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Abstract

GEOMETRIC PROPERTIES OF DYNAMIC NONLINEAR NETWORKS:

TRANSVERSALITY, WELL-POSEDNESS AND EVENTUAL PASSIVITY1

tt
T. Matsumoto, L. 0. Chua, H. Kawakami and S. Ichiraku

This paper discusses several general properties of dynamic nonlinear networks

from a geometric point of view. One of the main advantages of a geometric

approach is that it is coordinate-free, i.e., the results obtained by a geometric

method do not depend on the particular choices of a tree, a loop matrix, state

variables, etc.

Firstly, it is shown that the transversality between resistor constitutive

relations and the Kirchhoff space is a sufficient condition for the configuration

space to be well defined. Secondly, the concept of well-posedness is shown to

be important for the dynamics to be well defined on the configuration space. It

is also clarified that transversality and well-posedness are two distinct

mechanisms which are responsible for the non-existence of state equations.

Perturbation results are given which guarantee transversality and/or well-posedness,

Finally, several other perturbation results are given which guarantee the eventual

strict passivity of dynamic nonlinear networks.
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I. Introduction

This paper discusses several general properties of dynamic nonlinear

networks from a geometric point of view. One of the main advantages of a

geometric approach is that it is coordinate-free, i.e., the results obtained

by a geometric method do not depend on particular choices of a tree, a loop

matrix, state variables, etc. This approach allows us to resolve and clarify

a number of subtle paradoxes and perplexing questions which lie at the very

foundation of nonlinear circuit theory. In particular, several basic questions

involving the formulation of state equations for nonlinear networks are hereby

resolved in a rigorous manner. Among other things, we have clearly identified

two mathematically distinct mechanisms which are responsible for the non

existence of state equations; one involving the concept of transversality,

while the other involving the property of well-posedness. Under the assumptions

that all capacitors are voltage-controlled and all inductors are current-controlled,

we have also shown that the capacitor voltages and inductor currents are a good

choice of variables to describe the dynamics in the sense that if we cannot describe

the dynamics in terms of capacitor voltages and inductor currents, then, there

is no choice of variables in the network in terms of which the dynamics is well

defined. Conversely, if the dynamics can be described with respect to some set

of variables in a network, then it can be described by capacitor voltages and

inductor currents also. Our geometric approach allows us to choose a convenient

coordinate system and use it to derive general conclusions which hold with respect

to any other coordinate system.

In Section II we show how the dynamics of nonlinear networks can be

described in a coordinate-free manner. In Section III we discuss transversality

of the resistor constitutive relations and the Kirchhoff space. Transversality

is important in that it guarantees the configuration space to be a well-defined

submanifold. We give two perturbation results which guarantee transversality.

One involves element perturbations, i.e., perturbing the existing resistor

constitutive relations. The other involves network perturbations, i.e.,

augmenting the network with capacitors and inductors. In Section IV we discuss

well-posedness which is a condition for the dynamics to be well defined. We

give a network perturbation technique which guarantees well-posedness. In

Section V we give several perturbation results which guarantee eventual strict

passivity of dynamic nonlinear networks. Eventual strict passivity is impor

tant in that it implies boundedness of both voltage and current waveforms.

General Remark For simplicity, we will usually delete the superscript "T"

denoting the "transpose" of a vector or matrix whenever no confusion arises.
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II. Coordinate-Free Description of Network Dynamics

Throughout the paper, we need to use the fact that transversality, well-

posedness and eventual passivity are coordinate-free properties, i.e., they

are independent of the choices of a tree, a loop matrix, a cut set matrix, state

variables etc. Here we explain how nonlinear networks are described in a

coordinate-free manner.

Consider a nonlinear network ^AJ containing n resistors, n,, capacitors and

ru inductors. Let b - n_ + n_ + n. and let y and i represent the branch

voltages and currents of the network. Then (v,i) £ ]R x 1 . The following

are the standing assumptions of this paper:

(a) The linear graph Cj which defines the topology of c^AJ is connected.
(b) oM is time invariant.

(c) The resistor constitutive relations are characterized by

(v,i) GAC mb x ;Rb (1)

2
where A is a 2b-nR dimensional C submanifold.

(d) Capacitors and inductors are characterized by

S<?c> 4T = ic (2)
and

i<JL> "ST =*L (3>

respectively, where vr and vT denote capacitor and inductor voltages,
~\j ~"Li

respectively, and ip and i_ are capacitor and inductor currents, respectively,
"L> "Li

C(vp) and L(iT) are incremental capacitance and incremental inductance matrices,

respectively, and they are symmetric, positive definite and C .

(e) There are no capacitor-only loops and no inductor-only cut sets.

Remarks 1. There is no loss of generality in assuming (a) since disconnected

subgraphs can be hinged together. Connectedness is necessary for a tree to

exist.

2. Most of the results of this paper can be easily generalized to include the

time-varying case under appropriate conditions. We make this assumption simply

to avoid introducing complicated notations.

3. Under assumption (c) resistors can be coupled to each other and they need

not be voltage or current controlled. Even couplings among (y„,i_) and

(yc,y ,iL,,!.) are allowed. This includes virtually all modes of representation,
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including the hybrid and transmission representations. In particular, a broad

class of nonlinear dependent sources are allowed in this formulation. We regard

independent sources as uncoupled resistors. All multiterminal elements are
2

represented as coupled 2-terminal elements. We need the C property of A rather

than C because we would like to define a C vector field on the configuration
space. (See Section IV.)

4. Under the present formulation, capacitors can be coupled to each other.

Similarly, inductors can be coupled to each other.

5. Assumption (e) was introduced only for simplicity. This involves no loss

of generality in view of the results of Chua and Green [1] and Sangiovanni-

Vincentelli and Wang [2].

Now let K denote the Kirchhoff space [3], i.e., the set of all (v,i)

satisfying KVL and KCL. It is known that K is independent of a particular

choice of a tree, a loop matrix, a cut set matrix etc. Since (v,i) must

satisfy the resistor constitutive relations and the Kirchhoff laws simultaneously,

the operating points are restricted to within the following subset:

E = A n K. (4)

The set I is called the configuration space of oM since this is where the

dynamics takes place. In order to describe the dynamics in a coordinate-free

manner, consider the following 1-form on B * K. [4,5]:

1 nr nT
and the following symmetric 2-tensor on B x u ;

nC °L
§" E C„<Yr> dvr ® dvr " X) ^V dit ® diT <6>•"•* mn-CC C *-^.mn~LL L

m,n=l m n m,n=l m n

where C (vc) (resp., ^—(iri)) is the (m,n)-component of C(yc) fresp., L(h))
and v (resp., i_ ) is the voltage (resp., current) of the k-th resistor.

\ \
Remark. A simple explanation of 1-forms is given in [3]. A symmetric 2-tensor

2 2 2
G on R is a collection of functions: ]R x ]R •> "R given at each point

2(x ,x2) G R by

G^ ^ = 11 f (x-i,x0) dx ® dx~(xn,x0) *-* n mn 1' 2 m n
l z m,n=±
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where f are real-valued functions, f^ = f^ and

dx1 ® dx1 =

dx« ® dx- =

Consequently,

1 0

0 0

r
0 0

1 0

, dx, ® dx2

, dx« ® dx2 =

0 1

0 0

0 0

0 1

G^v,/[10]^[10]T)=fii^v^
etc., so that G can be thought of as the matrix-valued function [f ]. One

7 ° mn

needs to be careful, however, in defining 2-tensors on a general manifold since

manifolds generally are nonlinear.

n.

Let irPT :B x B -• ]R x]R be the projection map defined by
~ KjLi

and let i : Z ->• B x ]R be the inclusion map defined by

i(v,i) = (v,i).

Set

7 = 2CL°i '

(7)

(8)

(9)

Assume that Z is a submanifold and let ir* and \* be the induced maps of it and
2

\, respectively [3]. It is shown in [4,5] that the vector field X, .. at

(v,i) ^1 is given by the following formula:

1Although A and K are perfectly well defined submanifolds, their intersection
may not be a submanifold [3].

2A vector field X on amanifold Z is a function such that the value X^ ^ at
(v,i) G Z belongs to T, .Z , the tangent space of Z at (v,i). The vector
field X naturally generates a flow <|>(t) such that d<|>(t)/dt = ?^ty
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?*G~(v,i)(?(v,i)'?) =9(,.i)(0. ^r all |GT(v>1)l
where

a) = i*n,

If ^Yc'-l^ serves as a global coordinate for Z, then

dYc dh
~(v,i) Vdt ' dt

and (10) is reduced to

S<YC> 9

9 -L(iL)
dt

Yc

*L
?<Yc>iL).

(10)

(11)

(12)

(13)

where F is determined by (ic,-y ) = F(yc,iL).

III. Transversality

In order for tt*G and oi to be well defined, the configuration space Z must

be a submanifold. Even if A and K are perfectly well defined submanifolds there

is no reason to expect their intersection Z to be also a submanifold. A

sufficient condition for Z to be a submanifold is the transversality [3] of A

and K, which is abbreviated by A/HR. It is shown in [5] that if A (\\ K, then

Z is an (nr+n)-dimensional submanifold. This is true for any C submanifolds,

r 2l 1. We first give a method of checking transversality of A and K. To

this end let J be a tree for (j and let 3t.be its associated cotree. Let v
and i be partitioned accordingly;

y = <Y*iYa). i= (i*;y- (14)

Let B be the fundamental loop matrix associated with ij. Then

b = [i : b^]. (15)

Since A is a C submanifold of dimensional 2b-n , for each point (v ,i ) €= A,
b b 2there is a neighborhood U c B x r Qf this point and there is a Cz function

n,

f : U + B
R

such that

An u = f_1(0) (16)
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and

rank(Df), .s = n_ for all (v,i) € A H u, (17)

where (Df) , .N is the derivative of f at (v,i).
~~ (v,i) - ~'~

Propositions 1 and 2 and Corollaries 1 and 2 which follow have been proved in

[3] for nonlinear resistive n-ports.

