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Abstract

This paper discusses several general properties of dynamic nonlinear networks
from a geometric point of view. One of the main advantages of a geometric
approach is that it is coordinate-free, i.e., the results obtained by a geometric
method do not depend on the particular choices of a tree, a loop matrix, state
variables, etc.

Firstly, it is shown that the transversality between resistor constitutive

relations and the Kirchhoff space is a sufficient condition for the configuration

space to be well defined. Secondly, the concept of well-posedness is shown to

be important for the dynamics to be well defined on the configuration space. It

is also clarified that transversality and well-posedness are two distinct
mechanisms which are responsible for the non-existence of state equations.
Perturbation results are given which guarantee transversality and/or well-posedness.
Finally, several other perturbation results are given which guarantee the eventual

strict passivity of dynamic nonlinear networks.
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I. Introduction

This paper discusses several general properties of dynamic nonlinear
networks from a geometric point of view. One of the main advantages of a
geometric approach is that it is coordinate-free, i.e., the results obtained
by a geometric method do not depend on particular choices of a tree, a loop
matrix, state variables, etc. This approach allows us to resolve and clarify
a number of subtle paradoxes and perplexing questions which lie at the very
foundation of nonlinear circuit theory. In particular, several basic questions
involving the formulation of state equations for nonlinear networks are hereby
resolved in a rigorous manner. Among other things, we have clearly identified
two mathematically distinct mechanisms which are responsible for the non-

existence of state equations; one involving the concept of transversality,

while the other involving the property of well-posedness. Under the assumptions

that all capacitors are voltage-controlled and all inductors are current-controlled,
we have also shown that the capacitor voltages and inductor currents are a good
choice of variables to describe the dynamics in the sense that if we cannot describe
the dynamics in terms of capacitor voltages and inductor currents, then, there
is no choice of variables in the network in terms of which the dynamics is well
defined. Conversely, if the dynamics can be described with respect to some set
of variables in a network, then it can be described by capacitor voltages and
inductor currents also. Our geometric approach allows us to choose a convenient
coordinate system and use it to derive general conclusions which hold with respect
to any other coordinate system.

In Section II we show how the dynamics of nonlinear networks can be
described in a coordinate-free manner. In Section III we discuss transversality
of the resistor constitutive relations and the Kirchhoff space. Transversality
is important in that it guarantees the configuration space to be a well-defined
submanifold. We give two perturbation results which guarantee transversality.
One involves element perturbations, i.e., perturbing the existing resistor
constitutive relations. The other involves network perturbations, i.e.,
augmenting the network with capacitors and inductors. In Section IV we discuss
well-posedness which is a condition for the dynamics to be well defined. We
give a network perturbation technique which guarantees well-posedness. In
Section V we give several perturbation results which guarantee eventual strict
passivity of dynamic nonlinear networks. Eventual strict passivity is impor-
tant in that it implies boundedness of both voltage and current waveforms.

General Remark For simplicity, we will usually delete the superscript "T"

denoting the "transpose" of a vector or matrix whenever no confusion arises.
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II. Coordinate-Free Description of Network Dynamics

Throughout the paper, we need to use the fact that transversality, well-

posedness and eventual passivity are coordinate-free properties, i.e., they
are independent of the choices of a tree, a loop matrix, a cut set matrix, state
variables etc. Here we explain how nonlinear networks are described in a

coordinate-free manner.
Consider a nonlinear networkcJM containing np

n; inductors. Let b = np + n. + n; and let v and i represent the branch

voltages and currents of the network. Then (v,i) € RP x IRb. The following

resistors, n, capacitors and

are the standing assumptions of this paper:

(a) The linear graph gz which defines the topology ofg)“ is connected.
(b) bAjis time invariant.

(c) The resistor constitutive relations are characterized by
(v,i) EAC R x R (1)

where A is a 2b-nR dimensional C2 submanifold.

(d) Capacitors and inductors are characterized by

dye
Clve) g5 = ic (2)
and
Yy
L) 3¢ =Y (3)

respectively, where Mo and v denote capacitor and inductor voltages,

respectively, and gc and %L are capacitor and inductor currents, respectively,
g(yc) and L(iL) are incremental capacitance and incremental inductance matrices,
respectively, and they are symmetric, positive definite and Cl.

(e) There are no capacitor-only loops and no inductor-only cut sets.

Remarks 1. There is no loss of generality in assuming (a) since disconnected
subgraphs can be hinged together. Connectedness is necessary for a tree to
exist.

2. Most of the results of this paper can be easily generalized to include the
time-varying case under appropriate conditions. We make this assumption siﬁply
to avoid introducing complicated notations.

3. Under assumption (c) resistors can be coupled to each other and they need
not be voltage or current controlled. Even couplings among (YR’iR) and

(yc,yL,gC,gL) are allowed. This includes virtually all modes of representation,
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including the hybrid and transmission representations. 1In particular, a broad
class of nonlinear dependent sources are allowed in this formulation. We regard
independent sources as uncoupled resistors. All multiterminal elements are
represented as coupled 2-terminal elements. We need the CZ.PIOPertY of A rather
than C1 because we would like to define a C1 vector field on the configuration
space. (See Section IV.)
4. Under the present formulation, capacitors can be coupled to each other.
Similarly, inductors can be coupled to each other.
5. Assumption (e) was introduced only for simplicity. This involves no loss
of generality in view of the results of Chua and Green [1] and Sangiovanni-
Vincentelli and Wang [2].

Now let K denote the Kirchhoff space [3], i.e., the set of all (Y’%)
satisfying KVL and KCL. It is known that K is independent of a particular

choice of a tree, a loop matrix, a cut set matrix etc. Since (v,i) must
satisfy the resistor constitutive relations and the Kirchhoff laws simultaneously,

the operating points are restricted to within the following subset:
4410k, (4)

The set I is called the configuration space of pA‘since this is where the

dynamics takes place. In order to describe the dynamics in a coordinate-free

manner, consider the following l-form on Rb x Rb [4,5]:

A R ¢
n= 2 kadiRk + d E Ve ick (5)

k

! n n;

and the following symmetric 2-tensor on R Cxr :

c ™,
Z C,(¥o) dv, ®dv - X L (i)di ® diy (6)

m,n=1 n m,n=1 n

ca

where Cmn(yc) (resp., Lmn(il)>is the (m,n)-component of Q(yc) (resp., L(;L))
and v, (resp., iRk

Ry

Remark. A simple explanation of 1-forms is given in [3]. A symmetric 2-tensor

) is the voltage (resp., current) of the k-th resistor.

G on 1{2 is a collection of functions: R > x ]R2 + R given at each point
2
(%1,%,) € R” by
2
G = f (x,,x,) dx ® dx
(%4,%,) pae1 ™ 17727 Tm n

-



where fmn are real-valued functions, fmn = fnm and
1 0 ' 01
dxl® dx:L = - s dxl® dx, = .
L
0 0 0 0
dx, ® dx, = , dx, @ dx, = .
2 1 1 0 2 2 0 1

Consequently,

T A
S(x;,x )([1 01%,[1 0] )" £11(x5%))
1°72
etc., so that G can be thought of as the matrix-valued function [fmn]. One
needs to be careful, however, in defining 2-tensors on a general manifold since

manifolds generally are nonlinear.

b b "¢ L
Let ToL '’ R xR + R x R be the projection map defined by

and let 1:I » ]Rb x IRb be the inclusion map defined by
1(v,i) = (v,1). (8)
Set
rt TeLl - 9

Assume that I is a submanifoldl and let 7* and 1* be the induced maps of 7 and

1, respectively [3]. It is shown in [4,5] that the vector f:l.eld2 }_((

(v,i) € I is given by the following formula:

.y at
v,1i)

-~

lAlthough A and K are perfectly well defined submanifolds, their intersection
may not be a submanifold [3].

2A vector field X on a manifold I is a function such that the value §(v 1) at
g v,i

(v,i) € I belongs to T(v i)}: , the tangent space of I at (v,i). The vector

~T Vad

field X naturally generates a flow ?(t) such that d?(t) /dt = X o (L)

-5-



Sy, (3 078) = @0 foral g e T 2 (10

~ 7 -

where

W 1%n.

(11)

If (YC,j.L) serves as a global coordinate for I, then

dv di
=(=¢C _=L
Xwo1) T <dt » dt ) (12)

and (10) is reduced to

C(v,) 0 v
A C -~ _dd_t- "C = E(YC’:!-L)' (13)
Q -I:'(i'L) i

. . . T _
where F is determined by (i.,-y;)" = F(Vs.i,).

III. Transversality

In order for 7*G and w to be well defined, the configuration space I must
be a submanifold. Even if A and K are perfectly well defined submanifolds there
is no reason to expect their intersection I to be also a submanifold. A
sufficient condition for I to be a submanifold is the transversality [3] of A
and K, which is abbreviated by A M K. It is shown in [5] that if A MK, then
Z is an (nC+nL)-dimensional submanifold. This is true for any ct submanifolds,
r >1. We first give a method of checking transversality of .. and K. To

this end let CJabe a tree for g and let S.‘ebe its associated cotree. Let v

and i be partitioned accordingly;
V= (Y,ivg), 1= (4,01, (14)

Let B be the fundamental loop matrix associated with CT Then

B=11.B4. (15)
Since A is a C? submanifold of dimensional 2b-ng, for each point (YO,:EO) € A,
there is a neighborhood U C ]Rb X Rb of this point and there is a c? function

n
f:U~> R Rsuch that
n - -l
ANU=£7(0 (16)



and

rank(Df) (v,i) = R for all (v,1) €A N U, (17)
~’~

where (Df) v.1) is the derivative of f at (v,i).
~,~

Propositions 1 and 2 and Corollaries 1 and 2 which follow have been proved in

[3] for nonlinear resistive n-ports.

