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1. INTRODUCTION
There exist many algorithms, such as the constrained Newton

method of Levitan and Polyak [1], Wilson's method [2] and Robinson's
methoé (3], for solving constrained optimization problems, which

have a superlinear rate of convergence but are only locally convergent.
A major difficulty in globally stabilizing these algérithms is the

fact that they generate sequences which are not necessarily

feasible, making comparison of successive points difficult. A way of
overcoming this difficulty was supplied by Han [4] and later, but’
1ﬁdependently, by Mayne and Maratos [5] and Maratos [6], who suggested
using an exact penalty function to ourder possibly non-feésible points,
: thereby permitting a suitable choice of step-length to be made. The
computational results of Powell [7] and of Mayne and Maratos [5,6] show
‘that this rlass of algorithms, in which the search direction is determined
by a suitable approximation to the original problem and step length
determined by (approximately) minimizing an exact peﬁalty function, has
considerable promise. These alcorithms differ conceptually, even though
there may exist many éimilarlties, from the pioneering algorithms of
Cconn [8] and Conn and Pietrzkyowski [9] which directly generate descent
direciions for the (non-differentiable) exact penalty function. In the
former, the search direction is determined first and the penalty function
paiameter c is then chosen to ensure that the resultant search direction
is a descent direction for the exact penalty function; in the latter
‘the penalty function parameter ¢ is first chosen (to ensure equivalence
of the original and exact penalty function problems) and then a descent
directicn for the resultant exact penalty function is chosen.

Although the new procedure brings advantages, it also causes

several difficulties which have been listed by Han {4]). The first and
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most obvious of these is the choice of the penalty function parameter
c. Much of the literature [4,8,9] assumes that a suitable value for

c is available a priori. Powell [7] gives a heuristic rule for

iteratively choosing c; since global convergence is not established,

cycling may occur. In contrast to this, the algorithm presented

here incorporates a procedure for iteratively choosing ¢ in such a
way that global convergence, to points satisfying Kuhn-Tucker
conditions of optimality, is ensured. The procedure is based on
similar procedures successfully employed in [5], [6] and (101, and

on a model devised by Polak [11] for iteratively choosing a parameter.

The second problem concerns the minimization of the exact
penalty function along search directions. Han [4] {like Conn 81 and
Conn and Pietrzykowski [9]) employs exact minimization but emphasizes
the desirability of approximate procedures, like those of Armijo and
Goldstein, which, however, cannot be directly employed because of the
non-differentiability of the exact penalty function. Our alqoritAm
incorporates an Armijo type procedure for choosing step length; the
procedure is shown to have the necessary properties required for
convergence and 1s.based on that employed in [51 and [6]. It is
interesking to note that Powell, although he supplies no theoretical
justification, has emploved a similar procedure ([71].

A third problem is that of step length as a solution poiat is
approached. Unless the step length is asymptotically unity, superlinear
convergence is not achieved. Han (4] therefore suggests that the step
length procedure described above be discarded rear solution points
but there is no known automatic procedure for doing this. Powell [7]
does not discuss this point. Maratos [6], however, has shown that the

problem cannot be ignored in that there exist problems for which the



step length procedu:e'produces step lengths of less than unity, no
matter how close the current iterate 1s'to a solution point. Maratos
(61 has therefore proposed replacing the search diréétion by a search
arc, yielding asymptotic step lengths of unity (for the equality
constrained minimization problem). We employ an appropriate modification
of this procedure. .

A final problem concerns the suitability of the search direction
(if it exists) yielded by the quadratic approximation to the origihal
problem. An analagous problem arises in employing Newton's method for
unconstrained optimization problems; search directions so generated
may not be descent directions. A common method to achieve global
convergence-teplaces the Newton direction by a descent direction
whenever the former is not suitable. After investigating several
alternatives we concluded that an appropriate generalization of this
technique, to make it suitable for constrained optimization, was to be
preferred. Accordingly we developed a relatively simple first order
method for minimizing the (non-differentiable) exact penalty function.
This Qpb—algorithm is employed wheﬁever the search éirection, yielded
by the quadratic approximation, does not satisfy certain tests.

In the next section we motivate and describe the main algorithm.
In §3 we describe and establish convergence of the first order sub-
algorithm and in §4 we establish global convergence properties of the
main algorithm. Finally, in §5, we show that the main algorithm has a

superlinear convergence rate.
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2. THE ALGORITHM

We consider the following nonlinear program:

nin {£(x)|g(x) < 0, hix) = 0}

o
where £ : B" + R, g: "+ andh : B" + R ®. The quadratic

(2.1)

approximation QP(x,H) to this problem is defined to be the program

min (fx(x)p + ‘spTlepet-:(x))
Fx) A {peR"|gix)+g, (x)p < 0, hix)+h (x)p=0}

If p e E(x), then x+p satisfies the constraints to first order.

T 2.2)
(2.3)

Thus

the set x + F(x) is a first order approximation to the feasible set F,

defined by:
F A {xeR"|g(x) <0, h(x) =0}

H is an approximation to Lxx(x,l,u) where the Lagrangian

m
L:R" xF" xR® >R is defined by:
T T
L(x,A,1) 4 £(x) + A"g(x) + p~h{x)

If p solves (2.2) (with suitable values for A and p) then x+p

12.4)

. (2.5)

approximately solves (2.1). Solving (2.2) also yields multipliers

which may be employed té calculate the next approximate to Lxx’

To

compare non-feasible points we introduce an exact penalty function

Y : R® x R + R defined by:
y(x,c) = £(x) + cy(x)
where ¢ : R” + R is defined by:

(x) = max (0; gj(x), Jem; Ihj(x)l, jem)

(2.6)

(2.7)



'm denotes the set f1,2....,g) and B the set {l,2,...,me}. Other
exact penalty functions such as those employed by Han [4], Maratos
and Mayne [S] and Powell [7] may be employed. We note that x is
feasible (x e F) if and only if ¢(x) = O.

We wish to‘know whether a search direction, determined by
solving QP(x,H), is a descent direction for y(x,c}. To do this we

define the following first order estimates: @ : R* x " + R, is

defined by:

V(x,p) A max {0; gj(x)+gi(x)p. jem; Ihj(x)+h3(xlplv b} Eme)
R (2.8)
Yy: R xR xR+R, is defined by:

Y(x,pse) 4 £(x) + £ (x)p + chix,p) (2.9)

These estimates are obtained by replacing £, g and h, in the
dofinitions of ¢ and y, by their first order estimates. .Provided
that £, g, h are continuously differentiable, it is easily shown (see
the appendix) that @ and ; are first order estimates of, respectively,

v énd ¥, i.e. that, for all x, p and c:

IWix+p)-dix,p?] = o(|pl ] (2.10)
and:

byix+p,0) =y (x,p,0)| =ot]{pl) (2.11)

For our purpose the (convex) estimates { and ¥ are more useful than
the (linear) directional derivatives. p is said to be a descent

direction for y(x,c) if:

;(x,p,c) < vi{x,c) . (2.12)

It follows from (2.11) that, if p is a descent direction for yv(x,c), then

there exists an a, > 0 such éhat v(x+ap,c) < y(x,c) for all ac¢ (O,nll.

-5 -

It will be convenient to introduce the function O : " xRA"«R+R
defined by:

0(x,p,c) = Y(x,p,c) - vix,c) (2.13)

O(x,p,c) is a first order estimate of Y(x+p,c) - yvix,c).
That a solution p to QP(x,H) can be a descent direction for
y(x,c), provided ¢ is large enough, is now established.
Let £, g, h be continuously differentiable aﬁd let {p,2,u} be
a Kuhn-Tucker triple fér QP(x,H). Then:

T PR
o(x,p.c) < -p Hp - [e= } M- ] lu?|we o (2.14)
. j=1 =1 : ’
Proof
A Kuhn-Tucker triple {p,A,n)} for QP(x,H) satisfies the foilowing

waell known conditions:

VE(x) + Hp + gL (XA + hy (x)u = O A (2.15)
! h(x) +h (x)p = 0 (2.16)
gi{x) + gx(x)p <0 (2.17)
x>0 (2.18)
\Tigxi+g (xip) = 0 (2.19)
It follows from (2.9) that:
0(x,p,c) A ;(x,p,c) - v{x,c)
= £ _xp + c(i:(x,l;)-w(xn _ (2.20)

From (2.8), (2.16) and (2.17) we have:



&(x,p) =0 - (2.21)

Hence, for p a solution of Q(x,H}, €(x,p,c) = fx(x)p - cp(x).

From (2.15):

£x(x)p'- pTVf{x)

= -p"Hp - \Tg, (0)p = u'h (x)p (2.22)
From (2.16):
Q"hx(x)p' = u"h(x) ' (2.23)
From (2.19)
ATg, ()p = -\Tg(x) (2.24)

Hence, from (2.20)-(2.24):
e(x,p,c) = -pTHp + ATg(x) + pTh(x) - cP(x) (2.25).

