3
199 nmpntr = nmpntr + 1
200 stnmls(nmpntr) = rnmval
201 c

202 itempi = stnmls(3)
203 if ((0 .le. itempi) .and. (itempi .le. 20)) goto 8
204 call errpar(1,8, 20hnum of nums out of r)
205 lxused = .false.

206 call skpstm
207 return

208 c totally 1 number for freq-limit, and itempi number of numbers as
209 c mtf-weights are expected, hence
210 8 itempi = itempi + 1
211 c

212 do 10 itemp2 = 1, itempi
213 call glexem
214 if (lxtkty .eq. 2) goto 9
215 call errpar(1,8, 20hnum expt in fssyst)
216 lxused = .false.
217 call skpstm
218 return

219 c

220 9 nmpntr = nmpntr + 1
221 stnmls(nmpntr) = rnmval
222 10 continue

223 c

224 c so all the numbers have been obtained

Jun 20 05:43 1978 File parser/subr_2 Page 5
78

225 nminst = nmpntr
226 return

227 c

228 c the header is =contact= (istknd = 4 (, or
229 100 call glexem
230 if (lxtkty .eq. 2) goto 103
231 call errpar(1, 101, 20hnum expt in fssyst
232 lxused = .false.

233 call skpstm
234 return

235 c

236 103 nmpntr = nmpntr + 1

237 stnmls(nmpntr) = rnmval
238 c

239 call glexem
240 if (lxtkty .eq. 2) goto 105
241 c

242 lxused = .false.

24^ nminst = nmpntr
244 return

245 c

246 c 1two more numbers expected (istknd = 5)
247 105 istknd = 5
248 nmpntr = nmpntr + 1
249 stnmls(nmpntr) = rnmval
250 c

251 call glexem
252 if (lxtkty .eq. 2) goto 107
253 call errpar(1, 106, 20hnum expt in fssyst
254 lxused = .false.

255 call skpstm
256 return

257 c

258 c so this is the third number

259 107 nmpntr = nmpntr + 1
260 stnmls(nmpntr) = rnmval
261 c

262 nminst = nmpntr
263 return

264 end

Jun 20 05:54 1978 File parser/subr_3 Page 1

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16

17

18

19
20

21

22

23
24

25

26

27

28

29

30

31
32

33
34

35
36

37
38

39
40

41

42

43
44

45

46

47
48

49
50

51

52

53
54

55

56

subroutine fsobje
forms the object-stmt

common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
common /parsem/ istmty, istknd, stnmls(25), nminst, nmpntr
common /endfl2/ nostmt, lxused
common /errfl2/ lparer, legstm

logical
logical

nostmt, lxused
lparer, legstm

this time assume that the context of call is correct, and
istmty = 3 , and istknd = 1, or 2, or 3

call glexem

if (lxtkty .eq. 2) goto 1
call errpar(1, 11, 20hnum expt in fsobje)
lxused = .false.

call skpstm
return

1 nmpntr = nmpntr + 1
stnmls(nmpntr) = rnmval

now depending on whether (line, space), or (linespace) is the
header, no more or one more number expected

goto (10, 10, 20), istknd
10 nminst = nmpntr

return

20 call glexem

if (lxtkty .eq. 2) goto 25
call errpar(1, 21, 20hnum expt in fsobje)
lxused = .false.

call skpstm
return

25 nmpntr = nmpntr + 1
stnmls(nmpntr) = rnmval

nminst = nmpntr
return

end

subroutine fsdvmo

forms the devmodel-stmt

common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
common /parsem/ istmty, istknd, stnmls(25), nminst, nmpntr
common /endfl2/ nostmt, lxused
common /errfl2/ lparer, legstm

logical
logical

nostmt, lxused
lparer, legstm

(istmty = 4) assumed to be correct because of the context of the

79

Jun 20 05:54 1978 File parser/subr_3 Page 2 80

57 c call, hence no need to check for an error
58 c

59 call glexem
60 if (lxtkty .eq. 1) goto 1
61 call errpar(1,0, 20hkwd expt in fsdvmo)
62 lxused = .false.
63 call skpstm
64 return

65 c

66 1 if (kwdval .eq. 10) goto 10
67 if (kwdval .eq. 11) goto 20
68 c

69 call errpar(1, 1, 20himpro kwd in fsdvmo)
70 lxused = .false.

71 call skpstm
72 return

73 c

74 c etchrate analytic ... stmt
75 10 istknd = 1
76 c

77 do 15 itempi =1,3
78 call glexem
79 if (lxtkty .eq. 2) goto 12
80 call errpar(1, 11, 20hnum expt in fsdvmo)
81 lxused = .false.
82 call skpstm
83 return
84 c

85 12 nmpntr = nmpntr + 1
86 stnmls(nmpntr) = rnmval
87 15 continue
88 c

89 nminst = nmpntr
90 return

91 c

92 c etchrate curve ... stmt

93 20 istknd = 2

94 c

95 c now the first number tells how many numbers follow, so take its
96 c integer value (= /lexsem/.intval (it should be an integer ...))
97 c and try to read that many numbers after that, this is slightly
98 c different from a general parser design but let us allow it as an
99 c exception.
100 call glexem
101 if (lxtkty .eq. 2) goto 25
102 call errpar(1, 21, 20hint-num expt*fsdvmo)
103 lxused = .false.

