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ABSTRACT

This paper presents an algorithm which is globally convergent

and whose rate of convergence is superlinear. The superlinear rate

of convergence is achieved by using a search arc which solves a

quadratic approximation to the original program, and global convergence

is obtained by using an exact penalty function to determine step

length. The algorithm incorporates a rule for choosing the penalty

parameter, and employs a search arc rather than a search direction to

avoid truncation of the step length near solution points.
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1. INTRODUCTION

There exist many algorithms,such as the constrained Newton

method of Levitan and Polyak [1], Wilson's method [2] and Robinson's

method [3], for solving constrained optimization problems, which

have a superlinear rate of convergence but are only locally convergent.

A major difficulty in globally stabilizing these algorithms is the

fact that they generate sequences which are not necessarily

feasible, making comparison of successive points difficult. A way of

overcoming this difficulty was supplied by Han [4] and later, but

independently, by Mayne and Maratos [5] and Maratos [6], who suggested

using an exact penalty function to order possibly non-feasible points,

thereby permitting a suitable choice of step-length to be made. The

computational results of Powell [7] and of Mayne and Maratos [5,6] show

that this class of algorithms, in which the search direction is determined

by a suitable approximation to the original problem and step length

determined by (approximately) minimizing an exact penalty function, has

considerable promise. These algorithms differ conceptually, even though

there may exist many similarities, from the pioneering algorithms of

Conn [8] and Conn and Pietrzkyowski [9] which directly generate descent

directions for the (non-differentiable) exact penalty function. In the

former, the search direction is determined first and the penalty function

parameter c is then chosen to ensure that the resultant search direction

is a descent direction for the exact penalty function; in the latter

the penalty function parameter c is first chosen (to ensure equivalence

of the original and exact penalty function problems) and then a descent

direction for the resultant exact penalty function is chosen.

Although the new procedure brings advantages, it also causes

several difficulties which have been listed by Han [4]. The first and
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most obvious of these is the choice of the penalty function parameter

c. Much of the literature [4,8,9] assumes that a suitable value for

c is available a priori. Powell [7] gives a heuristic rule for

iteratively choosing c; since global convergence is not established,

cycling may occur. In contrast to this, the algorithm presented

here incorporates a procedure for iteratively choosing c in such a

way that global convergence, to points satisfying Kuhn-Tucker

conditions of optimality, is ensured. The procedure is based on

similar procedures successfully employed in [5], [6] and [10], and

on a model devised by Polak [11] for iteratively choosing a parameter.

The second problem concerns the minimization of the exact

penalty function along search directions. Han [4] (like Conn [8] and

Conn and Pietrzykowski [9]) employs exact minimization but emphasizes

the desirability of approximate procedures, like those of Armijo and

Goldstein, which,however, cannot be directly employed because of the

non-differentiability of the exact penalty function. Our algorithm

incorporates an Armijo type procedure for choosing step length; the

procedure is shown to have the necessary properties required for

convergence and is based on that employed in [51 and [6]. It is

interesting to note that Powell, although he supplies no theoretical

justification, has employed a similar procedure [7],

A third problem is that of step length as a solution point is

approached. Unless the step length is asymptotically unity, suprrlinear

convergence is not achieved. Han [4] therefore suggests that the step

length procedure described above be discarded near solution points

but there is no known automatic procedure for doing this. Powell [7]

does not discuss this point. Maratos [6], however, has shown that the

problem cannot be ignored in that there exist problems for which the
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step length procedure produces step lengths of less than unity, no

matter how close the current iterate is to a solution point. Maratos . •

[61 has therefore proposed replacing the search direction by a search

arc, yielding asymptotic step lengths of unity (for the equality

constrained minimization problem). He employ an appropriate modification

of this procedure.

A final problem concerns the suitability of the search direction

(if it exists) yielded by the quadratic approximation to the original

problem. An analagous problem arises in employing Newton's method for

unconstrained optimization problems; search directions so generated

may not be descent directions. A common method to achieve global

convergence replaces the Newton direction by a descent direction

whenever the former is not suitable. After investigating several

alternatives we concluded that an appropriate generalization of this

technique, to make it suitable for constrained optimization, was to be

preferred. Accordingly we developed a relatively simple first order

method for minimizing the (non-differentiable) exact penalty function.

This sub-algorithm is employed whenever the search direction, yielded

by the quadratic approximation, does not satisfy certain tests.

In the next section we motivate and describe the main algorithm.

In §3 we describe and establish convergence of the first order sub-

algorithm and in S4 we establish global convergence properties of the

main algorithm. Finally, in S5, we show that the main algorithm has a

superlinear convergence rate.
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2. THE ALGORITHM

He consider the following nonlinear program:

min (f(x)|g(x) <_0, h(x) = 0}

m

where f :Rn + R. g :J?" •* A™ and h :J?" •* R e. The quadratic

approximation QP(x,H) to this problem is defined to be the program

min {f (x)p + >jpTHp|p€F(x)}

F(x) 4 (pci?n|g'(x)+g (x)p <_ 0, h(x)+h (x)p =0>

(2.1)

(?.2)

(2.3)

If p e F(x), then x+p satisfies the constraints to first order. Thus

the set x + F(x) is a first order approximation to the feasible set F,

defined by:

F A {xeJ^jgCx) ^0, h(x) =0} '2.4)

H is an approximation to L (x,X,^i) where the Lagrangian

L:i7nx/?mxi?e^Ris defined by:

L(x,X,u) 4 f(x) + XTg(x) +uTh(x) . (2.5)

If p solves (2.2) (with suitable values for X and n) then x+p

approximately solves (2.1). Solving (2.2) also yields multipliers

which may be employed to calculate the next approximate to L . To

compare non-feasible points we introduce an exact penalty function

Y : Fn x R •*• R defined by:

Y(x,c) = f(x) + c*(x) (2.6)

where $ : /? •*• R is defined by;

*(x) wmax {0'» gj (x), jcm; |hj(x)|, j«n) (2.7)
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m denotes the set {l,2,...,m} and m the set {l,2,...,m }. Other
— —e e

exact penalty functions such as those employed by Han [41, Maratos

and Mayne [5] and Powell [7] may be employed. He note that x Is

feasible (x (. F) if and only if *(x) = 0.

We wish to know whether a search direction, determined by

solving QP(x,H), is a descent direction for y(x,c). To do this we

define the following first order estimates: J : R * n •*• R, is

defined by:

*(x,p) Amax (0; g^ (x)+gj (x)p, j era; |h* (xHhMxJpl, j t m}

Y : Rn * Rn * R - R, is defined by:

-e

(2.8)

Y(x,p,c) 4 f(x) + f (x)p + cij)(x,p) (2.9)

These estimates are obtained by replacing f, g and h, in the

definitions of i|< and y, by their first order estimates. Provided

that f, g, h are continuously differentiable, it is easily shown (see

the appendix) that ty and y are first order estimates of, respectively,

ili and Y, i.e. that, for all x, p and c:

U<x+p)4(x,p)| = o(||p||) (2.10)

and:

|Y(x+p,c)-Y(x,p,c)| =o(||p||) (2.11)

For our purpose the (convex) estimates $ and Y are more useful than

the (linear) directional derivatives, p is said to be a descent

direction for Y(x,c) if:

Y(x,p,c) < y(x,c) (2.12)

It follows from (2.11) that, if p is a descent direction for y(x,c), then

there exists an o >0 such that Y(x+ap,c) < y(x,c) for all a« (0,0^3.
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It will be convenient to introduce the function Q : J? * # * R •* R

defined by;

0(x,p,c) = y(x,p,c) - y(x,c) (2.13)

6(x,p,c) is a first order estimate of Y(x+p,c) - y(x,c).

That a solution p to QP(x,H) can be a descent direction for

Y(x,c), provided c is large enough, is now established.

Proposition 1

Let f, g, h be continuously differentiable and let {p,>. ,u} be

a Kuhn-Tucker triple for OP(x,H). Then:

t..„ r_ r „j_ r l..i|9(x,p,c) < -p Hp - [c- I X3- I |uD|]^(x)
j=l j-1

(2.14)

Proof

A Kuhn-Tucker triple {p,X,uJ for QP(x,H) satisfies the following

well known conditions:

Vf(x) +Hp +9^(x)X +h^(x)u =0

h(x) + h (x)p = 0

g(x) + g (x)p <_ 0

X > 0

X (g(x)+g (x)p) = 0

It follows from (2.9) that:

0(x,p,c) 4Y(x,p,c) - Y(x,c)

= f (x)p + c(i|»(x,p)-Mx))

From (2.8), (2.16) and (2.17) we have:

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)



<Hxfp) e 0

Hence, for p a solution of Q(x,H), 0(x,p,c) = f^txjp - c*(x).