An upper bound for the right hand side of (2.25) can be obtained by
noting that, since A >0, ngj(x) < le(x) for all j ¢ m and that
ujhj(x) < |uj| ]h’(x)l §_|uj|W(x) for all j € m . Hence:
- m Pe
0(x,p,c) < -p'p - [e- I A= | [ud| v (2.26)
j=1 =1 . '

which is the desired result. 0

An obvious corollary is that, if (p,A,u) is a Kuhn-Tucker triple

for Q(x,H), then p is a descent direction for .y(x,c) if pTHp > 0 (e.g.

m

m e .

if B is positive definite) and c > 2 Xj + Z luj|. Consequently the.
=1 3=t

following algorithm is worth considering:
Data: Xg € Rn, Ho € Rnxn; B e (0,1)

Step 0: Set i = 0

Step 13 Compute the Kuhn-Tucker triple (pi,ki,ui} for QP(xi,Hi)
m
Tade 513
Step 2: Choose ¢, > YA+ Z Jnd|
. i i
y=1 j=1

Step 3: Choose ki' the first integer k in the sequence 0, 1, 2, ...
satisfying:

ki . ki
y(x1+8 pi,ci) -Y(xi.ci):_s e(xi,pi,cl)/s

k

a 1
Step 4: Set x ., =%, + 8 Py

Update Hi to Bi+

Set i = i+1

1

Go to Step 1 »
v

This algorithm is appealing in its simplicity. Powell [7] has studied
the rate of convergence of a similar algorithm, under the assumpiion
that it produces convergent sequences. Note that, since ;(x,ap,c)

is convex in a (for all x, p, C):
8(x,ap,c) = y(x,ap,c) - y(x,c)
< al¥(x,p,c)-7(x,0) ]

= a@(x,p,c) (2.27)

k
so that Step 3 is an Armijo type step, with 8 1G(xt,p,,ci) replacing
p rs

the usual linear estimate of the change in the cost function as x
k

changes from x, to x1+8 +P1‘ However global converuence has not been

i
(and possibly will not be) established for this algorithm for the .

following reasons:
(a) A solution for QP(xi,Hi) may not exist, either because the

, is not positive definite.

problem is infeasible (?(xi) =4) or H

.



(b) Even if a solution exists, or if E(xi) is replaced (as suggested
in (7)) by a larger ron-empty set ;(xi)) the Kuhn-Tucker triple
{p‘,xi,ui} for QP(xi.B&) and, consequently, 0(xi,p1,c) may vary
discontinuously with xi. Unless © has some semi-continuity properties
it seems unlikely that globél convergence can be established.

(3] The choice of c, in Step 2, as it stands, is heuristic, and may

i
result in cycling. Moreover the test function should vary continuously
with x, (see (11]) and so the possible discontinuity of the multipliers
may cause trouble.

(d) Step 3 may generate stepé whose lengths are strictly iess thaﬁ
unity no matter how close X, is to a solution point x.

Our tespbnse to these difficulties is as follows. If QP(xi,Hi)
is infeasible, or if the search direction | obtained by solving
QP(xi,Hi) is unsuitable( then a search direction is generated using a
robust . first otdef descent algorithm for y. The test for ¢y is modified
te conform with Polak'§ algorithm model [11], and continuous estimates
for the multipliers are employed in place of those yielded by solving
QP(xi,Hi). Although p; may consequently occasionally'fail to be a
descent. direction for’y(xi,ci), the first order algorithm will take over
and no difficulty will ensue. Finally the search direction will be
replaced by an arc. Near a Kuhn-Tucker point for the original problem,
the solution to QP(xi,Hi) is guaranteed to possess continuity properties
vhich ensure that Py yill be accepted for all subsequent iteration;,
resulting in superlinear convergence.

Our new estimates for the multipliers are modifications of those
proposed by Glad and Polak [12]). The estimators X:R"+ A ana

m
e R" + B © are defined by:

(Rox) i 00) 4 arg-min (| |7E G0 +g reny coul |
(A ,n)

PTG A+ K (x) ) (2.28)
where G and K : A" + RV are defined by:
3,.0,2
G(x) A aiag {(¥(x)-g” (x))"} (2.29)
5 2
K(x) A aiag {(wtxr=|[nl o]y (2.30)

T and ji are continuous functions and if (x,%,il} is a Kuhn-Tucker
triple for problem 2.1, then i = X (x) and ﬁ = p(x). This will be
established later. We also define the function € : "+ R by:
m ' .
- mo_. e _y
S(x) Amax {L } XD+ [ |07 () ]+b],b) {2.31)
j=1 3=1
where b ¢ (0,2) is an arbitrary, “small” constant. We also require

a test function T : R™ + R defined by:

100 4 min (e, (o00+] [7£00+gT COT Gl a0 [120%) (2.32)

Assume that our first order sub-algorithm generates, at each x and c,
a search direction and p(x,c). Let Ii denote the set of active irequality

constraints prédicted by the quadratic program at iteration i, i.e.
1. a8 Ghi>0 ' (2.33)
i= i

where (pi,ki,ui} is the Kuhn-Tucker triple for QPlxi,Hi). For each i,
;1 denotes the solution, if a solution with norm less than or equal to

l'Pill exists, of:

gj(x1+pi) + gi(x)p =0, je ii
(2.34)

hix. +p,) + hx(x)p 20
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Ei denotes the zero vector otherwise. We can fiow specify our algorithm:

Main Algorithm :

.Datasz

Step 0:

Step 1:

Step 2:

Step 3:

*y

€ R b, cy 8€ (0,°); B, & € (0,1), B

Set { =1, set § =0

1f ¢

1f ¢

i-1

If:

Then:

Else:

i~

1

()
(8)
(y)

(a)
(b}

(c)
(@)

(e}

2clx), cet c =

1% Ci-1

< E(xi), set ¢, = max {c1-1+6'6(x1))

i

" Solution Py of QP(xi,Hi) exists
3
IIPill hS GlA

Olx,,p ey} < -Tix,)

Compute Ei (see (2.34))

(2.35)

(2.36)

Compute ki' the first integer in the sequence

o, 1, 2, ... satisfying:
koo 2k
7(x1+8 p1+8 pi'ci) - Y(xi.ci)
ki
<B G(xi{pi,ci)/a
k. 2k

Set x, . =x, +B ip +8 ip

141 © %y i Py

Update H1 to Hi+1

Set 1 = i+1, j = j+1 and go to Step 1

proceed to Step 3.

(a) Compute §(x1,ci) (by solving (3.1))

(b) Compute the smallest integer k

i

0, 1, 2, ... such that:

i- ' -
Yox+8 TBix ic,)pe,) - v(xiec,) < B tO(x Blxgic,)ic))/4

k k

- 11 -

in the sequence

(2.37) .

(2.38)

k

i-
(¢) Set Xigy =% + 8 p(xi,ci)

(d) Update B to H .,

{e) Set i = i+1 and go to Step | d

‘For simplicity in analysis, a stopping test, based on
satisfaction of the Kuhn-Tucker conditions (e.g. T(x) = 0) has been
excluded but should be incorporated in a practical algorithm. MNote
that i is the iteration number and j the number of times that a
solution p; of QP(xi,Hi) has been accepted as a search direction.
Several possibilities exist for updating “1' but this choice does not
affect the global convergence. We now specify the firsi order sﬁb—

algorithm used in Step 3.

3. FIRST ORDER SUB~ALGORITHM

For all x, c the first order search direction is any p (o will later
be shown to be unique) which solves the following program:

o' (x,c) = min {(n/2) ] |p}| 246 (x,p.c) } (2.1
' :

where 0(x,p,c) denotes ;(x,p.c) - y(x,c). The search direction {3.1) is

easily seen, using (2.20), to be equivalent to the following quadratic

program: A
@' (x,c) = win ((n/2)||p||2+<Vf(x),p>+c(i-@(x))}gj(x)+ni(x!n;;€.
p.& .
yem | emdoopl <6 3em , £200 3.2)
Let ©
160 A (3 emled 0 =v00)
and

1) g (3em| [h3 (ol= w0}

- 12 -



Let P'(x,c) denote the solution set of (3.1), ard let the following
assumptions be satisifed:
Hl.: The functions f, g and h are continuously differentiable.
B2.¢ For all x, the vectors [ng (%), JeI(x); WX (x), ke Ie(x)}
are linearly independent.
Then we have the following result.
Proposition 2
‘{i) For all ¢ > 0 the function 0'(+,c) : Ré + R is continuous.
(ii) For all (x,c), c > 0, ©'(x,c) <O, ‘
(i) For all (x,c), c > 0, the solution to (3.1) is unique, i.e.
P {x,¢) = {plx,0)). ' '
(iv) For all c > 0, the function B(°,c) : B > R” is continuous.
Proof
(11) is estab;ished by setting p = 0 in the right hand side
of (3.1). Next we note that (3.1) is equivalent to:

0" (x,&) = min {(n/2)]||p||2+0(x,p,e) |pec) (3.3)
P

where C is any compact set which includes TI'(x,c) defined by:
12
rix,c) A {pl(n/2)||p||“+0(x,p,c) <0} (3.4)

since ©(x,p,c) = <Vf(x),p>+cP(x ,p)-cy(x) (3.3) and $(x,p) > O we

.

see that T(x,c) c F(x,c) where:

Fle,o A {pl(n/Z)||p||2+<Vf(x).p>-c¢(x).10) t3.5)
But p € ;':(x,c) implies that:

/| 1pl1? < lvewa ]l Hell + cotx (3.6)
and hence that:

Hell < azm]lveeo|] + Camd|lvem}l? + 2t/ 60 T

(3.7)
- 13 -

Let N(x) dendte the right hand side of (3.7). Clearly the map x '-* N(x)
is continuous and T(x,c) ¢ {p ||p||:p(x)). Hence, for any x € R", any
E >0, there exists a compact set C such that T(x,c) C-F(x,c) c C for
all x € B(x,¢), and hence that 9'(x,c) is defined by (3.3) for all

such x. Hence [13, p. {16] 0'(*,c) is continuous and P'{°,c) is

upper semi-continuous at x. From the strict convexity of

(n/2)|!°||2 + 0O(x,*,c), P'(x,c), the solutiocn set, has a single element
p(x,c). Since P'(*,c) = {p(+,c)} and is upper semi-continuous at x it
follows [13] that p(*,c) is continuous at X, and .since x is arbitrary,
continuous. c

Let Aé : R" > R® be defined by Step 3 of the main algorithm, i.e.