104 call skpstm
105 return

106 c

107 25 nmpntr = nmpntr + 1
108 stnmls(nmpntr) = rnmval
109 c

110 itemp2 = rnmval

111 c

112 if ((0 .le. itemp2) .and. (itemp2 .le. 21)) goto 27

Jun 20 05:54 1978 File parser/subr_3 Page 3

113

114

115

116

117

118

119

120

121

122

123
124

125

126

127

128

129
130

131
132

133
134

135

136

137
138

139
140

141

142

143
144

145
146

147
148

149
150

151

152

153
154

155

156

157

158

159

160

161

162

163
164

165
166

167

168

call errpar(1, 26, 20hnum out of range*dvm)
lxused = .false,

call skpstm

return

27 continue

do 29 itempi = 1, itemp2
call glexem
if (lxtkty .eq. 2) goto 28
call errpar(1, 27, 20hnum expt in fsdvmo)
lxused = .false.

call skpstm

return

28 nmpntr = nmpntr + 1
stnmls(nmpntr) = rnmval

29 continue

nminst = nmpntr

return

end

subroutine fsdvtm

forms the devtime-stmt

common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
common /parsem/ istmty, istknd, stnmls(25), nminst, nmpntr
common /endfl2/ nostmt, lxused
common /errfl2/ lparer, legstm

logical

logical

nostmt, lxused

lparer, legstm

(istmty =6). but this has the same structure as the exposure-stmt
hence let us use that subroutine (fsexpo) pretending this to be a
stmt of that type...

istmty = 2
... and call fsexpo ...
... (a bad technique — if an error is detected by fsexpo)

call fsexpo

... and then say that it is a devtime-stmt
istmty = 6

return

end

subroutine fsrsmo

forms the resmodel-stmt

common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
common /parsem/ istmty, istknd, stnmls(25), nminst, nmpntr
common /endfl2/ nostmt, lxused
common /errfl2/ lparer, legstm

logical

logical

nostmt, lxused

lparer, legstm

81

Jun 20 05:54 1978 File parser/subr_3 Page 4

169 c
170 c istmty = 7 because of the context of the call
171 c expects seven numbers to follow the kwd (resmodel)
172 c

173 do 10 itempi =1,7
174 call glexem
175 if (lxtkty .eq. 2) goto 5
176 call errpar(1,4, 20hnum expt in fsrsmo)
177 lxused = .false.

178 call skpstm
179 return

180 c

181 5 nmpntr = nmpntr + 1
182 stnmls(nmpntr) = rnmval
183 c
184 10 continue

185 c
186 nminst = nmpntr
187 return
188 end

189 subroutine fsrun
190 c forms the run-stmt

191 c

192 common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
193 common /parsem/ istmty, istknd, stnmls(25), nminst, nmpntr
194 common /endfl2/ nostmt, lxused
195 common /errfl2/ lparer, legstm
196 c
197 logical nostmt, lxused
198 logical lparer, legstm
199 c the common /errf12/ and its logical declaration are not needed
200 c

201 c istmty = 8 ((from the context of the call) assumed correct)
202 c

203 c for the user two different kinds of this stmt are present.
204 c but for the parser both get converted to the same internal form.
205 c

206 call glexem
207 if (lxtkty .eq. 2) goto 100
208 c no number following the kwd =run= hence
209 lxused = .false.

210 stnmlsd) = 0.0
211 nminst = 1

212 return

213 c
214 c a number follows hence

215 100 nmpntr = nmpntr + 1

216 stnmls(nmpntr) = rnmval
217 c

218 nminst = nmpntr
219 return

220 c

221 end

82

Jun 21 02:42 1978 File parser/subr_4 Page 1 83

1 subroutine fslaye
2 c forms the layers-stmt

3 c
4 common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
5 common /parsem/ istmty, istknd, stnmls(25), nminst, nmpntr
6 common /endfl2/ nostmt, lxused
7 common /errfl2/ lparer, legstm
8 c

9 logical nostmt, lxused
10 logical lparer, legstm
11 c

12 c

13 c (istmty =9) assumed correct, hence no error-checking on that.
14 c

15 call glexem
16 c

17 do 10 itempi =1,2
18 if (lxtkty .eq. 2) goto 8
19 c

20 c a number was expected but not obtained hence
21 call errpar(1,7, 20hnum expt by fslaye)
22 nminst = nmpntr

23 lxused = .false.

24 call skpstm
25 return

26 c

27 8 nmpntr = nmpntr + 1
28 stnmls(nmpntr) = rnmval
29 c

30 call glexem

31 10 continue

32 c

33 if (lxtkty .eq. 2) goto 15
34 lxused = .false.
35 nminst = nmpntr
36 return

37 c

38 c now a series of triples of numbers is expected
39 c

40 15 do 20 itempi =1,3
41 if (lxtkty .eq. 2) goto 18
42 c

43 c a number was expected but not obtained hence
44 call errpar(1, 17, 20hnum expt by fslaye)
45 nminst = nmpntr
46 lxused = .false.

47 call skpstm
48 return

49 c
50 18 nmpntr = nmpntr + 1
51 stnmls(nmpntr) = rnmval
52 c

53 call glexem
54 20 continue

55 c

56 c if the present lexical token is a number then one more triple of

Jun 21 02:42 1978 File parser/subr_4 Page 2 84

57 c numbers (including that number) is expected, so go back to get the
58 c triple
59 if (lxtkty .eq. 2) goto 15
60 c

61 lxused = .false.
62 nminst = nmpntr
63 return
64 end

65 subroutine fstria
66 c forms the trial-stmt
67 c

68 common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
69 common /parsem/ istmty, istknd, stnmls(25), nminst, nmpntr
70 common /endfl2/ nostmt, lxused
71 common /errfl2/ lparer, legstm
72 c

73 logical nostmt, lxused
74 logical lparer, legstm
75 c

76 c (istmty =10) assumed correct, hence no error-checking done here.
77 c

78 call glexem
79 if (lxtkty .eq. 2) goto 10
80 call errpar(1,0, 20hnum expt by fstria)
81 nminst = nmpntr
82 lxused = .false.
83 call skpstm
84 return
85 c

86 10 nmpntr = nmpntr + 1
87 stnmls(nmpntr) = rnmval
88 call glexem
89 if (lxtkty .eq. 2) goto 10
90 c

91 lxused = .false.
92 nminst = nmpntr
93 return
94 end

Jun 21 02:50 1978 File parser/ststpar Page 1

1

2

3
4

5

6

7

8

9

10

11

12

13
14

15

16

17

18

19

20

21

22

23
24

25

26

27

28

29

30

31
32

33
34
35

36
37
38
39
40

41

42

43
44

45
46

47
48

49
50

51

52

53
54

55

56

subroutine tstpar

driver subroutine for testing the parser of the
photolithographic-processes-simulation-program.

