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1. INTRODUCTION

It is well known that it is possible to solve the following

set of inequalities:

g-^x) < 0, j = 1, 2, ..., m

in a finite number of iterations using standard feasible directions

algorithms [1]. However such algorithms are rather slow. Newton's

method may also be employed, and has, of course, a quadratic rate of

convergence; nevertheless quadratic convergence does not imply

finite convergence and examples, for which Newton's method requires

an infinite number of iterations, abound. Since many engineering

problems, including computer aided design problems [2, 3], require thesolution

or repeated solution of such inequalities, the reward for efficiency

is high. We show in this paper that it is possible to modify Newton's

method, preserving- its desirable properties, in such a way as to

obtain a solution in a finite number of iterations. An alternative

approach is presented in [4].

The principle underlying the new algorithm can easily be

understood by means of simple example: determine an x such that

2 1
g(x)= x - 1 <_ 0. The Newton step p., if the current point is x.,

2
is that p of tha minimum norm which solves g(x.) + g (x.)p = x. - 1 + 2x.p < 0',

r ixii i —

p! = -U2-l)/2x., and x., = (1/2) (x.+l/x.) if the sten length is
ill i+l i i

unity and x. > 1. If x. = 2, the successive points generated by the

Nswton algorithm are 2, 1.25, 1.025, 1.0003, ... so that x •*• 1 but

x. > 1 for all i. On the other hand a first order algorithm would

2 I
generate a search direction p by solving min {g (x.)p |p|<£} yielding

x . ** - e sign (x.). If x » 2 and e = 0.01, the algorithm yields a
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sequence of points 2, 1.99, 1.98, 1.97, ..., which converges slowly

but satisfies the inequality in a finite number (200) of iterations.

Our algorithm combines the virtue of both the above algorithms by

choosing the search direction p to be the sum of a Newton step and

a first order step. For the simple example we are now considering

12 ..u ..the algorithm generates a search direction pi = p^^ + p^ so that

x = (1/2) (x.+l/x.) - e sign IxJ. With c = 0.01, the algorithm

generates the following sequence of points: 2, 1.24, 1.013, 0.990,

and so achieves a feasible point in three iterations.

The algorithm presented calculates a modified Newton step p^^

(a suitable generalization of the step p. described above) and

accepts this step if it satisfies certain tests. If the modified

Newton step is not satisfactory, the algorithm utilizes a conventional

first order step. The algorithm is described in §2 and its finite

convergence is established in §3. . Some numerical examples are

presented in §4.

2. THE ALGORITHM

The following notation will be employed. The feasible set is

denoted by F:

F A {x cJ?"|gj(x) <_ 0, j=l,...,m)

The maximum value of the constraint functions is specified by

i{>{-) '• -Rn •**:

*(x) 4 max {g:(x)|j=l,...,m}

We shall employ *(x,p) to denote a first order estimate of <Mx+p),
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(1)

(2)



so that:

iMx.p) 4 max {g3 (x)+gMx)p|j=l,...,ra}

Similarly 0{x,p) is a first order estimate of ^(x+p) - 4»(x), i.e.

0(x,p) 4 >Mx,p) - *(x)

We note that F = {x c J?n|if«(x) <^0}. The "most active" constraint

set I(x) is defined by:

'l(x) A {j e{l,...,m}|gj(x) =*(x)}

1

(3)

(4)

(5)

For any x in J? , a Newton step p is any vector in the solution

set ?*ixj of the program L (x) defined by:

min {!;p|!Jg(x)+gx(x)p<_0} (6)
P

where ?(x) c vr is the vector whose components are g (x), j «* 1, ..., m.

For any x in F. , any Newton step p in P (x), we require an additional

2 2 1
step p , which is any vector in the solution set P (x,p ) of the

2 1
program L (x,p ) defined (for some z. > 0) by:

2 1 1
© (x,p ) A min {0(x,p +p)

min max {gD (x)+g^(x)p +g^(x)p-\J>(x), j=1,... ,mj HpH^ <c^

Her.ce, fcr any x in J? , the modified Newton step generated by the

algorithm is:

1 ^ 2
? = P + P

(7)

(8)

wliere ? is any vector in the solution set P (x) and p is any vector
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2 1
in the solution set P (x,p ). Note that (7) reduces to

min {g (x) (p +p) |p| <^c }, yielding p = -e sgn (g (x)) when m = 1.

The Newton step may not exist or, if it does, it may be

unsatisfactory; in such cases the algorithm employs a first order

3 3
step p which is any vector in the solution set P (x) of the

3
program L (x) defined by:

0 (x) = min {0(x,p)

P

IpII <n

We employ a standard test on the magnitude of the Newton step (e.g.

||p (x) || ^L) to judge whether it is satisfactory or not. We will

use m to denote the set {1,2,...,m).