From (2.15):

fx(x)p - p*Vf(x)

« -pTHp - Xg (x)p -nh (x)p

From (2.16):

T T
H h (x)p *> -u h(x)

From (2.19)

T T
X g (x)p » -X g(x)

Hence, from (2.20)-(2.24)

6(x,p,c) = -pTHp + XTg(x) + uTh(x) - c*(x)

(2.21)

(2,22)

(2.23)

(2.24)

(2.25)

An upper bound for the right hand side of (2.25) can be obtained by

noting that, since Xj^ 0, X^gMx) <_ X^(x) for all je mand that

ujhj(x) <|uj| |hj(x)| <_ |uj|«Kx) for all jem^. Hence:
m

m . e ,

0(x,p,c) < -pTHp - [c- JV- I |u-'|]*(x) (2.26)
j=l jol

which is the desired result. D

An obvious corollary is that, if {p,X,u> is a Kuhn-Tucker triple

T
for Q(x,H), then p is a descent direction for y(x,c) if p Hp > 0 (e.g.

m
me.

if H is positive definite) and c > J X3 + £ |»i3|. Consequently the
j-1 j=l

following algorithm is worth considering:

Data: xQ eR11, Bq cRn*n, 8c(0,1)

Step 0: Set i = 0
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Step 1; Compute the Kuhn-Tucker triple {p.,X ,u ) for OPtx^H )
n

m . e .

Step 2; Choose c > I \3 + I \ii3.\
x j=l j-1

Step 3: Choose k , the first integer k in the sequence 0, 1, 2, ...

satisfying:

k k

YtXj+6 Pj^f^) -Y(xi,ci)<^ B 0(x1,pi,ci)/8

ki
Step 4: Set x . ° x. + 8 p.

Update H to H.+.

Set i = i+1

Go to Step 1
-j

This algorithm is appealing in its simplicity. Powell [7] has studied

the rate of convergence of a similar algorithm, under the assumption

that it produces convergent sequences. Note that, since Y(x,op,c)

is convex in a (for all x, p, c):

0(x,ap,c) = Y(x,op,c) - Y(x,c)

< a[Y(x,p,c)-Y(x,c)]

= a0(x,p,c) (2.27)

so that Step 3 is an Armijo type step, with B 0(x ,p.. ,c.) re^nlacinq

the usual linear estimate of the change in the cost function as x

ki
changes from x. to x +B p.. However global convergence has not been

(and possibly will not be) established for this algorithm for the

following reasons:

(a) A solution for QP(x.,H ) may not exist, either because the

problem is infeasible (F(x ) = 4) or H is not positive definite.
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(b) Even if a solution exists, or if F(x.) is replaced (as suggested

in [7]) by a larger non-empty set F(x )) the Kuhn-Tucker triple

{p ,X ,11,} for QP(x ,H ) and, consequently, 0(x.,p.,c) may vary
i i i xi i x

discontinuously with x . Unless 0 has some serai-continuity properties

it seems unlikely that global convergence can be established.

(c> The choice of c. in Step 2, as it stands, is heuristic, and may

result in cycling. Moreover the test function should vary continuously

with x (see [11]) and so the possible discontinuity of the multipliers
i

may cause trouble.

(d) Step 3 may generate steps whose lengths are strictly les9 than

unity no matter how close x is to a solution point x.

Our response to these difficulties is as follows. If QP(xi#H )

is infeasible, or if the search direction p obtained by solving

QP(x ,H ) is unsuitable, then a search direction is generated using a

robust first order descent algorithm for Y- The test for c^ is modified

to conform with Polak's algorithm model [11], and continuous estimates

for the multipliers are employed in place of those yielded by solving

QP(x ,H ). Although p may consequently occasionally fail to be a

descent direction for y(x.,c.), the first order algorithm will take over

an-3 no difficulty will ensue. Finally the search direction will be

replaced by an arc. Near a Kuhn-Tucker point for the original problem,

the solution to OP(x ,H.) is guaranteed to possess continuity properties

which ensure that p will be accepted for all subsequent iterations,

resulting in superlinear convergence.

Our new estimates for the multipliers are modifications of those

proposed by Glad and Polak [12]. The estimators X:Rn •*• R™ and
ro

jl :Rn •*• R6 are defined by:

- S -

(X(x).jl(x)) 4arg min {||Vf<x)+g3(x)X+h*(x)u|[

+XTG{x)X+uTK(x)u}

where G and K : R •*• R are defined by:

G(x) 4diag {M>(x)-g* (x)) }

K(x) 4 diag {(iMx)-|h3(x)|)

X and £ are continuous functions and if {x,X,|i} is a Kuhn-Tucker

triple for problem 2.1, then X = X(x) and u = u(x). This will be

established later. We also define the function c : R -* R by:

ro
m e .

-c"(x) A max {[ I XD(x)+ I \f?(x) |+b],b)
1-1 1-1

(2.28)

(2.29)

(2.30)

(2.31)

where b e (0,») is an arbitrary, "small" constant. We also require

a test function T t Rn •*• R defined by:

T(x) 4min (e,[<Mx)+|Ivf (x)+g^(x)X (x)+h^(x)u(x) i|2]2} (2.32)

Assume that our first order sub-algorithm generates, at each x and c,

a search direction and p(x,c). Let I. denote the set of active inequality

constraints predicted by the quadratic program at iteration i, i.e.

where {p ,X.,ji.} is the Kuhn-Tucker triple for QPtx^HJ. For each i,

p denotes the solution, if a solution with norm less than or equal to

||pil| exists, of:

gj(x±+pi) +g;J(x)p =0, j€IL
(2.34)

h(x.+p.) + h (x)p ». 0
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p denotes the zero vector otherwise. He can how specify our algorithm:

Main Algorithm

Data: xL e R » b, cQ, « c (0,»), 6, 6j e (0,1),. ^

Step 0: Set i «= 1, set j = 0

Step li If c^j i cfx^, set c± = cil

If c . < c(x ), set c = max {c ,+6,c(x.)}

Step 2: Ift (a) Solution p of QP(x ,H ) exists

(B) MpJI i«?
(Y) 0(xi,pi,ci) <_ -T(x.)

Them (a) Compute p (see (2.34))

(2.35)

(2.36)

(b) Compute k , the first integer in the sequence

0, 1, 2,

k.

satisfying:

2k.

Ytx^B S^+B Sy^) -Y(xi,ci)

< B i0(xi,pi,0^^)78

2k.

(c) Set xi+1 =xi +B*p± +B LPL
(d) Update H to H.+1

(e) Set i = i+1, j = j+1 and go to Step I

Elsei proceed to Step 3.

(2.37)

Step 3: (a) Compute p(x ,c ) (by solving (3.1))

(b) Compute the smallest integer k. in the sequence

0, 1, 2, ... such that:

ki- ki -Y(x±+B p)xi,ci),ci) - Y(xi,ci) <^ B 0(x1,p(xi,ci),ci)/4

(2.38)

-li

te) Set x
i-

i+1
*L * B p(xi,ci

(d) Update ^ to Hi+J

(e) Set i = i+1 and go to Step 1 a

For simplicity in analysis, a stopping test, based on

satisfaction of the Kuhn-Tucker conditions (e.g. T(x) = 0) has been

excluded but should be incorporated in a practical algorithm. Note

that i is the iteration number and j the number of times that a

solution p of OP(x.,H ) has been accepted as a search direction.

Several possibilities exist for updating H , but this choice does not

affect the global convergence. He now specify the first order sub-

algorithm used in Step 3.

3. FIRST ORDER SUB-ALGORITHM

For all x, c the first order search direction is any n (t> will later

be shown to be unique) which solves the following program:

0'(x,c) = min {(n/2)||p|| +©(x,p,c)}
P

(3.1)

where 0{x,p,c) denotes y(x,P,c) - y(x,c). The search direction (3.1) is

easily seen, using (2.20), to be equivalent to the following quadratic

program:

0'(x,c) =min {(n/2)||p||2+<vf(x),p>+c(e-*<x)) .gj(x)+^(x^i
P,C

jera; |hj(x)+hj(x)p| <C, jem .£>0) (3.2)
x " ~e'

I(x) 4 {j emjg^tx) =*(x)}

I (x) 4 (jem | Jh3(x)|=*(x)}

Let

and
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Let P'(x,c) denote the solution set of (3.1), and let the following

ar-sumptions be satisifed;

Hi.: The functions f, g and h are continuously differentiable.

1 k»?.i For all x, the vectors {VgJ (x), jel(x); Vh (x), kel (x)}

are linearly independent.

Then we have the following result.

Proposition 2

(i) For all c ^ 0 the function 0' (*,c) :R •*• R is continuous.

(ii) For all (x,c), c ^ 0, 0'(x,c) <^0.