Proposition 1 A n\ K if and only if for each (v,i) € z

rank ^(v,!) =nR (18)

where

9T(v,i) - [Df - (D f) B ID f + (D f)f] (19)
Yo Y* J- i* Ij ^ (v>i)

where D f denotes partial derivative of f with respect to v„. Other symbols
~YrT ~3

have similar meanings.

We next give special cases where A of (1) is given by

A={(v,i) €Bb xBb|(yR,iR) €AR} (20)
2 \ nRwhere A is an n^-dimensional C submanifold of B * ~R . In this case there

is no coupling between (vR,iR) and (vc,yL,ic,iL). Therefore f of (16) is

A / nR M nuindependent of (yc,vL,ic,iL). Let UR =UH^r x ]R jand define f :U -*- B
simply by

^R^r'Ir) = ?(y»W- (21)

Next let tt^ :B * B -»• B x m be the projection map defined by

Tr^(v,i) = (vR,iR) (22)

and let

?R = HR°i (23)
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where i is defined by (8). Decompose v and i as follows:

where R, C and L denote resistors, capacitors and inductors, respectively.
Decompose B^ of (15) accordingly;

*—*

?RR 5rc ?RL
B = ?cr ?cc ?CL

?IR ?LC ?LL

Corollary 1 Let Abe given by (20). Then A(f\ Kif and only if for each
(Yr>^ g ?R(Z>

rank<3R(YR4R) =\
where

^W - ?yr^r-(?vr^?rr;-(Pvr?r)[brcbrl]::

(24)

(25)

(26)

.t : ,T „T

V1* V^^-v^^1
Proof Observe the following:

* -R5 ~ ***
(27)

V =[\ ^R 90], ?vf = [? fR 00]

Vf = [?i ?r 9 91. Pi ? = [?± fR o o].

(W

Substituting these into (19), we obtain (27). Since (y,i) G Z, the vector
(Yr>£r) must belong to J (Z). n

Remark Note that \) is arbitrary. However, assumption (e) implies that there
exists aproper tree.3 Consequently, if we choose aproper tree, then
submatrices B^, BCR, B^, BCL and BLL are 0x0matrices and the matrix of (27)
tkaes on a particularly simple form.

Next suppose that AR admits a generalized port coordinate [3], i.e.,
A is represented by

A tree is called a proper tree if it contains all the capacitors and its
associated cotree contains all the inductors.
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§
=

Y 6 Jr_
, K = F(n) (28)

where a, 3, y and 6 are n x n_ matrices and F :B x E. is a C function.

Recall the partition yR = (v :yR ), iR = (iR :iR ) and partition a, §, y and 6
accordingly;

a= [oii:a23, 3= [§1-§2^» ? = ^l'^' ~= ^i:?2^ (29)

Also recall that A^ is said to be globally voltage controlled [3] if £= iR,
n = v„ and globally current controlled if § = yR, r\ = iR.
Corollary 2. Let A^ admit a generalized port coordinate representation. Then

(!i-<H)«i) +(§2-<?^2)!RRlfe-<?!>52)[!cR !lr]

In particular, if Ap is globally voltage controlled, then
R

^Yr'-V = (DF)

?RR
.(DF)

?RC ?RL

0 0

1

BT?RR

9 9
_T _T

?CR §LR

yR

and if A is globally current controlled, then
R

^vM =
"?RR

r
-B -B
~RC ~RL

0 0
. "(DF)

ri

T

^RR
. -(DF)

0 Q

T T
B B
~CR ~LR

(vR)iR). (30)

(31)

(32)

U*R

Suppose that A is globally parametrizable [3], i.e., Ap is globally
R R

^R
diffeomorphic to B and write

(yR(p),iR(p)) =^(p), Pem
n

*R

R .
where ty : A„ -*• B is a global coordinate.

(33)

a(WProposition 2 Let A be globally parametrized by p as in (33). Then A (\\ K if

and only if for each PGB with (y (p),iR(p)j €UrW*
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rankftJ^Cp) =t^
where

gr*(p) =

(—*

**^R^ ^*RR ""'Rffi "RC "?RL 0 0

Di - B* Di_ ' 0
~ **Rri "*RR ~~R.* • ""

>

0
T

B
~CR &

(34)

(35)

Remark Formula (35) holds even when A is locally parametrized by £ at each

point. In fact (35) holds if and only if rank J = 2n_, where J is the matrix

defined by Desoer and Wu [6].

Suppose now that AiliK. Then it would be helpful if one can perturb o\) in

an appropriate way such that the resulting network satisfies transversality.

In the following we give two perturbation results. The first method involves

element perturbation and consists of perturbing the existing resistor constitutive

relations A. The second method involves network perturbations and consists of

augmenting (^A) by adding arbitrarily small linear inductors and arbitrarily large

linear capacitors by pliers-type entry, and by adding arbitrarily large linear

inductors and arbitrarily small linear capacitors by soldering-iron entry.

Therefore, in the limit we recover the original network. Notice that this pro

cedure consists of adding parasitic capacitors and inductors at appropriate

locations.

In order to give a transversalization result via element perturbation, let
2 2 n

us first define a C perturbation of A. Let M be a C submanifold of IR and
2 n 9 n

let C (M,B ) be the set of all C maps from M into B

and consider

^U2(F;e(.)) = <G:M + n
m

^»

G€ c2(M,mn)

llF(x)-G(x)H + l(dF) - (dG)

+ ll(d2F) - (d2G) I
- ~ x - -^x

for all x £ M

< e(x)

Let F G C (M,IRn)

">k

5

J

where e(x) is an arbitrary continuous function from M into the set of positive
2 2

numbers and d F and d G are the second derivatives. These sets generate the

strong C topology for C (M,mn) [11]. The set Emb (M,Rn) of all C2 embeddings
of M into IR is open with respect to this topology [11]. Let<^j( (i ) be a
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neighborhood of the inclusion map such that all elements of (-|j( (i ) are
2 A * A

embeddings. Then a C perturbation M of M is defined by M = G(M), where

G eQI (i ,) . The following is our first transversalization result via
~M

element perturbation. Although the proof is similar to that of Theorem 3
2

of [3], there is a technical difference because of the C perturbations

instead of C perturbations. Proof is given in the Appendix.

Proposition 3 Given a nonlinear network (Jvl let A O K 4 § and A (*iK. Then there

is a perturbation A of A arbitrarily close to A in the strong C~ topology such

that A H K ± 4 and A/ft K.
The next result gives a transversalization procedure via network

perturbation. The proof is similar to that of Theorem 4 in [3].

Proposition 4 Given a nonlinear network^, let A ^K ^ $ and A ljf\ K. Let y be
an arbitrary tree for Q and let ^ be its associated cotree. Insert a small
linear capacitor in parallel with each branch of y and insert a small linear

inductor in series with each branch of yj. Then the perturbed network oWhas
the following properties: (i) A H K ± <f>, (ii) A(f\ K, where K is the Kirchhoff
space of oM.

If A has simpler forms, then the number of reactive elements added can be

reduced.

Proposition 5 Given a nonlinear network oM let A be represented by (20). Suppc
AH K 4 (J> and kyf\ K. Let J be an aribtrary tree for Cj and let Sl be its associated
cotree. Partition <3T and ££ as <3T=<3TR U^ U^ and ££ =gR U^ UC^
respectively, where R, C and L denote resistors, capacitors and inductors,

respectively. Insert a small linear capacitor in parallel with each branch of

t-L and insert a small linear inductor in series with each branch of Sl„. Then
the perturbed network lAJ satisfies the following properties: (i) A H K ^ (J>,
(ii) A(f\ K.

Proof, (i) Let J- denote the branches representing the capacitors added in

parallel with J and let 3L. denote the branches representing the inductors
added ^in series with 9lR. Then y =^ U^ U^ U£jL is atree for Jil
and 5L = ,3lc Uy. Uy_ Uy is its associated cotree. Let

>ose

Y = (Yr >Yr »YT »Y. :Yt> »Yr »Ya »YT )A
Rj CX L<* *1 : Rrf CJ Jl L3

I = (~R »ir '~t »iy • iu »ir »i* »iT >Ra c* L^ *i : R* c7 5i L3

-11-
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be the variables of lA). Let

(y0,i0) e AOK^,

Y° =K '^'\V ^0 0 z0

V ^o *o *o

We first claim that with

a0 °0 W

\ ^C '*L \
J0 ^0 ^0/

Yo - (Yr >YCrf -YL >9 i YR >YC >YR *Yl V
v o o o : ao Jo Jo Jo/

-° ° [h, '~c* 'K '\ ''• %'% '°-'S)\ JQ Aq 5.Q *q: *Q JQ ->q/

we have

<Y0>i0) GK'

(37)

(38)

(39)

(40)

Since (vq, Jq) corresponds to open circuiting J_ and short circuiting e3L. and
since such a situation is contained in K, we have (40). Next, since no resistors

are added, we have

A = {(y,i)|(y,i) G A}.

