

Copyright © 1979, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE USE OF TECHNOLOGICAL ADVANCES TO ENHANCE

DATA MANAGEMENT SYSTEM PERFORMANCE

by

P. Hawthorne and M. Stonebraker

Memorandum No. UCB/ERL M79/3

15 January 1979

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

The Use of Technological Advances

to Enhance

Data Management System Performance

by

Paula Hawthorn and Michael Stonebraker

Electronics Research Laboratory
University of California, Berkeley

ABSTRACT

The effect on the performance of data management systems of the
use of extended storage devices, multiple processors and pre
fetching data blocks is analyzed with respect to one system,
INGRES. Benchmark query streams, derived from user queries, were
run on the INGRES system and their CPU usage and data reference
patterns traced. The results show that the performance charac
teristics of two query types: data-intensive queries and
overhead-intensive queries, are so different that it may be dif-

architecture to optimize the perfor-
shown that the random access model of

for overhead-intensive queries, and
then only if references to system catalogs are not considered
data references. Significant sequentiality of reference was
found in the data-intensive queries. It is shown that back-end
data management machines that distribute processing toward the
data may be cost effective only for data-intensive queries. It
is proposed that the best method of distributing the processing
of the overhead-intensive query is through the use of intelligent
terminals. A third benchmark set, multi-relation queries, was
devised, and proposals are made for taking advantage of the
locality of reference which was found.

ficult to design a single
mance of both types. It is
data references holds only

Keywords: relational data management systems, buffering tech
niques, distributed processing, performance evaluation

This research was sponsored at the University of California at
Berkeley by the National Science Foundation grant MCS75-03839-A01
and at the Lawrence Berkeley Laboratory by the Basic Energy Sci
ences Division of the Department of Energy.

Authors' addresses: P. Hawthorn, Computer Science and Applied
Mathematics Department, Lawrence Berkeley Lab, Berkeley, CA.
9^720; M. Stonebraker, Department of Electrical Engineering and
Computer Science, University of California, Berkeley, CA 9^720.

1 -

CR categories: 3.70, 3-72, 4.41, 6.20

- 2 -

Section I. Introduction

A. Background

Two technological advances that may have substantial impact on

data management system performance are low cost, fast processors

and extended storage devices such as CCDs-, bubbles and semicon

ductor memories. Low cost processors should lead to machines

with distributed intelligence; extended storage devices should

lead to systems with improved I/O performance due to buffering

techniques. What is not clear is the most effective use of these

advances: what CPU functions to distribute; and when and how to

buffer I/O.

The problem of determining how to buffer I/O is essentially the

problem of determining data reference patterns. If the data is

referenced randomly across the database, the buffer size must

approach the size of the database in order increase performance

by obtaining a large percentage of hits in the buffer. There

fore, in order to effectively use the increased buffer size made

possible by extended storage devices, there must exist sequen

tially and/or locality of access in the data.

If the I/O references are known to be sequential, the data can be

stored sequentially on the disk and read into main memory or an

extended storage device an entire track or cylinder at a time,

thus dramatically reducing access time. This read ahead tactic

is often employed by operating systems when processing sequential

files. If there is locality of reference in the I/O requests,

- 3 -

then data pages should be buffered in faster memory and a

replacement algorithm used. Such pages should be treated in much

the same way as program pages are handled in virtual memory

machines [DENN68].

There are several studies of data management system I/O reference

patterns which deal with buffer replacement algorithms [SHER76,

TUEL76, LANG771, but do not directly address the question of

under what conditions there is locality or sequentiality in the

I/O references. In studies of an IMS trace [RODR76], sequential

ity was found in the data references, and in [SMIT76] read-ahead

strategies to take advantage of that sequentiality were analyzed.

The trace analyzed in [RODR76] also exhibited some inter-query

locality of reference.

CPU usage patterns have not been previously considered in pub

lished performance evaluations of data management systems. It is

often assumed that the CPU time in a data management system is

insignificant compared to the I/O time [YA078]. However, the CPU

can become the bottleneck in data management systems. This may

become a critical problem if I/O time is reduced through the use

of extended storage devices or read ahead tactics. One method of

lessening a CPU bottleneck is to distribute the processing of the

queries through the use of intelligent terminals and/or back end

machines. We will indicate under what circumstances one data

base management system is CPU bound and what forms of distributed

processing appear to be beneficial.

- 4 -

B. Description of this study

The performance of the data management system INGRES [STON76] was

analyzed to determine its CPU usage and data reference patterns.

The study was done using a software trace facility and benchmark

query streams.

It is impossible to assess the generality of the results of any

performance evaluation of a real system unless it is known pre

cisely why the stated results occur. Therefore, INGRES, the

benchmark programs, and the results are explained in detail. The

description of INGRES and the trace are in Section II.

In Section III the benchmark query streams are described. We did

not attempt to trace a "typical user" for a "typical week" but,

instead, constructed a series of benchmarks. This technique was

used because the goal was to identify and analyze the performance

patterns of general types of queries, not to determine the mix

ture of these queries in any one user's query stream. Three sets

of benchmarks were developed from user query streams. These were

overhead-intensive, data-intensive, and multi-relation queries.

Since all updates in INGRES are physically implemented by a

"Retrieve" to isolate what actions to take followed by lower

level shuffling, we treated only "Retrieves" in this study.

Section III also contains the results of the analysis of the

benchmarks. It is shown that the performance patterns of the

overhead-intensive queries differ greatly from the data-intensive

queries. There is locality of reference to INGRES system files

- 5 -

for overhead-intensive queries; moreover, they are CPU bound. It

is shown that data-intensive queries exhibit a high degree of

sequentiality, and cyclic sequentiality. In addition there is

intraquery locality of reference in INGRES only when processing

aggregate functions or multi-relation queries. The CPU usage

patterns of INGRES are analyzed to determine the most efficient

distribution of the functions of the CPU. Lastly, Section IV

summarizes our conclusions.