We are now able to state our algorithm.

Algorithm to Determine x e F

Parameters: y e (0,h), 6 e (0,1), e > 0, I >> 1.

x0c*.

Set i = 0.

(9)

Data:

Step 0:

Step 1:

Step 2:

If \Mx.) f. 0, stop.

If P (x.) 4 $, solve L (x.) to obtain p .
i i — —

2 1 2 12
solve L (x.,p ) to obtain p . Set p = p + p .

If P (x.) =•• $ or if ||p li0D>L, solve L (x.) to obtain p3
3

and set p. = p .
l

Determine the smallest integer k. > 0 such that:

k. k.

<i>{xL+6 Lp >- <MxJ _< .yB 10(xi,pi)

if p* < l

Step 3;

Step 4: Set xi+1 x. + e o.

Set i = i+1 and go to Step 1.

12 1 3
It is shown later that L (x), L (x,p ) and L (x) can be
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transcribed into linear programs. At each iteration of the above

algorithm two linear programs have to be solved, L followed by

.,23
cxthev L or l .

3. CONVERGENCE ANALYSIS

The following assumptions are made:

The function g(*) : J? -*• Jr is continuously differentiate.

The set {?g3 (x)|j eI(x)} is positive linearly independent

for all x such that i{i(x) ^ 0. D

We note that F (the closure of the complement of F) satisfies:

FC = (x cJ?n|-Mx) >0) (10)

This is easily proven. The boundary of F, 5(F), is clearly a subset

of {x ei?n|«(x) =0}. Moreover, by H2, if i{i(x) = 0, then 7g3 (x) ¥ 0

for all j e I(x) so that x c *(F). Kence:

HI:

H2:

f[T) = (x € J?n|iMx> =0} (11)

Since 5(F) = 6(FC), it follows that F = {x eJ? |<Mx) _>0}. Let M denote

the set of points at which L has a solution, i.e.

MA {x €FC P^x) ?<$, ||pI <L for all p € P (x)} (12)

We note that if there exists a p eP (x) such that ||p||(Df.I'» then
i. n 1 c
IJpiJ <L for all p e P (x) . Let N denote the complement of M in F

(i.e. FC = M u N). For all x e F (i.e. all x such that ^(x) ^ 0)

let P(x) denote the set of possible search directions generated in

Step 2 of the algorithm, i.e. P(x) A {p eJ^lp^p +p where p c P (x)
2 2 1 3

and p c P (x,p ) if x e M, and p c P (x) if x e n}. Also, for all

- 5 -

x e FC, all p e P(x), let k(x,p) be the smallest integer k ^ 0 such

that \|>(x+0kp)-ij>(x) ± yB 0(x,p). Finally, for all x€F° let A(x)

be defined by:

A(x) A{x+Bk(X,p)plpeP(x)} (13)

i.e., given an initial point x, A(x) is the set of possible points

generated by Steps 2 and 3 of our algorithm. It is shown in the

proof of Theorem 3 that A(x) is well defined. Hence our algorithm,

if the stop condition in Step 1 is removed, has the structure of the

following model:

Algorithm Mod^l

Data: * xQ c F .

Step 0: Set i = 0.

Step 1: Compute any x. , e A(x.).

Step 2: Set i = i+1 and go to Step 1. J

The purpose of our algorithm is to generate a point in F. If

Q

our algorithm is such that ^ is reduced at any point in F , and

possesses certain continuity properties, then any accumulation point

generated by our algorithm cannot be in F , and hence must lie in

F , the interior of F. A direct consequence of this is that if the

algorithm (without a stopping condition) generates an infinite

sequence {x.} which has accumulation points, then there exists a

finite integer j such that x c F. These comments are made precise

in the following result.