(iii) For all. (x,c), c ^ 0, the solution to (3.1) is unique, i.e.

?'(x,c) = {p(x,c)}.

(iv) For all c >^ 0, the function p(*,c) : R •*• R is continuous.

Proof

(ii) is established by setting p = 0 in the right hand side

of (3.1). Next we note that (3.1) is equivalent to:

0'(x,c) = min {(n/2) ||p||2+0(x,p,c) peC) (3.3)
P

where C is any compact set which includes T(x,c) defined by:

T(x,c) 4 {p| (n/2) ||p| |2+0(x,p,c) <0} (3.4)

Since 0(x,p,c) = <Vf (x) ,p>+c<J>(x ,p)-c<J>(x) (3.3) and $(x,p) 1 0 we

see that T(x,c) c f(x,c) where:

?(x,c) 4 {p| (n/2) ||p| |2+<Vf(x),p>-ci|»(x) <,0}

But p e I*(x,c) implies that:

(n/2)||P|| < ||vf(x)|| ||p|| + c*(x)

and hence that:

(3.5)

(3.6)

MpII 1 d/n)||Vf(x)|| +[(i/n2)||vf(x)||2 +2(c/n)*(x)]1'
(3.7)

- 13 -

Let N(x) denote the right hand side of (3.7). Clearly the map x '-♦ N(x)

is continuous and ?(x,c) c {p ||p||<N(x)). Hence, for any x c R , any

£ >0, there exists a compact set C such that T(x,c) c T(x,c) c c for

all x e B(x,e), and hence that 0'(x,c) is defined by (3.3) for all

such x. Hence [13, p. 116] 0'(*,c) is continuous and P'(«,c) is

upper semi-continuous at x. From the strict convexity of

(n/2)||«||2 +0(xV,c), P'(x,c), the solution set, has a single element

p(x,c). Since P'(*,c) • (p(*,c)) and is upper semi-continuous at x it

follows [13] that p(*,c) is continuous at x, and since x is arbitrary,

continuous. ^

Let A' : Rn •*• Rn be defined by Step 3 of the main algorithm, i.e.
c

A'(x) Ax+ Bk<X'C)p(x,c) (3.8)
c •"

where k(x,c) is the least integer in {0,1,2...} satisfying:

k- k -
Y(x+B p(x,c),c) - y(x,c) <^B 0(x,p(x,c),c)/4

Let D be defined by:
c

D 4 {x|0'(x,c) =0}

It follows from (3.1) that:

y U,c) = (n/i.) |!p(x,c)|| + 0(x,p(x,c),c)

(3.9)

(3.10)

(3.11)

and hence, for all x, c >^ 0, that 0(x,p(x,c) ,c) <_ 6'(x,c) <^0. Hencc-

D defined by:
c

D = {x|0(x,p(x,c),c) =0}

satisfies D„ c D .
c c

(3.12)

Suppose now x e D so that 0' (x,c) = 0. It follows from (3.11)

i-i i2that 0(x,pfx,c),c) = -(n/2)||p|| _<0. If 0(x,p(x,c) ,c) = -p < 0, then

- 14



— 2 2'
(from (2.27)) 0(x,op(x,c),c) < -ap while (n/2)||ap(x,c)|| = « p so

2
that 0'(x,c) < a p - ap = ap(l-a) < 0 for a - h say. This is a

contradiction. Hence 0'(x,c) « 0 «*• 0(x,p(x,c),c) = 0, i.e. Dc c Dc.

Hence D_ = D .
C c

For convenience in the sequel we denote 0(x,p(x,c),c) by 0(x).

Note that x *+ 0(x) is continuous. We can now establish a result

which will be employed in the next section to establish glbbal

convergence of our main algorithm.

Proposition 3

(i) x e D is a necessary condition of optimal!ty for the unconstrained
c

program:

min {y(x,c))
x

(ii) For all x / D , there exists an e. > 0, i > 0 such that:

Y(AMx'),c) - y(x',c) < -6, for all x' c B(x,e.) (3.13)
c ~~ i 1

(iii) D = D .
c c

Proof

(i) Follows from (ii). Suppose x / D . Then 0(x) 4 0(x,p(x,c),c) < 0.

Now, from (2.27):

Y(x',up(x',c),c) - Y(x',c) _< a0(x') (3.14)

for all a c [0,1]. It is shown in the appendix that, given any

compact neighbourhood N of x,

|Y(x'+ap(x',c),c) - Y(x',op(x',c),c) | £a<Ma,x') (3.15)

where $(a,x') -*• 0, uniformly in x' e N, as o •*• 0. Hence there exists

apositive integer k' such that $(Bk' ,x') <_ -0(x)/4 for all x' eN.

- 15 -

Hence, from (3.14 and (3.15):

Y(x'+Bkp(x',c),c) -Y(x',c) <^ Bk (O(x') -0(x)/4) (3.16)

for all k >^ k', for all x' € N. If we now choose an e. > 0 such that

B(x,e ) c n and 0(x') ^ 0(x)/2 for all x' e B(x,e ), we obtain:

Y(x'+Bkp(x',c),c) - y(x',c) <^Bk0(x)/4 (3.17)

for all x' e B(x,e ), for all k ^k'. From (3.9), k(x',c) <^k' so

that y(A (x'),c) - y(x',c) < Sk'o(x)/4 A6 for all x' < B(x,<-,), thus
c - - 1

establishing (i) and (ii). Part (iii) has been proven above. D

It follows from Theorem 1.3.3 in [14] that any accumulation

point x* of-an infinite sequence {x.}, where x . = A'(x.) for all i,

satisfies x* e D . Hence A' defines a first order algorithm for

solving min {y(x,c)>.
x

We can now turn our attention to establishing the global

convergence of the main algorithm.

4. GLOBAL CONVERGENCE •

We again assume that Hi and H2 are satisfied. Step 3 of the

main algorithm, if entered, generates a new point x, . = A'(x.).
i+1 c i

Since QP(x.,H ) may have more than one solution, Step 2 of the main

algorithm, may generate any point in a set, which we denote A (x.)
c. 1

i

(the parameters H. and j are omitted to simplify the notation). Thus

- n /?" -
Step 2 defines a point to set map A : R •*• 2 , i.e. A (x) is the

set of points that could be generated in Step 2 with x. replaced by x,

cA replaced by c. Steps 2 and 3 together define a point to set map
n fl"

A„ : R -*• 2 such that:
c
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A (x) » A(x) if x satisfies tests in Step 2

= (AMx)} otherwise
c

With this definition, our main algorithm has the structure of the

following model:

Algorithm Model

Data: x. € n , c > 0

Step 0: Set i = 1

Step 1: If c 5^ c(x ) set c « c

If ci_1 < c(xi) set ci = max {c j+6,c(x )}

Step 2: Compute any x.A, e A (x.)
l+i c. x

Set i = i+1

Go to Step 1

(4.1)

The following result, which is a slight modification of Theorem 4

in [11], gives conditions on A and c which, if satisfied, guarantee

rilobal convergence. D denotes the set of Kuhn-Tucker points for (2.1).

Theorem 1

If c and A have the following properties:

(i) c : R -*-R is continuous

(ii) x € D and c > c(x) ™> x € D
c —

(iii) Let {x ) be any infinite sequence such that x^. c A (xJ) and
x i+1 c i

c l.c(xi) for ali i; any accumulation point x* of {x.} satisfies

x* € D .
c

Then any sequence {x } generated by the Algorithm Model has the

following properties.

If c . is increased finitely often when i = i , i , ..., i so

that ci = c' A c for all i >^ i,# then any accumulation point
J

x* of {x.} satisfies x* c D.

- 17 -

(a)

(b) If c^ is increased infinitely often when i c K4 {i ,i,,i ,...},

then the sequence (xjj^ has no accumulation points. Q

To appreciate the significance of (b) we note the following

consequence of Theorem 1.

Corollary

If the sequence {x.} is bounded then c. is increased only

finitely often, and any accumulation point x* of {x.} is desirable

(x* c D). G

Theorem 1 is proven in the appendix.

Hence, to establish tliat our algorithm has the same convergence

properties given in (a) and (b) of Theorem 1 (and in the Corollary)

we need to establish that c satisfies conditions (i) and (ii) and A
c

satisfies condition (iii). First of all we establish:

Proposition 4

_ _ m

(i) X :R •* /T and jl : /?" •* R* (defined in (2.28)) are well-

defined and continuous.

Ui) If (x,X,n) is a Kuhn-Tucker triple for (2.1), then X = X(x)

and {x = jl(x).