Section II. INGRES

The following is a brief description of INGRES. Complete

descriptions of the INGRES data management system are contained

in [STON76, WONG76, EPST771.

INGRES supports three structures for a relation: it may be an

unordered collection of tuples (heap), it may be hashed on any

domain or any combination of domains (hash); or it may be stored

indexed sequential on any domain or combination of domains

(ISAM). Secondary indices are allowed on any domain or any com

bination of domains.

A query such as

retrieve (employee.name) where employee.empnum = 1234

results in the searching of the employee relation for all tuples

with empnum = 1234. In the above query, if the employee relation

is stored as a heap, the entire relation will be scanned, each

- 6 -

tuple tested for empnum = 1234, and the "name" domain in the

qualifying tuples returned to the user. The relation is read in

logically sequential order, one page at a time.

If the relation is hashed on empnum, the hash function (which is

selected automatically by INGRES and has a bucket size equal to

one UNIX page) is used to determine the main page the tuples

satisfying the qualification would fall on. That page is read,

then each tuple on that page is tested and the data in the quali

fying tuples returned to the user.

The case where more tuples hash to a location than can fit on one

page is handled by chaining overflow pages. If there are over

flow pages, they are also read as above.

If the relation is ISAM, the index associated with the relation

is first searched to determine the main page that the tuples

would fall on, and then processing continues as in a hashed rela

tion .

If the relation is not structured on empnum, but has a secondary

index on empnum, the secondary index is searched to find the log

ical page number and offset within the page of the qualifying

tuples. All pages containing a qualifying tuple are read, and

the data in the qualifying tuples returned to the user. Note in

this case that the secondary index identifies qualifying tuples.

Hence, unlike ISAM and hash, a data page does not have to be

exhaustively searched.

- 7 -

B. Significant Considerations about the INGRES Environment

The process structure

Because DEC PDP-11 computers have an address space limitation of

64K bytes per process, INGRES is separated into 5 processes.

These processes are the terminal monitor, parser, decomposition

(decomp), single relation query processor (one variable query

processor, OVQP), and the database utilities (DBU). INGRES is an

interpretative system. The terminal monitor fields the user's

query and passes it to the parser. The parser parses the query

and passes it to the decomposition process, which decomposes the

query into single relation queries, which are executed by OVQP.

The database utilities include such functions as creating rela

tions and modifying storage structures. The processes communi

cate by using UNIX protocols.

This five process structure has considerable impact on the per

formance of INGRES. The CPU time per query is increased by the

cost of interprocess communication (approximately 0.2 sec. per

query for the five processes). Both CPU and I/O time are

increased by the same validity checking which must be done

independently by more than one process. This extra cost is una

voidable in a 16 bit machine.

It is estimated that the CPU time of INGRES, since it is inter

preted rather than compiled, is substantially greater than the

CPU time of a compiled system. If the system were compiled,

almost all of the cost in the parser and decomp could be paid at

- 8 -

compile time rather than runtime. Additionally, the OVQP time

might be reduced by a factor of two or three.

Terminal Monitor

INGRES supports two interfaces to users: a stand alone terminal

monitor for interactively formulating and executing queries and a

programming language interface, EQUEL [ALLM76]. In effect, the

latter interface replaces the terminal monitor with a custom host

language program. Production use of INGRES involves both execut

ing terminal commands through the terminal monitor and running

EQUEL programs.

The benchmarks which follow use the terminal monitor as they

result from scripts of terminal commands. However, it should be

noted that the terminal monitor was designed to provide a large

class of services and is not particularly efficient. The single

feature of user defined macros can require as much as 2 seconds

per command in the terminal monitor. This cost is not present

for EQUEL applications. In fact, the time spent in the EQUEL

host program can be easily kept under 100 msec per query.

UNIX

The costs of using the UNIX operating system for I/O are that

pages are constrained to be 512 bytes long, and logically sequen

tial pages in a file are not necessarily stored physically

sequential. There is a facility for defining page sizes longer

than 512 bytes, but the operating system will, in fact, store the

- 9 -

larger pages as two or more disjoint 512-byte pages. A page is

read into UNIX process space, then copied into INGRES process

space, which also increases the CPU time.

The performance data which follows reflects all these costs.

Note very clearly that some of the costs are inevitable (address

space), some reflect design decisions (e.g. interpretation), and

some reflect the choice of the user program which "drives" INGRES

(terminal monitor rather than an EQUEL program).

C. The software trace

Software probes placed in the operating and data management sys

tems consist of calls to a system trace subroutine with the

relevant data as parameters. The subroutine reads a clock with

0.0001 second resolution and appends that time to the data. It

then writes the package to one of 3-1K byte buffers, checking to

see if the buffer is full. If it is, the buffer is written to

tape. The trace adds about 10% to the normal running time of the

query stream. For this report, the probes placed in INGRES

traced the logical page numbers and relation names for each read

and write, and the total CPU time for each process. The probes

placed in the operating system traced the disk read and write

time. The trace information was then analyzed to produce the

following results.

Section III. Performance Analysis

- 10 -

A. Overview

Three sets of benchmark programs were developed: sets of

overhead-intensive, data-intensive, and multi-relation queries.

Overhead-intensive and data-intensive are general types of

queries which appear in other data management systems. The dif

ferentiation is similar in concept to the differentiation between

"simple" and "batch" queries defined in [GRAY78].

We will define an overhead-intensive query as one for which data

processing time is less than system (operating and data manage

ment) overhead to process the query. The overhead is the time to

communicate with the user, parse and validity check the query,

and issue the command to fetch the data. The data processing

time is the time to actually fetch and manipulate the data.

Therefore, the overhead-intensive query is a query which refer

ences little data. This case arises when the query inherently

references little data and the database has been previously

optimized to support the query. For instance,

retrieve (employee.name) where employee.empnum = 1234

will be a overhead-intensive query if there are few employees

with employee.empnum = 1234 and if a useful storage structure

involving empnum is available. Such a structure exists if the

employee relation is hashed on empnum, ISAM on empnum, or has a

secondary index on empnum.