Aé(x) Ax+ 8k(x,c)-—

p(x,c} (3.8)
where k(x,c) is the least integer in {0,1,2...} satisfying:
y (4855 (x,0) ,0) - Yire) < 850 (x, B (x,c) ,c) /4 3.9
Let Dc be defined by:
s
D, A {x]0"' (x,c) =0} (3.10)
It follows from (3.1) that:

St ixee) = (/) | iptx,e) ]2 + Blx,Bix,0),0) (3.11)

and hence, for all x, ¢ > 0, that e(x,ﬁ(x,c),c) < 0'(x,c) < 0. Hence
Sc defined by:

5; = {x]o(x,p(x,c),c) =90} ' (3.12)

ies b cD.
satisfie: Dc e .

Suppose now X € Dc so that 0'(x,c) = 0. It follows from (3.11)

that G(x,E(x,c),c) = -(n/2)|‘§||2.:0. if O(x,ﬁ(x,c),c) = -p < 0, then

- 14 -



(from (2.27)) O(x,ap(x,c),c) < -ap while (n/2)||a§(x.c)||2 = uzp so
that ©'(x,c) < uzp -ap =ap(l-a) <0 for a = &4 say. This is a
contrad!.ction. Hence ©'(x,c) = 0 => G‘(x,ﬁtx,c),c) =0, i.e. Dc < Sc.
Hence D, = D .

For convenience in the sequel we denote e(x,ﬁ(x,c),c) by 9(x).
Note that x =+ ©(x) is continuous. We can now establish a résult

which will be employed in the next section to establish glébal

convergence of our main algorithm.

Proposition 3
(1) x e Dc is a necessary condition of optimality for the unconstrained

program:

min {y(x,c)}
x

(iiy For all x ¢ D, there exists an € >0, 6l > 0 such that:

Y(Aé(x'),c) - y{x',c) :.-61 for all x' ¢ B(x,tl) -(3.13)

{iti) D =D.
c c

Proof

i) Follows from (ii). Suppose x ¢ D.. Then e(x) A o(x,pix,c),c) < 0.

Now, from (2.27): '
Yix',up(x',c),c) - y(x',c) < ab(x') (3.14)

for all a € [0,1]. 1It is shown in the appendix that, given any

compact neighbourhood N of x,
|y{x'+apix’,c),e) - ¥ix',0p(x’,c),e}| < adla,x") (3.18)
where ¢{(a,x') + 0, uniformly in x' ¢ N, as.« * 0. Hence there exists

1]
a positive integer k' such that ¢(8k ,Xx') < -8(x)/4 for all x' e N.

- 15 -

Hence, from (3.14 and (3.15):
k= k )
Yix'+8 p(x’',c),c) - yv{x',c) < B (O(x') -0(x)/4) (3.16)

for all k 2_&', for all x' ¢ N. If we now choose an €, > 0 such that

B(x,cl) c N and 0(x') < 0(x)/2 for all x' ¢ B(x,:l), we obtain: -
4855 [ k .
Y(x*'+8 p(x',c),c) - vi(x',c) < B70(x)/4 . (3.17)

for all x' ¢ B(x,el), for all k > k'. From (3.9), k(x',c) = k' so

that Y(Ac(x'),c) - Y(x',c) < Bk'O(x)/A 4 § for all x' ¢ B(x,zl), ;hus

establishing (i) and (ii). Part (iii) has been proven above. 0
It follows from Theorem 1.3.3 in [14) that any accumulation

point x* of-an infinite sequence (xi}, where x = Aé(xi) for all i,

i+l

satisfies x* ¢ Dc' Hence Aé defines a first order algorithm for

solving min {y(x,c)}.
x
We can now turn our attention to establishing the global

convergence of the main algorithm.

4. GLOBAL CONVERGENCE

We again assume that Hl and H2 are satisfied. Step 3 of the

main algorithm, if entered, generates a new point x = Aé(xi).

i+1

Since QP(xi,Hi) may have more than one solution, Step 2 of the main

algorithm, may generate any point in a set, which we denote ic'(xi)
i
(the parameters Hi and j are omitted to simplify the notation). Thus

R"

Step 2 defines a point to set map ic : R > 2 . l.e. ic(x) is the

set of points that could be generated in Step 2 with x; replaced by x,

c, replaced by c. Steps 2 and 3 together define a point to set-map

i
A, : R+ 2Rn such that:
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Ac(x) = Rc(x) if x satisfies tests in Step 2
= {Aé(x)) otherwise ' ' (4.1)

With this definition, our main algorithm has the structure of the

following model:

Algorithm Model

Data: X € Rn, o >0
Step 0: Set 1 =1
Step 1: If €1 > c(xi) set e, =C

If ¢, _, <clx,) set c, = max (ci_1+6,c(x‘)}

Step 2: Compute any x € Ac (xi)

i+1 i

Set i = i+l

Go to Step 1 . .0

The following result, which is a Slight modification of Theorem 4
in [11), gives conditiecns on Ac and ¢ which, if satisfied, guarantee
ylobal convergence. D denotes the set of Kuhn-Tucker points for (2.1).
Theorem 1

If ¢ and Ac have the following propérties:

{i) ¢ : B"+F is continuous

(i1) = € Dc and ¢ > cix) ™ x € D

(iii) Let {x } be any infinite sequence such that x, . € A_(x,) and

i+1
CRS E(xi) for all i; any accumulation point x* of (xi} satisfies
x* ¢ D .

c

Then any sequence (xi} generated by the Algorithm Model has the

following properties.

(a) If ci-l is increased finitely often when i = 11. 12, [P 13 so
. that ci =c' A ci for all i 3-13' then any accumulation point

x* of (xl) satisfies x* ¢ D.

- 17 -

(b) If LT is increased infinitely often when i ¢ K A (11,12,13,...),

then the sequence (xi]jex has no accumulation points. )

To appreciate the significance of (b) we note the following
consequence of Theorem 1.

Corollary

If the sequence (xi) is bounded then ¢, is increased only
finitely often, and any accumulation point x* of {xi} is desirable
(x* ¢ D). . . c

‘Tﬁeorem 1 is proven in the appendix.

Hence, to establish that our'alqorithm has the same convergence
properties given in (a) and (b) of fheorem 1 (and in the Corollary)
we need toﬁestablish that.z satisfies conditions (i) and (ii} and Ac
satisfies condition (iii). First of all we establish:
Proposition 4

(4) XA A and i A" R® (defined in (2.28)) are well-
defined and continuous.
(1) If (x,A,1) is a Kuhn-Tucker triple for (2.1), then A = ¥ (%)
and p = pix).

Proof

. (1) We note that the second order term in (2.28) is positive Gefinite .

in (A,n). For if:

m . m . I
Hayeornroonl1? + 1 wm-gdxn?0h2 + T woo-lnd o el
3=1 et
=Q {4..
then Xj = 0 for all j £ I(x) and “j = 0 for all j ¢ Ie(x). Hence:
I v« T wWadml]2=o0 (4.3)

JeI(x) jsIe(X)

But this implies, from Assumption H2, that A = 0 and U = 0. Hence the
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second order term in (2.28) is positive definite. The continuity of
X, I then follows from the continuity of g , h , g, h and ¢.

1) 1f (;,i,ﬁ} is a Kuhn-Tucker triple for (1), then:

VER) + g) (0K + b (O = 0 : (4.4)
g(x) <0, hix)=0 {4.5)
d,gx> =0, A>0 (4.6)

Hence ¥ix) = 0 so that G(x) = diag {(gj(ﬁ))z}. Since $3 -0 if
gj (x) # 0, it follows that G(x) = 0. Also H(x) = diag ((h’(i)),z} = 0.

Hence i and ; satisfy:
-~ .. T, A T, ,~ N
gx(x)[Vf(x)+gx(x)X+hx(x)u] + G(xX)A =0 (4.7
- PRUT JESUNE J9 -
hx(x)[V£(x)+gx(x)k+hx(x)u] + H(x)p = 0 (4.8)

But, from (2.28) and Proposition 4 (i), X(x), ﬁ(i) are the unique

solutions of {4.7) and (4.8). The desired result follows. O

Proggsitidn S
S : R™ + R, defined by (2.31) and T : R" + R defined by (2.32)

are continuous.
Proof
This is a direct consequence of the continuity of X and ﬁ. 0O
Proposition 6 v
Let ¢ > c(x). Then x € D <= x.€ D.
Proof
(1) (x ¢ Dc) => {x ¢ D)
It is shown in the appendix that program (3.1) is dual to the

program:
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©' (x,c) = max {c(<w,g(x)>+<
w,p
w>0,p=p, =0, 0y
m Pe Te
Juwe ] 93+ Yo
=1 3j=1 3=1

where:

VL A VE(x) + c(g:(x)u+h:(x)

(a) Let c > S(x) and x € D_. Suppos

p,h(x)>-¢(x)%(%n)|!VL||2
20, 0,20,

3
2i1}

p)

e also that x ¢ F. Then

Y(x) = 0, g{x) < 0 and h(x) = 0. Hence:

ot (x,c) = 0

= max {c<w,g(x)>-(1
w,0

w>0, p=0p,-0,,
. - <

1
m m

m e e
Pode Tole 1o
=1 3=1 31

Let &, 5 denote a solution of (4.11).