Proof

. (i) We note that the second order term in (2.20) is positive definite

in (A,li). For if:

||g^(x)X+h^(x')u||2 + I (*<x)-gj(x))2(Xj)2 + I W(x)-\b3(x)\rin3;
3=1 j=l

= o (4.;

then X »0 for all j i I(x) and u3 =0 for all j{ I (x). Hence:

|| I Xj7gj(x) + I ujVhj(x)||2= 0
jele(x)jel(x)

But this implies, from Assumption H2, that X « 0 and u = 0. Hence the

18 -
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second order term in (2.28) is positive definite. The continuity of

X, jl then follows from the continuity of g , h , g, h and tj>.

Ui) If{x,X,m) is a Kuhn-Tucker triple for (1), then:

Vf (x) + gT(x)X +h*(x)£ =0

g(x) ^0, h(x) = 0

<X,g(x)> » 0, X >_ 0

(4.4)

(4.5)

(4.6)

Hence i|>(x) =0 so that G(x) = diag {(g"* (x)) }. Since P =0 if

g^(x) 4 0, it follows that G(x)X = 0. Also H(x) = diag {(h3(x)) }= 0.

Hence X and \x satisfy:

g (x)[Vf(x)+gT(x)X+hT(x)u] + G(x)X = 0
yx X X

h (x)[Vf(x)+gT(x)X+hT(x)u] + H(x)u = 0

(4.7)

(4.8)

But, from (2.28) and Proposition 4 (i), X(x), £(x) are the unique

solutions of (4.7) and (4.8). The desired result follows. D

Proposition 5

c : Rn •*• R, defined by (2.31) and T : Rn •* R defined by (2.32)

are continuous.

Proof

This is a direct consequence of the continuity of X and u. D

Proposition 6

Let c ^c(x). Then x € Dc<=-> x e D.

Proof

(i) (x c D ) **> (x r D)
c

It is shown in the appendix that program (3.1) is dual to the

program:
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where:

0'(x,c) = max {c(<u),g(x)>+<p,h(x)>-*(x))-<»in) |!vl||'
u,p

u>_0,p =P1-P2» Dil0' p2-0'

m . e . e .

I-3+ I P?+ I oJ< 1)
j=l j=l j=l

VL4Vf(x) +c(g^(x)u+h*(x)p)

(a) Let c > c(x) and x € D . Suppose also that x t F. Then

<i(x) «* 0, g(x) ^0 and h(x) «= 0. Hence:

0' (x,c) = 0

= max {c<u,g(x)>-(l/2n)||VL||
w,P

w^0, p = 0.-co, 0. ^_ 0, P2 —°'
m ro

m . e , e .

I A I pJ+ I o\i 1}
j=l j=l j=l

(4.9)

(4.10)

(4.11)

Let u>, p denote a solution of (4.11). Then (4.11) implies that:

ij = 0 for all j I I(x) (4.12)

and

VL = Vf(x) + cgT(x)u + ch (x)p = 0 (4.13)

Hence we have:

g(x) _< 0, h(x) - 0 (4.14)

<u,g(x)> = 0 (4.15)

> 0 (4.16)

Vf(x) + gT(x) ci + hT(x) cp =0 (4.17)
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i.e. {x,ci,cp} is a Kuhn-Tucker triple for (2.1), i.e. x 6 D.

(b) Again let c >_ c(x) and suppose x / F, so that x i D. Suppose,

contrary to what is to be proven, that x e D , i.e. 0'(x,c) = 0.

Let l*(x) 4 {j|h*(x)-*(x)} and I2(x) 4 {j|-h3(x)=*(x)} so that
1 2

I (x) = I (x) u I (x). From (4.9), if 0'(x,c) = 0, then (since
e e e

g3(x) ^<Mx), |h3(x)| <_ *(x), and the multipliers sum to less than

unity):

<u,g(x)> + <P1#h(x)> + <P2,-h(x)> = iMx) (4.18)

(*(x) > 0) and:

VL = 0

From (4.18), since:

j=l j=l 3=1

we must have:

and

w3 = 0, for all j { I(x)

I3 = 0, for all j / I (x)
1 e

p3 = 0, for all j/ I2(x)
2 e

i »j + Xi *i+ u H-1
jel(x) jel (x) jel (x)

•* e e

From (4.19):

Vf(x) +cg^(x)io +chx(x) (Pj-p2) =0

Now (X(x),u(x)) is the unique solution of:

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

min {||Vf(x)+ JX3Vg3(x)+ I u3Vh3(x)|j
X,u. jem jem

+ I (A3)2(<Mx)-gj(x))2 + I (uj)2(*(x)-|h3(x)|)2
j*I(x) jVle<x>

- 21 -

(4.26)

Making use of (4.21)-(4.23) and (4.25), we see that (X(x),£(x)) is the

solution of:

min i\| I [X3-cwj]Vg3(x)+ I [u3-cP3]Vhj(x)
X,U J«I(X) jci (x)

e

+ I [»lJ+CP3]Vh3(x)+ [ X3Vg3(x)
. 2, xjele(x) j/Kx)

+ I ujVhj(x)||2+ I (X3)2«Mx)-gj(x))
jrfl.M j/Kx)

+ I (uj)2«Mx)-|hj(x)l)2}
j/le(x)

It is evident that a solution of (4.27) is:

X"i(x) = cui3 >_ 0, j€I(x)

X3(x) =0, j / Kx)

^ij(x) =cp] >0, jcIe(x)

u3(x) = -cp3 <0, je I2(x)

uD(x) =0, } i Ie(x)

But this solution is unique. Hence:

c(x) = [ Xj(x) + I |»I3(x)l +b
jcm jcm

^ —^

(4.27)

(4.28)

I cP+ I cp] + I cpJ +b (4.29)
3CI(X) jel'cx) ' jd2(x)

J e e

Making use of (4.24) we obtain:

c(x) = c + b

But this contradicts the fact that c ^ c(x). Hence x 4 Dc, thus

(4.30)
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establishing that, given c >_ c(x), x / F •*» x I D , i.e. given c >_ c(x),

x e D *"> x c F. Hence x e D =* x e D.
c c

(ii) To prove the converse suppose x e D. Then h(x) = 0, g(x) «» 0,

*(x) = 0 and there exist multipliers X, u such that X ^ 0, <X,g(x)> » 0

and Vf(x) + g (x)X + h (x)u = 0. Let c ^ c(x) be arbitrary. Setting

u= (l/c)\, p= (l/c)u yields VL =0 (see (4.10), <o >0, and I u3 + I P3<1
jem jem

(see (2.31) and Proposition 4(ii)). Hence substituting this a, p into

(4.9) yields 0'(x,c) >_ 0, which implies that 0'{x,c) = 0 or, equivalently,

x e D . D
c

Propositions 5 and 6 establish that c has the properties required

by Theorem 1. We now turn our attention to A , defined in (4.1).
c

Proposition 7

For all x { D , where c > c(x).there exists an e > 0, 6 > 0
c ~~ J •

such that:

Y(x",c) - Y(x',c) < -6

for all x1 e B(x,e), for all x" e A (x').
c

Proposition 7 is proven in the appendix.

A direct consequence of Proposition 7 is:

Proposition 8

Any accumulation point x* of an infinite sequence {x.}f

where x, , c A (x.) and c > c(x.), for all i, satisfies x* e D .
i+1 ex — i . c

Proof

It follows from the continuity of c(*) that c >_ c(x*). The

desired result then follows from Proposition 7 and Theorem (1.3.3)

of [14]. D

We can now establish the convergence properties of our main

algorithm.
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Theorem 2

Suppose the main algorithm generates an infinite sequence {x^K

(i) If the algorithm increases c , finitely often, then any

accumulation point x* of {xj satisfies x* e D.

(ii) If the algorithm increases c±l infinitely often (so that cjL_1 * »)

at ieKA{i1(i2fi3f«) then the sub sequence tx^^ has no

accumulation points.

(iii) If {x } is bounded, then c j is increased only finitely often

(and every accumulation point x* of {x^ satisfies x* e D).

Proof

(i), (ii), (iii) follow from Propositions 5, 6 and 8, which show

that c and A satisfy the conditions of Theorem 1. D

5. RATE OF CONVERGENCE

Although the main algorithm generates sequences whose

accumulation points are desirable, the purpose of Step 2 is to

ensure superlinear convergence. Hence we have to show that

eventually the tests in Step 2 are always satisfied, that the step

length is eventually always unity and that ^ is updated suitably

to ensure this rate of convergence. First of all we have to

strengthen our assumptions; our new assumptions include those of

Robinson [15]. HI is replaced by HIA and we add two new assumptions .

H3 and H4 to obtain:

HIA: f, g and h are three times continuously diffcrentiable.