The performance pattern expected of an overhead-intensive query

- 11 -

was that it would contain no locality of reference within the

query, because by definition it references little data. It was

not known initially whether the overhead was CPU or I/O bound.

A data-intensive query is defined as a query for which the time

to process the data is much greater than the overhead. It refer

ences a large quantity of data, and is the other end of the con

tinuum from overhead-intensive to data-intensive queries. A

data-intensive query arises from two causes:

1) the query is inherently data-intensive.

If, in the above example, there were two million employees with

employee.empnum = 1234, the query would be a long, data-intensive

query.

Inherently data-intensive queries are produced any time there is

a complete scan of a large portion of the data, as in the produc

tion of periodic reports, billing of large sections of customer

accounts, and statistical analysis of large amounts of data for

such applications as management information systems.

2) queries for which the database is not well-structured.

In the above example, if the employee relation is not structured

on employee .empnum or if it does not have a secondary index on

employee.empnum, the entire employee relation will be read.

This situation arises in poorly designed databases and in data

management systems, such as INGRES, that support ad hoc queries.

- 12 -

The performance pattern expected of data-intensive queries was

that they would be I/O bound, and that there would be little re-

referencing of data.

Data-intensive ("long") queries and overhead-intensive ("short")

queries exist in other data management systems. The third set of

benchmarks, multi-relation queries, are specific to relational

systems. Due to the particular implementation of INGRES, the

results from these queries may not generalize to other relational

systems. They are queries which reference more than one rela

tion, and, because of the INGRES implementation of them, were

expected to show significant locality of I/O references.

B. Results

The benchmarks were run single-user on a DEC PDP 11/70. This is

a 16-bit minicomputer, with a 2K byte cache, and will perform

3.15 million register increments per second. The databases were

on a disk with an average access time of .030 seconds per 512-

byte block.

1) Overhead-intensive queries

Three query streams were developed to determine the performance

patterns for overhead-intensive queries. The three benchmarks

were taken from a collection of user queries from an application

used by the UC Berkeley EECS Department. The application is

course and room scheduling, where the database contains 24704

- 13 -

pages of data in 102 relations. The data is information about

courses taught: instructor's name, course name, room number, type

of course, etc.

The application programmer used the INGRES macro facility to

define a query:

destroy temp

retrieve into temp

(courseNN.infol, courseNN.info2, ,courseMN.infol 3)

where courseNN.instructor = "name"

print temp

The terminal operator merely specified a query number, course

number, and professor's name, and the above query was executed

with the appropriate substitutions made (namely, course number

for courseNN, professor's name for name). In the script used to

form the benchmark Shortl, the above query was duplicated,

exactly as the user wrote it, with 76 professor's names substi

tuted for "name" and any one of eight courses (picked at random)

substituted for courseNN. Since the names were all unique, and

the courses were picked at random, the queries are guaranteed to

generate random references to data. This was done to study the

performance patterns of short, random queries as would normally

be found in this application.

The courseNN relations were hashed on instructor name. The data

is stored in one relation per quarter. Since the same relations

were used for room scheduling, there is an entry for each course

- 14 -

for each day the course is taught.

First, any relation named "temp" that happens to be in the data

base is destroyed. Then the data needed from the courseNN rela

tion is put into temp, where the implicit actions of removing

duplicates and sorting on the first field take place. Then the

data is printed. The only reason for using this "destroy -

retrieve into - print" technique, according to the user, was to

remove the duplicates introduced by having an entry per day per

course. That technique is probably not generally necessary for

overhead-intensive queries, as it is simply a way to get around

the absence of a "Retrieve Unique" command for INGRES. There

fore, the benchmark "short2" was created. It is the query stream

shortl except the destroy - retrieve into - print set is replaced

by

retrieve (courseNN.infol, courseNN.info2,....,courseNN.infol3)

where courseNN.instructor = "name"

This prints directly to the terminal without removing duplicates.

It was decided that the general user also probably will want

fewer than 13 items of information per query, so short3 was

created. It is:

retrieve (courseNN.infol, courseNN.info2)

where courseNN.instructor = "name"

The three benchmarks were run and the following information

obtained.

- 15 -

For all three query streams, we will show the following:

1) There is a high degree of locality of reference to system and

temporary relations.

2) The functions best distributed to other processors are those

associated with the terminal monitor.

a) I/O reference patterns

Table 1. Overhead-intensive queries: I/O reference patterns
(all times are in seconds)

query number I/O time
stream queries per query

number number

system data % ref
ref ref seq

shortl 228 3.06 (*) 170 (*) 5 (*) 13.3
short2 76 .55 13 3 18.8

short3 76 .25 8 3 21 .8

(*) : quantities given for each set of three queries

(destroy,retrieve into, print)

Table 1 summarizes some of the trace analysis results for the

overhead-intensive query streams. The first column is the query

stream name, the second the number of queries in the query

stream. The third column, the I/O time per query, was obtained

by multiplying the number of page references by the average meas

ured physical I/O time per block for the query stream, and divid

ing by the number of queries. The average physical I/O time per

block for each query stream varies slightly from one query stream

to another, depending on the placement of data on the disk. The

trace analysis program reports the total number of references to

each of the relations. These are then separated into system and

- 16 -

data references, divided by the number of queries, and presented

in columns four and five. The trace analysis also keeps track of

logically sequential references. A page reference is a logically

sequential reference if the logical page number is one plus the

logical page number of the previous reference to that file. The

percentage of the references that were logically sequential are

reported in column six.

We note from Table 1 that the number of queries in shortl is

three times that of short2 and short3, a direct result of the way

the query streams were formed.

In INGRES a "transaction" is a single query, so we may not refer

to the "destroy - retrieve into - print" set as a transaction.