Proposition 1 A fT\K if and only if for each (v,i) € I

rank q(y,g) = np (18)
where
A . T
Fv,i) = D, £- (@ £ B D £ + (D, D)B,] (19)
=~ M e JI-Tg ~3 (v,1)

where l}v f denotes partial derivative of f with respect to v Other symbols

3!
~J
have similar meanings.

We next give special cases where A of (1) is given by

b

b .
A= {(y,1) €ER™ x R |(yp,ip) € Ay} (20)

"R “r

where AR is an n.R-dimensional C?' submanifold of R X R . In this case there
is no coupling between (YR,iR) and (YC’YL’iC’iL)' Therefore f of (16) is

A ( Y “R) Ty
1 = N i H
independent of (YC’YL’}C’i“L)' Let UR U NR x R and define gR : UR + R
simply by
A
fr(vpoig) = £(v,1). (21)
b "r n
Next let EI'{: Rb xR =+ R x TR R be the projection map defined by
and let
A
™~ 1‘1'1°l (23)



where 1 is defined by (8). Decompose v and i as follows:

v= (Y,f:Yg) = (YR; ~Cy’ -Lz ~RJ ~CJ

(24)

[F=N
}

= Gpip=a

.,1i)
”Ri.~ci."gi ~R ~C ?

J
where R, C and L denote resistors, capacitors and inductors, respectively,

Decompose gg of (15) accordingly;

— =

=| B B B (25)

Bir Brc Brp

— [

Corollary 1 Let A be given by (20). Then A ﬂiK if and only if for each
(Vpoip) € 1,(2)

rank%" (vpolp) = mp (26)

where

LA :
CJR(YRQR) = [PvR fr = (D, fp)Beg! (D £R) [Bpe Brel:
“Ry "Ry Ry

T . T
Dy I+ (B fR)Bpg! @; f )[BCR LR]' 27
- ~R g ( R)

D £=[D f

Pv b D, 00], D, £=1[D £,00]

D, £ = . . s
~ig~ ~}R3~R ~%i~ ~i_ ~R

|
~—
o
Hh
O
=)
Sd
-

o
rh

]
—
o
H
O

01.

Substituting these into (19), we obtain (27). Since (Y,g) € I, the vector

(vp,1,) must belong to T (Z) H
~R’~R

Remark Note that Qj.ls arbitrary. However, assumption (e) implies that there

exists a proper tree.3 Consequently, if we choose a proper tree, then

submatrices BRL’ BCR’ BCC’ BCL and BLL are 0 x 0 matrices and the matrix of (27)

tkaes on a particularly simple form.

Next suppose that AR admits a generalized port coordinate [3], i.e.,

AR is represented by

3A tree is called a proper tree if it contains all the capacitors and its
associated cotree contains all the inductors.
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[l
R
[y

<

= , £ = F(n) (28)

>3
=2
1O

[N

R R 2

where o, B, Yy and § are np x np matrices and F: R x R is a C° function.

Recall the partition vp = (yRo{Ey 5), ip = (iRi:.iRg) and partition a, 8, y and ¢
accordingly;

o = [o;i9,1, B = [81:8))s v = [ygiv,]s & = [§5:8,) (29)

Also recall that A.R is said to be globally voltage controlled [3] if £ = %R’

n = v, and globally current controlled if § = VRpr 0 < j_.R.

Corollary 2. Let AR admit a generalized port coordinate representation. Then

Tty 2 [(‘3‘2'(13?)1’2);(9‘1'(93)1'1)?’111{2'(91'(9@!])[@1{0 Brl:

(B1-@B8;) + (8,~@E)8,) g (8- @E8, ) 18T @ERﬂ (
vR,i

~R)' (30)
In particular, if AR is globally voltage controlled, then
5 Brr|. Bee Bmu|f P[] 9 0
F (vpoty) = | @B 4 |- @B dor eI LT (31)
R R Pt B I A L = 5
YR
and if AR is globally current controlled, then
CJ’ “Ber|.| Bre “Ery. L. ¢ o
(vp,1,) = . . =(DF)| ,T |. =(DF)| T T (32)
RERTR L 2. By . %cr Pir||, .
R.
Suppose that AR is globally parametrizable [3], i.e., Ag is globally
diffeomorphic to ]RDR and write
A -1 "R
(vp@13@) 2 ¥77(), o E R (33)

n
where V¥ : AR >+ R R is a global coordinate.

Proposition 2 Let AR be globally parametrized by p as in (33). Then A /T\ K if

R

and only if for each p € R ~ with (YR(Q),iR(Q)) € (D),
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ranﬁi};(g) =n, (34)

where
Dv, + B ‘-B_. -B 0 91
T (o) = Re iR Ry. “RC “RL T T (35)
o} 4 0

Remark Formula (35) holds even when AR is locally parametrized by p at each
point. 1In fact (35) holds if and only if rank J = 2nR where J is the matrix
defined by Desoer and Wu [6].

Suppose now that A}ﬁ,K. Then it would be helpful if one can perturb<,k’in
an appropriate way such that the resulting network satisfies transversality.
In the following we give two perturbation results. The first method involves
element perturbation and consists of perturbing the existing resistor constitutive
relations A. The second method involves network perturbations and consists of
augmentingg)“ by adding arbitrarily small linear inductors and arbitrarily large
linear capacitors by pliers-type entry, and by adding arbitrarily large linear
inductors and arbitrarily small linear capacitors by soldering-iron entry.
Therefore, in the limit we recover the original network. Notice that this pro-
cedure consists of adding parasitic capacitors and inductors at appropriate
locations. |

In order to give a tramsversalization result via element perturbation, let
us first define a 02 perturbation of A. Let M be a C2 submanifold of R" and

let CZ(M,nf5 be the set of all 02 maps from M into R". Let F€E CZ(M,HJH
and consider

- ¢ € ¢, ’™ 3

IF(x)-G(x)! + | dp), - (gg)xll

Ursece)) & <§ M > R 2 2
+ I N -« g)x" < e(x)

~

. for all x €M <

-~

where e(§) is an arbitrary continuous function from M into the set of positive
numbers and gzg and gzg are the second derivatives. These sets generate the
strong C2 topology for CZ(M,IRn) [11]. The set Embz(M,Bfl) of all C2 embeddings
of M into R" is open with respect to this topology [11]. Letcllz(LM) be a

-10-
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neighborhood of the inclusion map such that all elements ofcu (1 ) are
embeddings. Then a 02 perturbation M of M is defined by M G(M), where
QECUZQM). The following is our first transversalization result via
element perturbation. Although the proof is similar to that of Theorem 3
of [3], there is a technical difference because of the C2 perturbations

instead of Cl perturbations. Proof is given in the Appendix.

Proposition 3 Given a nonlinear networng let A " K # ¢ and A mK Then there
is a perturbation A of A arbitrarily close to A in the strong 02 topology such
that A NK # ¢ and f\fT\K

The next result gives a transversalization procedure via network

perturbation. The proof is similar to that of Theorem 4 in [3].

Proposition 4 Given a nonlinear networkLN, let A DK # ¢ and A % K. Let ‘J be
an arbitrary tree for Q and let Cée be its associated cotree. Insert a small
linear capacitor in parallel with each branch of CJ and insert a small l]';‘near
inductor in series with each branch of S,e Then the perturbed network N has
the follow:i;ng properties: (i) ANk # ¢, (ii) f\m ﬁ, where K is the Kirchhoff

space of (_N

If A has simpler forms, then the number of reactive elements added can be
reduced.

Proposition 5 Given a nonlinear network gNlet A be represented by (20). Suppose
ANK# ¢and A% K. Let q be an aribtrary tree for Q and let S‘,e be its associated
cotree. Partition ‘J and &,Q as g = %TR v ‘JC ) gL and %,9 = QR U S,Q.C Y %EL
respectively, where R, C and L denote resistors, capacitors and inductors,
respectively. Insert a small linear capacitor in parallel with each branch of

s R and insert a small linear inductor in series with each branch of SA’ Then

the perturbed network ﬂ satisfies the following properties: (i) ANk # ¢,
1) AA &,

Proof. (i) Let g denote the branches representing the capacitors added in
parallel with C-J and let %?l denote the branches representing the inductors

added |in series w1th g Then CJ U U C’J Cj U%e is a tree for J‘
and ‘ée 4 E;Q U &9 U %e UCJ is its assoc1ated cotree. Let

v = (¥p »¥e ’YL‘t’Yil L YR Y ’Ygl’YLg)
’ (36)
i = (i , 51 : . 1, 51 ,i- s 1 )
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A
be the variables of LN Let

(Yoago) € ANNK# 0, (37)

va = [v v 'V v v v
~0 (~R ’sC ~L . =~ ’~C_ ’~L )
T %o Zo: T o N

(38)
i = (i i i i i i
~0 (~R °IC, °SL, . SR ’*C_ °~L )
Ly %y 49. TJg I 9
We first claim that with
v 4 v v v 0. v v V. \
20 (~R *Xc_ ’<L, ’~ . <R, *Jc_'Rr Y )
% %o % : % Y I I (39)
s A .. . .
i ={1i i i i .1 i 0,1
~0 (~R °2c. ’ 1, SR, I SR, ’~C_ *<°L )
50 Lo %o *o: %o T %
we have
(vpigy €K A (40)

Since (\:ro,:io) corresponds to open circuiting gl and short circuiting %Bl and
since such a situation is contained in f(, we have (40). Next, since no resistors
are added, we have

A= 1@, | v,1) €t (41)

This implies that
Fpiy €A (42)

which together with (38) implies (i).

