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ABSTRACT

As jobs arrive they have to be routed to one of two similar exponen

tial servers. It is shown that if the queue lengths at both servers

are observed then the optimal decision is to route jobs to the shorter

queue, whereas if the queue lengths are not observed then it is best to

alternate between queues, provided the initial distribution of the two

queue sizes is the same. The optimality of these routing strategies is

independent of the statistics of the job arrivals.
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1. Introduction

While the analysis of static (stationary) routing strategies in

queueing networks has received moderate attention [1,2], the study of

dynamic strategies has barely begun. By dynamic strategy one means a

policy which, at each time, bases the choice of a route for a job upon

the information then available. The difficulties involved in the study

of dynamic strategies seem to stem from two sources. First, the infor

mation available may be "non-classical" [3] in nature; for example, the

information available at different nodes may be different. Second,

even the most simple dynamic strategy can lead to queue behavior whose

statistical characteristics are not yet adequately understood.

In this paper we study the most elementary problem in which the

first kind of difficulty mentioned above is absent. Consider the network

depicted in Figure 1. Jobs arrive at times 0 < t.. < t? < ... < T during

the interval [0,T]. These arrival times are known in advance. (It will

be seen later that this knowledge is useless.) At each time t, it has

to be decided whether to send the just-arrived job to queue 1, i.e.,

choose r = 1, or to send it to queue 2, r = 0. Each queue is serviced

by an independent exponential server with the same parameter y. The deci

sion is to be based on the information available at t.. We consider two
i

different information patterns. In the first case the number of jobs x

in each queue (the job in service included) is known at each t. In the

second case it is known that at time 0 both queues are equal x = x ,

but nothing further is known about the queue behavior (except for the

arrival times). The problem is to find for each case the optimal deci

sion rule which minimizes
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E{j^(x^)dt+i_xl(xl+1)+l_x2(x2+1)}) (la)

which is the total expected time for the completion of service on all

jobs which arrive before T.

It is shown in the next section that in the first case the optimum

rule is to send each job to the shorter queue. In Section 3 it is

shown that in the second case the best decision is to follow the "round-

robin" rule: send the jobs arriving at t ,t ,t_,... to queue 1 and those

arriving at t2>t^,t6>... to queue 2. Observe that neither rule depends

upon the arrival times, hence they are a fortiori optimal when these times

are unknown or random. In Section 4 the second case is studied further

to show that the policy which assigns a customer to the queue with

1 2shorter expected queue length need not be optimum if x_ $ xn, whereas if
1 2xQ = x this policy reduces to the round-robin rule. Some concluding

remarks concerning Bernoulli splitting are collected in Section 5.

2. The Send-to-Shorter-Queue (SS) Policy

1 2
In this section it is assumed that x = (x ,x ) is observed at each

1 2
t. Let V(t,x ,x ) be the (expected) cost incurred over [t,T] when x

1 2
= (x ,x ). (In case both queue lengths are equal when a job arrives,

the SS policy assigns the job to queue 1.)

Lemma 2.1. (i) Vd.x^x2) =̂ j-[x1(x1+l)+x2(x2+l)].

(ii) If t = t. is an arrival epoch then

V(t-,x1,x2) = V(t+,x1+l,x2) if x1 < x2

V(t+,x1,x2+l) if x1 > x2.
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(iii) If there is no arrival during [t-dt,t], then

V(t-dt,x1,x2) =V(t,x1,x2)(l-2ydt)+{V(t,(x1-l)+,x2)+V(t,x1,(x2-l)+)}ydt

+ (x1+x2)dt.

(Here for any number y, y = max(y,0).)

Proof. (i) follows from (1.1) and (ii) from the definition of the SS

policy. Suppose there is no arrival during [t-dt,t] and x = (x^x2)

Then the only change in xfc is due to service completions and so by pro

perties of the exponential distribution of the server

Ux -I; ,x ) with probability ydt

Xt =
, 1 , 2 _N+.
^x ,{x -1) ) with probability ydt

, 1 2N
(.x ,x ) with probability l-2ydt,

Hence (iii) follows by evaluating

V(t-dt,x1,x2) =E{V(t,xJ,x2)|xt_dt=(x1,x2)}

Remark. In the above and later on we continue to neglect terms of

magnitude o(dt).

Lemma 2.2. V(t,x ,x2) <_ V(t,y1,y2) whenever x1 <y1, x2 <y2.

Proof. From (1.1) it is clear that

VCr.x^x2) <VCT^1^2) when x* <y1.