We will call it a query set. For shortl, the average I/O time

for the query set was 3.06 seconds. Most of this time (98%) was

spent reading and writing INGRES system relations. The relation

that contains information about the relations in the database

(the relation relation) is referenced to destroy temp and create

it again, and to retrieve information about courseNN. The rela

tion that contains information about each attribute in the data

base, the attribute relation, is referenced once per attribute in

the relation to be destroyed or created, and once per attribute

of courseNN in the query. It should be noted that a cache of the

system catalog information could be used to substantially

decrease the number of system catalog references. This is not

currently done.

- 17 -

The data referenced per query set in shortl includes three data

pages from courseNN read, and one page written to and read from

the relation temp. The references to sort the data are not

included.

Comparing the Table 1 entries for shortl and short2 we conclude

that the user is paying a lot for duplicate suppression. The I/O

time for short2 is significantly less than the time for shortl

because the system relations do not have to be referenced as

often. The data references are now the three pages read from the

courseNN relation. There remain an average of 13 references per

query to the system relations because the attribute and relation

relations must still be read for verification. The cost of that

verification is apparent in short3, where the only difference

between that query and short2 is that it references fewer attri

butes .

i) sequentiality of reference

The high percentages of sequential references we see in Table 1

are the result of reading strings of overflow pages in the system

relations. The user's database was copied from the user's

machine to the test machine, so the overflow pages in the rela

tions were formed when the relations were first created. In that

case, strings of overflow pages tend to be sequential. That

would not be the case if the data had been added a little at a

time, through updates. It would be the case whenever the queries

were run on newly modified system relations. Therefore, the

- 18 -

sequentiality observed in Table 1 cannot be assumed to be true

for overhead-intensive queries in general, and cannot even be

assumed to be generally true for overhead-intensive queries in

INGRES.

ii) locality of reference

A commonly accepted measure of locality is the hit-ratio curve.

The hit ratio curves for the overhead-intensive queries are

presented in Figures 1 and 2.

The vertical axes are the percentage of requests that would have

been buffer hits if the buffer were the size given on the hor

izontal axes. These curves were calculated by taking the output

from the software trace, the logical reads and writes, and simu

lating the effect of increasing the buffer size. The LRU algo

rithm for buffer replacement was used.

In this query stream, because each query references so little

data, we are only interested in inter-query locality.

Figure 1 is the hit ratio for the overhead-intensive query

streams. There is a high hit ratio for even a small number of

buffers for all three query streams because of the large number

of reads and writes to system relations. This is confirmed by

Figure 2, which shows the same curves, but with the references to

the system relations removed. The line for shortl in Figure 2 is

higher than those for short2 and short3 because shortl is writing

and reading small temporary relations.

- 19 -

Since the hit ratios for short2 and short3 are nearly zero, it is

apparent that there is no inter-query locality in the data refer

ences. The data references for the overhead-intensive queries

therefore conform to the random reference models of data refer

ences, which is not surprising since the query script that made

up the benchmark was chosen to be random. When the system rela

tions are included, the hit ratios become high. The straight

lines of the hit ratio curves indicate that there is no advantage

to adding buffers after the few needed for the system references

are provided because the references are random.

conclusion:

Whether there is locality of data reference in general in

overhead-intensive queries depends on the application. In appli

cations such as customer information systems and banking applica

tions, there is little locality of data reference. However,

there are systems such as airline reservation systems that may

naturally have much locality of data reference (i.e. there is

more activity for a plane about to leave than one scheduled for

next week).

Therefore, for overhead-intensive queries, the only reliable

locality of reference appears to be the references to the system

relations. It is clear that caching the system relations would

be very beneficial. However, this results directly from the

interpretive nature of INGRES and would not be applicable to a

compiled system.

- 20 -

INGRES has a heavier use of system relations than most other data

management systems for two reasons. First, the process structure

forces greater referencing of system relations because of vali

dity checking in each process. Second, INGRES is interpretive.

Many other data management systems are compiled, and do only

minimal run-time validity checking of system catalogs. However,

as long as successive queries are to the same database, and there

is run-time validity checking, caching system catalogs should

produce performance improvements for any data management system.

b) CPU usage patterns

Table 2 contains the CPU usage patterns for overhead-intensive

queries. The CPU time for each process is given in Table 2.

Also included is the amount of the time in OVQP spent to fetch

and manipulate the data (dp). The OVQP total includes the dp

time.

Table 2. Overhead-intensive queries: CPU usage patterns
all times are in seconds

query monitor parser decomp OVQP DBU total total -
stream total dp monitor

shortl 1 .91 .30 .21

short2 1 .75 .98 .11

short3 .88 .26 .05

.52 (.16) 4.48 7.42 5.51

.38 (.15) 3.22 1.47

.28 (.12) 1.47 .59

(dp is included in OVQP total)

The time spent in the terminal monitor is a function of the

number of characters in the query and is mostly spent looking for

macros. The time spent in the parser process for shortl is less

than the time spent for short2 because some functions to print

- 21 -

the output are done by the parser process for a "retrieve" (in

short2) and are done by the utility print for a "print" (in

shortl). It is greater for short2 than short3 because short3 has

fewer domains for verification and because the query in short3 is

smaller, thus easier to parse.

Decomposition is the process that breaks the query apart into

single relation queries. It must also be called to pass data

through the pipes from one process to the next in line. Since

the utilities are at the end of the line, it must be called

several times per query set in shortl. Therefore, the time in

the process decomp is longer in shortl. The time difference

between short2 and short3 for decomp is accounted for by the

difference in length of the message passed.

The time given for OVQP total includes the data processing time

in the column in the table marked dp. The time is greater for

shortl because OVQP must open two relations (temp and employee)

and write the data to one of them. The time difference between

short2 and short3 occurs because there are fewer domains in

Short3. The data processing time, dp, is the time to process the

three pages.

The time in "DBU" is the time to destroy, create, sort, and print

the relation temp.

conclusion:

Except for shortl, which is probably not a general query stream,

- 22 -

the terminal monitor requires the largest percentage of the over

head time - 54% for short2. The actual data processing time in

all cases is much less than the time for setting up the query.