Theorem 1

Suppose that for all x c F there exists an e, 6 > 0 such that

<J>(x") ~ <Mx') 1 -6. (14)
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for all x' c B(x,e) n F and all x" c A(x') where

B(x,e) 4 fz llz_xlleDJic^- Then, if an infinite sequence {x.}

generated by the algorithm model has an accumulation point x*, this

accumulation point must lie in the interior of F. 0

Corollary

(i) If the algorithm model generates a sequence {x.}, then either

there exists a finite integer j such that x. e F or {x } is an

infinite sequence possessing no accumulation points,

(ii) If the set {x|tMx)^_i|»(x0)} is compact, or the sequence of

(x.) generated by the algorithm model is bounded, there exists a

finite integer j such that x. € F. •

The proof of Theorem 1 is essentially the same as that of

Theorem 1.3.3 in [!]. Hence, to show that our algorithm has finite

convergence (if it generates a bounded sequence) we have to show

that A, defined by (13) satisfies the hypothesis (see (14)) of

Theorem 1. Our first step is to show that the estimate G(x,p) of

C(x+p) - <Mx) satisfies 0(x,p) < 0 for all x e F , all p € P(x) and

has certain continuity properties. For convenience we define

&(•), 0 (•) : F •+ J? as follows:

0(x) 4 sup {0(x,p)|peP(x)}

02(x) 4sup {02(x,p)|pcP1(x)>

The following properties of ©(•) and P(-) are easily established.

Proposition 1

(a) For all x € M:

"">

0(x) = G"(x) < -,j,(x)

- 7 -

(15)

(16)

(b) For all x e N

0(x) = 0 (x)

(c) |plLlmax tL+Cj,!} for all peP(x), all x « FC

Proof

12 11
(a) Let x e M, p c P(x). Then p = p + p where p e P (x),

IIP II 1 L. P € P (x,p ) so, from (7), 0(x,p) =02(x,pS for all

p € P(x), all p1 e P (x). Also, from (7), 02(x,p1) <_ ©(x,?1) <_-;Mx)
since, from (6), <Mx,p ) = 0.

3 3 3 3
(b) Let x e N. Then p = p where p e P (x). Hence 9(x,p) =0 (x).

(c) Follows directly from the definition of P(*). G

~2 3
We next establish certain properties of 0 (•) and G (•).

Proposition 2

(a) For all x c F , 0 (x) < 0. Also 0 (•) : 2? * J? is continuous.

"2(b) For all x c M, there exists a o, n > 0 such that G (x') <^ -n

for all x' e B(x,p) n M.

Proof

~~c 3
(a) Let x c F . It follows from (9) that 0 (x) <^ 0. Since the

vectors in {vg3(x)|jc I(x)} are positive linearly independent, there

exists a p/ 0 and a 6 >0 such that g3(x)p <^ -6 for all j e l(x) and

gD(x) 4 ij>(x) - <5 for all j / l(x). Hence, for all a e [0,1]:

g^x) +ag^(x)p <_ C(x) -a6 for all je I(x)

g^x) +<xg-j(x)p _< ^(X) -6+ad for all j i I(x) (17)

where d ^nax {g (x)p|j cm}. Hence:

0 (x) < max {-a6,-6+ad} (18)



for all a e [0,1]. Hence 0 (x) < 0.

Since 03(x) = min {0(x,p)|p€ S), where 0(«,«) is continuous

and S is the unit cube in J?", it follows that G (•) is continuous,

(b) Let x c M. We consider two cases:

fi) <Mx) > 0.

"2
It follows from Proposition 1(a) that 0 (x') <_ -*(x') for all

x' € M where -i^(*) is continuous (and -iji(x) < 0).

(ii) ;•{:<) = 0

The function 0 (•,•) : J?" x J?" +J? is continuous. It is

shown in the Appendix that d(0,P (x')) -> 0 as x* -♦■ x in M (For all

x k2?', P c T , d(x,D A sup {|ix-y||Jy c D.) Since <Mx) » 0,

?'l{x; = {0} so that 02(x') = sup {02 (x',p') |p* eP'(x»)} -> 0 (x,0) «0 (x)

as x' -xin M. But 92(x,0) =e103(x) <0. Hence 0 (x) <0and
•5 (•) is (relatively) continuous at x on M.

It follows from (i), (ii) that, for all x e M, there exists'a

* 2
.-, n > 0 such that .9 (x') <_ -n for all x* € B(x,p) n N.

Conbining Propositions 1 and 2 we obtain:

Theorem 2

D

For all x € FC = K u N there exists a n, P > 0 such that

0(x') <_ -n

for all x' t B(x,p) nF . D

Vte wish to show that A satisfies the hypothesis of Theorem 1.

The first step is showing this is Theorem 2; the next consists in

shewing that 3(x,p) is a sufficiently good estimate of \|»{x+p) - 0(x),

i.e. ';-(x,p) is a sufficiently good estimate of *(x,p) .

- 9 -

Proposition 3

Let N be any compact subset of F . There exists a function

(a,x) w- <Ma,x), J?+*.Hn •*• •*? such that:

sup {|*(x,ap)-*(x+ap) | p€P(x)} <_ a$(a,x)

for all x c N, all a € [0,1], and

<J>(a,x) •*• 0

uniformly in x c N as a •+ 0.