' ':,j

0 for all j £ I(x)
and

vL

VE(x) + cg:.(x)w + ch:(
Hence we have:
g{x) <0, hix) =0
<w,g(x)> = 0
; >0

VE() + gy (x) ci + b (x)

s2m | |vil 2

[+ :_oo 02105

1

3
3% 1}

Then (4.11) implies that:

x)p = 0

=0

- 20 -

4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

4.17)



i.e. {x,c0,cp)} is a Kuhn-Tucker triple for (2.1), i.e. x € D.

(b) Again let ¢ z_E(x) and suppose x ¢ F, so that x £ D. Suppose,
contrary to what is to be proven, that x ¢ Dc' i.e. 0'(x,c) = O.

Let 1} (0 4 (307 G=b(x)) ana 1200 & (3]0 =00} so that

I:(x) = Ie(x) u Iz(x). From (4.9), if 0'(x,c) = 0, then (since
fu):wm,hhﬂ|:Mm,mdmemumuaswmwlwsmm
unity):

<Big(x)> + < hx)> + <Bu-h(x)> = Yix)  @ae
v(¢(¥) > 0) and:

mw=0 (4.19)
From (4.18),Vsin9e:

f ;j + ;eﬁg + ?eﬁg <1 (4.20)

j=1 3= j=1

we must have:

@ =0, forall j¢ 1(x) (4.21)
hj _ o l
pl = 0, for all j £ Ie(x) (4.22)
53 a0, forall £ 1t (4.23)
2 ’ e ‘
and

D W S P A (4.24)

jeT(x) jeIe(x) jeIe(x)

From (4.19):

T - T - o~
VE(x) + ch(x)w +_Chx(X)(°1-°2) =0 (4.25)
Now (X(x),1(x)) is the unique solution of:

win (|[vee0+ § aIvgioos T i wo |2
A jem | Jem,

+ 7 ahium-gden?s 1 whiem-nie)?
ILT(x) 4T (%)

- 21 -

(4.26)

Making use of (4.21)-(4.23) and (4.25), we see that (X(x),i(x)) is the

solution of:
min (‘i 2 [xj-c&jlvgj(x)+ E [uj-cailvhj(x)

Au JeT(x) jCI;(X)

+ 1 Dsebdmdmoe | Vvgd (x)

se12 (%) i1t
e .
+ 3 wWwimPs T ohiewm-gdon?
3T (x) 1)
+ 1 whiem-ndmh? (4.27)
lee(x)

It is evident that a soluti&n of (4.27) is:
i = cid >0, 5 €100
M =0, ¢ 1(x)
W = el 20, 5 cxloo (4.28)

~ 2
pj(x) = —cpg £0, je Ie(x)

uJ(x) o, j £ Ie(x)
But this solution is unique. Hence:

tw = T80+ I Idoo) 4

jcg J(Ee
= X c&j-+ Z caz + f cag +b (4.29)
Jextx) jeIh ) Jexd (o)
Making use of (4.24) we obtain:
clx) =c+b (4.30)

But this contradicts the fact thaf c > Eix). Hence x ¢ Dc' thus
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establishing that, given ¢ > E(x), x{ F=>x{ Dc' i.e. given c > c(x),
x € D _=>x ¢ F. Hence x ¢ D_ *> x ¢ D.

(ii) To prove the converse suppose X € D. Then h(x) = 6, gix) = 0,
Y(x) = 0 and fhgye exist multipliers A, p such that X > 0, <A,g(¥)>.= 0
and Vf(x) + g:(x)l + h:(x)p = 0. Letc Z_E(x) b; arbitrary. Setting

= (1/0), p = (1/c)u yields VL = O (see (4.10), w> 0, and Ju'+ [ ol <1

(see (2.31) and Proposition 4(ii)). Hence substituting this w, p into
(4.9) yields ©'(x,c) > 0, which implies that 8'(x,c) = O or, equivalently,
X € bc. 4 ‘ 0
Propositions 5 and 6 establish that € has the properties required
by Theorem 1. We now turn our attention to Ac' defined in (4.1).
Proposition 7
For all x ¢ Dc' where c Z_E(x))there gxists ane >0, § >0
such that:

v{x",e) -~ y(x',c) < -6

for all x' € B(x,e), for all x" ¢ Ac(x'). 0

Proposition 7 is proven in the appendix.

N direct consequence of Proposition 7 is:
Proposition 8

Any accumulation pointvx' of an infinite sequence (xi}.

where Xis1 € Ac(xi) and ¢ :.E(xi), for all i, sgtisfies *' € Dc'
Proof

It follows from the continuity of c(+) that ¢ :_E(x‘). The
desired result then follows from Proposition 7 and Theorem (1.3.3)
of [14]. ' o

We can now establish the convergence properties of our main

algorithm.
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Theorem 2

Suppose the main algorithm generates an infinite sequence (xi}.

(1) If the algorithm ircreases c finitely often, then any

i-1

accumulation point x* of {x } satisfies x* ¢ D.

(i) If the algorithm increases LI infinitely often (so that €0

at £ € KA {11,12,13,...} then the sub sequence {xi)iex has no

accumulation points.

(11i) 1If {xi) is bounded, then c, _, is increased only finitely often

(and every accumulation point x* of {xi) satisfies x* € D).

Although the main algorithm generates sequences whose
accumulation points are desirable, the purpose of Step 2 is to
ensure superlinear convergence. Hence we have to show that
eventually the tests in Step 2 are always satisfied, that the step
length is eventually alwgys unity and that Hi is updated suitably
to ensure this rate ;f convergence. First of all we have to
strengthen our assumptions; our new assumptions include those of

Robinson [151. HI is replaced by HIA and we add two nev assumptions

H3 and H4 to obtain:

.

HIA: f, g and h are three times continuously differentiable.

H3: At each Kuhn-Tucker triple {i,i,ﬁ} for (2.1) the second order

-+ o)

Proof

(i), (ii), (iii) follow from Propositions 5, 6 and 8, which show
that € and A satisfy the conditions of Theorem 1. 8]
5. RATE OF CONVERGENCE

sufficiency conditions hold with strict complementary slackness,

i.e. ij > 0 for all j € I(x) and Lxx(ﬁ,i,u) is positive
definite on the subsﬁace (p!g‘x’(;()pO, hx (x)p=0}.
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H4: The sequence {xi).(ggnerated by the main algorithm) is bounded.

In the sequel HIA, H2, H3 and H4 are assumed to hold. From
Theorem 2.1 of (15] we deduce that Kuhn-Tucker points (x is said to
be a Kuhn-Tucker point of (Q,i,ﬁ) is a Kuhn-Tucker triple) are
isolated i.e. there exists a neighbourhood of each Kuhn-Tucker point
which contains no other Kuhn-Tucker points.

Fof simplicity we adopt the secant method for updating Hi'
Thus Steps 2(d)and 3(d) in the main algorithm become:

Updating Step: Replace column (i mod n) of H1 by:
(/8T L0k, +8 e X lxy ) oitx, D=0 L0, oKl )Gl (xy 0]
(5.1)
where:

3, A min {lei+l-xi||,||i(x1+1)—i(x1)||,l|ﬁ(xi+l)-ﬁ(xi)||,c)
(5.2)

e i=1, ..., n, denotes the ith basis vector and £ > 0 is a small

number based on the word length of the computer.
It is not essential t
al to update, as above, Hi at every iteration;
updating may be done every kth iteration, for example.
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We require, for superlinear convergence, that Hi -+ Lxx(;,i,;),
where (;,i,;) is a Kuhn-Tucker triple, as i ~ = (see Theorem 3). 1If
the secant updating procedure, specified in (5.1), is employed then,
since X and ﬁ are continuous, a sufficient condition for the convergerce
of Hi to Lxx(;,;,;) is the convergence of xi-to ; as {1 + », We now
eétablish the latter.
Proggsition'g

Let {xi] be a bounded infinite sequence generated by the main
algorithm. Then |Ixi+l~x1" + 0 and X = ;, vwhere ; €D (; is a Kuhn-

Tucker point), as i + =.