The total CPU time per query found in Table 2 is, for all three

cases, greater than the total I/O time per query found in Table

1. We therefore conclude that INGRES is always CPU bound when

handling overhead-intensive queries. Moreover, this statement is

true even if terminal monitor time is zero, as noted in column 9,

which represents a "super efficient" EQUEL program. In such a

circumstance, INGRES will execute about 1.6 queries from short3

per second and use less than half the available disk transfers.

Distributed processing at the data level (as in DIRECT [DEWI78]

and RAP [OZKA77D will not speed the processing of overhead-

intensive queries at all, since they spend little time processing

data. In fact, an extra staging device between the I/O device

and the user, as in DIRECT, or the inability to support access to

a single item through a key , as in RAP, will slow the processing

of short queries. Instead, either the processing must be distri

buted toward the user, through use of intelligent terminals and

front-end machines, or the amount of processing reduced through

use of a less functional terminal monitor or compilation of

queries. In the overhead-intensive queries in the benchmark

query streams, the relocation of the terminal monitor functions

would clearly be a performance improvement.

The INGRES terminal monitor provides many functions for the user

(eg. macro definitions, abbreviations) and is certainly not a

- 23 -

minimal terminal monitor. However, if these functions are to be

provided to the user, it is clear they can best be provided

through intelligent terminals.

2) Data-intensive queries

The data-intensive query streams were developed from an account

ing application, the UC Berkeley EECS Department's Cost Account

and Recharge System. Again, as in the overhead-intensive query

case, we use the technique of making the first benchmark

correspond exactly to the user queries, the third benchmark

correspond exactly to our idea of what a "typical query stream"

for data-intensive queries would be, and the second benchmark is

in between.

We shall show in this section that:

1) The INGRES implementation of aggregate functions (explained

below) leads to locality of reference to temporary relations.

2) There is a high degree of sequentiality of reference in data-

intensive queries.

3) It will be advantageous to distribute the CPU functions asso

ciated with processing the data.

(1) is INGRES specific; (2) and (3) appear to generalize to other

data management systems.

The query stream "longl" is exactly as the user wrote it. It

consists of 58 queries which reference 14 relations which contain

a total of 822 pages of data. This query stream prints account-

- 24 -

ing reports by creating temporary relations in which the domains

are both projections of existing relations in the database and

zero or blank summary domains. The summary domains are then

filled in by using multi-relation aggregate functions, and then

the temporary relations are printed. There are an average of 14

domains referenced per query in longl . Long2 is longl with all

multi-relation aggregate functions removed, and the "retrieve

into" constructs replaced by "retrieve". Long2 contains single-

relation aggregate functions. Long3 is long2 with all aggregate

functions removed, and with the average number of domains refer

enced by each query reduced to two. There was no attempt to do

the same work in longl, long2 and long3.

Aggregate functions

The query:

retrieve (outstand.acct,
outstand.fund,
encumb = sum (outstand.encumb by

outstand.acct,
outstand.fund))

is a query from the accounting application and included in longl

and long2. The relation "outstand" has information about the

department's outstanding accounts. The query results in a list

of the totals of the outstanding encumbrances grouped by account

number and fund. INGRES processes the aggregate function "sum"

by creating a temporary relation "tempi" which contains three

domains: account, fund, and sum. It will be hashed on (account,

fund) and is initially empty. The relation "outstand" is read

- 25 -

once, and for each tuple the (account, fund) pair evaluated, the

tuple from "tempi" for that pair read, the sum updated, and the

totals replaced in the "tempi" relation. After the last tuple of

"outstand" is read, the "tempi" relation is read and the results

printed on the user's terminal.

a) I/O reference patterns

Table 3. Data-intensive queries: I/O reference patterns
(all times are in seconds)

query number I/O time
stream queries per query

longl 58 15.0
long2 18 16.7
long3 13 5.1

number number

system data % ref
ref ref seq

129 290 30
73 484 28
15 155 84

Table 3 presents the results of the query analysis of the data-

intensive query streams with respect to I/O usage. The number of

queries in longl is greater than the number of queries in long2

because the multi-relation queries in longl were not included in

long2, and because the "destroy - retrieve into - print" queries

were replaced by a single "retrieve". Long3 contains fewer

queries than long2 because the aggregates were dropped to create

long3. The I/O time per query is the total I/O time for the

query stream divided by the total number of queries in the

stream. It is greater for long2 than for longl because the

queries that were dropped from longl in forming long2 were

queries that reference little data. The queries that form the

long3 subset of long2 reference much less data because the

- 26 -

aggregates were dropped from long2 to create long3.

The number of system references per query is a direct result of

the number of temporary relations created and the number of

attributes referenced per query.

i) sequentiality of reference

The percentage of sequential accesses is high in all three cases.

It is apparent that the INGRES processing of aggregates is dom

inating the I/O references, because when the aggregates are

removed, the sequentiality dramatically increases. This sequen

tiality is the result of reading entire relations, either to

print selected attributes, or to print summary statistics.

ii) locality of reference

In figures 3 and 4 we present the hit ratio curves for these

benchmarks. Note that longl is a gently rising curve in both

figures, while long2 is nearly flat. The rising nature of longl

appears to be due entirely to the INGRES implementation of aggre

gate functions where random re-referencing of (relatively small)

temporaries is taking place.

In long3 we see the result of sequentiality and locality. The

same relation was referenced sequentially in several queries;

when the buffer size was large enough to hold both that relation

and the relations referenced by intervening queries, there was a

sharp jump, at 350 pages, in the hit ratio curve.