This implies that

<Yo»io) eA'

(41)

(42)

which together with (38) implies (i).

t A A-
(ii) To prove A(\\ K we compute matrix xJ(v,i) of (19) foroM. Observe that
the fundamental loop matrix B for oM associated with the tree <J assumes the

following form:

v„ v_ v_ v *-Rj ~Cz -L^ ^
V V V V

~R«£ ~Co ~7i "Llj

0 0-10

9 ?CC ?CR ?CL
9 ?LC ?LR ?LL

* ?RC ?RR §RL

-12-
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where the submatrices in (43) correspond to those of B for^A). (See (25)).
The sign of the identity matrices in (43) are chosen merely for convenience

and involves no loss of generality. Next notice that

zT
?* = ?*' ?pp = 9> V= ^0 -1], B= [0 1]•RC

V = Q> ?rp = 9» (y*»L) = (YR»iR)>RL •CR -R'~RJ

D- f„ = D f„, D~ f = D fD,
~v„ -K ~vn ~R' ~v„ ~R -v,, ~R'
-R ~R ~R ~R

J

?L *» =%J*' \>=\>"^ -* *\£ "5

Substituting these and (43) into (27) we have

^VJr) - D f'D f'D. f 'D. f_|
~v ~R. v ~R.~i ~R.~:l_ ~R
, "R^ * ~K3 * ~Ro ' •"% J

- <Kr>
(VV

<VV

(44)

This is exactly the same as the matrix of (17) where f = fR. Consequently it
has rank nR. By Corollary 1 we have A f|\K. n

Example 1 Consider the circuit of Fig. 1(a) where the resistor constitutive

relations are given in Fig. 1(b) with i = f (v ), k = 1,2. Choose

<J = {R1,R2> to be our tree. Then B^ = BRL = BLL = <f>, B^ = [1 1],

D f =
~YR -R

D. fw =
~ip ~R

-Df 0

0 -Df,

1 0

0 1

» D f„ = $
9 ~v ~R T

We denote a 0 x 0 matrix by 4>.

-13-



Therefore (27) is given by

^YR'hP =

-Df 0

Rl

0 -Df,

?R

Now, for the value i* in Fig. 1(b) we have i* « f_ (v„ ) = f0(v„ ) andR "R Rx R1Q 2 R2Q^
(Df,, ) = (Df_ ) = 0. It is clear that the point (v_ ,L ) = (v ,v ,

Rl v h. v ~R0 ~R0 K10 K20

10 20 <T *i*,i*) belongs to Yd^* Therefore rank Yj-R(y ,i ) = 1 < 2 and hence A/ft K.
«0 INow insert C, and C2 as in Fig. 1(a), then (44) tells us that

-Df
R,

1 0

^(yp'V =<w»>R'
(YR4R) -Df

R,
0 1

Yr

which has rank 2= nR. Therefore A(l\ K. n

The transversalization procedure is further simplified if A is described
2

by (20) and A_ is locally voltage controlled [3], i.e., there is a C function

n.
*R nR nR

f„ : B x K. -*• B such that

ar - sR1(e>
and

rank (D. f )
~1ti «> / • \

~R <Yr»1r)
= np for all (Yd*^) G Ap •

R lR

(45)

(46)

Proposition 6 Let A be described by (20) and let AR be locally voltage controlled,

Suppose that AHR^ and A/tf K. Let <JT be an arbitrary tree for y and let
5L be its associated cotree. As in Proposition 5, let J = JR U <JC U <J yj
=y!R Uy. USl . Insert asmall linear capacitor in parallel with each

-14-



branch of lT . Then the perturbed network lAI has properties (i) and (ii) of
R

Proposition 5.

Proof (i) can be proved in a manner similar to that of Proposition 5.

(ii) It is clear that £f =xJc û U9"L is atree for jQ arid 2 Ŝ£R U9"p
USi U^l is its associated cotree where J1 represents the branches of the
capacitors added. To compute 9TR(yR,iR) observe that the fundamental loop
matrix B for o\J is given by

V V V V

~R<C ~Rs ~C£ ~L* Yc Y*l Ys
0 -1 0

?RC ?RR ?RL

?cc ?CR ?CL

?LC ?LR ?LL

where the submatrices are those of B for(JVJ. Therefore B^ =B*R -B*R -*,

-1 0

?RC
8RC ?RR

' ?RL
?rl

D- f„ = i, D~ f_ = D f_,

Pi h " *' ?L h =5iJr' (*A> = <Vvh?
~R ~R.i ~R

Substituting these into (27) we have

%<yr4r> = -(Vr)[?rc *^]^~*~R J(yr4r)
(47)

Since AR is locally voltage controlled, (46) implies that the matrix of (47)

has rank n^. a

A dual argument shows the following:

Proposition 7 Let A be described by (20) and let AR be locally current controlled,

i.e., (45) holds and

-15-



rank <?v ?R> 4 "nR for a11 <YR4R) GA (48)
~R ^r'V

Suppose that AOK^ (J> and A/FfK. Insert a small linear inductor in series with
each branch of pLR, where SLR is as in Proposition 6. Then the perturbed network
LA) has properties (i) and (ii) of Proposition 5.

IV. Well-Posedness

Recall that transversality of A and K is a static condition in the sense

that it has nothing to do with the dynamics of lAI. In order to motivate the
discussion of this section we first consider the following example.

Example 2 Consider the circuit of Fig. 2(a) where A-* is given by Fig. 2(b) with

VR =g^iR^* If we choose *$ = {0} to be our tree, then B = 1, D f = 1,

Di fR =~"Dg and rank ^R^VV =rank t"1:-^]. =1- It follows from
Rtf ' 1r

Corollary .1 that A (V\ K and I is a perfectly well-defined 1-dimensional submanifold.

The dynamics, however, has points where it is not well defined. To show this

observe that i serves as a global coordinate for E, i.e., (vw,vn,i_,i_)
/ "**• \ R C ^R C

= l8^^^' "^^V' """R' ^R/" In terms of tllis coordinate, the dynamics is given
by

di

^R
C(Dg)i. dT = -\ • W)

Since (Dg) = 0, differential equation (49) is undefined at i_ = i_ . Therefore
p R R<-v
K0 0

(49) cannot define a unique vector field at i,, . This observation naturally
K0

leads to the following definition.

Definition 1 Given a nonlinear network lAI assume that Eis an (n +n )-dimensional
C submanifold. Then u\) is said to be well-posed if at each point (y,i) E E, (10)
determines aunique C vector field X( jGT E, IfeAIviolates this property,
it is said to be ill-posed. Any point (vji) E E violating the above condition

is said to be an impasse point.

Remarks 1. Observe that "well-posedness" is a coordinate-free definition

corresponding to the concept of "local solvability" in Chua and Wang [7], Smale

[4] uses "regularity" instead of well-posedness. Since well-posedness is a

coordinate-free property, one needs to check it in terms of only one coordinate.

On the other hand, if ill-posedness occurs with respect to one choice of

coordinate, then no matter how cleverly one chooses another coordinate, one
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cannot eliminate ill-posedness. For example, in Example 2, there is no choice

of coordinate which avoids (Dg)i = 0.
Ro

2. Let us explain why A must be C* in order to define a C vector field.

This stems from the fact that, in general, a C vector field can be defined
o

only on a C manifold with s > r. Consider, for example, the circuit of

Fig. 2(a), where g is a global C diffeomorphism (not that of Fig. 2(b)).

Hence i = h(v ) where h = g and h is also a global C diffeomorphism. The
R R -

sets A and E are C submanifolds. Capacitor voltage v serves as a global

coordinate for E and the dynamics is given by

dvc _ h(-v
dt C

1
The right hand side is C . Now it is clear that i_ is another global coordinate

K

for E and the dynamics is given by

diR **
dt (Dg)± '

i R o
Since g is C , the right hand side is only C . This gives rise to a problem

because the differentiability depends on the choices of coordinates. If we
2

assume, however, g is C , then the right hands side of each equation is at least

C . Therefore C -ness does not depend on the choices of coordinates. More

generally, let X be a vector field on E and let (UHE,^) be a local chart at

(y,i) £ E. Then a natural coordinate representation is

~ r $(v,i) v~~ (y,i)~(v,i).

If (VOE,<j>) is another chart, then for (y,i) £ U H v H z one has

(X((J>))., M = dUoi/f3^) X, ..
~ ~ {(y,i) ~ r z ~ (y,i)~(y,i)

=«♦•♦"%(,.!> <*»<y.i>?(v,i)
"W*,*"1)*(Y.i)(?(*))*(y.i)

Therefore, if we want X(40 to be C independent of the choice of coordinates,
-1 r

we must require the change of coordinates d^ © ^ to be C . This requires
-1 r+1

(j> o i> to be at least C . But this is exactly the condition required for
r+1

E to be at least C
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Let us now look at well-posedness from a more general view point. Recall

(6), (9) and (10). Observe that j*G, .n(-,0 is simply a symmetric bilinear

form on T^E xT(v>J)J, i.e., M^C^, •) and I*6(v>1)('.§2) are linear
and H*Q(Yi%)hvZ2) =?*§(y,i)(?2'?l^f°r a11 §l»52 GT(v,i)E- In ExamPle 2>
in terms of the coordinate iR, we have tt*G, .. = C(Dg) ~di © di .