H3: At each Kuhn-Tucker triple {x,X,p} for (2.1) the second order

sufficiency conditions hold with strict complementary slackness,

i.e. X3 >0 for all jeI(x) and L^tx.X.u) is positive

definite on the subspace {p|gx(x)p =0, hx(x)p =0).
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H4: The sequence {xj (generated by the main algorithm) is bounded.

In the sequel HIA, H2, H3 and H4 are assumed to hold. From

Theorem 2.1 of [15] we deduce that Kuhn-Tucker points (x is said to

be a Kuhn-Tucker point of {x,X,;i} is a Kuhn-Tucker triple) are

isolated i.e. there exists a neighbourhood of each Kuhn-Tucker point

which contains no other Kuhn-Tucker points.

For simplicity we adopt the secant method for updating H .

Thus Steps 2(d)and 3(d) in the main algorithm become:

Updating Step: Replace column (i mod n) of H by:

(l/Ai)[VxL(xi+1+Aiei,X(x1+1),iI(x1+1))-VxL(xi+1,X(xi+1),M(xi+1)]

(5.1)

where:

&t 4 min {| |xi+1-xj |, ||X(xi+1)-X(x1) ||, |iMx^)-^) ||,e)

(5.2)

ej, i= 1, ..., n, denotes the ith basis vector and e >0 is a small

number based on the word length of the computer.

It is not essential to update, as above, u± at every iteration,
updating may be done every kth iteration, for example.
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We require, for superlinear convergence, that K^ •+ Lxx<x,X,jx),

where (x,X,n) is a Kuhn-Tucker triple, as i -*• » (see Theorem 3). If

the secant updating procedure, specified in (5.1), is employed then,

since X and jl are continuous, a sufficient condition for the convergence

of H to L (x,X,u) is the convergence of x. to x as 1 -*• ». We now
i xx . x

establish the latter.

Proposition 9

Let {x } be a bounded infinite sequence generated by the main
i

algorithm. Then llxi+1""xi.ll "* ° and *i "* x» where x*D (x is aKuhn-

Tucker point), as !-•«».

Proof

(a) Any"accumulation point x of {x } is a Kuhn-Tucker point (Thoorcn

2). Let B be a compact ball in R containing {x.}. Then, since the

Kuhn-Tucker points are isolated,B contains a finite number of Kuhn-Tucker

points. (Suppose, contrary to this assumption, that {z ) A {(x ,>..,u4) I

is an infinite sequence of Kuhn-Tucker triples (for problem (2.1)) in

B such that x. •+ x as j •* ». From Proposition 4, X = >. (x.) and

H = jl(x ) so that z •+ z = (x,X(x),ii(x)) as j * ». Since

Vf(x )+gT(x )X + hT(x )p. =0, <X ,g(x )> =0 and X >0 for all j,

it follows that Vf(x) +gT(x)X(x) + hx(x)M(x) =0» <Mx),q(x)> =0
and X(x) >^ 0. Hence x is a Kuhn-Tucker point which is not isolated,

a contradiction.) Hence the set {x^Xj,... ,xk> c Bof accumulation

points of {x.} is finite, and each element of this set is a Kuhn-

Tucker point.

(b) For all e > 0, there exists a positive integer iQ, such that

x e u B(x.,e) for all i >^ i_. (Theorem 2.)
1 jek 3

(c) There exists an i >^ i such that ci = c for all i 1 ij«

(Theorem 2.) Hence x. e D- (Proposition 8) for all j « k. Since
j c

Dc = Dc it: follows tnat 0*(Xj,c) = 0(x.,p(x c),c) = 0 so that
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(from (3.11)), p(x.,c) = 0 for all j e k. Also p(«,c) is continuous

(Proposition 2).

(d) Let K c(0,1,2,...) denote the subsequence in which Step 2

is entered and K2 the complement of ^ (the subsequence in which

Step 3 is entered).

(e) From (c), for all 6>0 there exists an e>0 such that
k

c c-uB(x.,e) implies that |lp(x±,c)|| 1 6.
1 . i=l 3

(f) Combining (b) and (e) we see that given any <>0, there exists

an ij such that Hx^-xJI <_ IIpCx^HI <«• f« *11 *>V *«V
This implies that Hx^-xJI * 0 as i - -, 1 e Kj.

(g) For all i e K^ llx^-xjl i IIpJI +1^11'
(h) llp.ll -0and I|;j|*0as i*-, icKj because of the

test in Step 2 and the definition of p^

(i) combining (g) and (h) yields llx^-xjl +0as i-», i«V

(j) Combining (f) and (i) yields IIx^j-xJ |^«i +e'
<K) Letd4min (||x -x || |j1,j2ek) andlet c4^/4. Then

31 J2 '

there exists an i2 > ij such that:

(i)

(ii)

for all i> i2

x. e u.B(x ,e)
1 jck :

WlM <-Z

Hence, if x. eB(x,c) where xc{x^...,^}, then
2 ».

x. €B(x,e) for all i1i2- Hence xf* ast +». °
It follows from [16] and [17] that H± - L^U.X.u) if

(x ,Mx.),fi(x >) - (x,X,^). Hence, from Theorem 2, Proposition 9

and the continuity of X, ji, we have:

Proposition 10

If {x }is a bounded infinite sequence generated by the main

algorithm, then *L -xeDand ^ -I«xx<x.Xr£> as i•> », where
(x,X.u) 4{x,X(x).i!(x)} is aKuhn-Tucker triple for Problem (2.1). D
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We establish next the convergence of the multipliers >± and u^,

recalling that, for each i, Ip^^j is a Kuhn-Tucker triple for

problem QP(x.,H ).

Proposition 11

Let {x.> be a bounded infinite sequence generated by the main

algorithm. For each ilet {p^X^u^ denote the Kuhn-Tucker triple

for QP(xi,Hi).

(a) (x ,X.,u.) - (x,X,jl) asi* », where {x,X,u) is a Kuhn-Tucker

triple for Problem (2.1).

(b) There exists an integer iQ such that QPlx.,^) has aunique

solution Pi for all i>. iQ (so that the test in Step 2(„) of tho :i,ain

algorithm is" satisfied for i >_ iQ). Also Pi - 0 as i- «.

(c) There exists an integer i} such that I\ » I(x) for all i> !,.

Proof

We make use of Theorem (2.1) in [1ST, with q A (xk'HK)'

q4 (x,H) with H» Lxx(x,X,A) and:

0(x,q) 4fx<V(X"Xk} +^""VX^'V

g(x,q) 4g(xk) +9x<V<x~Xk}

h(x,q) 4h(xk) +hx(xk)(x-xk)

Problem 1(q) is defined to be:

rain {0(x,q)|g(x,q) 1 0, h(x,q) » 0}

This is seen to be identical to our OPtx^) with pin 0P(vV

replaced by x - xk< Problem 1(q) is:

min {fx(x) (x-x)+«j(x-x)TH(x-x) |g(x)+gxU) (x-x) <0

h(x)+h <x)(x-x) = 0}
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Clearly {x,X,u.} is also a Kuhn-Tucker triple for Problem 1(q) at

which the second order sufficiency conditions are satisfied with

strict complementarity slackness and linear independence of the

active constraints. Hence we satisfy all of the conditions of

Robinson's theorem, (2.1) so that there exists, in a suitably small

neighbourhood of (x,H), a continuous function Z : (x ,R )»->• 2(x. ,tt) •

Xk+Pk'Xk'Mk) SUCh that Z(x»H> = (x,X,ji). In this neighbourhood

*xk+pk'Xk',1k^ is the uni<*ue Kuhn-Tucker triple for Problem 1(q).

Since xR •*• x and ^ •+ H (by Proposition 10) , (a) and (b) are proven.

That (c) is true follows from the facts that X •*• X as i •*• », that

*L = {jemj>;?>0) and that (from strict complementarity)

I(x) = {j €m|X3 >0}. fj

We now proceed to establish that the tests in Step 2 of the

main algorithm are always satisfied. Since we are dealing with a

convergent sequence (x.) we adopt, for convenience, the following

conventions. "A is true" should be interpreted as "there exists an

integer ij such that A is true for all i >_ i ". Following Powell

[18], "ai ~ b^ should be interpreted as "there exists an integer i.

and positive constants djf d2 such that (a /b ) c [d ,d 1 for all

i ?_ i2"• Similarly "a « b." means that "there exists an integer i,

and a positive constant d3 such that a < d b for all i > i ".

Let R(x.) denote the matrix whose rows are g3(x ), i e i
1 x x J i

and hx{x ), j e m^- Similarly r(x ) denotes the vector whose components

are g (x^, jeI,and h3(x ), jem, ordered in the same way as are
2i+me „,

the rows of R(xA). r(xi) e R , where m is the cardinality of I .