(snn, erl, eecs, ucb) february 26, 1978

common /lexsca/ icsign
common /charac/ iprptr
common /lexsem/ kwdval

common /errfla/ ierflg
common /endofx/ noipdk

common /parsem/ istmty
common /endfl2/ nostmt

common /errfl2/ lparer

logical

logical

logical

noipdk

nostmt

lparer

ricsgn, jrswdt(10,16), kwdarr(IO), nmrswd
ipchar, ictype, ipcard(82)
rnmval, intval, fraval, rintvl, lxtkty
iersvi, ismesi
noipr, noilr, noicst, nologi

istknd, stnmls(25), nminst, nmpntr
lxused

legstm

noipr, noilr, noicst, nologi

lxused

legstm

initialize the keywords array (with lambda, dose, to, proj etc.)
data jrswdt

Ihb, 1hd, 1ha,
Ihe,

/1hl

1hd

1ht

1hp

1hc

1hl

1hs

1hl

1he

1ha

1hc

1hd

1hr

1hr

1hl

1ht

1ha, 1hm,

1ho, 1hs,
1ho,

1hr, 1ho,
1ho, 1hn,
1hi, 1hn,
1hp, 1ha,
1hi, 1hn,
1ht, 1hc,
1hn, 1ha,
1hu, 1hr,
1he, 1hv,
1he, 1hs,
1hu, 1hn,
1ha, 1hy,
1hr, 1hi,

hj,
ht, 1ha, 1hc, 1ht, 3*1h
he,
he, 1he,
he, 1hs, 1hp, 1ha, 1hc, 1he, 1h
hh, 1hr, 1ha, 1ht, 1he,
hi, 1hy, 1ht, 1hi, 1hc,
hv, 1he, 5*1h ,
ht, 1hi, 1hm, 1he, 3*1h
hm, 1ho, 1hd, 1he, 1hl,

7*1h ,
he, 1hr, 1hs, 4*1h ,
ha, 1hl, 5h*1h /, nmrswd / 16 /

4«1h

6«1h

8*1h

6*1h

1ht,
6*1h

5*1 h
1he,
2*1h

2*1h

2*1h

(the calling program should print the fancy title to the output)
this routine should print out the fact that it is only testing the
parser

write (6, 9000)
9000 format(1x, 5h*-*-*, /, 1x, 5h-*-*-, 2x,

1 24hdriver subroutine tstpar, /, 1x, 5h*-*-*, 2x,
2 l8hto test the parser, /, 1x, 5h-*-*-)

initialize the program processes, variables, etc., and also the
defaultable values of the photolithographic system to be simulated

call initpa

now process the input cards in an interpreter like fashion.

while the end of input statement stream has not been reached,

85

Jun 21 02:50 1978 File parser/ststpar Page 2 86

57 c get an input statement
58 10 call gstmt

59 c

60 c prettyprint it ...
61 call prprst
62 c

63 c ...and execute it.

64 c call exstmt

65 c

66 c

67 if (.not. nostmt) go
68 c

69 c end of the input statei
70 c call endjob

71 c

72 return

73 end

Jun 21 02:55 1978 File parser/decl Page 1

1 c

2 common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
3 common /parsem/ istmty, istknd, stnmls(25), nminst, nmpntr
4 common /endfl2/ nostmt, lxused
5 common /errfl2/ lparer, legstm
6 c

7 logical nostmt, lxused
8 logical lparer, legstm
9 c

Jun 21 02:58 1978 File parser/pardrive Page 1

1 program main(input, output, tape5=input, tape6=output)
2 call outitl

3 call tstpar
4 stop
5 end

Jun 21 03:02 1978 File lex_an/decldata Page 1

1

2

3
4

5

6

7
8

9

10

11

12

13
14

15

16

17
18

19
20

21

22

23
24

25

26

27

28

29

(snn, erl, eecs, ucb) march 6, 1978

common /lexsca/ icsign, ricsgn, jrswdtdO, 16), kwdarrdO), nmrswd
common /charac/ iprptr, ipchar, ictype, ipcard(82)
common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
common /errfla/ ierflg, iersvi, ismesi
common /endofx/ noipdk, noipr, noilr, noicst, nologi

logical

initialize the

data jrswdt

noipdk, noipr, noilr, noicst, nologi

keywords array (with lambda, dose, to, proj etc.)

/1hl

1hd

1ht

1hp
1hc

1hl

1hs

1hl

1he

1ha

1hc

1hd

1hr

1hr

1hl

1ht

1ha, 1hm, 1hb, 1hd, 1ha, 4«1h ,
1ho, 1hs, 1he, 6*1h ,
1ho, 8*1h ,
1hr, 1ho, 1hj, 6*1h ,
1ho, 1hn, 1ht, 1ha, 1hc, 1ht, 3*1h ,
1hi, 1hn, 1he, 6*1h ,
1hp, 1ha, 1hc, 1he, 5*1h ,
1hi, 1hn, 1he, 1hs, 1hp, 1ha, 1hc, 1he, 1h ,
1ht, 1hc, 1hh, 1hr, 1ha, 1ht, 1he, 2*1h ,
1hn, 1ha, 1hl, 1hy, 1ht, 1hi, 1hc, 2*1h ,
1hu, 1hr, 1hv, 1he, 5*1h ,
1he, 1hv, 1ht, 1hi, 1hm, 1he, 3*1h ,
1he, 1hs, 1hm, 1ho, 1hd, 1he, 1hl, 2*1h ,
1hu, 1hn, 7*1h ,
1ha, 1hy, 1he, 1hr, 1hs, 4«1h ,
1hr, 1hi, 1ha, 1hl, 5*1h /, nmrswd / 16 /

87

Jun 21 03:05 1978 File lex_an/lex_1 Page 1 88

1 subroutine errlex(iernum, iargsi, messag)
2 c depending on error severity and accumulated error-severity-index
3 c this routine aborts, or continues.
4 c iargsi = int argument (for) severity index
5 c

6 common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
7 common /errfla/ ierflg, iersvi, ismesi
8 c

9 c set up the lexical token type to invalid-lexical-token type
10 lxtkty = -1
11 c