** *" R

Proposition 8 Suppose that E is an (n+n)-dimensional C2 submanifold. Then

lAJ is well-posed if and only if at each point (v,i) €E E, tt*G, .v is nonsingular,
i.e.,

?*5(v,i)(?l,§2) =° for a11 h ET(v i)Z imPlies ^2 = ~* (50)

Proof We look at tt*G, j\(*>*) in a slightly different manner. Consider the
"" ** ^Y»i'

map J, .x defined by
~(y,i) J

^y.y'Sl^^v.l)"!'0- (51)

To each 5n, the map J, .* assigns the linear functional tt*G, .n (£,,') on
-1 ~(y,i) ° ~ ~(v,i) 21'

T, ..E. A linear functional on T, .XE belongs to its dual T$ ~NE. This
(y»P (y»i) (y»P

means that 3, ..= tt*G . .,.(•,•) maps T, .NE into T$ .NE. It~is clear that

(50) implies that J, .. is an isomorphism and therefore it is invertible. It
~(Y>!)

follows from (10) that the vector field X. .* is uniquely determined by

-1
X, ,x = J, ..D, .. . (52)~(v,i) ~(y,i)-(y,i)

In order to show that X is C , recall the definition of tt*G;

!*S(y.i)(!l'52) •S;<v.i)((W(y.l)!l-(W(v,i)§2> (53)
2 1-1where §_, S9 e T. ..E. Since E is C , the map (dff) is C . Therefore J

is C . Similarly, to is C . This implies that X determined by (52) is C .

Conversely if J. .v is not an isomorphism, (10) cannot determine a unique vector

field. " n

Corollary 3 Let G, .v be the matrix representation of tt*G, v with respect

to a particular choice of coordinate for E. Thencjvlis well posed if and only if
G, ..is nonsingular for all (v,i) £ E.
•» ^y,1) - ~

Proof The map J, •.•* defined by (51) is an isomorphism if and only if its
~(y»i)

matrix representation with respect to a particular choice of coordinate is

nonsingular. n

A linear functional is a real-valued linear function.
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Proposition 9 Let Ebe an (nc+nL)-dimensional C2 submanifold. Then cAI is
well-posed if and only if for each (y,i) G E, the following map is an isomorphism:

(^)(y,i):T(y,i)^T?(y,i):R^ (54)

i.e., tt is a local diffeomorphism, where -n is defined by (9).

Proof Recall the definition (53) of tt*G. Since G defined by (6) is nonsingular
in the sense of Proposition 8, we see that tt*G is nonsingular if and only if

(dj). .. is an isomorphism. n

In Example 2, in terms of the coordinate i„, we have iT=g. Therefore

"r*G, .. = C (Dg). di © di becomes singular when (Dg).
~ ~vY»JJ i-n R R ii

= 0.

•R R0

The following is essentially a restatement of Proposition 9.

Corollary 4 Let Ebe an (nc+n )-dimensional C submanifold. Then o\l is well-
posed if and only if at each point (y,i) £ E, (y-,,1.) serves as a local coordinate

for E.

Remark Because of its coordinate-free property, Corollary 4 has an interesting

circuit theoretic consequence. It says that if (10) fails to determine a

unique C vector field with respect to capacitor voltages and inductor currents,

then there is no choice of variables in the network in terms of which (10)

defines a unique C vector field. Conversely, if (10) specifies a unique C

vector field with respect to one coordinate system, then it specifies a unique

C vector field with respect to capacitor voltages and inductor currents also.

This shows that capacitor voltages and inductor currents are a good choice of a

coordinate system to describe the dynamics. Of course, this is not true if

capacitors and inductors are not described by (2) and (3), respectively. Consider,

for example, the circuit of Fig. 2(a) where the capacitor is described by

vc = f((lc)» the resistor is described by i = g(v ) and f is not injective.
Then the dynamics is perfectly well defined in terms of q ; q = q(-f(q )).

It is clear, however, that the dynamics cannot be described in terms of v .

-neorem 1 Let E be an (nc+n)-dimensional C~ submanifold and pick a proper tree

\). Then lAI is well-posed if and only if for each (y,i) £ Z,

det^Y»i) *° (55)
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where

.N A<3f(y,i) * D f - (D f)BDD - (D f)BT„ .'
~v_ ~ ~v„ - -RR v-v, ~ -LR .
i-~Ra ~R -L,

D± f+(D± f)]^ + (Dj, f)BT
rR. *R, *C,

RC

(y»i)

is an

ince

Proof Let (iJ>,Enu) be a local chart for E at (y,i). Then (dTr). .. is

isomorphism if and only if (Dtj°iJj ) ( .. is a nonsingular matrix. Si
-1 -1

Tt°\\) = ir ° i ° ^ , we have

(Dtt°iJ/
-1),, ., = (Dir„T) ° (di), .. o (Di/TV, ...>(v,i) ~~CL' .. (y,i) ~~ ^(v,i)

(56)

(57)

Since (di), .. is a linear inclusion map, the matrix of (57) is nonsingular

if and onlyif

-1,Ker(DTT-T), .. fl im(D|b x) . , .. = {0} .
~~CL (y,i) -•*- 'i(i(v,i)

b+nR
Let g : U .-*• H be defined by

g(v,i) =

B y

9 i
f(v,i)

(58)

(59)

where B and Q are fundamental loop and cut set matrices, respectively and f is

as in (16). Since E H u = g~ (0), we have [3]

T, ..E = Im^"1)., ,. = Ker(Dg), ...
(y,i) v~* ^(v,i) ~5 (y»i)

(60)

It follows from (58) and (60) that the matrix of (57) is nonsingular if and only

if

lter(5UcL)(v.i) nKe^>(y,i) ={?}
which is equivalent to

rank
51

L~~CLJ(y,i)

= 2b .

-20-
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Computing the matrix of (62) one can easily show that it has rank 2b if and only

if the following matrix has rank b+n :

1

0

0

1

?RR
?LR

l l

0

^

o
-4 i

T

-he °~

0

i

D f

."V
D f ]D f D. f D. f

~R«t ~Ra

D.

~~C

(63)

By further elementary operations, one can show that this matrix has rank b+nR

if and only if (55) holds. a

Corollary 5 Suppose that A is described by (20) and that E is an (n^+n^)-
dimensional C2 submanifold. Then o\l is well-posed if and only if for each

det^R(yR,iR) *0

where

^R^y = ?vR ^R "%R h^\ h+% ^SrR
.~Ra Rx R£ rj

and f„ is as in (21)
—K

(64)

<YR»y
(65)

Proof If A is described by (20), then f is independent of (yc,yL,ic,iL). This

implies the result. n

Example 3 Consider the circuit of Example 2. Since^JJR(vR,i )=-(Dg)i ,it
R

fails to have rank 1 at L = iD and therefore this circuit is ill-posed.R RQ

Example 4 Consider the circuit of Example 1, where AR is given in Fig. 3(a)
with i = f (v ), k = 1,2,. Since

-Df
"I

R,

%**>h? m
-Df

R.
" YR
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and since Df^ and Df never vanish simultaneouslv, rank 9JL(v„,i„) = 2.
Ki K2 R R R

Consequently A (\\ K and E is a 1-dimensional submanifold. Since

-Df,

^R^r^r) -
-Df

2-J YR

there are points where detyyR(yR,iR) =0. Therefore the circuit is ill-posed,
If we use Corollary 4, we can see this more clearly. Consider the projection

Cfrcof Eonto the (vL,iL)-space given in Fig. 3(b). If we further projectH2
onto the iL~axis, we see that 1, cannot be a local coordinate where the curve

intersects itself. Therefore o\l is ill-posed.

Corollary 6 Let A be described by (20) and let ; admit a generalized port
K

o

coordinate representation. Suppose that E is an (n_,+n^ )-dimensional C

submanifold. Then

^r(Yr4r) =[(«2-<5?> *2)" (*r(S?>Ji)?RRi
(§1- W?i)+(?2-^>0?Rr1 «

2 J(Yr4
(66)

where a, $, y and 6 are as in (29). In particular, if AR is globally voltage

controlled, then

^r(YR4r) =
[?**] ,

—<

" 11

(DF)
1 BTL-rrJ

^R

and if A„ is globally current controlled, then
K

^r^r'Jr) =
"?RR

- 1-1
L

-(DF)

1

BT?RRJ

iR

(67)

(68)

Recall (33). If A is globally parametrizable, then the following holds:
K
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Proposition 10 Let A be described by (20) and let A,, be globally parametrizable.
2 IfSuppose that E is an (nc+n )-dimensional C submanifold. Then L/Vi is well-posed

if and only if for each p£IR with (yR(p) ,iR(p)\ £HR(£),

rank £W*(p) =r^

where

SM*(e> -
?\c+?**\ -*
Din - B'
~""R ~RR \—j\j»y

•CM

K)

Proof Substitute (33) into KVL and KCL;

i ?!?RR ?RC

Yr/p)

\
\<*>
\

_ —

= 0

2 i:?LR ?LC

T T

~?RR "?LR
T T

"?rc 'he

— Ve)1
: i o

\
'• 9 I h,V

S J
Let us write (71) and (72) as

h(p,v ,vr ,i ,i ) = 0 .
~ ~ ~lx -ug -L^ -Uj

-1

= 0

(69)

(70)

(71)

(72)

(73)

Then E = h (0). By a similar argument to that of the proof of Theorem 1 we

see that (58) holds if and only if for each (p,v_ ,vp ,L ,i ),
" "Li ~°J -LX "Q3

rank

Dh

~~CL ,
J (P,v£»Il 'Yc *ih 'ic ^

= b + nc + ^ (74)
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More explicitly this matrix turns out to be the following:

~L
*

?RR(?iR;C)+?iRa

*c.