A A

(ii) To prove Aﬁ\ K we compute matliix i}’(‘!’i‘) of (19) for (_Al ,Observe that
the fundamental loop matrix ]} for LN associated with the tree CJé.assumes the
following form:

v v v v v v v v
Ry Yog g 2 D TRe Yo Ymp g

) to 0 -1 o)

: Q <CC =CR =CL
1 . 0 B (43)

. < ~LC -~LR -~LL
+ 1 Bpe Bpr Bpp

L _




where the submatrices in (43) correspond to those of B for(JU. (See (25)).

The sign of the idehtity matrices in (43) are chosen merely for convenience

and involves no loss of generality. Next notice that

- " . AT
‘ER - gR’ gRR =0, §RC = [0 -1], gLR B [9 1]
B =0, Bi =0, (Vurie) = (Voriy)
RL - ¥ Zcr T % Wreir) T Hpeir’s
G By Gl R
3 Z 1L 3
~ - = ~ ~ Y- = . f -
Pi'R gR D;’R §R’ D}R gR Q%R “R
g -4 Z )

T i) =[]~)v fp:Dy fp:ly fR:Dy f]

TR, NI YRy VTR LR N
= (Df,) . (44)
(vpsip)

This is exactly the same as the matrix of (17) where f = gR'

Consequently it
has rank np. By Corollary 1 we have A (T\f(

n

Example 1 Consider the circuit of Fig. 1(a) where the resistor constitutive
relations are given in Fig. 1(b) with i

=f (v, ), k =1,2, Choose
e B B

- - - -4 4 -
gr— {Rl’RZ} to be our tree. Then §RR = §RL = §LL = ¢, §LR = [1 1],

-Df, O
D £ = Ry , D f_ =6
VR R “VR ~R
J 0 -Df 2
R
2
-
1 0
S S W LIS S
Ry “Ry

4We denote a 0 x 0 matrix by ¢.

-13-



Therefore (27) is given by

-Df 0 .1
Ry :
C‘}R(YR’%R) = : :
0 -Df .1
Ry . Y
~R
) ik = =
Now, for the value ix in Fig. 1(b) we have ik le(leO) fz(szo) and
- - . . . 1A
(DfR ) = (Df, ) = 0, It is clear that the point (YR »ig ) (vR Ve
lv v 0 0 10 720
R R
10 20
i*) belongs to ¥ (E) Therefore rank’T (v ) = 1 < 2 and hence Aﬁ(K.
Now insert Cl and C2 as in Fig. 1(a), then (44) tel?s us that
—
-DfR 0o .1 a
F. ool ' ;
O (vo,in) = (DE)) = .
‘VR ~R ~R ~~R .
(Vo ig) 0 -DfR2 to 1 .
S —/~R
which has rank 2 = np. Therefore i\(.f\ K. o

The transversalization procedure is further simplified if A is described

by (20) and AR is locally voltage controlled [3], i.e., there is a C2 function

n n n
fR:R Rx R R—>]R Rsuch that
A, = £21(0) (45)
R ~R '~
and
rank (D fR) = np for all (vp,ip) € 4Ap - (46)
(VRsl )

Proposition 6 Let A be described by (20) and let AR be locally voltage controlled.
Suppose that A N K # ¢ and Aﬁ(K. Let CJ’ be an arbitrary tree for g and let

Q be its associated cotree. As in Proposition 5, let q = gR ) qc U (J , %e

= %’QR v C».;ec U S&PL. Insert a small linear capacitor in parallel with each

14~



A
branch of qR. Then the perturbed networkLN has properties (i) and (ii) of

Proposition 5.

Proof (i) can be proved in a manner similar to that of Proposition 5.

(ii) It is clear that ﬁ ‘J’ Uq Ug is a tree forgN and C,;,? %Q Ug

U gf LJSQ is its associated cotree where QJ’ represents the branches of the

capacitors added. To compute CT(VR.l ) observe that the fundamental loop
matrix § forg,A’is given by

v v v v. . v v
“Rg “Ry ~Cg ~Lg: ~Cqy =7 "L
rr : —
P01 0
L : Bre Err Emi
" : Bec B Bar
L P Be Pr Pup
where the submatrices are those of B forL)U. Therefore B__ = ﬁT = ﬁT = ¢
~ ~RR  ~CR ~LR ’
0 -1 0
Bre © B s | Bpe = B
~RC ~RR ~RL

Substituting these into (27) we have

F. & i)=[—(b £ )[B ]D ] (47)
ZR'-R2IR Dy IR Brc Bm 1R
*R (vpoig )

Since Ap is locally voltage controlled, (46) implies that the matrix of (47)
has rank np. o

A dual argument shows the following:
Proposition 7 Let A be described by (20) and let AR be locally current controlled,
i.e., (45) holds and
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rank (pv fR

= S
) ny for all (yR,gk) AR. (48)
~ R (YR’ j‘R) .

Suppose that A N K # ¢ and Auﬁ(K. Insert a small linear inductor in series with
e§ch branch of %QR? where ng is as in Proposition 6. Then the perturbed network

LA]has properties (i) and (ii) of Proposition 5.

IV. Well-Posedness

Recall that transversality of A and K is a static condition in the sense
that it has nothing to do with the dynamics oijU. In order to motivate the

discussion of this section we first consider the following example.

Example 2 Consider the circuit of Fig. 2(a) where AR is given by Fig. 2(b) with

Vg = g(iR). If we choose %]’= {C} to be our tree, then BRC =1, DVR.fR =1,
£
D, £ = -Dg and rank g;'(v »i,) = rank [-1:-Dg], = 1. It follows from
ip R R 'R R . lR
L

Corollary 1 that Aiﬁ K and I is a perfectly well-defined l-dimensional submanifold.
The dynamics, however, has points where it is not well defined. To show this

observe that gR serves as a global coordinate for I, i.e., (vR,vC,iR,iC)

= (g(iR), -g(iR), iR’ iR). In terms of this coordinate, the dynamics is given
by

diR :
P T = “9

Since (Dg)i = 0, differential equation (49) is undefined at iR = iR . Therefore
R

0
(49) cannot égfine a unique vector field at i This observation naturally

Ry’
0
leads to the following definition.

Definition 1 Given a nonlinear network,LA’assume that I is an (nC+nL)-dimensiona1

C2 submanifold. Then(JM is said to be well-posed if at each point (v,i) € z, (19)

determines a unique Cl vector field g(v 1) € T(v i)Z. Ifg}Uviolates this property,
PR ~?<

it is said to be ill-posed. Any point (v;i) € I violating the above condition

is said to be an impasse point.

Remarks 1. Observe that "well-posedness" is a coordinate-free definition

corresponding to the concept of "local solvability" in Chua and Wang [7]. Smale

[4] uses-"regularity" instead of well-posedness. Since well-posedness is a
coordinate-free property, one needs to check it in terms of only one coordinate.
On the other hand, if ill-posedness occurs with respect to one choice of

coordinate, then no matter how cleverly one chooses another coordinate, one
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cannot eliminate ill-posedness. For example, in Example 2, there is no choice

of coordinate which avoids (Dg)iRO = 0.

2. Let us explain why A must be c? in order to define a Cl vector field.
This stems from the fact that, in general, a ¢’ vector field can be defined
only on a Cs manifold with s > r. Consider, for example, the circuit of

Fig. 2(a), where g is a global Cl diffeomorphism (not that of Fig. 2(b)).
Hence iR = h(vR) where h = g—l and h is also a global C1 diffeomorphism. The

sets A and I are C1 submanifolds. Capacitor voltage v, serves as a global

c
coordinate for I and the dynamics is given by
de ) h(-vC)
dt C :

The right hand side is Cl. Now it is clear that iR is another global coordinate

for T and the dynamics is given by

diR iR

it  (Dg), °
iR
Since g is Cl, the right hand side is only CO. This gives rise to a problem

because the differentiability depends on the choices of coordinates. If we
assume, however, g is CZ, then the right hands side of each equation is at least
gf. Therefore Cl-ness does not depend on the choices of coordinates. More
generally, let X be a vector field on I and let (UNZ,y) be a local chart at

(v,i) € L. Then a natural coordinate representation is
X . = (d X .
Wy v, = W (v, 0¥, 10).
If (VZ,¢) is another chart, then for (v,i) €U NV N T one has

= -] —10
(§(?))?(Y,§) = d(¢ey lk)(g,})z{(\!,i)

-1
@Y D v, 1) 4D (v, 1)% (v, 1)

]

-1
@097y 1y B

y(v,1)

Therefore, if we want X(y) to be ct independent of the choice of coordinates,
we must require the change of coordinates dy o Q-l to be C'. This requires

¢ o ?—1 to be at least Cr+1.

LI to be at least Cr+1.