‘Proof

(a) Any accumulation point x of {xi) is a Kuhn-Tucker point (Theorem
2). Llet B be a compact ball in R" containing {xi}. Then, since the

Kuhn-Tucker points are isolated,B contains a finite number of Fuhn-Tucker

‘points. (Suppose, contrary to this assumption, that {zj} [ ((xj,%*,u‘)}
o’ 4

is an infinite sequence of Kuhn-Tucker triples {for problem (2.1)) in
B such that xj + x as j » ». From Proposition 4, Kj = i(xj) and

uj = ﬁ(xj) so that z, + 2z = (x,%{(x),u(x)) as j ~ =. Since

3

T T N
Vf(xj) + gx(xj))\j + hx(xj)nj =0, <Xi.g(xj)> =0 and ),

3 > 0 for all j,
it follows that VE(x) + g:(x)i(x) + i) = 0, Tx),qlar =0

and X(x) > 0. Hence x is a Kuhn-Tucker point which is noi isolated,
a contradiction.) Hence the set {xl'xZ""'xk} c B of accumulation
points of {xi} is finite, and each element of this set is a Kuhn-

Tucker point.

(b} For all ¢ > O, there exists a positive integer 10, such that
x. € u Blx,,e) for all i > i . (Theorem 2.)

L7 gk 3 -0 .

{c) ~ There exists an 11 > io such that S = ¢ for all i > il.

(Theorem 2.} Hence ;j € DE (Proposition 8) for all jJ € k. Since
DE = De it follows that 0'(;(:),2) = O(Qj:l;(;cj,::) ,;) = 0 so that
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(from (3.11)), f’(;cj.::) = 0 for all j ¢ k. Also 5('.5) is continuous
(Proposition 2).

@) Let X, © {0,1,2,...)} denote the subsequence in which Step 2
is entered and K2 the complement of l(l (the subsequence in which

_ Step 3 is entered).

(e) From (¢), for all § > 0 there exists an € > 0 such that
k N -~

x. e uB(x, €) implies that |[p(x @ || < 6.

LT i -

(£) Combining (b) and (e) we see that given any 6 > 0, there exists

an i, such that Hxiﬂ-xill < |15(xi'5)ll <&, for all 1 > i, i € K,. ’

1
This implies that “xi-bl-xi” + 0 as i+=, 1c¢K,.

(g)  For all i € Ky ||xi+l-x£|| < eyl + [1e, -
(h) Hpill + 0 and Hsill +0as i+= 1c¢ Kl because of the
test in Step 2 and the definition Of;i'
(1) Combining (g) and (h) yields llxiﬂ-xill +0as i=+=® i€k,
N Combining (f) and (i) yields llx“_l—xill >0as i+
) ret a pmin {|I%, -x.1|}3,,3,¢k} and let € j 4/4. Then

: 3y 3z 1772~ .
there exists an 5.2 > il such that:

(i) x, € U.B(x,€)

i jek. 3

(i) Hxg g% 1l < e

for all i > i,. Hence, if x, € B(x,e) where X ¢ {;c‘,...,;tk), then

2

¢ Bix,c) for all 1 > i,. Hence x9x as t > «. 0

It follows from [16] and [17] that H Lxx(;f.,).,u) if

X5

(x1.7(xi) ,y-l(xi)) + (x,A\,1). Hence, from Theorem 2, Proposition 9
and the continuity of i, ﬁ, we have:

Proposition 10
If {xil is a bounded infinite sequence generated by the main
algorithm, then X +x ¢ D and Hi -+ Lxx(;t,)\ ,ﬁ) as i + «, where

(x,A.n) 4 {x,%(x),n(x)} is a Kuhn-Tucker triple for Problem (2.1). O
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We establish next the convergencé of the multipliers li~and Byo
recalling that, for each i, (pi,li,ui) is a Kuhn-Tucker triple for
problem QP (xi'Hi)v' .

Proposition 11 V

Let:- {x j_} be a bounded infinite sequence generated by the main
algorithm. For each i let {p;,li;ui) denote the Kuhn-Tucker triple
for QP(xi,Hi). .
{a) (xi,ki,ui) - (;c,i,ﬁ) as i + =, where (;,;,;} is a Kuhn-Tucker
triple for Problem (2.1).
(b) There exists an integer io such that QP(xi,Bi) kas a unique
soluticn p; for all i > io, {so that the test in Step 2(n) of the main
algorithm is satisfied for i > io). Also p, > 0 as i » =
(c) There exists an integer 11 such that ii = I(x) for all i z 1:
Proof

We make use of Theorem (2.1) in {151, with q § (xk,Hk),

3 A G ) with § = L (x,5,0) and:
00x,a) A £ (x) (x=x) + () (x-x, ) A ()
g(x,q) Q_l'q(xk) + gx(xk) (x-xk)
h(x,q) Ah(-xk.) + hx(xk) (x-xk)
Problgm 1(q) is defined to be:
nin {e(x,q)lg(x,q) <0, hix,q) = 0}

This is seen to be identical to our'QP(xk.Hk) with p in QP (xk'Hk)

replaced by x - Xy - Problem l(a) is:
nin {fx(;c) (x=x) 4 (x-%) TR {x=3) | g (%) +g (%) (x-x) < 0

B (x)+h_(x) (x-x) = 0}
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a & a - aa

Clearly {x,A,u} is also a Kuhn-Tucker. triple for Problem 1(q) at P A YYT. w.e note that Piy is the orthogonal projection of y onto

which the second order sufficiency conditions are satisfied with the null space of R(xi).
strict complementarity slackness and linear independence of the Proposition 12
2 ) o
active constraints. Hence we satisfy all of the conditions of (a) yTuiy ~ |ly]1¢ for all y such that (i) R(x)y = O or
Robinson's theorem, (2.1) so that there exists, in a suitably small (1) R(xi)y = 0.
neighbourhood of (§,ﬁ), a continuous function 2 : (xk,Hk)M Z(Xk'nk) = (b} R(xi) has maximum rank.
X, *P, oA, ) such that Z(x,fl) = (x,),1). In this neighbourhood _ @ e Il ~ Hexpll + [lpoexp 1]
{xk‘Pk’xk'uk) is the unique Kuhn-Tucker triple for Problem 1(q). ) Proof
Since x, x and Hk + fi (by Proposition 10), (a) and (b) are proven. . (a) (i) Follows from the convergence of l-li to H and the fact that
a . 2 -
That (¢) is true follows from the facts that A *3asd =+ that yTﬂy ~llyll® for all y in the null space of R(x) (by virtue of H3).
R . . ) . . R j
Ii. = {3 ‘E“?_ >0) and that (from strict complementarity) (b) Follows from H2 (with x = x) and the continuity of 9 Jem
I(x) = (3 e_ullij >0}. _ 0 hi, jem, Proposition i1(c) and the fact that I_(x) =m,.
We now proceed to establish that the tests in Step 2 of the E (c) Proven by Powell in [18]. 0
main algorithm are always satisfied. Since we are dealing with a We now consider the test in Step 2(y) of the main algorithm.
: P iti 13
convergent sequence {x,} we adopt, for convenience, the following Sxoposition 13
i -
e(xi.pi,ci) L] H(xi)
conventions. "A is true" should be interpreted as "there exists an
where
integer 11 such that A is true for all i > 11". Following Powell 2
M(x,) A Hr(xi)” + IIPiVHxQII
(187, "a, ~ b " should be interpreted as "there exists an integer §
4 i 2 Proof
and positive constants d‘, d2 such that (ai/bi) € [dl,d21 for all o, = pl . pz (5.3)
i> 12". Similarly "ai = bi" means that "there exists an integer 13 i * i
and 2 positive constant d3 such.that ai < d3b:|. for all i > 13".' where p; is the minimum norm solution of:
Let R(x.) denote the matrix whose rows are g:i (x), j e ii
i x i R(xi)P + r(xi) = 0 (5.4)
and hz(xi), j e m,- Similarly r(xi) denotes the vector whose components
- . 2
are gj(xi), 3 e Ii' and hj (xi), } € m, ordered in the same way as are and pi is the unique solution of:
. Titmg ~ - .
the rows of Rix ). r(xi) e R . where m is the cardinality of I,. 1 T
min (<V£(xi)+Hipi,p> + 4p Hile(xi)pﬂ(J) (5.5)
Let Yi(Y) denote a matrix whose columns are orthogonal basis. vectors . p
for the null space of R(x;) (R(x)) so that ”Yi” =1 (] |‘:’|| = 1) Clearly pi satisfies (5.4), is unique, and is orthogonal to the null
ala ' 2
and luxi)‘ti =0, for all 1 (R(x)Y=0). Let P A YiY'f for all i and space of R(x,). Also Py lies in the null space of R(xi) and is
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thus orthogonal to pi. Hence, from (5.3), the fact that W(xi,pi) =0, .
and the definition of © we obtain:
1
e(xi.pi.ci) = <Vf(x1),pi§ - c1W(x1)
+ <VE(x,) ,p3> ‘ (5.6)
1754 '
From (5.4), p; lies in theAzange spacé of RT(xt) and satisfies:
1T 1 ) ' .
py =R (xi)ni : (5.7{
where n is the unique solution of
waﬁxm‘+zm)=o (5.8)
1" 1774 i

O P . S
We define, for all i, a vector w, = (111,...,Aim,u;,...,uie) € Rm*m'
(where Ik € Ix), k=1, ..., m of multipliers as follows: ;1 is the
) fi+m
unique minimizer of ||RT(xi)w*Vf(x1)|' onR ©. Hence:
Rix )R (x,)o +9£(x,)] = 0 ’ (5.9)
17 1774 i *

and (from the continuity of R and Vf) ;1 + w where w satisfies:

R (%06 + VE(X) = 0 , . (5.10)

and is the vector of non-trivial Kuhn-Tucker multipliers for (2.1)

Iy

at x, so that o = AT>0, k=1, ..., m. Also, because w, is the

i
least square solution of (5.9), the projection of Vf(xi) onto the

null space of n(ki) is:

. - - . .
PXVf(xi) = Vf(xi) +R (xi)m1 . - (5.11)
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Clearly PVE(x) = O.