?RC

?LC

*L.

?LR

-BT?LC

~c

(75)

where • denotes a zero matrix of appropriate dimension. By elementary

operations one can show that (74) holds if and only if (69) holds. n

Remark The above result holds even when A,, is locally parametrized by p.
————— K «•

In fact (69) holds if and only if K is nonsingular, where K is the matrix

defined in [6].

Now observe that(3i(y,i) is asubmatrix of yf(y,i). This implies the
following:

Proposition 11 If (55) holds, then A/f\ K and cAI is well-posed.

Remark Similar results hold for Corollaries 5 and 6 and Proposition 10.
2While Theorem 1 assumes that E is an (nc+nL)-dimensional C submanifold,

Proposition 11 does not assume it.

In many practical networks, tt is a global diffeomorphism, i.e., all

variables in the network can be globally expressed as a function of (yc,JL) and

nC+nL l(hence E is globally diffeomorphic to H .Of course (JVJ is well-posed. In

Example 4, o\( is not well-posed and E is not diffeomorphic to H. . A question
arises; are there networks such that E is a submanifold not diffeomorphic

nr+nLto H , yet they are well-posed? The answer is affirmative as the following

example shows.

Example 5 Consider the map F : P. -* B defined by

F(x,y,z) =' (eycos x,eysin x,z,y, cos x, sin x).

For x,x' £ IR , define the equivalence relation x^x' byx-x' = 2kir where
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k is an integer. Clearly, then, the quotient space of K with respect to this
12 1

equivalence relation can be regarded as the unit circle S in IR ; R h = S .
Let [x] denote the equivalence class. Then F naturally induces the map
12 6

F:Sx E -^ E by

f([x],y,z) =F(x,y,z)

Since

(^([x],y,z)

and since

det =

e (-sin x)

ey(cos x)

0

0

-sin x
L.

y
e cos x

y .
e-'sin x

0

1

COS X

ol

0

1

0

0

ey(-sin x) eycos x 0

v y
e-^cos x) e sin x 0

0 0 1

([x] ,y,zj

2y
= e t o

we have rank (dF) L , \= 3 for all ([x],y,zl £ S x ;r

immersion [11]. Clearly F is injective. Since IIF ([x] ,y,z)ll =ey+2 +y + 1,
we have "f([x] ,y,z)H -*• °° as H(y>z)H -»• «>. Hence f is proper [11]. Consequently
it is an embedding [11]. Define

AR =F(S1xB2), "^

v = eycos x, v = eysin x, v = z
Rl R2 R3

L = y, i = cos x, i = sin x
1a-i K.« K.q J

(76)

Therefore F is an

(77)

This is a parametric representation of AR. Consider the circuit of Fig. 4 where

Ap is described by (77). It follows fromthe above argument that A., is a
12

3-dimensional submanifold diffeomorphic to S x E. . It is clear that E is
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1 2diffeomorphic to AR and therefore diffeomorphic to S x K. . Note that (x,y,z)

is always a local coordinate for E. (not a global coordinate). Choose

tJ= {C^C^Cg} to be our tree. Then, with p=(x,y,z), the matrix of (70) is
given by

sy*(p) =

— y y
-e sin x e^cos x 0

y y
e cos x e'sin x 0

L 0 0 1

Since det\Jg*(p) =-e y4 0, cAI is well-posed. Consequently, the dynamics of
uAIis perfectly well defined everywhere on E, yet there is no global coordinate
in terms of which dynamics admits a global state equation because E * S1 x ]R 2
i m3.

We next give a perturbation result on well-posedness. Recall that A is
R

said to be locally hybrid [3] if there is aC2 function fR:* Rxr R+ir*^
such that

AR =C^
and

det(^R^)(yR,iR) *0for all (yR,iR) GAR
for some fixed 2^ x^ matrix A, where each column of A has either of the
following forms:

Let

(0 0,1,0,...,0,0, .0)

(0,

°R

,0,0,...,0,1,0,...,0) .
-J K )

n
R

(78)

(79)

^k,.!,,) - Si \'-R'tR'
(80)

and suppose that Ffc corresponds to :L (resp., v ). Then that particular

resistor is said to be locally voltage controlled (resp., locally current
controlled).
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Remark Observe that in (45) and (46), local controlledness is defined for AR,

whereas in the above definition, local controlledness is defined for each

resistor provided that A_ is locally hybrid.

Theorem 2 Given a nonlinear network (J\l assume the following:

(i) A is described by (20) and A is locally hybrid .

(ii) A n K 4 <{>.

Then, by adding small linear capacitors and small linear inductors appropriately

we can obtain a new network o\| such that (1) A^ K 4 <J>, (2) A(\\ K, (3) (JA is
well-posed.

Proof Pick a proper tree <J containing a maximum number of locally voltage

controlled resistors and a minimum number of locally current controlled

resistors. Let 5l denote its associated cotree. Partition (y,i) in the following

manner:

elements voltages currents

locally voltage controlled
resistors in & \ h
locally current controlled
resistors in JC \ ~h

inductors in X
V~L h

locally voltage controlled
resistors in 3 \ S
locally current controlled
resistors in 3 Yla %
capacitors in J

\ ic

The fundamental loop matrix has the following form:

V V V

V2 Lt L
V V V^ \ YC

?W 9 ?VC

?IV ?II ?IC

?LV ?LI ?LC

-27-
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The submatrix ByT = 0 because of the choice of the tree. Now insert a small

linear capacitor in parallel with each locally voltage controlled resistor in

J and insert a small linear inductor in series with each locally current

controlled resistor in S2. Let y =?T UQ UQT U<tX1, where ^ is the
branches of the capacitors added, I denotes locally current controlled resistors

and C denotes capacitors. It is clear that ^ is a proper tree for the new network.

Statement (1) can be proved in a similar manner to the one in Proposition 5. To

prove (3) observe that the fundamental loop matrix for oM witn respect to XJ *IiaG
the following form:

v„ v„ vT v - V V V v

9 9 !vc ?w~
0 0 0-1

?LI ? ?LC ?LV

?II i ?IC ?IV

(82)

where &l. represents the inductors added. Since no resistors are added, AR is

the same as AR. We compute the matrix cyR(y„,iR) of (65) forcAI. It follows
from (82) that B^ = 0. Since v - <YV ,Y ), v = (v ,v ). iR = (1,. ,i„)

and 1^ = (i-r f±1 ), we have
3 J 9*

%<ViR> =[5(v ^)?Ri»(^,^)?R](vR,lR) • (83)
Observe that the matrix (83) depends only on (yR,iR) and if (YR»iR) e HR(^)>
then (Vt,,L) ^ A . Since (83) is obtained simply by exchanging columns of the

matrix of (80), it follows from (79) that dy-nOv-,,!,,) is nonsingular. By

Theorem 1, ^A) is well-posed. This proves (3). By Proposition 11, A (\\ K. This
proves (2). n

Example 6 Consider the circuit of Example 1. Since the resistors are voltage

controlled, insertion of C. and C« yields well-posedness of the circuit.

Therefore the perturbation in Example 1 was already good enough to ensure not

only transversality but also well-posedness.

Example 7 Consider the circuit of Example 2. Inserting a small linear inductor

in series, one can make the circuit well-posed.
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Remark The number of reactive elements added in Theorem 2 is no greater than

the number of reactive elements added in Proposition 5. Notice, however, that

in Theorem 2, A_ is required to be locally hybrid, whereas in Proposition 5,
R 2

the only restriction on AR is that it should be an nR-dimensional C submanifold.
The local hybridness assumption cannot be relaxed as the following example

shows.

Example 8 Consider the circuit of Fig. 1(a) where the resistor constitutive

relation is given by the unit circle S . (Fig. 5) It is easy to check A(\\ K.
1 2 2In fact E is diffeomorphic to S . Since f (vR, J^) = vR + iR - 1 and since

^R(vR'V =(Di fR}(v ,i )We S6e th3t ^^R^R'V =°at P°intS Aand B*
R R' R

Therefore A and B are impasse points and hence the circuit is ill-posed. Observe

that A is not locally hybrid since there is no function fR satisfying (78)
and (79) for a fixed matrix A. We claim that there is no way of making the

circuit well-posed by adding reactive elements. To show this let u\) be a
circuit obtained byxadding arbitrary^number of reactive elements to^ the original

circuit oM. Then, by (65), either^ (vR,lR) =(D fR)( ±*°r<3VvR>V
"R v R' R

= (d f ) x depending on how the reactive elements are added. In any case
VRR (VR'V _. . A

there are points such that detXW(vR,iR) = 0. Since well-posedness is coordinate

free, oWis not well-posed with respect to any coordinate.

Remarks 1. Note that the perturbation in Theorem 2 is a network perturbation.

It is not known if one can give element perturbations as in Proposition 3

in such a manner that cAl is well-posed.
2. The above argument, of course, depends on the assumption that the incremental

capacitance matrix and the incremental inductance matrix are nonsingular. If at
least one of them is singular somewhere, then the above procedure does not

work. To show this recall (6) and (54). If at least one of the incremental

capacitance matrix or incremental inductance matrix is singular at a point

TT(v,i), then G , ..is singular. By (54),ir*Gr ., is singular even if

(di) , x is an isomorphism. This singularity cannot be removed by adding

reactive elements because the incremental capacitance or/and incremental

inductance matrix of oM contains the original incremental matrix as a submatrix
and therefore it is still singular. Consequently lA) is ill-posed.