- 27 -

In Figure 4 we see that this locality is not caused by references

to system relations. This is not because system relations are

referenced less in data-intensive queries than in overhead-

intensive queries, but that the proportion of system references

to data references has changed. Therefore, although caching sys

tem relations will not hurt the performance of the data-intensive

query, it will not greatly improve it either.

conclusion:

There was a high degree of sequentiality found in all three

reference traces. There were two types of locality found. One

type, the locality resulting from the INGRES implementation of

aggregate functions (as seen in the hit-ratio curves for longl

and long2) is very much like the locality found in program refer

ences (figure 7). The buffer size needed to take advantage of

this type of locality can be relatively small and is related to

the number of values for which aggregates are simultaneously

being performed. The second type of locality, the cyclic sequen

tiality (as seen in the curves for long3) would require a buffer

size equal to the size of the relation being repeatedly scanned.

Since this can be very large, it may not be cost effective to

deal with this situation by "blind buffering". Rather, data

read-ahead may be especially attractive here. It may be best to

simply ignore the cyclic sequential case, and only do the read-

ahead that the large amount of sequentiality mandates,

b) CPU usage

- 28 -

Table 4. Data-intensive queries: CPU usage patterns
all times are in seconds

query monitor parser decomp OVQP DBU total total -
stream total dp monitor

longl 1.7 .4 .8 7.1 (6.9) 5.8 15.8 14.1
long2 2.0 .9 .26 11.23 (11.0) 14.39 12.4
long3 1.3 .3 .07 3.73 (3.5) 5.4 4.1

(dp is included in OVQP total)

The variation between monitor and parser times is as explained in

the overhead-intensive queries. The decomposition time for longl

is much greater than the others because of the presence of

multi-relation queries in longl, which means decomposition has

work to do. The OVQP time is greater per query in long2 because

longl includes queries where most of the work is being done in

the utilities. When those queries were dropped, the average

per-query time in OVQP increased. The time spent in the utili

ties (DBU) is mostly spent sorting relations and printing them.

Long3 has less time in OVQP because fewer attributes were manipu

lated in the queries in long3-

conclusion:

We note that in all cases the data processing time (dp) in OVQP

is the greatest single item of CPU time, and that I/O time is

approximately equal to CPU time. It should be consequently noted

that both improved buffering and distributing the processing

toward the data would be required to improve performance for data

intensive queries. Because INGRES interprets queries CPU time is

probably higher than compiled systems. On the other hand, our

- 29 -

configuration contains only one disk controller. A multipro-

grammed benchmark with multiple I/O controllers could cut the

effective I/O time substantially. Hence, both I/O and CPU time

are higher than might be the case in an alternate architecture.

This lends credence to the possibility that the above conclusion

is not specific to our environment. Hence, it is possible that

designers of data base machines (e.g. RAP, DIRECT) should pay

careful attention to staging of data as well as to creating a

distributed processing environment.

3) Multi-relation queries

Multi-relation queries are specific to relational systems. The

INGRES implementation of them does not necessarily generalize to

other relational systems. They were included in this analysis

because the potential benefits of extended storage devices, read

ahead policies and distributed processing may make a very effi

cient implementation of multi-relation queries possible. In this

section we shall show that:

1) There is extensive cyclic sequentiality of reference to tem

porary relations

2) The CPU time to process data is most of the total CPU time to

process the query.

In INGRES multi-relation queries are processed through the forma

tion of temporary relations and the use of tuple substitution.

The technique is described in detail in [WONG76] and [Y0US78] and

shall be illustrated by an example. We shall call this example

- 30 -

the "rooms" query. It is included in the benchmark, and is from

the user application. The query is:

retrieve (rooms.building, rooms.roomnum, rooms.capacity,
course.day, course.hour)

where rooms.roomnum = course.roomnum

and rooms.building = course.building
and rooms.type = "lab"

The relation "course" contains information about all the courses

taught by the UC Berkeley EECS Department in the last four years.

It contains 11436 tuples in 2858 pages, and is stored in an ISAM

storage structure, keyed on instructor name and course number.

The relation "rooms" contains information about every room that

the EECS Department can use for teaching courses. It contains

282 tuples in 29 pages, and is hashed on room number.

The result of this query is a list which contains the building,

room number, capacity, day, and hour of the use of any lab for

the last four years.

To process this query, first INGRES will note that there is a

one-relation restriction ("where rooms.type = "lab"), so that

restriction will be done first. The query is issued

retrieve into tempi (rooms.building, rooms.roomnum,
rooms.capacity)

where rooms.type = "lab"

The temporary relation "tempi" which resulted from the actual

query in this case contained 20 tuples in 2 pages.

The relation "course" is not stored in a way that is helpful to

the processing of this query, and only a few domains of each

- 31 -

tuple are needed for this query. So INGRES performs the projec

tion of "course" by issuing the query:

retrieve into temp2 (course.day, course.hour,
course.building, course.roomnum)

This results in a relation "temp2" which contains the same number

of tuples as "course" (11436) but less space (867 pages) since

the tuples are smaller.

The final step is tuple substitution, where each tuple in "tempi"

is compared to each tuple in "temp2", and the result printed on

the terminal. For instance, the first tuple in tempi is the

tuple (cory, 119, 15), so the query is issued:

retrieve (building = "cory", roomnum = "119",
capacity = 15,
temp2.day, temp2.hour)

where temp2.roomnum = "119"
and temp2.building = "cory"

This process of tuple substitution is repeated 20 times, once per

tuple in tempi. Since temp2 is unordered, the result is that the

entire temp2 relation is scanned 20 times, resulting in 17,340

data pages read in a cyclic sequential fashion. INGRES includes

a set of heuristics which dynamically decide when to reformat a

temporary relation. Temp2 could have been reformatted to a rela

tion hashed on building, room number. It was not reformatted

because the cost functions associated with modifying the relation

to hash showed that cost would be greater than re-scanning the

relation 20 times. It should be clearly noted that all 20

queries could have been processed in parallel with one sequential

pass of temp2. Unfortunately, the current implementation does

- 32 -

not support such a strategy.

The multi-relation benchmark was prepared by assembling a collec

tion of unrelated users' queries which were multi-relation

queries and which referenced the same database. The database was

the UC Berkeley EECS Department's course and scheduling database.