Let Y (Y) denote a matrix whose columns are orthogonal basis vectors

for the null space of R(x±) (R(x)) so that ||y || =1 (||y|| = 1)

and R(x )Y = 0, for all i (R(x)Y =0). Let P, A Y.Y^ for all i and
i x i = x i
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P A YY . He note that P y is the orthogonal projection of y onto

the null space of R(x ).

Proposition 12

(a) yTH y ~ |ly|| for all y such that (i) R(x)y = 0 or

(ii) R(Xi)y - 0.

(b) R(x.) has maximum rank.

(O UpJI ~ llrJx^M + Up^fU^ll.

Proof

(a) (i) Follows from the convergence of H. to H and the fact that

Y Hy ~ IMl f°r a11 y in tne nul1 space of R(x) (by virtue of H3).

(b) Follows from H2 (with x = x) and the continuity of g , j em,

\?, jem , Proposition 11(c) and the fact that I (x) = m .

(c) Proven by Powell in [18]. fl

We now consider the test in Step 2(y) of the main algorithm.

Proposition 13

where

Proof

0(xi,pi,ci) » -H(xi)

M(Xi) 4 llrtx^H +||PiVf(xi) ||:

1 ^ 2
pi = Pi + Pi

where p. is the minimum norm solution of:

R(xi)p + xix^ » 0

and p. is the unique solution of:

min {<Vf(x.)+H.p ,p> + HpTH p|R(x.)p=0}

(5.3)

(5.4)

(5.5)

Clearly p. satisfies (5.4), is unique, and is orthogonal to the null

2
space of R(x.). Also p lies in the null space of R(x.) and is

29 -



thus orthogonal to p . Hence, from (5.3), the fact that 4>(x.,p ) =* 0,

and the definition of 0 we obtain:

0(x1,Pi,ci) = <Vf(x±),pi> - ci*(xi)

+ <7f(x1)fp >

1 T
From (5.4), p lies in the range space of R (x ) and satisfiesi

1 oT/ » 1p. = R (x.)n
1 x i

where n. is the unique solution of

R(xi)RT(xi)n^ +xixj =0

(5.6)

(5.7)

(5.8)

We define, for all i, avector Z = (X X,... ,X m,jlj,... ,[I.e) e Z?"*01,

(where jk c I(x), k = 1, ..., m) of multipliers as follows: Z. is the
m nj+m

unique minimizer of ||r (x )w+Vf(x )|| on R e. Hence:

R(xi)[R (xi)ui+Vf(xi)] =0 (5.9)

and (from the continuity of R and Vf) u -•• <j where u satisfies:

R (x)u> + Vf (x) = 0 (5.10)

and is the vector of non-trivial Kuhn-Tucker multipliers for (2.1)

*k k ~ ~
at x, so that u = X > 0, k = 1, ..., m. Also, because u is the

least square solution of (5.9), the projection of Vf(x.) onto the

null space of R(x.) is:

P£V£ (xi) - Vf (xL) + R (xi)uJL (5.11)
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Clearly PVf(x) = 0.

From (5.7), (5.8) and (5.9)

<Vf(Xi),p[> «<Vf(xi).,RT(xi)n^>

<R(xi)Vf(xi),ni>

T ~ 1
-<R(x.)R (x.)u ,n >

~ T 1
a -<Gi ,R(x.)R (x.)n.>

i i xx

~T
= u r(x ) (5.12)

Let *(x) 4 min {Of r3 (x), jem) <_ 0. Since

*(x.) =max {0;r3(xi),j em;|r:)(xi)|,j=^+l,...,m+me}, we see that:

UrUJll - max (Mx.>,-*(x.>) l5.11)

~jFrom (5.12) and the positivity of I^ j « I(x):

<vf(x.),p!> - I.x|g3(x )+ I u3h3(x )
JtKx) jeme

<C T X3 + Y |u3!l':(x.) + pj(x.) (5.14)
— c • i x x i x

•jel(x) jem

where

Hence:

PL 4min {X3|g3(xi)=*(xi)}

<Vf(x,),pJ>-c.«f»(x.) i-Cc.- /. „X3r I |u'|l^(x.)
1 L x * x jel(x) jem

+ p *<x ) (5.15)

From the facts that:

c. - I AX3(x )- I |S(x )| lb
jel(x) X jem
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that X3 •*• X3(x,), J e I(x), u3 •+ |I(x.), j em , and p, + p >0 we
xx xx —e i

see from (5.13) and (5.15) that:

<Vf(xA),p[> - Ci*(Xi) * -||r(Xi)|L ~-||r(Xl)|| (5.17)

2 1
Now p lies in the null space of R(x.) (is orthogonal to p.)

and therefore satisfies:

2 „ 2
pi = Yini

where n is the unique solution of:

Y^Vf (xt) +Y^HiPJ +(Y^Y^n - 0
Hence:

°i " -fYiHiYi)1CYi7flxi>+YiHiPi:i
and:

<Vf(Xi),p2> =(n2)TY^Vf(Xi)

(5.18)

(5.19)

(5.20)

=-[Y^Vf(xi)+YjHip[]T[Y^HiYi]'1[Y^Vf(xi)] (S.21)

Using Proposition 12(a), the fact that ||yjvf(x )|| = ||p Vf(x )||
and the fact that (from (5.8)) p. ~ ||r(x )|| we obtain:

<Vf(Xi),p2> a-||PiVf(xi)||2 -||PiVf(xi)|| ||r(xi)|| (5.22)

Combining (5.6), (5.17) and (5.22) and making use of the fact that

||r(xj 11 * 0 and ||p Vf(xj i| -*• 0 yields:

©(x^p^c.) =-||r(xi)|| -||p±Vf(x±>||2

which is what we wished to prove.

Proposition 14

The test:

©(x^p^c^ ^-Ttx^
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(5.23)

in Step 2(c) of the algorithm is always satisfied (for i > i , say).

Proof

PiVf(xi) = Vf(xi) + 9x(x.)X + hx(xi)p (5.24)

~T **1 ~ro "^T ~"l "" e *"i *where X^ 4 (A ,...,A ), \i^ = (|i ,...,u ) and A^, j e I(x) and

H3, jem are defined by (5.9) and PiO for j i I(x). Since as

shown in the proof of Proposition (13), X •+ X(x.) and \k. •*• p(x.)

we see from Proposition 13 that:

0(xi,pi,ci) «-||r(xi)|| -||Vf(x^+g^fx^X (x^+iyx^MtxJ|

But:

-*(Xi) < Urtx^H,

•llrtx^H s -tpjx^

yielding:

0(xi,Pi,c±) « -(T(xi))^ <_-T(x )

thus proving the proposition.

We now consider the step length constructed in Step 2(b) of

the main algorithm.

Proposition 15

Tiie step length generated in SteD 2(b) of the main algorithm

is unity (for all i greater than some integer).

Proof

Let r«(x ) be a vector whose components are g (x.+p.), j e I(x)

and h3(x.+p ), jem, ordered in the same way as the components of r.

Since q3(x.) +g3(xjp. =0, je I(x), and h3(x.) + h3(x.)p. = 0,
i X i i X XXX

j e m , we obtain:
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(5.26)

0



liru.HMIpJr

From the definition of p , p is the least norm solution of:

Rfx^p + r(x )=0

and hence satisfies:

iip-ji«11^)11-npjr

(5.27)

(5.28)

(5.29)

so that the test ||p.|| <_ ||p.11 in the definition of pi is indeed

satisfied.

Next we note that:

g3(xi+Pi+Pi) =g3(xi+pi) +g^Xi+Pi)^

+ M^lA^i

for all j * I(x), where £3 e Cxj+p^Xj+Pj+p^]. Since g3 (xi+pi) +

gx{Xi)pi =°' 3 € I(X)' "gx(xi+pi)"gx(xi)" * IIPjH» and
IIPjII ~ IIp.,112 we see that» for a11 j € Kx):

|gj(x.+pi+;i)| * IIpJI3

A similar result holds for hJ(x +p.+p.), j e m , so that:
XXX —€

Otx^+pJ s ||Px11

Also, using (5.29):

|f(xi+Pi+P1)-f(xi)-<Vf(xi),pi+pi>-»s<pi,fxx<xi)pi>|2||pi||

(5.33)

Hence, from (5.32) and (5.33):
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(5.30)

(5.31)

(5.32)

Y(xi+Pi+Pi»c1) - Y(x±,ci) = <fr(xi,ci) + e± (5.34)

where:

*(xi,ci) 4^ftx^^+P^ +^Pi'^x^Pi" "ci*(xi)

= 0(xi,pl,ci) + <Vf(Xi),Pi> + »j<pi,fxx(xi)pi> (5.35)

and

leil » ||PiM

The step length is unity (k. =0) if:

(5.36)

e£ 4 Y(xi+pi+pi,ci) - Y(xi,ci) - G(xi,pi,ci)/8 <0 (5.37)

Now, because {p.,X ,u } is a Kuhn-Tucker triple for QPtx^I^), we

have:

Vf

so that:

(x,) = -H4p. - gT(x.)X. - hT(x.)u.
i i x xxx x i i

(5.:ej

<Vf(xi),pi> »-<Pi,Hipi> -X^gjt(x1)5i -"iVx^ (5'39)

Clearly, using (5.29) and the convergence of H :

(5.sC)<Pi'HiV' R llPi .s3

i3 =Also, since X^ >0, jc I(x), X^ = 0, j I I(x), and:

gx(xi)pi "-93(X+Pi>' 3€I(x)
we obtain (see (2.34)):

£x(x)pi = •i—i-i-

Similarly:

''i'VVi _ Hi—ifi.

so that, from (5.36), (5.39), (5.40), (5.42) and (5.43):

X?g <x)p*. = -A?g(x.+p.)

u.h (x.)p. = -u.h(x.+p.)