12 ismesi = ismesi + iargsi
13 write (6, 100) messag, iargsi, iersvi, ismesi, iernum
14 100 format(//, 1x, 19h-error in the input, /, 2x,
15 1 38h(detected by the lexical analyzer) — ,a20,/,
16 2 2x, 8hiargsi =, i5, 10h, iersvi =, i5,
17 3 10h, ismesi =, i5, 10h, iernum =, i5)
18 if (iernum .ge. 100) stop
19 if (ismesi .ge. 10) stop
20 return

21 end

22 subroutine fkwdvl

23 c fetches the keyword value (and puts it in /lexsca/.kwdval)
24 c

25 common /lexsca/ icsign, ricsgn, jrswdtdO,16), kwdarrdO), nmrswd
26 common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
27 c

28 do 200 itempi = 1, nmrswd
29 c

30 do 100 itemp2 =1,10
31 if (kwdarr(itemp2) .ne. jrswdt(itemp2, itempi)) goto 200
32 100 continue

33 c normal exit => keyword found in table
34 c

35 itemp3 = itempi
36 goto 300
37 200 continue

38 c normal exit => word not found in the table
39 c

40 kwdval = -1
41 write (6, 9000) kwdarr
42 9000 format(/, 1x, 33h-the input has an unknown word = , 10a1)
43 call errlex(-1,1, 20hunknown kwd found*sf)
44 return
45 c
46 300 kwdval = itemp3
47 return
48 end

49 subroutine frmfra
50 c forms the fractional part of a real number
51 c no error-checking is expected (or required).
52 c

53 common /charac/ iprptr, ipchar, ictype, ipcard(82)
54 common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
55 c

56 fraval =0.0

Jun 21 03:05 1978 File lex_an/lex_1 Page 2 8q

57 ntenpr = 0
58 10 if (ictype .ne. 2) goto 100
59 ntenpr = ntenpr + 1
60 idigvl = idgvaK ipchar)
61 tdigvl = idigvl
62 c

63 do 20 itempi = 1, ntenpr
64 tdigvl = tdigvl* 0.1
65 20 continue
66 c

67 fraval = fraval + tdigvl
68 call gchar
69 goto 10
70 100 return

71 end

72 subroutine frmint

73 c forms the integer part of a real number
74 c

75 common /charac/ iprptr, ipchar, ictype, ipcard(82)
76 common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
77 c

78 intval = 0
79 if (ictype .eq. 2) goto 10
80 call errlex(-1, +1, 20hdigit-exptd - frmint)
81 return

82 10 idigvl = idgvaK ipchar)
83 intval = 10 * intval + idigvl
84 call gchar
85 if (ictype .eq. 2) goto 10
86 return
87 end
88 subroutine frmkwd
89 c forms keywords from the input character stream
90 c

91 common /lexsca/ icsign, ricsgn, jrswdtdO, 16), kwdarrdO), nmrswd
92 common /charac/ iprptr, ipchar, ictype, ipcard(82)
93 common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
94 c

95 c keywords are not allowed to be more than 10 characters long.
96 c no error-checking expected (or required)
97 c

98 do 50 itempi =1,10
99 kwdarr(itempT) = 1h
100 50 continue
101 c

102 c

103 do 100 itempi =1,10
104 kwdarr(itempi) = ipchar
105 call gchar
106 if (ictype .ne. 1) goto 200
107 100 continue
108 c

109 c normal exit means that the letter-sequence is more than 10
110 c characters long, hence error
111 c

112 call errlex(-1, 1, 20hkwd-longr,10 letters)

Jun 21 03:05 1978 File lex_an/lex_1 Page 3

113
114

115

116

117

118

119

120

121

122

123
124

125

126

127
128

129

130

131
132

133
134
135

136

137

138

139
140

141

142

143
144

145
146

147
148

149
150

151

152

153
154

155

156

157

158

159
160

161

162

163
164

165
166

167

168

return

200 call fkwdvl

return

end

list

subroutine gcard
gets a card from the input deck

common /charac/ iprptr, ipchar, ictype, ipcard(82)
common /endofx/ noipdk, noipr, noilr, noicst, nologi

logical
logical

noipdk, noipr, noilr, noicst, nologi
eof

if (noipdk) call errlex(-1, +1, 20hmore-cards-expected-)

read (5, 10) (ipcard(itempi), itempi = 1, 80)
10 format(80a1)

write (6, 20) (ipcard(itempi), itempi = 1, 80)
20 format(/, 1x, 12hinput card =, 80a1, 1h$)

ipcard(8D = 1h
ipcard(82) = 1h
iprptr = 1

if (eof(5)) goto 100
return

100 noipdk = .true,

noicst = .true,

return

end

Inolistl
subroutine gchar

get a character from the input deck

common /charac/ iprptr, ipchar, ictype, ipcard(82)
common /endofx/ noipdk, noipr, noilr, noicst, nologi

logical noipdk, noipr, noilr, noicst, nologi

if (nologi) goto 300
if (noicst) goto 200
if (iprptr .It. 82) goto 100

call gcard
100 ipchar = ipcard(iprptr)

iprptr = iprptr + 1
ictype = ipchty(ipchar)
return

200 ipchar = 1h$
ictype = ipchty(ipchar)
nologi = .true.

return

300 call errlex(-1, +1, 20htried to get xtra ip)

90

Jun 21 03:05 1978 File lex_an/lex_1 Page 4 91

169 return
170 end

171 subroutine glexem
172 c gets the next lexeme and puts its type in lxtkty (=lexical token
173 c type), and its =value= in kwdval, or rnmval.
174 c the pair (lxtkty, lxmval(= kwdval, or rnmval)) is a lexeme.
175 c

176 common /lexsca/ icsign, ricsgn, jrswdtdO, 16), kwdarrdO), nmrswd
177 common /charac/ iprptr, ipchar, ictype, ipcard(82)
178 common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
179 c get a non-separator character from the input char-stream
180 call gnsep
181 c

182 icsign = +1
183 tmpsgn = icsign
184 c a giant case-stmt

ictype .eq. 3) goto 30
ictype .eq. 0) goto 1
ictype .eq. 1) goto 10
ictype .eq. 2) goto 20
ictype .eq. 4) goto 40

185 3 if
186 if

187 if
188 2 if

189 if

191 if
192 if

193 if

190 c ictype = 5 is not possible here (non-separator), ...yet
ictype .eq. 5) goto 50
ictype .eq. 6) goto 60
ictype .eq. 7) goto 70