We next discuss relationship between well-posedness of lAI and transversality
of (n +iL)-port N derived fromoW, under certain excitations. Replace
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capacitors and inductors of c_A) by ports. The resulting network is called

(nc+n )-port N derived from cjvl. For the purpose of convenience we keep the
same notation for N as UV). For simplicity, we assume that A is represented

by (20). Drive the capacitor ports by independent voltage sources y* and drive

the inductor ports by independent current sources i£. Let

^%>W ={(y.i) G*b **b| (yr4r) ear>Yc =yJ.Jl =«}• (84)

This set represents the internal resistor constitutive relations of N under

the excitation (v*,i*). Since A is of dimension 2b-n_ and since y_ = y* and

i = i* add n_,+n_ more constraints, A(v*,i*) is a b-dimensional submanifold
~L ~b C L ~a -b

of mb x Rb. Recall ir of (9).

Theorem 3 Given a nonlinear network oM» assume that A is represented by (20)

and let Ebe an (n^n.)-dimensional C submanifold. Then oM is well-posed
if and only if for the (nc+nL)-port Nderived from u\l the following holds:

A(v*,i*) ft\ K for all (v*,i*) £ tt(E).
"3. "D ~3i "O

Proof Sufficiency Let (y*,i*) G £(E) and let

G(v,i) =
f(v,i)

!cL<Y.i> "
v*
-a.

(85)

(86)

where f is defined in (16). It is clear by the definition of A(v*,i*) that
~ ~3 ~ D

for each (Y0»iQ) G A^,l*) <= A,

A(v*,i*) O U = G"1(0)
-a ~d ~

rank(DG), .N = b for all (v,i) G A(v*,i*) O U
~~ V.V,1) ** " "Si -o

where U is as in (16). Using (85), (86) and an argument similar to that of

the proof of Proposition 1, one sees that for each (v*,i*) £ tt(E) and for

(y,i) e A(y*,i*) nK,

rank

B 0

0 Q

D f
~Y~

D.f

D tv„t
~v~CL 9i5cL

= 2b.

(Y>i)
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But since

A n K = U A(v*,i*)HK (89)
(v*,i*)eff(E) ~a
-a -b

it follows from (88) that for each (y,i) € A n K, (62) holds. This implies

well-posedness.

Necessity If (62) holds for each (y,i) e E, it follows from (89) that
(88) holds for each (y,i) e A(v*,i*). Since (v*,i*) e tt(E), (85) holds. *

Remark If A is not represented by (20), the set A(y*,i*) may not be a sub

manifold. If we assume, however, that (v*,i*) is a regular value [11] of the
n n "Sl ~d

map tt |A:A-*lRCx]RL, then A(y*,i*) is a b-dimensional submanifold.

V. Eventual Strict Passivity

Eventual strict passivity is an important qualitative property of electrical

networks, because it guarantees that all trajectories eventually approach a

fixed compact subset of the configuration space [8-10]. Roughly speaking, the

results of this section say the following: suppose that the resistors are

eventually strictly passive and that every capacitor is in parallel with

a large linear resistor and every inductor is in series with a small linear

resistor. Then all trajectories approach a fixed compact subset of the config

uration space. Since the above assumption is satisfied by most practical

networks, this result guarantees that the voltage and current waveforms are

bounded in most networks of practical interest.

In order to simplify our notation, we assume that A is described by (20).

The general case is not difficult to derive, however. Let WR:HR x3R R -* ]R
be defined by

"i'W sI w
Recall the map tt' defined by (22). Let W and W be defined by Fig. 6. Clearly

nC nLW is the power dissipated by resistors. Let E :3R^ * IR u -* "R be defined by

ECL

v~c nc

(Yc>Jl) =Tr £ , W^c* dV
* ' m,n=l m n

C

K «§.i Lmn^VdV (91)
m n
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where r (resp., r ) denotes a smooth curve connecting v_ (resp., i ) with the
nC ^t " ^origin of IR (resp., IR L). Since the incremental capacitance matrix and

the incremental inductance matrix are always symmetric, E (v ,i ) does not
A->L> "*L» ~Li

depend on particular curves Tc and T/L but depend only on the end points v and i
Therefore (91) is well defined. Set

E = ECL ° ? (92)

where tt is defined by (9). The function E is the energy stored in the memory
elements. It follows from Tellegen's theorem that

dE(y(t),i(t))
S W(y(t),i(t)) . (93)

Recall that a network^AJis said to be eventually strictly passive [8-10] if
there is a compact subset fiC j; such that

W(y,i) > 0 for all (y,i) 6 I - (), (94)

The following two propositions show the importance of eventual strict passivity.

Proposition 12 [8-10] Let E be proper, i.e., for every a >_ 0, the set
Uy,i) G E|E(y,i) <a} is a compact set, and let the network^Albe eventually
strictly passive. Then the set defined by

£= {(y,i) ^ E|E(y,i) <_a } (95)

"l = , ^^ E(Y'^ (96)(v,i)6fi

is compact, and for any initial state (y(0),i(0)), either one of the following
happens:

(i) there is a t± >0such that (y(t),i(t)) e£for all t>t,
(ii) (y(t),i(t)) ^£for all t^0and lim(v(t) ,i(t)) € £.

The set ocontains most of the important information concerning the
dynamics. In particular, the following holds.

Proposition 13 Under the same setting as Proposition 12, we have

(i) all periodic orbits and equilibria are in £,
(ii) in particular, equilibria lie in the set

{(y,i) € E|w(y,i) = 0}. (97)

Proof (i) It follows from (94) and the eventual strict passivity hypothesis
that for any (y(t),i(t)) € E - n, the instantaneous energy E(v(t),i(t)) is

strictly decreasing. This implies that for (y(0),i(0)) Gl-fi, the trajectory
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(y(t),i(t)) cannot come back to (y(0),i(0)). Similarly, (y(t),i(t)) cannot
remain at (y(0),i(0)), (ii) since E(y(t),i(t)) is either strictly increasing or

strictly decreasing outside the set defined by (97), the equilibria must be

located as specified in (97). n

The set oin (95) is sometimes called a set of attraction since it attracts

all trajectories.

Eventual strict passivity is a property of W on E, while W is defined on
K

A . These two functions may behave very differently depending on the properties
R

of i and tt1. (see Fig. 6) The properties of W are easier to check than those
~R R

of W because W depends only on A . We need the following:
R R

Definition 2 The resistor constitutive relations represented by A are said to

be eventually strictly passive if there is a compact subset fi of A such that

WR(yR,iR) >0 for all (yR,iR) *= AR - GR. (98)

As we will show shortly, (98) does not necessarily imply (94) . Smale [4]

poses a problem related to the present one. In terms of our terminology, the

problem in [4] can be rephrased as follows: Suppose there is a number 3 > 0

such that

'r(W^£(\^ (99)
for all (v ,i ) with II (v ,i )H sufficiently large. If condition-(99) holds,

~R ~R ~R "R

does the network have a compact set of attraction? The answer is no as the

following example shows.

Example 9 Consider the circuit of Fig. 7(a) where all elements are linear and

element values are all equal to one. Observe that

VW =Vr =VR • i i 6(VR+1R> (100)
for 0 < 0 < -, (v_,i_) t (0,0). Therefore (99) is satisfied. Notice that (98)

Z R R

is also satisfied. We claim that this circuit does not have a compact set of

attraction. To this end let us write the dynamics in terms of (v ,v ,i ,i );
Cl C2 Ll L2

dv_ dv„
Cl _ . C2 ,

Cl dt \9 C2 dt XL9
1 L (101)

diL diL

Li -or - -vc +R<-\+1i >>L2 -*r - ~v R("S+^2)'

W.
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Since all element values are equal to one, for any a G TR , the following is a

solution to (101):

v (t) = a sin t, v (t) = a sin t, iT (t) = a cos t, iT (t) = a cos t.
Cl C2 Ll L2

Since a £ TR is arbitrary, the solution can have an arbitrarily large magnitude.

Consequently the circuit does not have a compact set of attraction. In fact,

in terms of the above coordinate we have

W(yc,iL) =RC^-i^)2 (102)
and hence it does not satisfy the inequality in (94). Fig. 7(b) shows a rough
description of the trajectories. Notice that any trajectory starting outside
the linear subspace W = 0, approaches the origin.

Since (98) is satisfied by most resistors of practical interest, it is
natural for us to seek conditions under which (98) implies (94). The following
is a generalization of a recent result by Chua and Green [8] for a general

manifold. We assume that AR is closed for technical reasons. This is not a
restrictive condition , however.

Lemma 1 Let AR be closed and eventually strictly passive. Let E be an (n +iO-
dimensional C submanifold. ThenuMis eventually strictly passive if the
following fundamental topological hypothesis is satisfied:

There are no loops and no cut sets consisting only of capacitors and
inductors, or equivalently

(i) there is a tree^J(R) consisting only of resistors,
(ii) there is a tree J(CL) containing all capacitors and inductors.

Proof Recall the map ttr defined by (23). Suppose that A is eventually strictly
passive and let ft be as in (98). If tt is proper, then the preimage ir"1^ )

*^ "R R

is compact because the preimage of a compact set under a proper map is compact.