But this is exactly the condition required for
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Let us now look at well-posedness from a more general view point. Recall
(6), (9) and (10). Observe that y*g( i)(-,-) is simply a symmetric bilinear
f i.e., m*G *
orm on T( i) ~(v i)z i.e., TG (v, )(ﬁl, ) and T G( v,i )( »£,) are linear
* = %
and T G( i)(51,52) T G( i)(Ez,él) for all £1259 € T( ,i) In Example 2,

in terms of the coordinate 1R’ we have g*g( 1) C(Dg) di ® di .
~’~

R
Proposition 8 Suppose that I is an (n +n ) ~dimensional C2 submanifold. Then

L}Uls well-posed if and only if at each point (v i) €z, E*Q( i) is nonsingular,
,

i.e.,

T*C(y,1) F1o8p) = 0 for all &) €T, )T dmplies ) = Q. (50)

Proof We look at g*g(v i)(-,-) in a slightly different manner. Consider the

map J( ,i) defined by
P TG .
Y, 0 " 8" T, ¢ ) (51)
To each El, the map J( ,1) assigns the linear funct10na15 T G(v )(El,') on
,
( i) A linear functional on T( v,i )Z belongs to its dual T( i) This

means that J = %G (+y+) maps T L into T% It is clear that
“( V.31 ) ~ (Vs ) ( Vel ) ( i)
(50) implies that J ~( 1) is an 1somorphlsm and thereforé it is invertible. It
follows from (10) that the vector field X( 1) is uniquely determined by
’

-1
X . =J .
~(v,1)  S(v,1)%(v,1) (52)

In order to show that X is Cl, recall the definition of 74G;
*
H G(Y’i)(gl,g ) W,V )((~~)( )El,(gﬁ)(y,§)§2) (53)

vhere £,, £, € T(v’i)z. Since I is Cz, the map (dm) is cl. Therefore g-l

is Cl. Similarly, ; is Cl. This implies that X determined by (52) is Cl.

Conversely if g( is not an isomorphism, (10) cannot determine a unique vector

v,1i)

~ 7 -~

field. o

Corollary 3 Let G( 1) be the matrix representation of w*G v,1i)
v,1 v~ :

to a particular choicé of coordinate for I. Theng)Uis well posed if and only if

~

G, .
”(Ys})
Proof The map J(v 1) defined by (51) is an isomorphism if and only if its
2root < (v,

with respect

is nonsingular for all (v,i) € I.

~7 -~

matrix representation with respect to a particular choice of coordinate is

nonsingular. H

5A linear functional is a real-valued linear function.
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Proposition 9 Let I be an (nC+nL)-dimensiona1 C2 submanifold. Then LAJis

well-posed if and only if for each (Y’i) € 1, the following map is an isomorphism:

n

I .z > T
(v,1) * “(v,1)

i.e., 7 is a local diffeomorphism, where m is defined by (9).

Proof Recall the definition (53) of T*G. Since G defined by (6) is nonsingular

in the sense of Proposition 8, we see that T*G is nonsingular if and only if

(d7) .. is an isomorphism. o
=" (v,1) P

In Example 2, in terms of the coordinate iR’ we have n=g. Therefore

%G, .. =2C (Dg)i diR® dip becomes singular when (Dg)i = 0.
’ R Ro
The following is essentially a restatement of Proposition 9.

Corollary 4 Let ¥ be an (nC+nL)-dimensional C2 submanifold. Then gA‘is well-

posed if and only if at each point (v,i) € I, (Yc,gL) serves as a local coordinate
for I.

Remark Because of its coordinate-free property, Corollary 4 has an interesting
circuit theoretic consequence. It says that if (10) fails to determine a

unique C1 vector field with respect to capacitor voltages and inductor currents,
then there is no choice of variables in the network in terms of which (10)

defines a unique Cl vector field. Conversely, if (10) specifies a unique C1
vector field with respect to one coordinate system, then it specifies a unique

Cl vector field with respect to capacitor voltages and inductor currents also.

This shows that capacitor voltages and inductor currents are a good choice of a
coordinate system to describe the dynamics. Of course, this is not true if
capacitors and inductors are not described by (2) and (3), respectively. Consider,
for example, the circuit of Fig. 2(a) where the capacitor is described by

Ve = f(qc), the resistor is described by iR = g(vR) and f is not injective.

Then the dynamics is perfectly well defined in terms of 93 9 = q(—f(qc)).

It is clear, however, that the dynamic; cannot be described in terms of V-
“heorem 1 Let I be an (nC+nL)—dimensional C2 submanifold and pick a proper tree
;T. Then.LAjis well-posed if and only if for each (v,i) € Z,

det (v, 1) # 0 (55)
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v 4 v, Y 7LR .

Ry Ry Ly :
D, £+ (D, £)BL + (D. f)BY . (56)
=i~ T Wi S/ERR T Y 3Re

“Ry "Ry ~Cy (v,1i)

Proof Let (?,ZFU) be a local chart for ¢ at (v,i). Then (d1r)(v 1) is an
— - ~3¥3

isomorphism if and only if (ngw 1)‘1)(v 1) is a nonsingular matrix. Since
~ ’

y°@-1 = Top, ° 1 ° ?_1, we have

-~

(L

0-1 = o o
(Dmey )?(Y’i) = (Dm.p) (dl)(Y,i) DY )?(Y’%)' (57)

(v,1)

Since (dl)(v 1) is a linear inclusion map, the matrix of (57) is nonsingular
~~"(v,i
if and only if

-1
N =
Ker(QgCL)(Y’i) Im(Dy )?(Y’é) {0} . (58)
b
Let g: U+~ R +nR be defined by

By
g(v,1) =| Qi (59)

£(v,1)

where B and Q are fundamental loop and cut set matrices, respectively and f is
as in (16). Since : NU = g-l(Q), we have [3]

L= Im(Qw-l) = Ker([)g)(v (60)

T, . =
(v,1) ¥(v,1)

It follows from (58) and (60) that the matrix of (57) is nonsingular if and only
if

N =
which is equivalent to

Dg

rank | =2b . (62)

==Cld(y, 1)
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Computing the matrix of (62) one can easily show that it has rank 2b if and only
if the following matrix has rank binp:

Re  Le "Ry Re Ry Gy
1 0 BrR O
0 ~
e R e (63)
T
e TR Y
b, £ B, £ £ D fD £ f
L R, L, YR, Ry Ry Cy |

By further elementary operations, one can show that this matrix has rank b+nR
if and only if (55) holds. "

Corollary 5 Suppose that A is described bf (20) and that % is an (nC+nL)—
dimensional C2 submanifold. Then LAJis well-posed if and only if for each
(vgoig) € 1p(D)

det%}ﬁR(YR,QR) #0 (64)

where

. A L4
%}R(YR’}R) '[D fr - @ fRBpeil fr* (D

£B J
~v v R ~RR

(65)

and gR is as in (21).

Proof If A is described by (20), then f is independent of (YC’YL’éC’%L)' This
implies the result. =

Example 3 Consider the circuit of Example 2. Since%}J (VR,lR) = -(Dg)i , it
fails to have rank 1 at iR = iR and therefore this circuit is ill—posedg

0
Example 4 Consider the circuit of Example 1, where AR is given in Fig. 3(a)
with i, = f_ (v, ), k = 1,2,. Since

e Ak

ZACAEIIE



and since DfR1 and DfR2 never vanish simultaneouslv, rank.%}%(yR,gR) = 2,

Consequently A}R K and I is a l-dimensional submarifold. Since
CJ.S’R (YR’ ii:R) =

there are points where det%}éR(YR,gR) = 0. Therefore the circuit is ill-posed.
If we use Corollary 4, we can see this more clearlyv. Consider the projection
CI?of L onto the (vL,iL)-space given in Fig. 3(b). 1If we further projecthg
onto the iL-axis, we see that iL cannot be a local coordinate where the curve
intersects itself. Therefore(JU is ill-posed.

Corollary 6 Let A be described by (20) and let '_ admit a generalized port

R
coordinate representation. Suppose that I is an (nC+nL)-dimensional C2

submanifold. Then
Wy oo 1) = [(9‘2'(9]’:) Y ) = (21- @Dy )Beg

(8, - @m8,) + (e, - (PF)§2)§§R} R (66)

where ¢, B, y and § are as in (29). In particular, if AR is globally voltage
controlled, then

B
Wy trpoip) = | @D

4 ol

RR .
T (67)

1

{31

YR

and if AR is globally current controlled, then

¥ ] ;
i = .- . 8
e (Vpsip) Ll (DE) T (68)
- =J ~RRJ
Ip

Recall (33). 1If AR is globally parametrizable, then the following holds:
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Proposition 10 Let A be described by (20) and let A be globally parametrizable.
Suppose that I is an (n ) -dimensional C2 submanifold. Then(ukjls well-posed

if and only if for each p € nanR with (YR(E)’éR(p)) € 1. (2),
rank *(p) = ny (69)
where
D¥p, * Ber(2¥r,)
A
FH*@) = T . (70)
~ Di_ - B ( i )
~“Ry  ~RR\-~Rg
p

r -
v, (p)
~Ri Lo
V.
} 9 :§RR §RC "Lz
. =0
6 1'm Y @) = 0 (71)
~ ~*JLR ~LC v
~C‘J
- _
. -
i (@)
L BT ‘1 0 1Li
RROOCLR T TNy =0 . (72)
T T ; (p)
Bre B 01 }RD ~
i
~C
LI
Let us write (71) and (72) as
hp,v. ,v. ) =0. (73)
~’~Li’ ~Cq ~L1 ~Cg -

Then I = b (Q). By a similar argument to that of the proof of Theorem 1 we
see that (58) holds if and only if for each (p,v. ,v o4 L1 ),
R R AR

(b
rank L?WCL =b + n,+n; . (74)
(R>vy Ve s1p »ig)
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More explicitly this matrix turns out to be the following:

e )4 4 i i
Le "G Tk G
~ i
QYR;IERR@YR,_,) - B - .
Be (P¥p ) B - . (75)
T . T
gRR(Pi'Ri)HB}RJ . . -§LR .
T T
“Brc(PLg ) ‘ © B 2
L
. . 1 .
L] L L] ‘]: .
— -
where * denotes a zero matrix of appropriate dimension. By elementary
operations one can show that (74) holds if and only if (69) holds. 0

Remark The above result holds even when A, is locally parametrized by p.

In fact (69) holds if and only if K is nongingular, where K is the matrix
defined in [6].

Now observe that%}?(y,;) is a submatrix of %}ky,g). This implies the
following:

Proposition 11 If (55) holds, then A fT\K and J] is well-posed.