The patterns observed were dominated by the "rooms" query. Most

of the queries referenced about 109 pages; the "rooms" query

referenced 19000 pages of data. Most of the queries used about

7.25 seconds of CPU time; the rooms query used 709.5 seconds of

CPU time. Therefore the results are reported without the query

"rooms" in multil, and for "rooms" alone.

a) 1/0 reference patterns

Table 5. Multi-relation queries: I/O reference patterns
(all times are in seconds)

number number

query number I/O time system data % ref
stream queries per query ref ref seq

multil 24 3.27 23 86 35
rooms 1 505.16 70 19023 85

There are few system references compared to the number of data

references in rooms because the temporary relation is being read

so many times. The temporary relation is read sequentially each

of the 20 times it is read, which is why the percentage of

sequential references is so high. Figures 5 and 6 show the hit-

ratio curves for the multi-relation queries. The hit-ratio curve

for the rooms query takes a sharp jump as soon as the window size

is above the 867-page size of the relation being continually re-

- 33 -

referenced. This is the cyclic sequential referencing found in

the query stream long3, but with a difference: the size of the

cycle is precisely known by INGRES.

Hence, this information can be used advantageously in a buffering

or read ahead policy,

b) CPU usage

Table 6. Multi-relation queries: CPU usage patterns
all times are in seconds

query monitor parser decomp OVQP DBU total total -
stream total dp monitor

multil 1.0 .25 .52 4.33 (4.2) 1.15 7.25 6.3
rooms 1.37 .81 .71 705.75 (705.4) 1.86 709.5 708.1

(dp is included in OVQP total)

Since these queries are data-intensive as well as multi-relation

queries, the cpu time spent in the data-processing portion of the

data management system is the greatest component of the cpu time.

conclusion:

It might be claimed that the above numbers simply reflect the

INGRES algorithms for handling multi-variable queries and would

not be indicative of referencing patterns of the other approaches

(e.g. [BLAS76]). We might note that other algorithms often

include sorting. Many sorting algorithms involve a limited kind

of cyclic sequentiality of referencing, at least to write data,

then read it in again. Hence, our results may be representative

of such algorithms also.

The CPU time per query in Table 6 is greater than the I/O time

- 34 -

per query (Table 5) so INGRES at this time would see little bene

fit from caching the relations to be re-referenced. However,

combined with the compilation of the queries and/or distributing

processing on the data level, using extended storage devices, or

an effective read ahead policy would appear very beneficial.

Section IV. Summary

A) Sequentiality of data reference

Comparing the hit ratio curves in figures 1-6 and the typical hit

ratio curve for program references in figure 7, we note that

INGRES data references are in most cases very different from pro

gram references. This difference results from sequentiality of

reference. This sequentiality can be used to increase perfor

mance by placing pages which are logically sequential in a file

physically sequential on the disk. Then, if a relation is being

read sequentially, when one page on a disk track is read, several

pages or even the remainder of the track can also be read. It is

even possible to read an entire cylinder at a time if an extended

storage device is available. The amount which should be pre

fetched depends on available buffer space and whether the data

base system is I/O bound. In the best case read ahead would

reduce the time to fetch a disk block from about 30 msec to less

than 3 msec; an order of magnitude improvement in I/O system per

formance.

Clearly, it is only wise to read ahead if one knows the addi

tional data will be used. Therefore the system handling I/O and

- 35 -

buffer management must have the information that the data is

being accessed sequentially. In an analysis of IMS data refer

ences, [SMIT76], it is recommended the number of blocks to be

read ahead be based on the number of blocks previously read

sequentially. This is a guess, and necessary in IMS because the

level of the user interface to the data management system is one

record at a time. But in INGRES and other high-level systems the

user interface is at least one relation at a time. There is no

need to guess. INGRES knows when it must read all or a part of a

file sequentially. It can either pass that information to the

operating system through a new read command (read sequentially)

or do its own I/O management so that read-ahead can be selec

tively invoked.

B) Locality

Locality of reference (as opposed to sequentiality) was found in

references to the system catalogs and in processing aggregate

functions. Moreover, cyclic sequentiality was found in the pro

cessing of multirelation queries. The locality of reference for

system relations can be utilized by permanently storing them on

an extended storage device. For. a long time operating systems

have used the technique of keeping hierarchies of directories in

main memory and on fixed head disks. Alternately, INGRES could

be redesigned to do minimal run time checking.

The cyclic sequential locality of reference in multi-relation

queries can be used either by implementing a cache or by invoking

- 36 -

a read ahead policy. Lastly, the processing of aggregate func

tions can be expedited only by a buffer cache. INGRES is aware

of when a multi-relation query or aggregate function is being

processed and can signal the operating system that cyclic sequen

tial or random referencing will be taking place.

C) Distributed processing

In INGRES the performance bottleneck for overhead-intensive

queries and for many data-intensive queries is the CPU. Distri

buted processing is one solution to the CPU-bound problem.

Several data management machines have been designed which include

distributed processing. We have shown that for data-intensive

queries, distributing the processing toward the data certainly

will result in performance improvement and that for overhead-

intensive queries distributing the processing toward the user

will result in performance improvement.

Although these two solutions do not appear to be in conflict,

they are. If distributing the processing toward the data

requires overhead that increases the processing time of the

overhead-intensive query, and if a substantial portion of the use

of the system will be overhead-intensive queries, the performance

will degrade.

D) Conclusion

The data usage and I/O reference patterns found in the processing

of queries by INGRES show that the performance of INGRES may be

- 37 -

improved dramatically by using some combination of extended

memory, read ahead and multiple processors.

For overhead-intensive queries, this may be done by:

1) distributing processing at the terminal monitor level

2) Using extended storage (or main memory) to cache temporary and

system relations

For data-intensive queries, this may be done by:

1) distributing the processing at the data level

2) using main memory or an extended storage device to implement

large, read-ahead buffers to take advantage of the sequential

reading of data.