It is, then, clear that the inequality in (94) holds with respect to TT_1(ft ).
"R R

So we show that the fundamental topological hypothesis implies that tt is proper.
To this end let

iK :Z"* (103)

be the inclusion map and consider the map X defined by Fig. 8. Since A is
R

assumed to be closed, A is also closed. Therefore E = A n k is a closed

submanifold of K. Consequently, for any compact subset A of K, the preimage

1K (A) is compact. This shows that i is proper. Therefore we need only show

that X is proper. Since X is obviously continuous, we need only show that the
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n^ nR
preimage of a bounded subset of IR R x ]R is bounded. Suppose that the

fundamental topological hypothesis holds and let v (resp., i ) be the

tree branch voltages (resp., link currents) for <J(R) (resp., links associated

with ^(CL)). It follows from (15) that for (y,i) £ K,

v = QTv_ ,i= BTi_ (104)

where § and B are the fundamental cut set matrix and the fundamental loop

matrix associated with J(C) and J(CL), respectively. Equation (104) implies

H(v,i)H - «, (v,i) e K=> II (v_ >JR )H + -• (105)

Since (v„ ,i ) is a subvector of (v_,i_)', we have
~R3 ~K£ "R ~R

H(y,i)H + oo ,(y,i) e K* "(Yr*^)" "*" °°* (106)

This shows that the preimage of a bounded subset under X is bounded. Since the

properties of X do not depend on a particular choice of a tree, X is proper.n

Remark Observe that in the above proof we took full advantage of the coordinate-

free property, since in (104)-(106) we are using two different trees

simultaneously.

Now, experiences tell us that most networks of practical interest have a

compact set of attraction. We next justify this observation formally by

carrying out a slight network perturbation. The perturbation we make is

simply a formalization of the following hypothesis: "Every capacitor is in

parallel with a large linear resistor and every inductor is in series with a

small linear resistor." Before stating the results, we need the following:

Definition 3 A nonlinear network(Jv)is said to be strongly well-posed if

(i) there is aC2 function fR:HRxiR-^]RR such that A =f"1(0) and
rank(?5R)(yR,iR) -nR for a11 (YR4R) GV
(ii) det(3tfR(yR,iR) +0for all (vR,iR) G AR. (107)
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Remark Condition (ii) is stronger than (64) because the determinant should

be nonzero on A^ and since UR(E) C AR. This condition is satisfied by many

networks, however. For example, the circuit of Fig. 1 with the capacitors

added, satisfies this condition because

1 0

^R(Yr4r) =?i?R =
**R 0

The perturbed network (Jvl of Theorem 2 is strongly well-posed because the

matrix of (83) is nonsingular for all (v„,i_) £ A_.

Theorem 4 Given a nonlinear network lAI assume the following:

(1) lAI is strongly well-posed,

(ii) AR is closed and eventually strictly passive.

Insert a large linear resistor g, , k = 1,..., nc>in parallel with every capa

citor and insert a small linear resistor r , k = l,...,n_, in series with

every inductor. Then

(1) A H K ^ $ and E = A H K is an (nr+n_) - dimensional C submanifold.

(2) uW is well-posed.
(3) (.A) is eventually strictly passive. Consequently lAI has a compact set of

attraction.

Proof (1) In terms of a proper tree 9J, the original network (_A) is described

by

YRjC +?rrYr3 +?RCYc -9 <108>

^L+?LR^Ra +?LC^C=9 (109)

*R, ~«L^ "?LR*L =9 (110)

*C -5U "£& =? (111)

<*R'iR>e V (U2)
A A

Let uT = XJ U y where ^J" represents branches of r Ts. It is clear that 9J
is a proper tree for cA). Decompose v and i as
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A

where g and r denote the variables associated with g, !s and r^'s. Then oM is
described by

\ +?RRYRa +?RCYC " ° (113>

*L +?LR?R.j +SlC^C +*r " ? (114>

-g +?c°? (115)

where

T T
i - "

T . _T

^ "W** -^ii • e <116>
i„ - B*C =«.*. - SuA. - i g = 9 (117)

ir - Jl = 9 <118>

(Yr»V g Ar <119>

ig =g^Yg (120)
Yr = ?ir (121)

A

g = diag(g , ...,g ), r = diag(r.,... ,r ) (122)
1 nc ~ 1 nL

Eliminating v , v , i and i , we see that <Jv is described by (113), (116) ,
(119) and

Yl + ?LRV + ?LCYc + lh = 9 <123>

h -*lch£ - ?LR*L +S_1YC "° (124)
v, = -v. (125)

i- =- g'V (126)

v = r
-r

V (128)

Let us revrite (108)-(112) and (123)-(128) more concisely. Let B and Q be the

fundamental loop matrix and the fundamental cut set matrix forcAl, respectively.
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Then, of course, (108)-(112) are written as

T
Q 0

(YR>*R> G V

= 0
(129)

(130)

Comparing (108)-(112) with (113), (116), (119), (123)-(130), we see that the
differences between o\| and ^Al are in the last two terms of (123), (124) and
(125)-(128). Therefore u\fis described by

where

T
Q 0

0 B

V

i

+

~0 F"

G 0

—

! v

i

(Yg,Yr,ig,ir) =H
Yc-1

L*L

K S h x
a

9 9

o o

~C

= 0

F «

0 0

0 r

, G =

H =

-1

0

\ ?L \\ Yc

0 9 :' 9 0

0 • 9 ''' 9
-l

g

(131)

(132)

(133)

(134)

(135)

Now let (y0,i0) e AHK^ <j> and let U be a bounded neighborhood of (v0,i0) in
K. xK. . Since the set (A H K) O U is a bounded submanifold, small perturba

tions of K n U do not destroy transversality of A n U and KHu and hence they

do not destroy nonemptiness of (AOu) O (K^XJ). Therefore if g is large enough
and if rfc is small enough, then IIfO and II gH in (131) are small enough to guarantee
nonemptiness of the intersection of (131) and (132). Since (133) does not destroy
this nonemptiness, we have AHK^f, We show A (\\ K later.

(2) Observe that
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?r<Yr4r>
-1

v - ri
~r ~~r

and that the fundamental loop matrix B for o\| is given by

n

\ Yl
V
-g • ~RJ Yc V

~r

—

,?RR ?RC 0

i : ?LR ?LC 1

: 9 1 0

It follows from this that

Then

YRtf V
~r Yc

"?RR 0^
~R£ ?RC Yr

?RR =
_ S

~Rs/

o

V
-r

»

V

~8

?RC =
1 V

= [5lr 1] YL-

^et ^ =(yr .*,). \ -^ >vr), i^ -(i^ .ig). «* 1^

"(?vR ?R)?RRD~ fp
~v ~R

**RJ

D fp"Yr ~R

0

. 0

0 "|

t J L_

D f„ Q -~y ~R

-l
'»» 0

0 -§ 0

0 0
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D f_-(D &0 B 0
~RR ~

9 9

9 1

?r +(\ iR)?L

~?i ?R 91

9 1 + 0

0 0 0

n
T

~RR

0 0

-r

?!,> +(B^«r)4
0

It follows from (139), (140) and (65) that

^R(YR»y •

~ D f«-(D f„ ]-yr^ ~r v~yr^ ~r; ?RR 0

0 0

0 1

Bi, *R+(?ip h) ?RR ?•R^ ~Ra

0

0

"*t

(Yr^r>

A

It is clear that(3^R depends only on (Vrj^r) and that
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Now if (Y^,^) g Ar» then (vR,iR) ^ AR, because

-1

Ar" «YR.iR) l<YR>iR> G Vig =! Yg>Yr - rlr>

By the strong well-posedness assumption, we have

I^^R^R'^I >° for a11 ^R'Jr* GV

This and (142) imply

|det(3t^(vR>±R)|>0for all (v^^) €nR(Z).

(143)

(144)

(145)

It follows from Corollary 5 that cAI is well-posed. By Proposition 11 we have
A(f\ K. Therefore Zis an Ov^)-dimensional C ^submanifold.
(3) The resistor constitutive relations f^ for {Ji is described by (143) where
v = (v ,v ,v ), L = (iR,i >i )• Therefore the function WR corresponding to
W_ is given by

R

VYA> «VYr,*r> +&\ +£ir- (146)

It follows from condition (ii) that there is a compact set Or c AR such that

(96) holds. For any a > 0, let

gr (Yg>Yr4o>y

^

-1
i = g ~v ,v ^ ri
~g s V~r ~~r

^g-Yr'tg-y1^0!-

Then the set i^ «J^ xq has the property that

WR >0on AR -J^

because g and r are diagonal matrices with positive elements. Finally, to

show that the fundamental topological hypothesis is satisfied, let JR» ClL-
rj and xJ represent the branches of the resistors in J, inductors in al,
the added resistors r*s and the added resistors gk's. Then J(R)
= ?T U'rT utf is a tree for oW which consists only of resistors. Also
y(CL) =^F u(ST is a tree for u\l which contains all capacitors and inductors.

Li
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It follows from Lemma 1 that (Jvl is eventually strictly passive. n

Example 10 Consider the network of Example 9. Since the circuit is linear,

all the conditions of Theorem 4 are satisfied. The perturbed network is shown

in Fig. 9. It follows from Theorem 4 that this network has a compact set of

attraction. In fact the linear subspace W = 0 in Fig. 7(b) degenerates into

the origin and any closed ball centered at the origin serves as a compact

set of attraction.