194 call errlex(-1, +1, 20hunxpd-ictype-in glxm) [~oa|l cjtKav

196 c right pad lexical token ""
197 1 lxtkty = 0
198 return
199 c

200 c a keyword is to be formed as a lexical token
201 10 lxtkty = 1
202 call frmkwd

203 return
204 c

205 c a real number is to be formed as a lexical token
206 20 lxtkty = 2
207 call frmint

208 rnmval = intval

209 if (ictype .eq. 4) goto 25
210 rnmval = rnmval*tmpsgn
211 return

212 25 call gchar
213 26 call frmfra

214 rnmval = rnmval + fraval
215 rnmval = rnmval * tmpsgn
216 return

217 c

218 30 lxtkty = 2
219 if (ipchar .eq. 1h+) icsign = +1
220 if (ipchar .eq. 1h-) icsign = -1
221 tmpsgn = icsign
222 call gchar

223 call gnsep

224 if ((ictype .eq. 2) .or. (ictype .eq. 4)) goto 35

Jun 21 03:05 1978 File lex_an/lex_1 Page 5

225

226

227

228

229

230

231

232

233
234

235
236

237
238

239
240

241

242

243
244

245
246

247
248

249
250

251

252

253
254

255

256

257
258

259
260

261

262

263
264

265
266

267
268

269
270

271

272

273
274

275
276

277
278

279
280

call errlex(-1, +1, 20hnumbr exptd aftr sgn)
return

35 goto 2
40 lxtkty = 2

rnmval = 0

call gchar

if (ictype .eq. 2) goto 45
call errlex(-1, +1, 20hdigit exptd in glxm)
return

now it is similar to an ordinary number case, hence —
45 goto 26

50 call errlex(-1, +1, 20hseprtr prohib-glexem)
return

at present start-symbol (*), and continuation-symbol (/) for cards
have no meaning r6o Cal, ^chay

\60 call gnsep p— <~~~ c^u ciriep
goto 3 I ^otl3 3

goto 3
end

subroutine gnsep
get a non-separator character from the input char stream

10

common /charac/ iprptr, ipchar, ictype, ipcard(82)

if (ictype .ne. 5) goto 20
call gchar
goto 10

20 return

end

function idgvaK iargch)
the argument is not used directly,
gives the value of a digit-character
assumes that ipchar (= iargch) is a digit-character
(because of the calling context)

common /charac/ iprptr, ipchar, ictype, ipcard(82)

a giant case-stmt

itempi = -10000

if (ipchar .eq.
if (ipchar .eq.
if (ipchar .eq.
if (ipchar .eq.
if (ipchar .eq.
if (ipchar .eq.
if (ipchar .eq.
if (ipchar .eq.
if (ipchar .eq.
if (ipchar .eq.
idgval = itempi

1h0) itempi = 0

1h1) itempi = 1

1h2) itempi = 2

1h3) itempi = 3
1h4) itempi = 4

1h5) itempi = 5
1h6) itempi = 6

1h7) itempi = 7
1h8) itempi = 8

1h9) itempi = 9

92

Jun 21 03:05 1978 File lex_an/lex_1 Page 6

281

282

283
284

285
286

287
288

289
290

291

292

293
294

295

296

297
298

299

300

301

302

303
304

305

306

307
308

309
310

311
312

313
314

315

316

317
318

319
320

321

322

323
324

325
326

327
328

329

330

331
332

333
334

335

336

return

end

subroutine initla

inits the lexical analysis system, as well as the system to be
simulated.

common /lexsca/ icsign, ricsgn, jrswdt(10,16), kwdarrdO), nmrswd
common /charac/ iprptr, ipchar, ictype, ipcard(82)
common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
common /errfla/ ierflg, iersvi, ismesi
common /endofx/ noipdk, noipr, noilr, noicst, nologi

logical noipdk, noipr, noilr, noicst, nologi

first initialize the program variables etc.

(initializations of variables)
ierflg = -1
iersvi = -1

ismesi = 0

noipdk =
noipr =
noilr =

noicst =

nologi =

.false

.false

.false

.false

.false,

((initialization of processes)
call gcard
call gchar
call gnsep

((process variables)))

initialize the photolithographic system to be analysed (i.e
the defaultable variables (and their flags etc.)).

return

end

function ipchty(jargch)

tells the type of the input character
0 => $ (last char), 1 => letter, 2 => digit-char,
3 => sign-char, 4 => period, 5 => separator
6 => * (start symb), 7 => / (continuation symb)
-1 < ipchty < 8

the dummy argument is not used in this function
common /charac/iprptr, ipchar, ictype, ipcard(82)

a giant case-stmt
if (ipchar .eq. 1h$) goto 1
if ((1ha .le. ipchar) .and. (ipchar .le. 1hz)) goto 10
if ((1h0 .le. ipchar) .and. (ipchar .le. 1h9)) goto 20
if ((ipchar .eq. 1h+) .or. (ipchar .eq. 1h-)) goto 30
if (ipchar .eq. 1h.) goto 40
if ((ipchar .eq. 1h) .or. (ipchar .eq. 1h,) .or.

93

94
Jun 21 03:05 1978 File lex_an/lex_1 Page 7

337
338 . __.„.. ._,.
339 if (ipchar .eq. 1h/) goto 70
340 c
341 ipchty = -1
342 return

343 c
344 1 ipchty = 0
345 return
346 10 ipchty = 1
347 return
348 20 ipchty = 2
349 return
350 30 ipchty = 3
351 return

352 40 ipchty = 4
353 return

354 50 ipchty = 5
355 return

356 60 ipchty = 6
357 return

358 70 ipchty = 7
359 return
360 end

1 (ipchar .eq. 1h() .or. (ipchar .eq. 1h))) goto 50
if (ipchar .eq. 1h*) goto 60

Jun 21 03:21 1978 File lex_an/ststlex Page 1

1

2

3
4

5

6

7

8

9
10

11

12

13
14

15

16

17
18

19
20

21

22

23
24

25

26

27
28

29

30

31
32

33
34

35

36

37

38

39
40

41

42

43
44

45
46

47
48

49
50

51

52

53
54

55

56

nolist

subroutine tstlex

driver subroutine for testing the lexical-analyzer (= scanner)
of the photolithographic-processes-simulation-program,
(snn, erl, eecs, ucb) february 26, 1978

common /lexsca/ icsign, ricsgn, jrswdtdO, 16), kwdarrdO), nmrswd
common /charac/ iprptr, ipchar, ictype, ipcard(82)
common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty
common /errfla/ ierflg, iersvi, ismesi
common /endofx/ noipdk, noipr, noilr, noicst, nologi

logical

initialize the

data jrswdt

noipdk, noipr, noilr, noicst, nologi

keywords array (with lambda, dose, to, proj etc.)