Prom (5.7), (5.8) and (5.9):
1 T 1
<Vf(xi),pi> = <9£(x,),R (xi)"1>
<R(x,1VE(x,),n}>
= SR VELx Deny
= =<R(x, IR (x, ), ,ni>
*IR AR dogany
~ T 1
= -<m1,R(x1)R (xi)ni>
~T
= wir(xi)

Let ¥(x} A min {O;Ij (x),3 ei) < 0. " since

w(xi) = mag {O;rj(xi),j e§b|rj(xi)|,j=;+l,....;*me), we see that:
Hr(xiu[°° = max {¥(x),-¢(x)}
~3 -
From (5.12) and the positivity of )i' J € I(x):

1 g ~5. 3
ey = 1 a0 ¢ T owinlexg

jeI(x) jeme
<0 § V. Tetx,) + o Uix,)
el A4 it 1774
cjex(x) jcge
where
~, j X ~ .
o, & m;.n {leg (%, )=bix,))

Hence: . )

. ! [ ' 3. ) 3|t ix,)

W£m),p>-&¢MQ < -leg- {. SR U R
L el *gem,

+ oi$(xi)

From the facts that:

e, - T . ij(xi) - 1 lewptze
JeI(x) jege
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(5.12)

15.13)

(5.14)

(5.15)

(5.15)



that Ti-» ij(xi), 3 e 1), ;i-*ﬁ(xi), Jemg andp, > p > 0 we
see from (5.13) and (5.15) that:

1
VE(x,),p > - S ¥ix ) = =l rtx) ]|, ~ =]z tx)]] (5.17)

Now pi lies in the null space of R(xi) (is orthogonal to pi)

and therefore satisfies:
p; = Yi"i (5.18)

where nf ig the unique solution of:

T, T, 1 T )
Y. Ve(x,) + Y Hip, + “1“1"1)" =0 (5.19)
Hence:
' 2 T, -1..T T, 1
n = -(Yiaiyi) [Y1V£(xi)+Y13ip1] (5.20)
and:
2 2,T,T
<V£(xi).pi> = (ni) Y1Vf(x1)
I ¢ T, 1.7..T a=1c T,
= [yin(xi)wialpiJ “1“1"1‘ (vin(xi)] (5.21)

Using Proposition 12(a), the fazt that ||Y§b£(x1)|| = ||P17f(xi)f|

and the fact that (from (5.8)) pl ~ ||r(xi)|| we obtain:
2 2
<Vex > = =[P e |7 - Hle vex 0[] [ zx ] (5.22)

Combining (5.6), (5.17) and (5.22) and making use of the fact that

||r(x1)|| + 0 and ]IPin(xi)ll + 0 yields:

' 2
0(x,,p,,c,) & el - llpivuxi)ll (5.23)

i'Py
which is what we wished to prove. » . u]

PtoEsiEion 14
The test:

O(x €;) £ -Tix,)

1Py
- 32 -

in Step 2(c) of the algorithm is always satisfied (for i > 11. say).

Proof
P,VE(X,) = VE(x,) + g ix,)%, + ho(x, ) (5.24
15y 17 T G XM T Ny -24)
m
~r ) ~p o~ N ~ .
where Xi A (Ai,...,rz), By = mi""'"ie) and. Xz,‘j € I(x) and

B, 3 € m_ are defined by (5.9) and X A 0 for § / I(X). Since as
shown in the proof of Proposition (13), ;i -+ 'i(xi) and ;i - ﬁ(xi)

we see from Proposition 13 that:
0(x, b, sc,) & <|[xix,) ]| - ||9E(x 1+g” (x )7 (x )+h. (x, )i (x 112
175174 i i x4 i i

But: S (5.25)
Yix) < le'(xi)lleD

80:
-IIr(xi)II = -b(x)

yielding:

b : .
O(xi,pi,ci) ~ -(T(xi)) _<_-T(x1) (5.26;

thus proving the proposition. 8]
We now consider the step length constructed in Step 2(b) of
the main algorithm.
Proposition 15
Tue step length genéraf.ed in Step 2(b) of the main algorithm
is unity (for all i greater than some inteqger).
Proof

3

Let ;-(xi) be a vector whose components are g (xi-bpi), e I(x)

and hj (xi-*pi) + ) € m, ordered in the same way as the components of r.

3 3

X

- o 3, b -
Since g (xi) +g (xi)pi =0, J € I(x), and h (xi) + hx(xi)pi 0,

J e m,, we obtain:
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~ 2
|
lr e Il flp I (5.27)
From the definition of Si' 51 is the_leastvnorm solution of:
R(xi)p + r(xi) =0 : (5.28)
and hence satisfies:
~ ~ 2
He = Hirxp =11yl (5.29)

so that the test ||p || < |lp[] in the.definition of B, is indeed
satisfied.

Next we note that:
gj(x +p +; ) = qj(x +p,) + gj(x +p )S
i %151 i %i x 171771
+ (‘:)pigxx(ii)pi (5.30)

P - 3 - 3
for all J € I(x), where E; ¢ [xi+pi,xi*pi+pi]. Since g (xi+pi) +

s = % 3 -g)
gy tx 0B, =0, 3 € 16, laytx+p =gy (x| = |lp;[], ana

115,11 = Hp [1? we see that, for a1l 3 ¢ 16

e e 3

la? x +py+p ) | = ||pi|| . (5.31)
‘A similar result holds for hj(xi+pi+;1). J e T SO thét:

iz +p 400 = |lp, |13 (5.32)

17P7Py0 = 1Py -
Also, using (5.29):
-~ o 3
| £x,#p,+p, ) ~€ (x,)=<PE (x,) o +p >=a<p, o £, (x, )0 > = o ||

(5.33)

Hence, from (5.32) and (5.33):
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where:

and

y(xi+pi+pi.c1) - Y(xi'ci) = o(xi,ci) te, (5.34)
#(xilci) A <Vf(xi),pi+pi> + 5<pi'fxx(xi)pi) - ciW(xi)
= O(xi,pi.c‘) + <V£(xi),pi> + H<pi,fxx(xi)pi> ©(5.35)

3
CRERIIAN (5.36)

The step length is unity (ki = 0) if:

€ A’Y(xi+p1+pi'°1) - y(xi,ci) - O(xi,pl.ci)/a <0 (5.37)

Now, because {pi,ki,pi} is a Kuhn-Tucker triple for QP(x ,H ), we

have:

so that:

i"7i

T T
Vf(xi) = _“191 - gx(xi)ki - hx(xi)”i {3.3€)

= - - - .39
<Vf(xi).pi> <pi'Hipi> ligx(xi)pi uihx(xi)pi (5.39)

Clearly, using (5.29) and the convergence of Hiz

~ g i3 "
t<p,Hp>1 = lipii (5.40)

1

Also, since xg >0, 36 1), =0,3¢1(x), and:

we obtain (see (2.34)):

Similarly:

g x5, = gl xep), 3 € 1R , (5.41)
T ~ T R

Aigx(x)pi = -Aig(xi+pi) (5.42)
pfhx(xi)gi = -uih(x,+p,) (5.43)

so that, from (5.36), (5.39), (5.40), (5.42) and (5.43):
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. 3
Ci = ¢(xi'ci) - e(xl'pi'ci)/e + 0(”91“ )
- T
.(7/8)9(3(1.!,1001) + kig(xi"’pl),
T .
+ “ih(x1+91) + ‘1/2)<p1'fxx(xi)pi>
3
+od eyl {5.44)

Since (from (2.14)) G(xi,pi,ci) :--<Pi'ﬂipi>v‘ hw(xi), if-we expand
9(x£+pi) and h(xi+pi) to third order, recalling that g(xi) + gx(xi)p1 =0

etc. we obtain:
€

g L (3/8)elx, ,p,,c,) - (B/210ix,)

: 3
+ W/2<p, @ (x Amu)-B0p > + 0 p [ (5.45)

Using Proposition (13) and the convergence of [Lxx(xi,hi,yi)-ﬂi] to
zZero, we get:
e, ==L |xtx) | |+] P, v€(x,1 %3 + ol ]p, | 1D (5.46)
1 1 P! Py :
From Proposition 12(c):
e 112 = I 112 + 2llz e 1 e vsep 1]+ |l 950 112
i - i i i 1 i i
2
= |lr(xi)|| +,||inf(xi)|| (5.47)

since |[z(xi)|| + ”pi\?f(xi)llz + 0 it is obvious from (5.46) and

(5.47) that

g <0 (5.48)

(for all i larger than some integer), so that the step length is
unity. . 0

We are now in a position to establish our main result.
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Theorem 3
If {xi} is a bounded infinite sequence generated by the main

algorithm, then x

e %x € D superlinearly.