Remark As we have seen,c3yR(yR,iR) =<tyR(YR>iR) for ^Yr»Ir) G 2r^)• But
(yR,:Lj £ !Lr(£) does not necessarily imply (vR,ip) e Hr(E) even though

(vR,l_) £ AR. Recalling (64) and (107), one sees why we needed the strong

well-posedness hypothesis.

We next replace strong well-posedness by another condition.

Theorem 5 Replace the "strong well-posedness" hypothesis in Theorem 4 by the

following hypothesis:

(i) ' tt is global diffeomorphism.

Then, under the same perturbation as in Theorem 4, the same conclusion holds.

Proof The preceding proof for Theorem 4 remains applicable except for the

fact that Z is an (nc+n_ )-dimensional C submanifold and that oM is well-
posed. In order to prove this, recall (108)-(112). Assumption (i)' implies

2
that (y,i) is expressible as a C function of (yc,;L);

(y,i) =7r-1(yc,iL).

Recall (113)-(121) and set vTf = v. + v ,il = ±r - i . Then (113), (114), (116),

(117) and (119) are exactly the same as (108)-(112). Therefore

^R'Yc'Yi*^,^,^) =r1(Yc»iL>-

It follows from (115), (118), (120) and (121) that (v ,v ,i ,i ) is also a C
i/ ® B 2

function of (v ,0. Therefore all variables ofU\J are expressible as a C

function of (yc,i.);

(v,i) = i ±(yc,iL).

It follows from the way it"" was determined that tt is a global diffeomorphism
"" 2

and hence so is tt. Therefore E is an (n_-HL)-dimensional C submanifold.
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Since ^ is a global diffeomrophism, it is a local diffeomorphism. It follows
from Proposition 9 that cA) is well-posed. n

Example 11 Consider the network of Fig. 10(a) where the resistor is described

by Fig. 10(b). The resistor is eventually strictly passive. It is easy to

show that ^ is a global diffeomorphism. Therefore we can make the same per

turbation as in Example 10 so that the network will have a compact set of

attraction.

We will next relax the "strong well-posedness" hypothesis and the global

diffeomorphism assumption, while imposing a stronger condition on A to derive
R

a different perturbation result. Recall that A is said to be globally hybrid [3] if

AR = {(yR,iR)|y = h(x)} (149)

where y = (y_,...,y ), x = (x_,...,x ) and if y, is the current (resp.,
~ J. n_ ~ x n~ k

voltage) of the k-th resistor then x^ is the voltage (resp., current) of the
k-th resistor. If yfc is the current (resp., voltage), then that particular

resistor is called voltage controlled (resp., current controlled). The following

result says that most practical networks can be perturbed in such a manner that

the resulting network is well-posed and has a compact set of attraction.

Theorem 6 Given a nonlinear network (Jvl assume the following:

(i) AR is closed and is globally hybrid,

(ii) AR is eventually strictly passive,
(lii) AflK^.

Perturb (Jv) in the following manner:

(a) Let Jbe a proper tree containing a maximum number of voltage controlled

resistors and a minimum number of current controlled resistors and let ^L be

its associated cotree. Insert a small linear capacitor in parallel with each

voltage controlled resistor in (Jand insert a small linear inductor in series.

with each current controlled resistor in §l. Call the resulting network oW

(b) Insert a large linear resistor g, in parallel with each capacitor of^AI
and insert a small linear resistor r, in series with each inductor ofoM.

Call the resulting network cjvl.

Then the following hold:

(1) A H K 4 <J> and Z = A H k is an (nc+iL+k)-dimensional C submanifold where
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k is the number of reactive elements added, A and K are the resistor consti

tutive relations and the Kirchhoff space of^Jv), respectively.

(2) oWi-s well-posed.
(3) i^Alis eventually strictly passive. Consequently {j\j has a compact set of

attraction.

Proof (1) It is clear that one can prove A H K ^ <J> in a similar manner to the

proof of Theorem 4. We prove A m K later.

(2), (3) We first claim that ^/i is strongly well-posed. To this end parti

tion (v,i) of^Was in the proof of Theorem 4. Since A^ is assumed to be

globally hybrid, it can be represented as follows:

\ ' -v*(-v* '^ >% -iij •9

\ ' ?V£ (Yv„ .YT/ -ii, -iij =9

Y^-fi^.Yv^VixJ =?
v -f (v ,v ,i ,i ) =0

where V and I denote voltage controlled and current controlled resistors,

respectively. We write these equations as

?R(Yr4r> = 9-

It follows from (83) that foreAl we have

^VV!*;?(VV !rL ,ih?

Yi, Yi
X U* iv,
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Therefore^}™(v^*^) *s a constant nonsingular matrix. Therefore cjvl is
strongly well-posed. Clearly A« = A,, because no resistors are added in (a).

This implies that AR is eventually strictly passive. Since ^Al satisfies
the hypotheses of Theorem 5, by taking procedure (b), we obtain^JV)which is

well-posed, Art\ K, and eventually passive. a

Example 12 Consider the network of Fig. 11(a), where R. and R« are as in

Fig. 1(b). Other elements are linear. By a similar reasoning to that of

Example 1, one can show that A/iK. Pick the proper tree <J = {Cn ,C0,CQ,R_}.
f( 12 3 2

Then applying procedure (a) of Theorem 6, we obtainUv which is strongly

well-posed (Fig. 11(b)). The network<Jv! of Fig. 11(b) does not satisfy the
fundamental topological hypothesis, however, because there is a capacitor-

only cut set. Insert large linear resistors g-, g« and g, according to pro

cedure (b) and obtain o\l (Fig. 11(c)). Theorem 6 says thatoM has a compact

set of attraction.

Remark The elements added in Theorem 6 can be thought of as parasitic elements

of lA)» Therefore Theorem 6 formally justifies the fact that in most networks

of practical interest, voltage and current waveforms eventually approach a

fixed compact set.
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APPENDIX

Proof of Proposition 3 The proof is similar to that of Theorem 3 of [3] which

is the same as the proof of (ii-a) of Theorem 2 of [3]. Proof of (ii-a) of

Theorem 2 uses Lemmas 1, 2 and 4 of [3], It is easy to show that Lemma 1 is
2

true for C submanifolds. Lemma 2 has nothing to do with differentiability.
2

Therefore we need to only show that Lemma 4 is true in the C category. We

state this in the following:

Lemma A Let A be an n*n matrix such that Ha—ill is sufficiently small. Then

there are neighborhoods TT and U9 of the origin of 3R with U C tt an(j there
2 n n

is a C function G : 3R •*• IR such that

(i) G = A on Ux
(ii) G = i off U , where i is the identity map of IRn

(iii) G is arbitrarily close to i, in the strong C topology.

Proof LetQJl (i,;e(-)) be a sufficiently small neighborhood of i, in
2 n n 2
C (IR ,IR ) with respect to the strong C topology. Since e(x) > 0 for all

x € IR , there are numbers e > 0 and 6 > 0 such that e(x) >_ e for all x with
9 ""

Hxil < 6. Let <S satisfy 0 < 6 < 6. Then there is a C function (bump
o o n r

function [11]) u : IR -*• IR such that

(A.l)(i) y(x) =<

1°

if

if

llxll < 6
o

llxll > 6

(ii) there is a k > 0 such that

»(?p)xii < k, H(D2u) II <
X

: k (A.2)

for all x € ]Rn.

Now, choose A close enough to i, so that
d

D*-i" <(l+0(l+2fc) <A-3>

and define

G(x) = v(x)Ax + (l-y(x))x. (A.4)

We will show that G^QJl (i,;e(-)). Since y(x) = 0 for 1x0 >_ 6, we need to
check the C size of G - i<j only for HxD < 6. Since G(x) - x = y(x)(Ax-x),

we have, using (A.1)-(A.3), that
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llG(x)-xll + «(DG) -lil + ll(DZG) II < y(x)!lAx-x!l + I (Dy) 0 IIAx-xH
~~- ~~ X ~ - - X — ~ ~~ ~ ~? ~~~

+ y(x) llA-lll + !l(D2y) II IIAx-xH + 2II (Dy) I IIa-III

<_ llA-lll (ilxll+kllxll+l+kllxll+2k) < HA-lH (1+6) (l+2k) < e.

Take U^ ={x e ]Rn |llxll <6} and U2 ={x G]Rn |llxll <6q}. Then all the properties
are satisfied.
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Figure Captions

Fig. 1. A nonlinear circuit with AjA K.
(a) The circuit diagram.

(b) Resistor constitutive relations.

Fig. 2. A nonlinear circuit which is not well posed.

(a) The circuit diagram.

(b) Resistor constitutive relations.

Fig. 3. A nonlinear circuit which is not well posed.

(a) Resistor constitutive relations.

(b) Projection of Z onto the (vL»iL)-space.
Fig. 4. A nonlinear circuit which is well posed, yet Z is not diffeomorphic

to IR .

Fig. 5. Resistor constitutive relation for the circuit of Example 8.

Fig. 6. Diagram defining the two functions W and WR.

Fig. 7. A network which is not eventually strictly passive.

(a) The circuit diagram.

(b) Trajectories on the linear subspace W = 0.

Fig. 8. Diagram defining the two functions X and iR.

Fig. 9. Perturbation of the network of Fig. 7(a).
Fig. 10. A nonlinear network which becomes eventually strictly passive after

perturbation.

(a) The circuit diagram.

(b) Resistor constitutive relation.

Fig. 11. A nonlinear network which becomes well-posed and eventually

strictly passive after, perturbations.

(a) Original network;^.
(b) Perturbed network^.
(c) Perturbed network lAI.
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