/1hl

1hd

1ht

1hp

1hc

1hl

1hs

1hl

1he

1ha

1hc

1hd

1hr

1hr

1hl

1ht

1ha,
1ho,
1ho,
1hr,
1ho,
1hi,
1hp,
1hi,

1ht,
1hn,

1hu,

1he,
1he,
1hu,
1ha,
1hr,

1hm,
1hs,

1ho,
1hn,

1hn,
1ha,
1hn,

1hc,
1ha,
1hr,

1hv,
1hs,
1hn,
1hy,
1hi,

1hb

1he

1hj
1ht

1he

1hc

1he

1hh

1hl

1hv

1ht

1hm

1he

1ha

1hd, 1ha, 4*1h ,
6*1h ,
8*1h ,
6*1h ,

1ha, 1hc, 1ht, 3*1h ,
6*1h ,

1he, 5*1h ,
1hs, 1hp, 1ha, 1hc, 1he, 1h ,
1hr, 1ha, 1ht, 1he, 2*1h ,
1hy, 1ht, 1hi, 1hc, 2*1h ,
1he, 5*1h ,
1hi, 1hm, 1he, 3*1h ,
1ho, 1hd, 1he, 1hl, 2*1h ,

7«1h ,
1hr, 1hs, 4*1h ,
1hl, 5*1h /, nmrswd / 16 /

initialize the program processes, variables, etc., and also the
defaultable values of the photolithographic system to be simulated

call initla

now process the input cards in an interpreter like fashion
(for the present - just fake the processing, for test purposes)

call procrd

return

end

subroutine procrd

processes the input cards in an inetrpreter like fashion.
(at present just fake the processing for test purposes)

common /lexsca/ icsign, ricsgn, jrswdtdO, 16), kwdarrdO), nmrswd
common /lexsem/ kwdval, rnmval, intval, fraval, rintvl, lxtkty

(only the meaning of lexemes is relevant at this level)

get the next lexeme.
10 call glexem

95

Jun 21 03:21 1978 File lex_an/ststlex Page 2

57
58

59

60

61

62

63
64

65
66

67
68

69
70

71
72

73
74

75
76

77
78

79
80

50

60

if (lxtkty .eq. 0) goto 100
if (lxtkty .eq. 1) goto 50
if (lxtkty .eq. 2) goto 60

write (6, 9000) lxtkty
call errlex(-1, +1, 20hwhat lexeme is this
return

write (6, 9010) lxtkty, kwdarr
goto 10

write (6, 9020) lxtkty, rnmval
goto 10

100 write (6, 9030)

9000 formatdx, 30hunknown lxtkty-out-of-range-=
9010 formatdx, 8hlxtkty =, i3, 5x, lOhkeyword is
9020 formatdx, 8hlxtkty =, i3, 5x, lOhnumber is=,
9030 formatdx, 12hend-of-input)

return

end

list

i5)
5x, 10a1
f15.5)

Jun 21 03:27 1978 File lex_an/lexdrive Page 1

program main(input, output, tape5=input, tape6=output)
call tstlex

stop
end

96

Jun 21 03:30 1978 File prpr/pp Page 1

1 subroutine prprst
2 c this subroutine pretty-prints the currently parsed (formed) stmt
3 c from its abstract syntax (as obtained from /parsem/)
4 c

5 common /parsem/ istmty, istknd, stnmls(25), nminst, nmpntr
6 c

7 c since because of the extensive error-checking by the parser, and
8 c stmt skipping on error, only a correct (stmt-structure wise) input
9 c stmt will be returned by the parser, hence no error checking is
10 c required in this routine.
11 c

12 c a giant case-stmt with the help of if-stmts, and a computed goto
13 if (istmty .eq. -1) goto 20
14 if (istmty .eq. 0) goto 10
15 c

16 goto (100, 200, 300, 400, 500, 600, 700, 800, 900, 1000), istmty
17 c

18 c because of the simplicity of pretty-printing no separate procedures
19 c are necessary for each stmt
20 c

21 c the end-of-input-stmts stmt
22 10 write (6, 11)
23 11 format(//f 1x, 10(1h»), 5x, I8hend of lab session,
24 1 5x, 10(1h«), /, 1x, 48(1h-))
25 return

26 c

27 c an erroneous(= invalid)-stmt
28 20 write (6, 21)
29 21 format(//, 1x, 5h*»**«, 1x,
30 1 31hthat was an erroneous statement, 1x, 5h*****)
31 return
32 c

33 c a lambda stmt (2 kinds)
34 100 write (6, 101)
35 101 format(//, 1x, I8ha lambda-statement)
36 c
37 goto (110, 120), istknd
38 c
39 c a single wavelength in the lambda-stmt
40 110 write (6, 112) stnmls(1)
41 112 formatdx, 5x, 30hsingle wavelength illumination,
42 1 1x, 12hat lambda = , f10.5, 1x, 7hmicrons)
43 return
44 c

45 c multiple wavelengths in the spectrum
46 120 write (6, 122) (stnmls(itempi), itempi = 1, nminst)
47 122 formatdx, 5x, 32hmultiple wavelength illumination,
48 1 1x, 4lhat the following wavelengths (in microns),
49 2 1x, 25»hand relative intensities, - :.~-h
50 3 (/, 1x, 26x, 1h(, f10.5, 5x, f10.5, 1h)^))
51 return ~~

52 c

53 c an exposure statement (2 kinds)
54 200 write (6, 201)
55 201 format(//, 1x, 21nan exposure statement)
56 c