Proof
(We continue to use our previous convention."A1 is true"
means "there exi#ts an integer 1; sugh that Ai is true for all i 3.11.)
We have established:
(a) QP(xi'Hi) has a solution Py which is unique (satisfying the
test in Step 2(n)).
(b) O(xi,pi.ci) < -T(xi) (satisfying the test in Step 2(y))
(c) Y(xi+pi+;i,ci) - y(xi,c1) < e(xi,pi,cs)/a (ensuring step
length of unity in Step 2).
@ 115,11 = g 112, ensuring |Ip,11 < Ilo 1.
To ensure that Step 2 is executed we have to show satisfacticn cf
the test ]lpi|l :_Gj in Step 2(F). This depends on the rate of convergence.
We recall that {pi,Ai,ui} is the Kuhn-Tucker triple for

. ! + . .
4QP(xi.Hi) Let xi denote xi p1 Let zi denote (xi,li_l “i-l) and

zi denote (xi,li,ui). From Proposition (11), z1 +z= (;,i,ﬁ). We
_ e ~ !
note that X, ., = X{ + P, = X, + P, + P, if the test |[p1|| < 8 is
satisfied.

m+me+1
For all z let qiz) € R® be defined by:

v L(z) (5.49)
X

Xlgl(z)

q(z) = .

ngm (2)

_h(z) N

Clearly q(z) = O if and only if z is a Kuhn-Tucker triple for Problem

(2.1). Under our assumption (see [19], p. 13) we have:
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ol 2
Hatzp Il < wllzg-2 1% + |1, (z))-8, ] [lxg-x ) || (5.50)
and (see [19], Lemma 3.7):
N2y, =205, 01 < mllatz 1 (5.51)

for some M,, M,. Since lei-xill g_llzi-zill and ||Lxx(zi)-ﬂil| +0

it follows that:
Hatzpll < 8,11z;-2,1] (5.52)
where 81 + 0, Also zi - 2 and ;1 + 0 so that, for some HB'

latz,,,

W< Haepll + wylle 553
~ 2 . 2
sut |Ip, [l = [lp (1% < lz{-2,||” so that:
Haz, 1 < 8illzp-2 | | (5.54)

where Bi + 0. From (5.51) and (5.54):

Heg ll < Hzg, 2011 < 8yl l23-2 ] (5.55)

Since both x; + % and % - X, zi - zi + 0, and there exists an i

"such that:

lpyil < Mzp=z, 1] < &3 . (5.56)
and such that B{Mz :_61, so that:

Hpyyyll < 63% | (5.57)

so that the test in Step 2(f) is satisfied in this and, hence, in

all subsequent iterations. Since x1+l = xi + ;i it follows that:

~ 2 2
lzg,,-2;11 = 13,01 = 1ey 112 < Hzgz, ||
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ez ] < Hegyymz 11+ 113,

~ 2 (5.58)
It follows from (5.58), the fact that I[pill = ||zi-zi||
and (5.54) that:
Ilq(ziﬂ)ll < e;llziﬂ-zi[l (5.59)
where B; + 0. From (5.51):
Hzjyyziall 2 myllatzg ol
< ez 20 (5.60)
where By + 0. since:
l2gyp-200 ] < Hepygmz 1+ 1B, 1 (5.63)
where |l~ ‘l = Il ||2 !'z'. -z I'z it follows finally that:
Pyl ® Py 11254172541 0 £inally that:
, Hzy,p=2i 001 < B lz -2 11 (5.62)
where Ei + 0, which guarantees a superlinear convergence rate. 2

6. CONCLUSION
We have described an algorithm which is globally convergent
and has a éuperlinéar rate of convergence. It belongs to the family
of algorithms, proposed by Han [47, in which a search direction (in
our case, a search arc) is obtained by solving a quadratic approximation
to the original problem and step length is determined using an exact

penalty function. The aléorithm has several features not present in
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earlier algorithms - an:automatic rule for choosing the exact
penalty function parameter, global convergence (without requiring
uniform bounds‘of the form yTHiy > :||y||2, say), an asymptotic
step length of unity (despite the ;se of an exact penalty functioni
and an Armijo type rule for the step length.

There are, however, several features of the algorithm which
could be modified, and mighé yield improved effiéiency. One of
these features is the rule for choosing c¢. Our rule for choosing

¢ ensures that ci +>oas i+ w»{f c._, is increased indefinitely

i-1

often (i.e. if the test ci1 356(xi) fails indefinitely often.

As a consequence we know that if {xi) is bounded, c, increases only

i
finitely often and all accumulation points of (xi} are Kuhn-Tucker

points for (2.1). Other rules which have been proposed, including
those which allow ¢ to decrease, are heuristic and may result in
cycling. However it is true, as Powell [7] emphasises, that a
lower value of ¢ may be required in the final stages of convergence
than ip earlier stages. This féatuxe could be incorporated within
the framework of the current algorithm by allowing c to decrease a
firite number of times. A rule worth trying would be to set

€ = E(xi) + 8 if T(x) <€ << 1 and if this option for decreasing

¢ had not been previously used.

A second feature is the choice of the rule for updating Hi'

We have chosen ‘the secant method. This enables us to establish

that Hi - Lxx{x,i,ﬁ), anq this, in turn, is sufficient for super-

linear convergence. However, as Powell [18] points out and the
analysis of this paper supports, we only require the convergence of

a projection of H, to a projection of Lxx(i,x.ﬁ) (in fact the

i

convergence YzﬂiYi to QTL*x(Q,i,ﬁ)/;. Powell [182 exploits the

- 40 -

freedom to obtain an updating rule for Hi which ensures that Hi
remains positive definite. While we do not reguire, in our
algorithm, that Hi remains positive definite, ensuring that it
does may result in Step 2 being used more frequently. Whether
this is advantageous is difficult to say; first order methods may
be more effiéient in the early iterations. However the secant
method does require more work so it may be more efficient to
replace it by an updating method which dces not require special
perturbations but which does ensure that Y:“iyi - QTLxx(i,;,ﬁ)Q.
Two further points are worth mentioning. Our algcrithm
converges (wut not, of course, superlinearly) even if QTLXX(Q,i,ﬁ)Q
is not positive definite. Secondly,'ln constructing Hi we have
employed i(xi) and ﬁ(xi). Since Ai and My also coﬁverge, respectively
to 1 andiﬁ it would be possible to employ the latter. Convergerce

rate is not affected, so which choice is better is not apparent.

- 41 -



1.

REFERENCES

E.S. Levitin and B.T. Polyak, Constrained Minimization
Methods, USSR Computationbl Mathematics and Mathematical
pPhysics, Vol. 6, No. 5, pp; 1-15, 1966.

R.B. Wilson, A Simplicial Algorithm for Concave Programming,
PhD Dissertation, Graduate School of Business Admin;stration,
Karvard University, Cambridge,'Massachusetts, 1963.

S.M. Robinson, A Quadratically-convergent Algorithm for
General Nonlinear Programming Problems, Mathematical
Programming, Vol. 3, pp. 145-156, 1972.

S.P. Han, A Globally Convergent Method for Nonlinear
Programming, Journal of Optimization Theory and Applications,
Vol. 22, pp. 297-309, 1977.

D.Q. Mayne and N. Maratos, A First Order Exact Penalty
Function Algorithm for Equality Constrained Optimization
Problems, Mathematical Programming (to appear).

N. Maratos, Exact Penalty Function Algorithms for Finite
Dimensional and Control Optimization Problems, PhD Thesis,
Imperial College of Science and Technology, University of
London, 1978.

M. J.D. Poweli, A Fast Algorithm for Nonlinearly Constrained
Optimization Calculations, Presented at the 1977 Dundee
Conference on Numerical Analysig.

A.R. Conn, cOnstrained Optimization using a Nondifferentiable
Penalty Function, SIAM Journal on Numerical Analysis, Vol. 10,
No. 4, pp. 760-784, 1973.

A.R. Conn and T. Pietrzykowski, A Penalty Function Method

Converging Directly to a Constrained Optimum, Research Report

- 42 -

10.

11.

12.

13.

14.

15.

16.

17.

18.

73-11, Department of Combinatorics and Optimization,
University of Waterloo, Ontario, Canéda, 1973.

D.Q. Mayne and E. Polak, Féasible Directions Algorithms for
Optimization Problems with Equality and Inequality Constraints,
Mathematical Programming, Vol. 9, pp. 87-99, 1975.

E. Polak, On the Global Stabilization of 'Locally Convergent
Algorithms, Automatica, Vol. 12, pp. 337-342, 1976.

T. Glad and E. Polak, A Multiplier Method with Automatic
Limitation of Penalty Growth, Memorandum No. UCB/ERL M77/54,
Electronics Research Laboratory, College of Engineering,
University of California, Berkeley, 1977.

C. Berge, Topological Spaces, The MacMillan Company, New

York, 1962.

E. Polak, Computational Methods in Optimization, A Unified
Approach, Academic Press, 1971.

S.M. Robinson, Perturbed Kuhn-Tucker Points and Rates of
Convergence for a Class of nonlinear Programming Algorithms,
Mathematical Programming, Vol. 7, pp. i1-16, 1974.

E. Polak and I. Teoddru, Newton Derived Methods for Nonlinear
Equations and Inequalities, in Nonlinear Programming 2, edited
by O.L. Mangasarian, R.R. Meyer and S.M. Robinson, Acadenic
§tess, 1975.

E. Polak, A Globally Converging Secant Method with Aprlications
to Boundary Value Problems, SIAM J. Numerical Analysis, Vol. 11,
No. 3, pp. 529-537, 1974.