Remark Similar results hold for Corollaries 5 and 6 and Proposition 10.

While Theorem 1 assumes that I is an (nC+nL)-dimensional C2 submanifold,

Proposition 11 does not assume it.

In many practical networks, 7 is a global diffeomorphism, i.e., all
variables in the network can be globally expressed as a function of (yc,gL) and

nC+nL
hence I is globally diffeomorphic to R . Of course(,l]is well-posed. 1In

Example 4, LA‘is not well-posed and I is not diffeomorphic to I(l. A question

arises; are there networks such that I is a submanifold not diffeomorphic

nginy,

to R , yet they are well-posed? The answer is affirmative as the following

example shows.

Example 5 Consider the map F: R 3, R6 defined by

y

F(x,y,z) é’(eycos x,e’sin x,z,y, cos x, sin x).

For x,x' € R, define the equivalence relation x ~ x' by x - x' = 2kn where

~24-
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k is an integer. Clearly, then, the quotient space of R with respect to t?is

. 1, 2
equivalence relation can be regarded as the unit circle $7 in R 3 R/v=1S8",
Let [x] denote the equivalence class. Then F naturally induces the map

E:slxR2+R6by

B(1xl,y,2) 2 Exy,2). (76)

Since

ey(-sin x) edcos x dw
ey(cos X) edsin x 0
dF = 0 0 1
(~~)([x],y,2) '
0 1 0
L -sin x cos X 0
([X] ' Yo Z)
and since B y y i
e’ (-sin x) e’cosx O
2
det = | e’ (cos x) eysin x 0|l=e7Y4#0
0 0 1
L; —

we have rank (gi)([x] v,z
s 9’

)= 3 for all ([x],y,z) € S:l x Rz. Therefore i: is an

e 122 4 y2 41,

we have "f([x],y,z)“ + ® as I(y,z)l + ®». Hence E is proper [11]. Consequently
it is an embedding [11]. Define

immersion [11]. Clearly F is injective. Since “f([x],y,z)ﬁ2=

~rol oo 2
hg = Bshr Y, )
Vg = eV cos X, Vp = e’sin X, Vp =2 > 77
1 2 3
iR = vy, iR = cos X, iR = sin x J

2 3

This is a parametric representation of AR. Consider the circuit of Fig. 4 where

AR is described by (77). 1It follows fromthe above argument that AR is a
3-dimensional submanifold diffeomorphic to Sl x 3.2. It is clear that I is
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2
diffeomorphic to AR and therefore diffeomorphic to Sl x R~. Note that (x,y,z)

is always a local coordinate for I. (not a global coordinate). Choose
%],= {Cl,Cz,C3} to be our tree. Then, with p = (x,y5,2), the matrix of (70) is
given by

-eysin X eycos X 0

g}é*(g) =| e’cos x e’sinx 0 .
0 0 1
4
Sq * _ 2y LAI' .
ince detglé (e) = -e" 4 0, is well-posed. Consequently, the dynamics of
LAjis perfectly well defined everywhere on I, yet there is no global coordinate

in terms of which dynamics admits a global state equation because I * Sl x th

/ R3.
We next give a perturbation result on well-posedness. Recall that AR is

n n n
said to be locally hybrid [3] if there is a 2 function £,: R " x R B R R

such that

-1
Ny = £21(0) (78)

and
det ((ggR)A) (gpot) * 0 or all (i) € iy (79)

for some fixed 2nR x nR matrix A, where each column of A has either of the

following forms:
(0,...,0,1,0,.o.,o,o,...........-..0)

(0’.......‘.....’0,0,'..’0,1,0’.'.’0) .
(. J J

~"" N

"R R

Let
(DfR)A . = [Fiyeee,F ] (80)
(@e8) 1 = Frreeoy

and suppose that Ek corresponds to iRk (resp., v, ). Then that particular

R

resistor is said to be locally voltage controlled (resp., locally current
controlled).
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Remark Observe that in (45) and (46), local controlledness is defined for AR’
whereas in the above definition, local controlledness is defined for each

resistor provided that AR is locally hybrid.

Theorem 2 Given a nonlinear network gA]assume the following:
(i) A is described by (20) and AR is locally hybrid.
(ii) A NK # ¢.

Then, by adding small linear capacitors and small linear inductors approgfiately
A R R -~ "
we can obtain a new network (A such that (1) A N K # ¢, (2) AN g, (3) Nis

well-posed.

Proof Pick a proper tree %]’containing a maximum number of locally voltage
controlled resistors and a minimum number of locally current controlled

resistors. Let Sf denote its associated cotree. Partition (Y,g) in the following

manner:

elements voltages currents
locally voltage controlled Yy éV
resistors in £ 4 <
locally current controlled Vi iI
resistors in L Z b4
inductors in L v i
locally voltage controlled vy éV
resistors in J J J
locally current controlled Vr %I
resistors in J J J
capacitors in J Yo iC

The fundamental loop matrix has the following form:

v v V. « V Vv v
“Vy I, -L : "y ~I; ~C
— : -
- B 0 B
LR vC (81
C : Brv Bir Bic
- B B B
_ + "LV <L -LC|
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The submatrix §VI = 0 because of the choice of the tree. Now insert a small

linear capacitor in parallel with each locally voltage controlled resistor in

gyand insert a small linear 1nductor in series with each locally current
controlled resistor in S;Q Let g ‘J U S,Q U g U CJ , where CC_T is the
branches of the capacitors added, I denotes logally current controlled resistors

and C denotes capacitors. It is clear that ET is a proper tree for the new network.

Statement (1) can be proved in a similar manner to the one in Propodsition 5. To

prove (3) observe that the fundamental loop matrix for(,A‘with respect to ZT
the followirg ferm:

+ 9 0 By By
o 0 0 4
1 : (82)
B 9 B By
cBrr 1 B By
- J

where %Q represents the inductors added Since no resistors are added, A

the same as AR We compute the matr1x€}d (VR,lR) of (65) forL)U It follows

from (82) that §RR 0. Since va = (v V ’*V ), v 2 g (VID,V ), i i ~ ;V )
and = (1Ij ), we have

gﬁ.‘k(‘:’k’ik) = (83)

(vIJ ,in)~R.D(i 1) R (v 1)
Observe that the matrix (83) depends only on (vR,i ) and if (GR,iR) € % (f),
then (v ,1 ) € A Since (83) is obtained simply by exchanging columns of the
matrix of (80), 1t follows from (79) thatglj (v i ) is nonsingular. By
Theorem l,\,Alls well-posed. This proves (3). By Proposition 11, A n\K This

proves (2). H

Example 6 Consider the circuit of Example 1. Since the resistors are voltage
controlled, insertion of él and @2 yields well-posedness of the circuit.
Therefore the perturbation in Example 1 was already good enough to ensure not

only transversality but also well-posedness.

Example 7 Consider the circuit of Example 2. Inserting a small linear inductor

in series, one can make the circuit well-posed.
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Remark The number of reactive elements added in Theorem 2 is no greater than

the number of reactive elements added in Proposition 5. Notice, however, that

in Theorem 2, AR is required to be locally hybrid, whereas in Proposition 5,
the only restriction on AR is that it should be an nR—dimensional C2 submanifold.

The local hybridness assumption cannot be relaxed as the following example

shows.

Example 8 Consider the circuit of Fig. 1(a) where the resistor constitutive

relation is given by the unit circle Sl. (Fig. 5) It is easy to check Aiﬁ K.
2

. 1
In fact I is diffeomorphic to §°. Since fR(vR,iR) = vp + i; - 1 and since

Q}JR(VR,iR) = (Di f we see that detQ}JR(vR,iR) = 0 at points A and B.
R

Therefore A and B are impasse points and hence the circuit is ill-posed. Observe

R (vgsip)

that AR is not locally hybrid since there is no function fR satisfying (78)

and (79) for a fixed matrix A. We claim that there is no way of maE}ng the

circuit well-posed by adding reactive elements. To show this 1et<,A’be a

circuit obtained by‘adding arbitrary number of reactive elements tqﬂthe original

circuitL)U. Then, by (65), e1ther§3$k(vR,1R) = (DinR)(VR’iR) org}JR(vR,lk)

= f
(DVR R)

there are points such that detg}J(VR,iR) = 0. Since well-posedness is coordinate

R)(v i depending on how the reactive elements are added. In any case
R’
free, LAjis not well-posed with respect to any coordinate.

Remarks 1. Note that the perturbation in Theorem 2 is a network perturbation.

It is not known if one can give element perturbations as in Proposition 3

in such a manner that LX‘ is well-posed.
2. The above argument, of course, depends on the assumption that the incremental
capacitance matrix and the incremental inductance matrix are nonsingular. If at
least one of them is singular somewhere, then the above procedure does not

work. To show this recall (6) and (54). If at least one of the incremental
capacitance matrix or incremental inductance matrix is singular at a point

n(y,i), then GE(Y’i) is singular. By (54),E*Q(Y’i) is singular even if

~

(gg)(v i) is an isomorphism. This singularity cannot be removed by adding
~’~

reactive elements because the incremental capacitance or/and incremental
inductance matrix of U\ contains the original increQental matrix as a submatrix
and therefore it is still singular. Consequentlycj“ is ill-posed.