97

98

Jun 21 03:30 1978 File prpr/pp Page 2

57 goto (210, 220), istknd
58 c

59 c only one exposure
60 210 write (6, 212) stnmlsd)

212 formatdx, 5x, 36hsingle exposure at the intensity of , f10.5,
^2 1 5x, 30hmillijoules per sq. centimeter)
63 return
64 c a series of exposures
65 220 itempi = stnmls(3)

write (6, 222) stnmlsd), stnmls(2), itempi
222 formatdx, 5x, 13hin the range , f10.5, 2x, 3hto , f10.5, 2x,

66

67

£2 1 11hmj/(sq.cm.), 2x, 3hat ,15, 2x, l6huniformiy spaced,
69 2 I0h intervals) ' "
70 return

71 c

72 c a system-stmt (5 kinds)
73 300 write (6, 301)
74 301 format(//, 1x, 21hthe imaging system is)
75 c

H goto (310, 320, 330, 340, 340), istknd
77 c

78 c a projection type system (istknd = 1)
79 310 write (6, 311) stnmlsd)
8° 311 formatdx, 5x, 35ha projection type system with na = ,f10.5)
81 return
82 c

83 c a projection type system (istknd = 2)
320 write (6, 321) stnmlsd), stnmls(2)
321 formatdx, 5x, 35ha projection type system with na = ,f10.5, 2x,

1 12hat lambda = , f10.5, 2x, 7hmicrons)
°7 return
88 c

89 c a projection type system (istknd = 3)
90 330 itempi = stnmls(3)
91 itemp2 = itempi + 4
92 write (6» 331) stnmlsd), stnmls(2), itempi, (stnmls(itemp3),

„- \, .„ _ itemp3 = 4, itemp2)
311 lormatdx, 5x, 35ha projection type system with na = , f10.5, 2x,

1 12hat lambda = , f10.5, 1x, 7hmicrons, /,
*Z 2 1x, 5x, 22hand with the following, 15, 2x, 11hweights for,
qo l 1x, 7hthe mtf, /,
*° 4 1x,10x, 21hin the range of 0 to , f10.5, 11h(1/microns),/,
99 5 1x,10x, 5x, (10f10.5))
100 return
101 c

102 c a contact type system (istknd = 4 (and 5))
103 340 write (6, 341) stnmlsd)
104 341 formatdx, 5x, »!0ha contact type system with mask to chip
3*2 1 , 13hseparation = , f10.5, 2x, 7hmicrons)
106 if (istknd .eq. 4) return
107 c

108 c •• a contact type system (istknd = 5 (only))
109 350 write (6, 351) strimls(2), stnmls(3)
110 351 formatdx, 5x, 29hand the coefficients ci being, 2x, 5hc1 =
\\l 1return f10'5' 2x' 9hand c2 = ,f10.5)

84

85
86

94

95

gg

Jun 21 03:30 1978 File prpr/pp Page 3

113 c
114 c

115 c an object(or mask)-stmt (3 kinds)
116 400 write (6, 401)
117 401 format(//, 1x, 19han object statement)
118 c

119 goto (410, 420, 430), istknd
120 c

121 c a line (istknd = 1)
122 410 write (6, 411) stnmlsd)
123 411 formatdx, 5x, 26hthe mask has only a line , f10.5,
124 1 I4h microns wide)
125 return

126 c

127 420 write (6, 421) stnmlsd)
128 421 formatdx, 5x, 27hthe mask has only a space , f10.5,
129 1 I4h microns wide)
130 return

131 c
132 430 write (6, 431) stnmlsd), stnmls(2)
133 431 formatdx, 5x, 45hthe mask is a grating with a periodic pattern,
134 1 1x, 15hof line/space , 2f10.5, I4h microns wide)
135 return

136 c
137 c
138 c a devmodel stmt (2 kinds)
139 500 write (6, 501)
140 501 format(//, 1x, 20ha devmodel statement)
141 c

142 goto (510, 520), istknd
143 c
144 c etchrate analytic ... stmt (istknd =1)
145 510 write (6, 511) stnmlsd), stnmls(2), stnmls(3)
146 511 format(1x,5x,48hthe etchrate is given by the analytic expression,
147 1 /, 11x, 17hthe rate r = exp(, f10.5, 2h +, f10.5, 4h*m +,
148 2 f10.5, 5h»m»m))
149 return
150 c

151 c etchrate curve ... stmt (istknd =2)
152 520 write (6, 521) (stnmls(itempi), itempi = 2, nminst)
153 521 format(1x,5x,47hthe etchrate is given by the curve of r vs m as,
154 1 /, (11x, f10.5))
155 return

156 c

157 c
158 c a devtime-stmt (2 kinds)

159 600 write (6, 601)
160 601 format(//, 1x, 19ha devtime statement)
161 c

162 goto (610, 620), istknd
163 c
164 c a single development time (istknd =1)
165 610 write (6, 611) stnmlsd)
166 611 formatdx, 5x, 32hthe chip is to be developed for , f10.5, 2x,
167 1 7hseconds)
168 return

100
Jun 21 03:30 1978 File prpr/pp Page 4

169 c

170 c a series of development times (istknd = 2)
171 620 itempi = stnmls(3)
172 write (6, 621) stnmlsd), stnmls(2), itempi
173 621 formatdx, 5x, 33hthe chip is to be developed from , f10.5, 2x,
174 1 11hseconds to , f10.5, 2x, 11hseconds in , i5, 2x,
175 2 5hsteps)
176 return
177 c

178 c

179 c a resmodel statement (only one kind)
180 700 write (6, 701)
181 701 format(//, 1x, 20ha resmodel statement)
182 c (710) only one kind of stmt
183 write (6, 711) (stnmls(itempi), itempi =1,7)
184 711 formatdx, 5x, 12hat lambda = , f10.5, 1x, 7hmicrons, 2x,
185 1 25hthe resist parameters are, /, 1x, 10x,
186 2 4ha = , f10.5, I8h (1/microns), b = , f10.5,
187 3 23h (1/microns), and c = , f10.5,
188 4 20h (sq.cm)/millijoules,
189 5 /, 1x, 10x, 23ha refractive index of (,
190 6 f10.5, 1h,, f10.5, 1h), 5x, 3hand, /, 11x,
191 7 17hthe thickness is , f10.5, 1x, 7hmicrons)
192 return