M.J.D. Powell, The Convergence of Variable Metric Methods for
Nonlinearly Constrained Optimization Problems, Technical

Memorandum No. 315, Applied Mathematics Division, Argonne

- 43 -



National Laboratory, Argonne, Illinois, 1977. APPENDIX

U.M. Garcia Palomares and O.L. Mangasarian, Superlinearly Proposition Al

Convergent Quasi-Newton Algorithms for Nonlinearly Let H be satisfied. Then, for all x ¢ K", all ¢ > 0:

Constrained Optimization Problems, Technical Report No. 195, (a) |¢(X+P)‘a(x o] =odllpl])

I} =
Computer Sciences Department, The University of Wisconsin, . .
wisconsin 53706, 1974. (b) Iy (x+p,0) =y (x,c) | = ot||p|]

where o(a)/a + 0 as a = 0.
Proof

'(a) We note that:

max (A,B) - max (C,D} < max (A-C,B-D)

and -

max (C,D) - max (A,B} < max (C-A,D-B)
so that: '

lmgx (A,B) - max (C,D[l < max (IA—C[,lB-Dl)
Hence:

o (x+p) -3 (x,p) | < max {O;lgj(x+p)-;j(x,p)|,j cm;
]hj(x+p)-ﬁ(x,p)|,j tge}
where G(x,p) A gix) + gx(x)p and:

hix,p) 4 hix) +h (x)p

since:

lgj(x+p)-§j(x,p)| otllelly 3em

otllpll)y 3 em,

[n3 xep) -3 (x, 0 |
it follows that:

[ x+p) = (x, 22 | = o (|ipl]).
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(b) Is similarly proven. : D
Next we prove Theorem 1 in §3.

Proof of Theorem 1

‘(a) Since is increased finitely often, the sequence {xl}:

<
-1
t J

is generated by Ac" where c' = c - From hypothesis (iii), ahy
J

accumulation point x* of (xil satisfies x* ¢ D_,- From Step 1,

€, =c' 2 clx) for all i > i,. Since ¢ is continuous, we must

have c' > S(x*). Hence from hypothesis (ii), x* ¢ D.

(b) Suppose x, * x* as 1 * =, i € K where K € K § (11.12,1 }

N greee
so that ¢, + ® as i + =, Ilet €* > 0 and let c* A max {c(x)|xeB(x-,em}.

Then there exists an i, < @ such that:

1
(a) x, € B(x*,e*), for allieK, 124,
(b) S5t > c* z_E(xi),. for all i € K, 1 > 11

But (b) contradicts the fact (from Step 1) that c < E(xi) for

i-1
all i ¢ K. Hence the sequence {xi)m has no accumulation points.
j 3=0
o
Proposition A2

The program:

Ox(x,c) = min ((n/2)l|p||2+0(x,p,c)]
P
is dual to the program:

o' (x,c) = max (cl<w,g(x)>+<p,h(x)>=¢] = (n/2)|]vL||?
w,p

m m
n e e

|w29:°=91‘°z'°13959239' 2 wj+ E Dz+ 2 Dgﬁ})
. 1 S I B B

where:

YL A VEG) + cl(g] (xdwsh) (x)p)
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Proof
0-4;
1 2 Yeglp-4;9 ems
0" (x,c) p min{(n/2)||p||"+<vE,p>+c max § g +gyp-tid € ms
P

LR S
Ih +hxpl vijem,

" where the argument x is omitted. Hence:

o' (x,c) A min max l(nm I1p] 1 24<vs,p>
P HePyePy
p] 3.
m 1'>0,0329,
10 Y (gj+9?‘p-¢'> ! l
1 . oo
+c c3>0,§u)
me me 2— o
Jrpdand b P B m "
+) pIn?+hlp-p1 +§ pI0-n?-nlp-¢1 L e
E 1o L P2 x o] 034Y cdey
1 2
- 1 1
= max min { " }
Bep o0y P

Substituting the minimizing value of p, i.e. setting p = -(1/n)7L, yields:

' T T
o' (x,c) = max  {(1/2m|9L]|%-(1/m) <CE, VLo~ (e/m) <gpusn iz, TL>

' u.bl.oz

+c<u,g>+c<o,h>-cw|u39,ol39,0239'

m
m e
I+l o+odren) 0
1 1

Proposition A3
Suppose H, is satisfied. Let x be any point in RE® and let N

be a compact neighbourhood of x. Then:

(a) There exists a function (a,x')+ ¢(a,x’) such that:

|y (x*+ap(x',c}, €)=y (x*,ap(x*,c),c} | < ad(a,x")
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and ¢$(a,x*) + 0, uniformly in x' ¢ N, as o« + O,
(b) There exists a function (a,x',p’,p') = z(u,x',p',;) such
that:

|7(x’+up'+02;.c:) - Y(X’.up'ﬂzg.c)l < od(a,x',p',p)

and fb(u,x',p',;) + 0, uniformly in (x',p',;) € NxB(0,1)xB(0,1),
as a + 0. '
Proof

We prove (b), the proof of (a) being simpler. Let:

~ ' >~ - 2
ela,x',p',p) A ly(x"+ap'+a“p,c) -y (x*,ap’ ,+ap,C) |

IA

20, - ~
| £ (x"+ap*+a p)-f(x',up'ﬁxzp)‘

3

+ c max {[gj(x'+ap'+a23)-§ (x‘up'mz'ﬁ)l.jegt

2~ = -
lhj(x'+up'+a p)—h:i (x',up’+c2p)|.j em.)}

3

X

|A

[]fx(wa)-fx(x')[ +c max {|gi(y3)-g (x],3ems

|h3(zz)-hi(x') |3 egt_e}][}lp'«m;" la

where Wy yz, j e m and zg, e m, all lie on the line segment
[x',x'+ap'+a2'§}. There exists a compact set N' such that the
segment [x',x'+np'#02;] lies in N' for all x*' ¢ N, a € [0,1] and
p' ; € B{O,1). fx, g,j(, j' e m and hi, j e m, are all continuous,

and, t.here'fore, uniformly continuous, on N'. Hence:
e(a,x',p',p) itb(‘a,x',p'.;)u

where ¢(u,x',p',3) + 0, uniformly in (x',p',S) e NxB(0,1)xB(0,1),

as a + 0. ‘ ' o
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-,

Proof of Proposition 7

Let x € M be interpreted as "x satisfies tests (a), (B) and
(Y) in Step 2". Clearly the set, M depends on the values of H and j,
but the subsequent analysis is independent of these values. From

Proposition 3, if x £ Dc' there exists an €y 61 > 0 such that

y(x',c) - y(x',c) < =6, for all x' ¢ B(x,e,) n Mc, for all x" ¢ A_(x'),
- 1 1 (A

where M° is the complement of M in R®. Hence we need only consider
x' € M, so that x" ¢ Ac(x') will be generated by Step 2. For any
x' ¢ M, let p' denote the solution of the quadratic program and ;

the solution of (2.43) (with x, replaced by x'). By construction

i
both p' and ; lie in the compact set B{0,1). Now:

;(x',up'i-uz;,c) -y¥(x*,c) = a<VE(x'),p> + 02<7£(x'),;>

_ + ¢ max {0;gj (x')+ugi(x')p

+azqi(x');,j <m;

-c¥i{x'}

< a<VE(x'),p> + c(&(x‘,ap')-&(x'))

+ 02[<Vf(x'),;> + c mmax Hgi(x');i,

R

jeﬂ;ihi(x')sl,j egxe‘,

Hence, for any compact neighbournood N of x, there exists a constant

d1 such that:
Q(x'.ap'mz;.c) - y{x',c) _<_u[0(x',p',c)+d’a'l

for all x' € N n M. It is shown in Proposition A3 that:
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IY(X"“P'*QZB'C) - ;(x'r"P""uz;lC)l < °¢(°:x'cP'lg)

where ¢(u,x',p',;) + 0, uniformly in (x',p',;) e NxB(0,1)xB(0,1),
as a + 0, Hence there exists an integer k' such that
L] ~ L] ~
6 (8% ,xt,p',p) + ala" < T(x")/2 forall (x',p',p) € NxB(O,1)xB(0,1).

Since T(x') < -0'(x’,p',c) we obtain:
1] A L]
v(x*+85p148%55,0) - vix*,0) < 85 [0x',p*,c)+T(x") /2]
kl
< 8 e(x',p’,c)/2

so that, for each x' ¢ N n M, a step length greater than or equal to

L]
Bk is obtained in Step 2. Hence:

Y(x",e) - y(x'c) < 8% 0(x',p',c)/2

for all x' ¢ N n M, all x" ¢ Ac(x'). Now there exists an € such

that B(x,€) © N and T(x') 2 T(x)/2 for all x' € B(x,€). Hence:
k'
Y{x",c) - yix',c) < -~ T(x')/2
< -85'T(x)/4

for all x' ¢ B(x,t-:) n M, all x" « Ac(x'). Combining this with the

fact that there exists an €, > 0, § > 0 such that y(x",c) - y(x',c)

1 1
< -6, for all x' ¢ Blx,g,) n M%, all x* ¢ A_(x'), yields the desired
result, viz that for all x € Dc' there exists an € > 0, 6§ > 0 such

that v (x",c} = y(x',c).< =8 for all x' € B(x,c). a

+ Since ¢ z_t_:(x) and x '{ D, then (by Proposition 6), x ¢ D so that
T(x) > 0.
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