We next discuss relationship between well-posedness of L}U and transversality

of (nC+nL)-port N derived frongM, under certain excitations. Replace
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capacitors and inductors of (_N by ports. The resulting network is called
(nC-!-nL)-port N derived from Jj For the purpose of convenience we keep the
same notation for N as LN For simplicity, we assume that A is represented

by (20). Drive the capacitor ports by independent voltage sources Y: and drive

the inductor ports by independent current sources J:g Let

b

A . b| . .
% 4%) = R = =
Myz. 15) {EY’*) < * R (vpodp) € Apsve = V3o 1 3§}' (84)

This set represents the internal resistor constitutive relations of N under
the excitation (Yg,;*). Since A is of dimension 2b-nR and since Ve © yz and
1 = 1% % 1% _A4= . .

i ix add nC+1:|~L more constraints, A(ya,gb) is a b-dimensional submanifold

~L
b b
of R x R . Recall 7 of 9).

Theorem 3 Given a nonlinear network QAJ, assume that A is represented by (20)
and let I be an (nC+n.L)-dimensional C:2 submanifold. ThengN is well-posed
if and only if for the (nc-mL)-port N derived from LN the following holds:

acet 1) MK for a1l vk, € 1. (85)

Proof Sufficiency Let (yg,i_’é) € 7(Z) and let

| 1) _
G(y,1) = vi (86)

i{;
where f is defined in (16). 1It is clear by the definition of A(Yg,y;) that

{ ) € A(v*,i%) C
for each (v,,1i)) € A(vk,i¥) C A,

-1
ACy*,1¥) N U = ¢(0)
Ya’™b (87)

rank (DG) w.i) = b for all (v,i) € A(Y’;’%ﬁ) Nnu
~’~

where U is as in (16). Using (85), (86) and an argument similar to that of

the proof of Proposition 1, one sees that for each (gz,:}g) S m(Z) and for
(v,1) € L(v%, 1) N K,

B 0 |
rank 0 Q = 2b. (88)
f D.f
~Y.. ~]:'~
- < (v,1)



But since

ANK = ) A(Yg,ig)ﬂK (89)
(v%, 191 (2)

it follows from (88) that for each (v,i) € A N K, (62) holds. This implies
well-posedness.

Necessity If (62) holds for each (v,i) € £, it follows from (89) that
(88) holds for each (v,i) € A(yg,gg). Since (Yg,ég) € n(z), (85) holds. L2}
Remark If A is not represented by (20), the set A(yz,iﬁ) may not be a sub-
manifold. If we assume, however, that (Yz,ig) is a regular value [11] of the

n n
map gCLIA: A+ TR Cxm L, then A(gg,gg) is a b-dimensional submanifold.

V. Eventual Strict Passivity

Eventual strict passivity is an important qualitative property of electrical
networks, because it guarantees that all trajectories eventually approach a
fixed compact subset of the configuration space [8-10]. Roughly speaking, the
results of this section say the following: suppdse that the resistors are
eventually strictly passive and that every capacitor is in parallel with
a large linear resistor and every inductor is in series with a small linear
resistor. Then all trajectories approach a fixed compact subset of the config-
uration space. Since the above assumption is satisfied by most practical
networks, this result guarantees that the voltage and current waveforms are
bounded in most networks of practical interest.

In order to simplify our notation, we assume that A is described by (20).
The general case is not difficult to derive, however. Let Wé: RPR' X qu‘ > R
be defined by

"R
W' (v_,1i.) &

R iR 5 X e e

Recall the map gé defined by (22). Let WR and W be defined by Fig. 6. Clearly

(90)

n n
W is the power dissipated by resistors. Let ECL :IRC x R LY > R be defined by
¢ "c
. = 1 1 ]
Bop (Yoo i) Sr L Cpp(xpve! dve
c m,n=1 m n
i ;E
+s L (N1, ' di (91)
T n‘n=l mn “L°°L L,

L
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where FC (resp., FL) denotes a smooth curve connecting Yo (resp., 1L) with the
n
origin of R ¢

the incremental inductance matrix are always symmetric, CL(vC,l ) does mnot

depend on particular curves FC and P but depend only on the end points Yo and lL'
Therefore (91) is well defined. Set

A
= | o 2
E ECL m (92)

(resp., R L) Since the incremental capac1tance matrix and

where T is defined by (9). The function E is the energy stored in the memory
elements. It follows from Tellegen's theorem that

dE(Y(ﬁi’i(t)) RIS (93)

Recall that a networkg)Uis said to be eventually strictly passive [8-10] if

there is a compact subset @ C I such that
W(v,i) > 0 for all (v,i) € - q. (94)
The following two propositions show the importance of eventual strict passivity.

Proposition 12 [8-10] Let E be proper, i.e., for every a > 0, the set

{(v,1) € £|E(v,1) < o} is a compact set, and let the network A be eventually
strictly passive. Then the set defined by

Ef (w.») €1]5wD) < ay) (95)
@, = max E(v,1) (96)
(v,i)&n

is compact, and for any initial state (v(0),i(0)), either one of the following
happens:

(i) * there is a t1 > 0 such that (v(t),i(t)) € E;for all t > t
(11) (v(t),i(t)) ¢8for all t > 0 and lim(v(t),i(t)) € 8

t-ro0
The set Egcontains most of the important information concerning the

1’

dynamics. In particular, the following holds.

Proposition 13 Under the same setting as Proposition 12, we have

(i) all periodic orbits and equilibria are in 23,

(i1) in particular, equilibria lie in the set
{(v,1) € I|W(v,i) = 0}. (97)

Proof (i) It follows from (94) and the eventual strict passivity hypothesis
that for any (v(t),i(t)) € £ - Q, the instantaneous energy E(v(t),i(t)) is
strictly decreasing. This implies that for (v(0),i(0)) € Z - @, the trajectory
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(v(t),i(t)) cannot come back to (v(0),i(0)). Similarly, (v(t),i(t)) cannot
remain at (Y(O),g(O)), (ii) since E(v(t),i(t)) is either strictly increasing or
strictly decreasing outside the set defined by (97), the equilibria must be
located as specified in (97). o

The set Elin (95) is sometimes called a set of attraction since it attracts

all trajectories.
Eventual strict passivity is a property of W on I, while WR is defined on
AR. These two functions may behave very differently depending on the properties

of 1 and 1 (see Fig. 6) The properties of W_ are easier to check than those

]
R’ R
of W because WR depends only on AR. We need the following:

Definition 2 The resistor constitutive relations represented by AR are said to

be eventually strictly passive if there is a compact subset QR of AR such that

. . E - .
WR(YR’}R) > 0 for all (YR,}R) AR QR (98)

As we will show shortly, (98) does not necessarily imply (94). Smale [4]
poses a problem related to the present one. In terms of our terminology, the
problem in [4] can be rephrased as follows: Suppose there is a number 8 > 0

such that

& 2,.2
Wo(vpodp) 28 30 (v +ip?) (99)

P Y
for all (YR’éR) with “(YR,gR)“ sufficiently large. If condition-(99) holds,
does the network have a compact set of attraction? The answer is no as the

following example shows.

Example 9 Consider the circuit of Fig. 7(a) where all elements are linear and
element values are all equal to one. Observe that

Sy o _J2 .2 2,.2
Wp(vpsip) = vpip = vp = ip > B(vpHip) (100)

for 0 < B < %3 (vR,iR) # (0,0). Therefore (99) is satisfied. Notice that (98)
is also satisfied. We claim that this circuit does not have a compact set of

attraction. To this end let us write the dynamics in terms of (v ,vC ’iL ,iL )3

C1 2 "1 72

de de
c 1., ¢ 2 _ .
1 dt 1Ll’ 2 Tdt 1L2
(101)
dlLl dlL2
L —-—

— 1 o v $R(-i 4L ), L. —2 = -v_ — R(-i. +i ).
1 dc c, iLl iL2 2 Tdt c, L, iLz
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Since all element values are equal to one, for any a € R, the following is a
solution to (101):
v, (t) =asint, v, (t) =asint, i, (t) =acos t, i. (t) = a cos t.
C C L L
1 2 1 2

Since a € R is arbitrary, the solution can have an arbitrarily large magnitude.
Consequently the circuit does not have a compact set of attraction. In fact,
in terms of the above coordinate we have

)2

(Y1) = RG -1 (102)

2 "1
and hence it does not satisfy the inequality in (94). Fig. 7(b) shows a rough
description of the trajectories. Notice that any trajectory starting outside
the linear subspace W = 0, approaches the origin.

Since (98) is satisfied by most resistors of practical interest, it is
natural for us to seek conditions under which (98) implies (94). The following
is a generalization of a recent result by Chua and Green [8] for a general
manifold. We assume that AR ié closed for technical reasons. This is not a

restrictive condition , however.

Lemma 1 Let AR be closed and eventually strictly passive. Let I be an (nC+nL)-
dimensional 2 submanifold. Theng)“is eventually strictly passive if the
following fundamental topological hypothesis is satisfied:

There are no loops and no cut sets consisting only of capacitors and
inductors, or equivalently
(i) there is a treegij) consisting only of resistors.

(ii) there is a trengZCL) containing all capacitors and inductors.

Proof Recall the map T2 defined by (23). Suppose that AR is eventually strictly
passive and let QR be as in (98). 1If TR is proper, then the preimage gil(QR)

is compact because the preimage of a compact set under a proper map is compact.
It is, then, clear that the inequality in (94) holds with respect to ggl(QR).

So we show that the fundamental topological hypothesis implies that w_ is proper.