- 35 -
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(5.42)

(5.43)



c± =♦(xi,ci) -0(xj,,pi,ci)/8 +0(||Pil|3)

=(7/8)0(xi,p1,oi) +A^g(xi+pi)

• +uih(x1+P1) + W^'t^JPf

+o(.iipiir) (5.44)

Since (from (2.14)) 0(x ,p ,c.) i.-<P1»H.p.> - bi{i(x ), if we expand

g(x.+p ) and h(x.+p.) to third order, recalling that g(x.) + g (x.)p. = 0

etc. we obtain:

cL *. (3/8)0(xi,pi,ci) - (b^Jd/U^

+ d/2)<Pi/(Lxx(xi,Ai,Ui)-Hi)pi> +0(||Pi||3) (5.45)

Using Proposition (13) and the convergence of [L (x,,A ,li )-H ] to

zero, we get:

z± ~-[| |r(Xi)||+|jP^f(x.)||2] +o(| IpJ I2) (5.46)

From Proposition 12(c):

IpJ!2* I|r(x€>||2 +2||rOO|| ||P,Vf(x4)|| +||Pf7f(x. )||2
i '• " i l i i "V

s|lr(x±)||+.||Pivfi<xi>||2 (5.47)

Since ||r(x.)|| + ||p Vf(x.)|| + 0 it is obvious from (5.46) and

(5.47) that

e1 ^0 (5.48)

(for all i larger than some integer), so that the step length is

unity. D

He are now in a position to establish our main result.
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Theorem 3

If tx.} is a bounded infinite sequence generated by the main

algorithm, then x. •* x e D superlinearly.

Proof

(We continue to use our previous convention "A is true"

means "there exists an integer i. such that A is true for all i >_ i .)

He have established:

(a) QP(x ,H.) has a solution p. which is unique (satisfying the

test in Step 2(m)).

(b)

(c)

(d)

0(x ,p ,c ) <_ -T(x ) (satisfying the test in Step 2(y))

Y(x +p +p ,c ) - y(x.,c ) <_ 0(x .p^c^/8 (ensuring step

length of unity in Step 2).

2MpJI S llpjr. ensuring MpJ! I IIpJI-
To ensure that Step 2 is executed we have to show satisfaction cf

the test ||p.|| 1 53 in Step 2(p.). This depends on the rate of convergence.

We recall that {p.,A ,u } is the Kuhn-Tucker triple for

QP(x ,H ). Let x' denote xt + pi« Let z^ denote txi'Ai_1'»ii_}> and

z! denote (x!,X ,u.). From Proposition (11), z •*• z = (x,A,u). We

note that x ,=x' +p = xL + pL + pL if the test 11£>^[ |± (r is

satisfied.

m+m +1

For all z let q(z) c /? be defined by:

q(z) -

V L(z)
x

,1 1/ »X g (z)

.mm, .
X g (z)

h(z)

(5.49)

Clearly q(z) =0 if and only if z is a Kuhn-Tucker triple for Problem

(2.1). Under our assumption (see [19], p. 13) we have:
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I|q(»i>n <Mjllxj-xjl2 + l|l»(«i,"Hi" II<xi"x±> II <5.50)

and (see [19], Lemma 3.7):

r«j+1-«,iiii i«2iiq^i+i'iii+r
(5.51)

for some Mj, M2> Since ||x«-xj|<. ||*j_-xj| and IlLxx(zi)"Hil I*°
it follows that:

l|q(«i>ll ifljl'i-^ll <5-52>

where B. -» 0. Also z' •+ z and p. •*• 0 so that, for some M-,

lk^i+i)11 - Hq(^)ll ♦MjMp'JI (5.53)

But |IpJ I=IIpJ.I2 i ll^-zjl2 so that:

llqUi+1>ll ±Bj|z'-zJ| (5.54)

where B' + 0. From (5.51) and (5.54)

ll»i.illill-i*i-«illi»ftll'i-tl (5.55)

Since both x' -»• x and x. •+ x, z! - z •*• 0, and there exists an i

such that:

IpJ I <ll«i-*JI ««! (5.56)

and such that B!M, ^.5., so that:

ii'wiii'r1

so that the test in Step 2(6) is satisfied in this and, hence, in

all subsequent iterations. Since x . = x' + p it follows that:

ll«1+i-iH - IIpJ I~llpJI2i!K-2iH2
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(5.57)

But:

i2i-zJi iiizi+rzJ> + i|pi'

It follows from (5.58), the fact that ||i>J|* ||z£-zj|'

and (5.54) that:

|q(«1+l)|| lB-JUi+1-Zil

where B" -*• 0. From (5.51)

Hzx+r2i+ill i^l^W

l^ilVl-2!'

where B"' -*• 0. Since:

ll^-i+lllll^i+l-i+J^llPi+l'i

where |\p±+J| s l|pi+J|2 1 Ii*i+rz1+J i* Lt *°U°»S finally that:

llzi+2-zi+iH i§iHzi+rzi"l

where B •+ 0, which guarantees a superlinear convergence rate.

(5.58)

(5.59)

(5.60)

«5.6;)

(5.62)

6. CONCLUSION

We have described an algorithm which is globally convergent,

and has a superlinear rate of convergence. It belongs to the family

of algorithms, proposed by Han [41, in which a search direction (in

our case, a search arc) is obtained by solving a quadratic approximation

to the original problem and step length is determined using an exact

penalty function. The algorithm has several features not present in
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earlier algorithms - an automatic rule for choosing the exact

penalty function parameter, global convergence (without requiring

uniform bounds of the form y H.y > e||y|| , say), an asymptotic

step length of unity (despite the use of an exact penalty function)

and an Armijo type rule for the step length.

There are, however, several features of the algorithm which

could be modified, and might yield improved efficiency. One of

these features is the rule for choosing c. Our rule for choosing

c ensures that c. •* «° as i -* ». if c. , is increased indefinitely

often (i.e. if the test c. >^c(x.) fails indefinitely often.

As a consequence we know that if {x } is bounded, c. increases only

finitely often and all accumulation points of {x.} are Kuhn-Tucker

points for (2.1). Other rules which have been proposed, including

those which allow c to decrease, are heuristic and may result in

cycling. However it is true, as Powell [7] emphasises, that a

lower value of c may be required in the final stages of convergence

than in earlier stages. This feature could be incorporated within

the fra.nev.-ork of the current algorithm by allowing c to decrease a

fir-ite number of times. A rule worth trying would be to set

c. = c(x ) + 6 if T(x.) ^ e. << 1 and if this option for decreasing

c had not been previously used.

A second feature is the choice of the rule for updating H .

We have chosen the secant method. This enables us to establish

that H -»• L (x,X,u), and this, in turn, is sufficient for super-

linear convergence. However, as Powell [18] points out and the

analysis of this paper supports, we only require the convergence of

a projection of H. to a projection of L (x,X,ji) (in fact the

convergence Y?H Y to YTL (x,A,ji)/v. Powell [18] exploits the
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freedom to obtain an updating rule for H. which ensures that H

remains positive definite. While we do not require, in our

algorithm, that H remains positive definite, ensuring that it

does may result in Step 2 being used more frequently. Whether

this is advantageous is difficult to say; first order methods may

be more efficient in the early iterations. However the secant

method does require more work so it may be more efficient to

replace it by an updating method which does not require special
•- ,<p ....

perturbations but which does ensure that Y.H.Y. - Y L (x,>,m>Y.

Two further points are worth mentioning. Our algorithm

converges (uut not, of course, superlinearly) even if Y L (x,>,u)Y

is not positive definite. Secondly, in constructing H. we have

employed X(x.) and £(x.). Since X. and u. also converge, respectively

to X and £ it would be possible to employ the latter. Convergence

rate is not affected, so which choice is better is not apparent.
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APPENDIX

Proposition Al

Let Hi be satisfied. Then, for all x e Rn, all c > 0:

(a) |*(x+p)-«i(x,p)| =o(||p||)

(b) |y(x+P,c)-;(x,c)| =o(||p||)

where o (a)/a -*• 0 as a -*• 0.