3) using main memory or an extended storage device to cache the

temporary relations formed and referenced during the processing

of aggregate functions.

For multi-relation queries:

1) distributing the processing at the data level.

2) caching the relations to be cyclically re-referenced in an

extended storage device or invoking read ahead.

INGRES, in its present form, is CPU bound most of the time.

Therefore, the benefits received by improving I/O speed would not

appreciably effect the query response time unless the CPU time is

decreased. This can be done by distributing the processing or

compiling a part of the query processing.

Generalization to other systems:

- 38 -

The INGRES system, which is forced into a multi-process structure

and which supports a complex terminal monitor, may have a higher

overhead than most data-management systems. However, any system

that supports a highly functional user interface may benefit from

putting as much of the interface as possible into intelligent

terminals. Those systems that do run-time checking of system

catalogs may benefit from caching them in extended storage.

In the case of data-intensive queries, sequentiality of access

has been found in another data management system [RODG76], and

may be present in any data management systems that support such

facilities as report generators. Therefore the caching of read-

ahead data blocks appears to be a good technique for any system

which

1) has space available in main memory or an extended storage dev

ice.

2) has the data organized on the disks to take advantage of

sequential reads, so that actual I/O time is saved by reading

several disk blocks at once.

3) can communicate with the operating system that data is to be

read sequentially.

- 39 -

REFERENCES

[ALLM76] Allman, E., Stonebraker, M. and Held, G., "Embedding a

Relational Data Sublanguage in a General Purpose Programming

Language," Proc. Conference on Data: Abstraction, Defini

tion, and Structure, FDT, vol 8, No 2, March 1976.

[BLAS76] Blasgen, M.W. and Eswaren, K.P., "On the Evaluation of

Queries in a Relational Data Base System," IBM Research

Report RJ-1745, Aprill, 1976.

[DENN68] Denning, P. J., "The Working Set Model for Program

Behavior," CACM, May, 1968, Vol. 11, No. 5, pp. 323-333.

[DEWI78] Dewitt, D. J., "DIRECT - A Multiprocessor Organization

for Supporting Relational Data Base management Systems,"

Proc. Fifth Annual Symposium on Computer Architecture, 1978.

[EPST771 Epstein, R., "Creating and Maintaining a Database Using

INGRES," Electronics Research Laboratory, University of Cal

ifornia, Berkeley, Ca., Memo #M77-71, Dec. 1977.

[GRAY78] Gray, James, "Notes on Data Base Operating Systems,"

IBM Research Report RJ2188 (30001) 2/23/78.

[LANG77] Lang, Thomas, Wood, Christopher and Fernandez, Eduardo

f., "Database Buffer paging in Virtual Storage Systems,"

TODS, Vol. 2, No. 4, December, 1977.

[OZKA771 Ozkarahan, E.A., Schuster, S.A. and Sevcik, K.C., "Per

formance Evaluation of a Relational Associative Processor,"

- 40 -

ACM Transactions on Database Systems, Vol. 2, No.2, June

1977.

[RODR76] Rodriguez-Rosell, Juan, "Empirical Data Reference

Behavior in Data Base Systems," Computer, Nov., 1976, Pages

9-13.

[REIT76] Reiter, Allen, "A Study of Buffer Management Policies

for Data Management Systems," Mathematics Research Center,

University of Wisconsin-Madison, Technical Summary Report #

1619, March 1976.

[RITC74] Ritchie, D. M., and Thompson, K., "The UNIX Time-

Sharing System," Communications ACM 17, 7 , July,1974.

[SHER76] Sherman, Stephen W., and Brice, B. W. , "Performance of

a Database Manager in a Virtual Memory System", ACM Transac

tions on Data Base Systems, Vol. 1, No. 4, Dec. 1976, Pages

317-343.

[SMIT76] Smith, Alan Jay, "Sequentiality and Prefetching in Data

Base Systems," IBM Research Report RJ 1743, March 19, 1976.

[STON76] Stonebraker, M. et. al., "The Design and Implementation

of INGRES," TODS, Vol 1, No. 3, September 1976.

[TUEL76] Tuel, W. G. Jr., "An analysis of Buffer Paging in Vir

tual Storage Systems," IBM Journal of Research and Develop

ment, Vol. 20, No.5, September 1976.

[WONG76] Wong, E. and Youssefi, K., "Decomposition - A Strategy

- 41 -

for Query Processing," TODS, Vol. 1, No. 3, September 1976.

[YAO 78] Yao, S.B.,DeJong, D., "Evaluation of Database Access

Paths," Proceedings, SIGMOD International Conference on the

Management of Data, 1978.

[YOUS78] Youssefi, Karel A., "Query Processing for a Relational

Database System," Electronics Research Laboratory, Univer-

sity of California, Berkeley, Ca., Memo #M78-3.

- 42 -

Overhead intensive queries

Short 1

Short 2

Short 3

500 1000

Number of pages in buffer

Fig. i

Data - intensive queries

I.On Long 1

0 500 1000

Number of pages in buffer

Fig. 3

Overhead intensive queries

1.0

0.8

0.6H

0.4

0.2

0.0

Short 1

Short 3

rt 2/Sho
0 500 1000

Number of pages in buffer

Fig. 2

Data - intensive queries
system references removed

Long i

0 500 1000

Number of pages in buffer

Fig. 4

Mult i - relation queries

1.0-i

0 8-
Multi 1

o

- 0.6-
o
k-

r
_ 0.4-

X

0.2-
Rooms /

n r\ -U.U 1

() 500 1000

Number of pages in biiffer

Fig. 5

Typical hit ratio curve
for program references

0 500 1000

Number of pages in buffer

Fig. 7

Multi- relation queries

system references removed

I.O-i

0.8-

0.6-

0.4-

0.2

0.0 £

Multi i

Rooms

0 500 1000

Number of pages in buffer

Fig. 6

	Copyright notice 1979
	ERL-79-3