Proof

It follows from Proposition 1(c) that

P(x) c T4 {pc J?" HpII.,,1 nsax {L+e^l}; for all x in F . Hence:

e(a,x) 4 sup {|*(x,ap)-«(x+ap) j|pc P(x) )

< sup {j>Mx,ap)-iMx+ap) iP er} (-'-')

max (A,B) -max (C,D) <_ max (A-C,B-D)

and:

max (C,D) - max (A,B) <_max (C-A,D-B)

so that:

|max (A,B) -max (C,D)| <_max {|a-c|,|b-d|}

- 10 -



Hence '•

|i|/(x,ap)-<Mx+ap) | <.roax {|g3 (x,ap)-gJ (x+ap) |, j e ro> (20)

where:

gj(x,p) 4gj(x) +g3(x)p, j = 1, ..., m (21)

Because g(*) is continuously differentiable:

|J(x,op)-*(x+ap) | <Craax {!gx(x)-gxU3) |, jem}]o||p||2 (22)

where, for all j e m, C3 lies in the line segment [x,x+ap]. As

a -* 0, Ig3 (x)-g3(C')) | •+ 0, uniformly in x c N, p e V

(since q (•) is continuous). Since there exists a d < °° such that
x

j]p|| <_ d for all p e T, we see that $(•), defined by:

j em, 5€[x,x+ap], pc D (23)<>(a,x) A d max max max {|g (x)-g (£)
P 5 j X X

satisfies Proposition 3, i.e.:

e(a,x) < a<J>(a,x) (24)

for all x c N, all a c [0,1] and *(o,x) •* 0, uniformly in x e N, as

a - 0. D

We can now employ Theorem 2 and Proposition 3 to establish an

important property of A, as defined in (13).

Theorem 3

Let {x.} be a sequence generated by the algorithm. Then either

there exists a finite integer j such that x. e F, or the sequence (x^

is infinite and has no accumulation points. If (x.) is bounded then

there exists a finite integer j such that x e F.

Proof

It follows from Theorem 1 that all we have to be is to show

lll -

that for x e FC there exists an c, 6 > 0 such that <Mx") - t|»(x') <_ -C

for all x' c B(x,e) nFC, all x" c A(x'). It is easily checked that

the map a -*• i|>(x,ap) is convex (for all x, p) so that:

iKx,ap) - *(x+ap) <^o0(x,p) (25)

for all x e FC, all p e P(x), all o f [0,1]. From (25) and
c

Proposition 3, for any compact neighbourhood N <= F of x:

^(x'+ap) - iMx') = «Mx*+ap) - tMx',ap) + iMx',ap) - 'J>(x')

_< a0(x',p) + a<|>(a,x') (26)

for all x' c N, all p £ P(x'), all a c [0,1]. From Theorem 2 there

exists p, n > 0 such that G(x*,p) ^O(x') <_ -n for all x' e 3(x,,<) r. f ,

all p e P(x'). Choose N so that N <= B(x,p) n F and an integer k' < »

such that *(a,x') 1 d-Y>n for all x' € N, all a c [0,£' ]. Then,

since n <_ -0{x',p) :

*(x'+ap) - <Mx') ± a[0(x',p) +(l-Y)n]

< aY0(x',p) (-7)

k'
for all x' c N, all p e P(x') all a c [0,B ]. This shown that the

algorithm is well defined (k(x,p) <_K' < » for all p e P(x)) and

that:

*(x") -*(x') <_ -Sk\n (28)

for all x' e N, all x" e A(x'). Choosing e > 0 so that B(x,e) n F c n

and setting 6 = B Yn yields the desired result. Q
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4. NUMERICAL EXAMPLES

12 1 3
Firstly we note that the programs L (x), L (x,p ) and L (x)

are all equivalent to linear programs. Thus L (x) is equivalent to:

minimize o subject to

(a) p <_ o, i = 1, ...» n

(b) -p1 <_ of i =.It ...» n

(c) gj(x) +g3(x)p<_0, j= 1, -.., n.

L^(x,q) is equivalent to:

minimize o subject to

(a) p <_e, i=l, ...fn

(b) -p1 <_ c, i = i, ...f- n

(c) g3(x) +9x(x)q +gx(x)p f.o, j- li

L' (x) is equivalent to:

minimize o subject to

(a) p1 <_ 1, i = 1, ...» n

(b) "-pX <_ 1, i= U •••f n

(c) g-'tx) + g3(x)p <_ c, j= 1, ...» ui-

ln the following examples the values of the parameters employed

were B = 0.1, y = 0.1, e = 0.1, L » 100.0.