Proof

(a) He note that:

max (A,B) - max (C,D) < max (A-C,B-D)

and

max (C,D) - max (A,B) < max (C-A,D-B)

so that:

|max (A,B) -max (C,D)J ^ max (|a-c| ,|b-d|)

Hence:

|*(x+p)-*(x,p)| <_max {0;|g3(x+p)-g3(x,p) |,j cm; •

|h3(x+p)-h(x,p)|,j en }

where g(x,p) Ag(x) + g (x)p and:
x

since:

h(x,p) 4 h(x) + h (x)p

|g3(x+p)-g3(x,p)| =o(||p||), jem

|hj(x+p)-h3(x,p)| =o(||p||), jem

it follows that:

|*(x+p)-*(x,p)| =o(||p||)
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(b) Is similarly proven. Q

Next we prove Theorem 1 in §3.

Proof of Theorem 1

00

(a) Since c. . is increased finitely often, the sequence {x.}.
J

is generated by A ,, where c* = c . From hypothesis (iii), any
C *J

accumulation point x* of {x.} satisfies x* e D ,. From Step 1,

c = c' > c(x ) for all i > i . Since c is continuous, we must
X —" X — J

have c' >^c(x*). Hence from hypothesis (ii), x* e D.

(b> Suppose xL •*• x* as i •*• », i e K where K c K4 {i ,i ,i ,...}

so that c. + « as i+ ». Let e* > 0 and let c* 4 max {c (x) |x eB(x ,e*)},

Then there exists an i. < °> such that:

(a)

(b)

xi e B(x*,e*), for all ie ic, i^ i

c. > c* > c(x.), for all i e K, i > i.
x-1 — — i — 1

But (b) contradicts the fact (from Step 1) that c , < c(x.) for

all i e K. Hence the sequence lx.) has no accumulation points.
Xj j=0

Proposition A2

The program:

0!(xfc) =min {(n/2)||p||2+0(x,p,c)}
P

is dual to the program:

Q1(x,c) - max {c[<u,g(x)>+<p,h(x)>-i{i] - (n/2) ||Vl| |'
u>,p

where:

m m
m- . e . em 1 e i e 1|u>0,p=p1-p2,p1>0,p2>p, I a3* I p3+ I p3<X)
j=l j=i j=i

VL 4Vf(x) +c(gx(x)w+hT(x)p)

- 46

Proof

0 (x,c) 4 rain
P

(n/2)||p|| +<Vf,p>+c max

0-t|/;

g3+g3p-*»j em;

|h3+h3pl-*;j em

where the argument x is omitted. Hence:

0*(x,c) 4min max j(n/2)||p||2+<Vf,p>

_ m . . .

r -uV Iu3 (g3+g3p-*)
1 x

uD>o,r ;-Ci,

&.V
l +i P3[hj+h3P-<M+i P3[-hj-h3P-*T j ;e %j 1 x j 2 X n p3+j c3=, )

1 1

min { " }

UfPj»P2 P

Substituting the minimizing value of p, i.e. setting p = -d/n)VL, yields:

O^x.c) -max {(l/2n)||vl| |2-(l/n)<?f,VL>-(c/n)<gV»-iv,7L>
u,p,,p

l'"2

+c<u,g>+c<p,h>-cii>|u>0,p1>0,D2^p,

m

fu3+I (p3+p3)<U
1 1

Proposition A3

Suppose H. is satisfied. Let x be any point in R and let N

be a compact neighbourhood of x. Then:

(a) There exists a function (a,x')*-+ <Ma,x') such that:

|Y(x'+ap(x',c),c)-Y<x',ap(x',c),c)| <_ a«J.(a,x')
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and $(a,x') •* 0, uniformly in x' e N, as a •* 0.

(b) There exists a function (a,x',p',p') -*• $(a,x',p',p) such

that:

i 2~ * 2~ i ~ ~
|Y(x'+op'+a p,c) - Y(x*,ap'+a p,c) | <_ a*(o,x' ,p' ,p)

and -Ma,x',p',p) -*• 0, uniformly in (x',p',p) e NxB(0, l)xB(0,l),

as a •+ 0.

Proof

We prove (b), the proof of (a) being simpler. Let:

e(o,x'rp',p) 4 |Y(x'+ap'+a p,c)-y(x',ap',+a p,c) |

2«» * 2~
<_ |f(x'+ap'+o p)-f(x',ap'+a p)|

1 2~ «1 2«-
+ c max {|gJ(x'+ap'+o p)-g (x'ap'+a p)|,j em;

|h3(x'+ap'+a2p)-h3(x',ap,+a2p)|,jeme}

•<.[|fx<wo)-fx(x')| +c max {|g3 (y3)-g3 (x'J|,j em,

|h3(z3)-h3(x')|,j€me}][||p'+a;||]a

where w , y , j e m and z3, j cm all lie on the line segment
a a — a —e

2~
[x',x'+ap'+a p]. There exists a compact set N' such that the

2~
segment [x',x'+ap'+a p] lies in N" for all x' e N, a e T0,1] and

p', p e B(0,1). f , q3, j em and h3, jem are all continuous,

and, therefore, uniformly continuous, on N'. Hence:

e(a,x',p',p) <_ ♦(a,x,,p*,p)a

where <Ma,x',p',p) ■♦ 0, uniformly in (x',p',p) e NxB(0, l)xB(0,1),

as a -*• 0. 0
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Proof of Proposition 7

Let x e M be interpreted as "x satisfies tests (a), (B) and

(Y) in Step 2". Clearly the set, M depends on the values of H and j,

but the subsequent analysis is independent of these values. From

Proposition 3, if x / D , there exists an e , 6 > 0 such that

Y(x",c) - y(x',c) l-6.» for all x' e Btx.e^ n M , for all x" e Ac(x'),

where MC is the complement of M in R . Hence we need only consider

x' e M, so that x" e A (x') will be generated by Step 2. For any

x' e M, let p' denote the solution of the quadratic program and p

the solution of (2.43) (with x. replaced by x'). By construction

both p' and p lie in-the compact set B(0,1). Now:

2~ 2
Y(x',ap'+o p,c) -Y(x',c) = a<Vf(x'),p> + a <Vf(x'),p>

+c max {0;g3(x')+og3(x')p

+a gJ(x')p,j c m;

|h3(x,)+ah3(x,)p+a2h3(x')p|j em }
xx

-c*(x')

< a<Vf(x'),p> + c{,^(x',ap')-0(x,))

+ a [<Vf(x'),p> + c max {|g-,(x*)pi,

jem;|h3(x')B|,J€m )1

Hence, for any compact neighbourhood N of x, there exists a constant

d such that:

2~Y(x',ap'+a p,c) - y(x',c) <^ a[0(x',p',0+djOl

for all x' e N n M. It is shown in Proposition A3 that:
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|Y(x'+ap'+a p,c) - Y(x',ap'+a p,c) | <_ a4>(a,x' ,p' ,p)

where <j> (a,x' ,p' ,p) •*• 0, uniformly in (x',p',p) e NxB(0, DxB(0,l),

as a -*• 0. Hence there exists an integer k' such that

*(Bk',x',p',p) +6{Bk' <-T(x')/2+ forall (x',p',p) eNxB(0,l)xB(0,1).
Since T(x') <_ -0' (x' ,p* ,c) we obtain:

Y(x'+Bkp'+B2kg,c) -Y(x',c) <_ 6k'[0(x',p',c)+T(x')/2]

<_ Bk,0(x',p',c)/2

so that, for each x' e N n M, a step length greater than or equal to

k'
6 is obtained in Step 2. Hence:

Y(x",c) -Y(x'c) <_ Bk,0(x',p',c)/2

for all x' e N n M, all x" e A (x'). Now there exists an e such
c

that B(x,e) c n and T(x') 2.T(x)/2 for all x' e B(x,c). Hence:

Y(x",c) -y(x',c) ^-Bk'T(x')/2

k'
< -B T(x)/4

for all x' e B(x,c) n M, all x" e A (x'). Combining this with the

fact that there exists an e > 0, 6 > 0 such that y(x",c) - Y(x',r)

<^-6 for all x' e B(x,e ) n M , all x" e A (x')f yields the desired

result, viz that for all x e D , there exists an e > 0, 6 > 0 such

that y(x",c) - y(x*,c).< -6 for all x' e B(x,c). D

t Since c >_ c(x) and x / D then (by Proposition 6), x / D so that
T(x) > 0.
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