193 c
194 c

195 c a run stmt (only one internal form)
196 c

197 c for the user this stmt has two forms, but the parser converts both
198 c of them to the same internal form.
199 c also this is the only stmt where the value of a parameter in the
200 c stmt decides the control flow in the prettyprinter
201 800 itempi = stnmlsd)
202 if ((0 .le. itempi) .and. (itempi .le. 4)) goto 805
203 c

204 write (6, 802)
205 802 format(//, 1x, 4lha run-statement with an invalid parameter)
206 return
207 c

208 805 if (itempi .ne. 0) goto 809
209 c hence the first kind of run-stmt (run (=run 0)). so run all
210 write (6, 807)
211 807 format(//, 1x, 27hrun the whole system to get, /, 1x, 5x,
212 1 48h1) the normalized horizontal energy distribution,/,9x,
213 2 39hin the image of the mask resulting from, /, 9x,
214 3 41ha uniform illumination on the mask with a, /, 9x,
215 4 19htotal of 1.0 mj/cm2, /, 6x,
216 5 37h2) the standard bleaching of the chip, /, 6x,
217 6 35h3) the actual bleaching of the chip, /, 6x,
218 7 46h4) the etched out contours of the photoresist)
219 return
220 c

221 c now print out the proper output for each of the parts of the system
222 c that is to be run

223 809 goto (810, 820, 830, 840), itempi
224 c

101

Jun 21 03:30 1978 File prpr/pp Page 5

225 810 write (6, 811)
.226 811 format(//, 1x, 32hrun the imaging subsystem to get, /, 6x,
227 1 45hthe normalized horizontal energy distribution,/,6x,
228 2 39hin the image of the mask resulting from, /, 6x,
229 3 41ha uniform illumination on the mask with a, /, 6x,
230 4 19htotal of 1.0 mj/cm2)
231 return

232 c

233 820 write (6, 821)
234 821 format(//,1x, 40hrun the standard bleaching subsystem for,
235 1 21h further computations)
236 return

237 c
238 830 write (6, 831)
239 831 format(//, 1x, 4lhfind out the actual bleaching in the chip)
240 return

241 c

242 840 write (6, 841)
243 841 format (//, 1x, 45hfind out the etch-contours of the photoresist)
244 c

245 return

246 c

247 c
248 c a layers-stmt (only one kind)
249 900 write (6, 901)
250 901 format(//, 1x, 35hthe chip has the following layers-)
251 c (910) only one kind
252 write (6, 911) (stnmls(itempi), itempi = 1, nminst)
253 911 formatdx, 5x, 38ha substrate with refractive index of (,
254 1 f10.5, 2h, , f10.5, 1h), /, 1x,18x,
255 2 21hand other layers with, /, 1x, 22x,
256 3 I6hrefractive index, 8x, 20hthickness in microns, /,
257 4 (1x, 18x, 1h(, f10.5, 1h,, f10.5, 1h), 8x, f10.5))
258 return

259 c
260 c

261 c a trial-stmt
262 1000 write (6, 1001) (stnmls(itempi), itempi = 1, nminst)
263 1001 format(//, 1x, 37ha trial-statement with the parameters,
264 1 /, (6x, 10H0.5))
265 return
266 end

Jun 21 03:43 1978 File prpr/tpp Page 1

1

2

3
4

5

6

7

8

9

10

11

12

13
14

15

16

17

18

19

20

21

22

23
24

25

26

27
28

29
30

31
32

33
34
35
36
37
38
39
40

41

42

43
44

45
46

47
48

49
50

51

52

53
54

55

56

nolist

subroutine testpp
a driver to test the pretty-printer subroutine by simulating
(i.e. faking) the input to it (rather, by simulating the calling
environment for it). <—{except fo-r the fcrr^i-strnt, cw»«A

common /parsem/ istmty, istknd, stnmls(25), nminst, nmpntr

dimension istfl(IO)

this istfldO) array holds the number of different flavours that a
statement of type istmty can have as istfl(istmty)
in short istfKistmty) is the number of different kinds of stmts
of type istmty.

data istfl /2, 2, 5, 3, 2, 2, 1, 1, 1, 1/

nminst is used only in stmts (istmty.istknd =) 1.2, and 5.2
hence for this test it could be set to, say, 14.

nminst =14

do 10 itempi = 1, 25
ritmpl = itempi
stnmls(itempi) = ritmpl

10 continue

do 20 istmty = 1, 10
itempi = istfl(istmty)

do 15 istknd = 1, itempi

only in the devmodel stmt (etchrate curve ...) will the
value of stnmlsd) will have an immediate effect,
hence for that stmt ,(istmty.istknd =) 5.2, we need -

if ((istmty .eq. 5) .and. (istknd .eq. 2)) stnmlsd) = 14.
call prprst

15 continue

20 continue

for the run-stmt a special treatment is to be given because it has
a prettyprinted form depending on the value of the parameter given
in it. hence these special statements
istmty = 8
stnmlsd) = -1.0
call prprst
stnmlsd) =0.0
call prprst
stnmlsd) = 1.0
call prprst
stnmlsd) = 2.0
call prprst
stnmlsd) = 3.0
call prprst
stnmlsd) = 4.0
call prprst

102

Jun 21 03:43 1978 File prpr/tpp Page 2

57 c

58 c

59 c and finally the end-of-input statement
60 istmty = 0
61 istknd = 1

62 call prprst

63 c

64 return

65 end

66 list

103

Jun 21 03:50 1978 File mac1/serrm01 Page 1 104

subroutine errmO1(n)
for handling errors in machine 1
writes an error-message and returns

common /errlab/ lnoerr

logical lnoerr

lnoerr = .false.

write (6, 9000) n
9000 format(//, 1x, 9h»**-+-*««, 10x, 20herror in machined)=, i5)

return

end

1

2 c

3 c

4 c

5
6 c

7
8 c

9
10 c

11

12 I

13
14

	Copyright notice 1978
	ERL-79-16 (1 of 3)
	ERL-79-16 (2 of 3)