Example 1

The feasible set consists of infinitely many discs of radius

tt/2 centred at U2n-h) v,2nv.) for all integer values of m, n. The set

is defined by:

sin x. ^_ 0

- cos x_ <^ 0

- 13 -

..., m.

With x = (1,2), a feasible point (-3,0416,1.4708) was located in

one step (a (modified) Newton step).

Example 2

The feasible set consists of a pair of discs, each of radius

n/2, centred at (-ir/2,0) and (3n/2,0), and is defined by:

sin Xj <_ 0

- cos x_ <_ 0

Xj - 3ir <_ 0

x2 - */2 ^ 2

-x - ti <_ 0

-x - n/2 <_ 0

With x = (0,75), a feasible point (-3.0416,1.4708) was located in

four iterations. The sequence of points generated were (1,74), (1.73),

(1,72), (-3.0416,1.4708), the first three steps being first order,

and the final one a (modified) Newton step.

Example 3

The feasible set is defined by:

(0.999)2 <(x2+x2) <_ 1

With x = (0,15) a feasible step was located in four iterations, all

steps being of the (modified) Newton type.

Example 4

The feasible set is narrow crescent defined by:

(x^)2 +(x2-D2 f.0.25

-(Xj-M2 -(Xj-1.1)2 <0.26

x2 - 1 < 0

14 -



Starting from an initial point (0.5,-6.0) a feasible point is

located a five iterations, all of the (modified) Newton type.

Example 6

This problem is based on one suggested by Powell. The vector

coordinates (x ,0), (x ,x ) of two vertices of a triangle (the third

being (0,0)) and the centres (x ,x_), (xg,x_) of two discs of unit

radius. A point x is feasible if the triangle has a specified area

a and the two discs lie inside the triangle and do not overlap each

other. These constraints can be specified as:

x > 0

x > 0

(VX6>2 + <X5"X7)2 "41°

x. - 1 > 0, i - 5, 7

(x2+x3)
- 1 > 0, i = 4, 6

(x_-x.)x. .+ (x -xjx-
2 1 l+l 1 l 3

r 2 , 2,2 Sj[x3+(x2-x1) ]'

a - bx.x, >_ 0

- 1 > 0, i = 4, 6

With xQ = {(3),(0,2),(-1.5,1-5),(5,0)) and a = 12, a feasible point

((5.8381),{C.4448,4.1062),(1.250,2.3237),(2.8434,1.0505)) was

achieved in six iterations. The minimum value for a has been

obtained by Powell as 11.6569.

- IS, -

REFERENCES

1. E. Polak, Computational Methods in Optimization, Academic

Press, New York, 1971.

2. N. Zakian and U. Al-Naib, "Design of Dynamical and Control

Systems by the Method of Inequalities", Proc. IEE, Vol. 120,

No. 11, pp. 1421-1472, 1973.

3. R.G. Becker, A.J. Heunis, D.Q. Mayne, "Computer Aided Design

via Optimization", Research Report 78/47, Department of

Computing and Control, Imperial College of Science and

Technology, London.

4. E. Polak and D.Q. Mayne, "On the Finite Solution of Nonlinear

Inequalities", Memorandum No.UCB/ERL M78/80, Electronics Research

Laboratory, University of California, Berkeley, September 1978.

5. J.W. Daniel, "On Pertubations in Systems of Linear Inequalities",

SIAM Journal on Numerical Analysis, Vol. 10, pp. 299-303, 1973.

- 16 -



APPENDIX

Proposition Al

Let x £ M satisfy iMx) = 0. Then d(0,P (x*)) A sup (Hpjl^ |p£P (x')}-»-0

as x' •+ x in M.

Proof

For all x* e M let T(x') be defined by:

F(x') 4(p eBn|g(x,)+gx(x')plO}

ClearlyP^x') c r(x'). Since *(x) = 0, it follows that P (x) = {0} so

that O e I'(x) ^ *. Hence dist (0,r{x)) A inf {||p||Jp cT(x) } = 0.

Since {vg3(x), jcl(x)) are positive linearly independent, there

exists a p c5?n such that g3 (x) + gD(x)p < 0, j = 1, .... m, it

follows from the continuity of g(-) and g (•) and [2, Theorem 4.2]

that dist (0,r(xM) + 0 as x' + x in K, for all x e 6(F). But'

dist (0,r(x')) =inf {|!p|jJner(x')}» HpH^ forany p in P (x») by

virtue of the definition of P (•). Hence d(0,P (x')) •+ 0 as x' -»• x

in M. D
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