R
To this end let

LK (103)

be the inclusion map and consider the map X defined by Fig. 8. Since AR is
assumed to be closed, A is also closed. Therefore £ = A NK is a closed
submanifold of K. Consequently, for any compact subset A of K, the preimage

lil(A) is compact. This shows that 1., is proper. Therefore we need only show

K
that X is proper. Since X is obviously continuous, we need only show that the
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preimage of a bounded subset of ]inR X E{nR is bounded. Suppose that the
fundamental topological hypothesis holds and let v (resp., iR ) be the

tree branch voltages (resp., link currents) for (R) (resp., links associated
with J(CL)). It follows from (15) that for (v,i) € K,

T =T

= i = i 104
v vp o 1 B'i (104)

O

where Q and B are the fundamental cut set matrix and the fundamental loop

matrix associated with%}?C) and%}kCL), respectively. Equation (104) implies
fl (Y,;l_) I > o, (Y,Ei:) exk=I (YR s :'i:R W o, (105)
-3 P 4

) is a subvector of (yR,gR); we have

Since (v 51

I, i)l +» , (v,i) €K #-H(YR,;R)H > o, (106)

This shows that the preimage of a bounded subset under X is bounded. Since the

properties of X do not depend on a particular choice of a tree, X is proper.H

Remark Observe that in the above proof we took full advantage of the coordinate-
free property, since in (104)-(106) we are using two different trees
simultaneously.

Now, experiences tell us that most networks of practical interest have a
compact set of attraction. We next justify this observation formally by
carrying out a slight network perturbation. The perturbation we make is
simply a formalization of the following hypothesis: '"Every capacitor is in
parallel with a large linear resistor and every inductor is in series with a
small linear resistor.'" Before stating the results, we need the following:
Definition 3 A nonlinear networkL)Uis said to be strongly well-posed if

n n n -
(i) there is a c? function fR: R R R B » R R such that AR = le(Q) and

= 1 € .
rank(QfR)(YR’ER) ny for all (YR’}R) AR

(11) det T (vp,1p) # 0 for all (vp,i) € A (107)
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Remark Condition (ii) is stronger than (64) because the determinant should
be nonzero on AR and since ER(Z) c AR. This condition is satisfied by many
networks, however. For example, the circuit of Fig. 1 with the capacitors

added, satisfies this condition because

W S0
(vpsip) =D, £
<Y R*~R?~R i 0 1

The perturbed network LN of Theorem 2 is strongly well-posed because the
matrix of (83) is nonsingular for all (YR,:_[.R) € AR.

Theorem 4 Given a nonlinear network gN assume the following:
(1) (N is strongly well-posed.
(ii) Ap 1s closed and eventually strictly passive.
Insert a large linear resistor &2 k=1,..., nc,in parallel with every capa-
citor and insert a small linear resistor rk, k = 1,...,n.L, in series with
every inductor. Then
(1) ANK#¢and=AiNK1san (ngn) - dimensional C” submanifold.
(2) LN is well-posed.
(3) gﬂ is eventually strictly passive. Consequently J] has a compact set of

attraction.

Proof (1) In terms of a proper tree (Tj, the original network (Af is described
by

YR:L + ]}RRY + §RCVC =0 (108)
- 1
YL Bt Tlc%e T 2 (109)
T, T 110
R, "Bz, " ErhL "0 (110
1 A
c ~R03'R__£ ’LeTL T T

(vpoig) € Ay (112)

A

Let q jU CJ whereg represents branches of r, 's. It is clear that .CJ’

is a proper tree forw Decompose Y and :~L as

k

v=(y
"Ry

g
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= (i, ,i.,1i .1
i?%c g ~L . Rj

e

A1)

(o]

A
where g and r denote the variables associated with gkfs and r,'s. Then.gA‘is

described by

YR, *Bra¥r, * Zre¥c T ° (113)
L J
YLt R, T hc¥e T YT 0 (114)
Vg ¥V =0 (115)
T T, _
’:Rj - §RR3Ri = Bply 7 O (116)
i, - BT -8Y 1 -1 =0 (117)
~C ~RC:-I—'R£ Birly ~1g = O
1 -4 =0 (118)
(vpoip) € & (119)
-1
i =
i,=8 'y (120)
v, = i, (121)
where
g 4 diag(g,,..+»8_ ), r = diag(r,,...,r_) (122)
= 1 n. 1 n
A
Eliminating Yg’ Vo }g and %r’ we see thatg,&‘is described by (113), (116),
(119) and
TS S YO (123)
T T -1
e = Bet - BriL Y8 Y72 (124)
Vo= -y (125)
1=-8 7y (126)
v, =ri (127)
i = éL' (128)

Let us rewrite (108)-(112) and (123)-(128) more concisely.

Let § and Q be the

fundamentsl loop matrix and the fundamental cut set matrix forL)U, respectively.
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Then, of course, (108)-(112) are written as

T

T 0 v

T =0 (129)
o B i
(vps1g) € Ag- (130)

Comparing (108)-(112) with (%}3), (116), (119),ﬂ(123)-(130), we see that the
differences betweenw anc}‘gN are in the last two terms of (123), (124) and
(125)-(128). Therefore Lﬁjis described by

¢ ofv] [o )l
T + =0 (131)
o B li] [¢ 0
(vpolg) € Ay (132)
'Yc
(govpniyi) = H . (133)
where
. i v V. .V v
!'Rx :LL.:(: ﬁ{s ~C "Ry LI -Rgy ~C
N 0 9o o0
F= . » G= : "_1 (134)
0 r 10 0 0 -0 10 g
f‘_!: Q‘-«
0 x
= | -1 0 . (135)
0 1
- - ~

Now let (v,,ij) € ANK # ¢ and let U be a bounded neighborhood of (vpsig) in
RP XIRP. Since the set (A NK) N U is a bounded submanifold, small perturba-
tions of K MU do not destroy transversality of A MU and K N U and hence they
do not destroy nonemptiness of (AW) M (KU). Therefore if 8 is large enough
and if r, is small enough, then IFl and NGl in (131) are small enough to guarantee
nonemptiness of the intersection of (131) and (132). Since (133) does not destroy

this nonemptiness, we have A N K # ¢. We show ﬁih K later.

(2) Observe that
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v .
~Rx ~L ~g ~RJ ~C ~r
—_
E gRR ERC 0 W
1 E Bir §LC 1
5 o1
It follows from this that
YRg YI‘
R Ber 0 YRi
B = , B
~RR 0 0 v ~RC
~ ~ ~8
V.
~R:7 ~T
:.B. = B’LR 1‘] YL'
Let YRZ = (YR ’Vg), YRg = (Y,Rg ,Yr)’
Then
QGR fR - (QQR gR)gRR
g L
b 0] N
J L
=10 U 0

fR(YR’éR) =

-J

v

1
:0Q

1O
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~Ri ’~g

&)

)

{le)

1O

(136)

(137)

(138)



U1
Hh
|
—_~~
o
Hh
S
=}
1O
J

s (139)

O 10
= 10

i RTN\? “RR
R, i,
— - — n
D, £ 0 131R fr O
Ry J BT o
“RR -
= 0 1+ 0 0 0 0
L9 °coJ L 0 T
p, £ + (D, £)BS 0
", "R \F1, “R) =RR 2
L Ry
= 0 1 (140)
L0 0
It follows from (139), (140) and (65) that
QYR gR-(QYR fR) ERR 0 .
3 Z :
A n~ o~ .
Hy (vpoip) = 0 ¢ .
- 0 1‘ .
p, f£+(p, £ B 0 "
o, ey f)
-4 J
0 1 (141)
0 0 A2
.o (YR’!_-R)-
It is clear thatgléR depends only on (YR’%R) and that
A Ia)
|aetTH, b ip) | = |dec g lvp,1pd | (142)
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Now if (QR,iR) € RR’ then (YR’~ ) € AR’ because

= (o1 = oL =
R g = (g i) [(vgsip) € Agsdy =8 Tvooy, = i ). (143)

By the strong well-posedness assumption, we have
|det T (vpoip) | > 0 for all (vp,ip) € Ag. (144)
This and (142) imply
A ~ ~
|det D (5, i) | > 0 for all (Fp,dp) € Ip(D). (145)

It follows from Corollary 5 that LAA‘ is well-posed. By Proposition 11 we have
A(T\ K. Therefore I 1is an (nC-PnL)—dimensional c2 submanifold.

(3) The resistor constitutive relations A‘R for gN is described by (143) where
Vg = (VR,V ’Yr) s !R (é'R’i'g :Lr) Therefore the function WR gorreSponding to
WR is given by

~or 2 T -1
WR(YR’?TR) W (vR :LR) +v g Yo + 1‘1:5:—'«' . (146)
It follows from condition (ii) that there is a compact set QR - AR such that
(96) holds. For any o > 0, let
-1

= g Yg’Yr =ri

i
~g ~ T
A

Q.= (V ’V »i ,1) (147)
gx ~r’>g’~r
"(Yg’Yr’}g’?.'r) h<af.

Then the set EIR & QR x Qg - has the property that

~ ~

WR > 0 on AR - QR (148)

because g and r are diagonal matrices with positive elements. Finally, to
show thag the fundamental topological hypothesis is satisfied, let CJ' ,{]’

qr and j represent the branches of the resistors in CJ inductors in S.—Q,
the added resistors rk s and the added resistors gk s. Then g(R)

£ U U U v S,E is a tree for gNwhich consists only of resistors. Also

(CL) = ‘J Uq is a tree for gNwhich contains all capacitors and inductors.
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It follows from Lemma 1 that LA[is eventually strictly passive. a

Example 10 Consider the network of Example 9. Since the circuit is linear,
all the conditions of Theorem 4 are satisfied. The perturbed network is shown
in Fig. 9. It follows from Theorem 4 that this network has a compact set of
attraction. In fact the linear subspace W = 0 in Fig. 7(b) degenerates into
the origin and any closed ball centered at the origin serves as a compact

set of attraction.

Rfmafk Asﬁwehhave seen,?!éR(gR,gR) =€1§R(YR,;R) for (vg,ig) € mp(X). But
(vpsip) € T (I) does not necessarily imply (vp,ip) € T (Z) even though

(v ,gR) € AR. Recalling (64) and (107), one sees why we needed the strong
well-posedness hypothesis.

We next replace strong well-posedness by another condition.

Theorem 5 Replace the "strong well-posedness" hypothesis in Theorem 4 by the
following hypothesis:

(i)' 7 is global diffeomorphism.

Then, under the same perturbation as in Theorem 4, the same conclusion holds.

Proof The preceding proof for Theorem 4 remains applicable except for the
fact that ¥ is an (nc+nL)-dimensiona1 C2 submanifold and thatg)“ is well-
posed. In order to prove this, recall (108)-(112). Assumption (i)' implies

that (v,i) is expressible as a c2 function of (yc,gL);

WD) = T (v 1y)

L L  ~r’~C =~C
(117) and (119) are exactly the same as (108)-(112). Therefore

Recall (113)-(121) and set v! & v +v 1t &1 - 1. Then (113), (114), (116),

-1
' ' =
(YR’YC’Y'L’i'R’ :.l_-cy i-L) T (ch 11.) .

It follows from (115), (118), (120) and (121) thata(yr’yg’%r’;g) is also a C2
function of (vc,iL). Therefore all variables ofL]U are expressible as a C2

function of (YC,EL);

-~ ~ /\-l
(Y,;i_-) =T (YC’:!TL).

A

It follows from the way %-l was determined that z—l is a global diffeomorphism

and hence so is i. Therefore £ is an (nc+nL)-dimensional C2 submanifold.
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Since T is a global diffegmrophism, it is a local diffeomorphism. It follows
from Proposition 9 thatL)U 1s well-posed. ]

Example 11 Consider the network of Fig. 10(a) where the resistor is described
by Fig. 10(b). The resistor is eventually strictly passive. It is easy to
show that T is a global diffeomorphism. Therefore we can make the same per-
turbation as in Example 10 so that the network will have a compact set of
attraction.

We will next relax the "strong well-posedness" hypothesis and the global
diffeomorphism assumption, while imposing a stronger condition on AR to derive

a different perturbation result. Recall that AR is said to be globally hybrid [3] if

hg = {(vgoip) |y = b(x)} (149)

where y = (yl,...,y ), x = (xl,...,x ) and if Yy is the current (resp.,
voltage) of the k-th resistor then xkn§s the voltage (resp., current) of the
k-th resistor. 1If Vi is the current (resp., voltage), then that particular

resistor is called voltage controlled (resp., current controlled). The following

result says that most practical networks can be perturbed in such a manner that

the resulting network is well-posed and has a compact set of attraction.

Theorem 6 Given a nonlinear network(,A’assume the following:

(1) AR is closed and is globally hybrid.

(11) Ag 1s eventually strictly passive.
(iii) ANK # ¢. ’
PerturngU in the following manner:
(a) Let<Erbe a proper tree containing a maximum number of voltage controlled
resistoré and a minimum number of current controlled resistors and let gf be
its associated cotree. Insert a small linear capacitor in parallel with each
voltage controlled resistor in‘ETand insert a small linear inductor in serégs.

with each current controlled resistor in Sf. Call the resulting network(JU

(b) 1Insert a large linear resistor 8y in parallel with each capacitor gijG
and insert a small linear resistor r in series with each inductor ofL)U.
Call the resulting networkgju.

Then the following hold:

() ANK# ¢pand T = ANK is an (nc+nL+k)—dimensional C2 submanifold where

k
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k is the number of reactive elements added, A and K are the resistor consti-
tutive relations and the Kirchhoff space ong respectively.

(2) (le well-posed.

(3) JI:LS eventually strictly passive. Consequently u\j has a compact set of
attraction.

Proof (1) It is clear that one can prove ANK ¢ ¢ in a similar manner to the
proof of Theorem 4. We prove Z\fT\ X later.

(2), (3) We first claim thath is strongly well-posed. To this end parti-
tion (v,1i) of\Nas in the proof of Theorem 4. Since AR is assumed to be
globally hybrid, it can be represented as follows:

- f v i i =0 (150)
:-!'Vg ~V,J(~V,3 *~Vy ’~Ig ’~I£) ~
L, = v, (ng Yy i, ’ht) =0 (151)
v, - £ v v. i i = 0 (152)
“ly g (“Va Vg I, ’"Iae) ~
YI;L- gli (YV°J ’va ’%Iﬂ ’:'Eli) -2 (133)
where V and I denote voltage controlled and current controlled resistors,
respectively. We write these equations as
fR(Y »i-R) = 0. (154)
It follows from (83) that forLM we have
. .
= £f_.D f
%R(YR’}R) [P(Y ’YIi)"‘Ro*(!VL ’}v ) "R] ~ ~
v 7 (vprip)
~I:7 ~Ii }Vi !-Vq
(0 0 0 1) (155)
e 0o 10
10 0 0
0 1 0 0

bty



Therefore%}éR(§R,iR) is a constant nonsingular matrix. Thereforeg)ﬂ is
strongly well-posed. Clearly AR = AR because no resistors are added in (a).
This implies that KR is eventually strictly passive. Sinceg)U sgzisfies

the hypotheses of Theorem 5, by taking procedure (b), we obtaing}“which is
well-posed, Kﬁ\ K,and eventually passive. L}

Example 12 Consider the network of Fig. 1l1(a), where R1 and R2 are as in
Fig. 1(b). Other elements are linear. By a similar reasoning to that of
Example 1, one can show that A%K. Pick the proper tree CJ = {Cl’CZ’CB’RZ}'
Then applying procedure (a) of Theorem 6, we obtain(,A’which is strongly
well-posed (Fig. 11(b)). The networkg)“ of Fig. 11(b) does not satisfy the
fundamental topological hypothesis, however, because there is a capacitor-
only cut set. Insert lgfge linear resistors 81> 8 and 8, aqsording to pro-
cedure (b) and obtaincdk’(Fig. 11(c)). Theorem 6 says thatg)U has a compact
set of attraction.

Remark The elements added in Theorem 6 can be thought of as parasitic elements
Ofg)U. Therefore Theorem 6 formally justifies the fact that in most networks

of practical interest, voltage and current waveforms eventually approach a

fixed compact set.
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APPENDIX
Proof of Proposition 3 The proof is similar to that of Theorem 3 of [3] which

is the same as the proof of (ii-a) of Theorem 2 of [3]. Proof of (ii-a) of

Theorem 2 uses Lemmas 1, 2 and 4 of [3]. It is easy to show that Lemma 1 is

true for C2 submanifolds. Lemma 2 has nothing to do with differentiability.
Therefore we need to only show that Lemma 4 is true in the 02 category. We

state this in the following:

Lemma A Let A be an nxn matrix such that lA-1l is sufficiently small. Then

C U, and there

there are neighborhoods U, and U, of the origin of R" with 61 2

1 2
is a ¢* function G: R® + R" such that
(1) G=Aon Ul

(ii) ¢ = id off UZ’ where i

(iii) G is arbitrarily close to i

is the identity map of r"

4 in the strong C2 topology.

Proof Letcll (1d,e( )) be a sufficiently small neighborhood of id in

C (HR R" ) with respect to the strong C2 topology. Since e(x) > 0 for all
x € R", there are numbers ¢ > 0 and § > 0 such that e(x) > e for all x with
Hgﬂ < §. Let 60 satisfy 0 < 60 < §. Then there is a C2 function (bump
function [11]) u: R® + R such that

14f lxl < s
(1) ux = ° (A.1)
0 if lxll > &
(ii) there is a k > 0 such that
ﬂ(gu)xﬂ < k, ﬂ(gzu)xﬂ <k (A.2)

for all x € Rr™.

Now, choose A close enough to i, so that

d
£
and define
G(x) = u(X)Ax + (1-u(x))x. ; (A.4)

We will show that G ECQJZ(id;s(-)). Since u(x) = 0 for lxl > 6§, we need to
check the C2 size of G - ig only for lxl < &. Since G(x) - x = u(x) (Ax-x),
we have, using (A.1)-(A.3), that
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IeG—xl + 1@@) -1l + %0 I < uto) lax—xl + 1w I lax-x

+ u(x) la-1l + | (Qzu)xll Iléjj—gll + 2l (Qu)x“ la-1fl

~ ~

< la-1l (Mgl g1+l gl+2k) < Ba-1l (1+8) (1+2K) < ¢.

Take U, 2 {x € B |zl < 6} and v

are satisfied.

2

47~

& {x € Hfl|“§" < §_ }. Then all the properties
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Figure Captions

Fig. 1. A nonlinear circuit with A ﬁ( K.
(a) The circuit diagram.
(b) Resistor constitutive relations.
Fig. 2. A nonlinear circuit which is not well posed.
(a) The circuit diagram.
(b) Resistor constitutive relationms.
Fig. 3. A nonlinear circuit which is not well posed.
(2) Resistor constitutive relatioms.
(b) Projection of I onto the (vL,iL)-space.
Fig. 4. A nonlinear circuit which is well posed, yet I is not diffeomorphic
toimp.
Fig. 5. Resistor constitutive relation for the circuit of Example 8.
Fig. 6. Diagram defining the two functions W and WR.
Fig. 7. A network which is not eventually strictly passive.

(a) The circuit diagram.

(b) Trajectories on the linear subspace W = 0.
Fig. 8. Diagram defining the two functions X and 1t
Fig. 9. Perturbation of the network of Fig. 7(a).
Fig. 10. A nonlinear network which becomes eventually strictly passive after
perturbation.
(a) The circuit diagram.
(b) Resistor constitutive relation.
Fig. 11. A nonlinear network which becomes well-posed and eventually
strictly passive after perturbations.
(a) Original network;ju:
(b) Perturbed networkkjﬂ,
(c) Perturbed networkL)U.
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