Suppose now that the assertion is true for t+ where t is an arrival

epoch. We shall prove the assertion for t-. Since x1 <_ y1, therefore
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either (i) x1 _> x2, y1 _> y2, or (ii) x1 <x2 <. y2 < y1, or (iii) x1 >x2,
12 2 112y > y , or (iv) x <x <_ y £ y . In case (i)

V(t-,x1,x2) = V(t+,x1+l,x2) <V(t+,y1+l,y2) = V(t-,y1,y2)

where the inequality follows from the hypothesis. Under (ii)

V(t-,x\x2) =V(t+,x1+l,x2) <V(t+,y1,y2) <V(t+,y1,y2+l) =Y(t-,y1,y2)

where again both inequalities follow from the hypothesis. The remaining

cases are treated similarly.

Finally suppose the assertion is true for t and that no arrivals

occur during [t-dt,t]. Suppose x < y . Then (x -1) < (x -1) <_ (y -1)

and so the result follows from Lemma 2.1 (iii). n

Lemma 2.3. V(t,x,y) = V(t,y,x).

Proof. By (1.1) the assertion holds for T. Suppose it is true for t+,

t being an arrival epoch. Let x < y. Then

V(t-,x,y) = V(t+,x+l,y) = V(t+,y,x+l), by hypothesis,

V(t-,y,x) = V(t+,y,x+l).

On the other hand if the hypothesis is true for t and [t-dt,t] contains

no arrival epoch, then

V(t-dt,x,y) = V(t,x,y)(l-2ydt) + [V(t,(x-l)+,y)+V(t,x,(y-l)+]udt + (x+y)dt

= V(t,y,x)(l-2ydt) + [V(t,y,(x-l)+) + V(t,(y-l)+,x)]udt

+ (x+y)dt, by hypothesis
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= V(t-dt,y,x). c

Lemma 2.4. Suppose x +x =y +y2 and [x^x2^|y1_y21. Then
V(t,x1,x2) <V(t,y1,y2).

Proof. Because of Lemma 2.3 we may assume 0 <_ x2 - x1 <y2 - y1. The

assertion is clearly true for T. Suppose it is true for t+, t an

arrival epoch. Then

V(t-,x1,x2) =V(t+,x1+l,x2)

V(t-,y1,y2) =V(t+,y1+l,y2)

Now |x +l-x |<Jy +l-y |and so, by hypothesis, V(t-,x1,x2) <V(t-,y1,y2)

Similarly, if the assertion is true for t and [t-dt,t] contains no

arrivals then one can verify that

V(t-dt,x1,x2) <V(t-dt,y1,y2). n

The next lemma states an appealing property of the function V. Its

proof can be easily constructed as well.

Lemma 2.5. For each t and y V(t,.,y) is convex i.e., V(t,x+l,y)

- V(t,x,y) increases with x.

Theorem 2.1. The SS policy is optimal.

Proof. It is enough to show that V satisfies the dynamic programming

equations at each arrival epoch t, i.e.,

V(t-,x ,x )=Min {^(t+.x^l^2) + (l-r)(V(t+,x1,x2+l)} (2.1)
0<r<l
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where r is the probability of routing the just-arrived job to queue 1.

ip 1 9 1

Because of Lemma 2.3 we may assume x <_ x . Then |x + 1 - x |< |x

- (x +1)| and so, by Lemma 2.4, V(t+,x +l,x2) £ V(t+,x1,x2+l) and so the

right-hand side is minimized by r = 1 which is also the routing decision

of the SS policy. n

3. The Round-Robin (RR) Policy

It is assumed that the initial queue lengths are known and equal,

1 2
X0 ~ X0* and n° furtlier observations are made. The RR policy assigns

the odd-numbered arrivals (at t ,t ,t ...) to queue 1 and the remainder
-1^3' 5

1 2(at t2,t^,tg,...) to queue 2. Let x ,x , t >^ 0, denote the resulting

random process of queue lengths. Consider any other assignment policy

1 2and denote the resulting random queue lengths by y ,y ,t ^ 0. We wish

12 12
to compare the behavior of (x ,x ) and (y ,y ).

Definition 3.1. Let x , y i = 1,2 be non-negative integer-valued

12 12
random variables. Then (x ,x ) < (y ,y ) if there exist random variables

x ,y , possibly defined on a different probability space, such that

x and x , y and y have the same distribution, (3.2)

~1 ~2 ~1 -2 -1 -2
x < x <_x +1 a.s. or x _< x £ x + 1 a.s. (3.2)

~1 ~2 -1 -2
x + x < y + y a.s. (3.3)

12 12
Lemma 3.1. Suppose (x ,x ) < (y ,y ). Let f(n), n = 0,1,... be any

convex increasing function. Then

E[f(x1)+f(x2)] < E[f(y1)+f(y2)]
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-* i "i j •
Proof. Let x ,y be as in the definition. Observe that Ef(x ) = Ef(xL)

and Ef(y ) = Ef(y ). We may suppose

-1-2-1^
x < x < x + 1 a.s. (3.4)

1 2Let a) be a sample point and suppose y (w) <_ y (w) . It is easy to see

from (3.3) and (3.4) that either

-2 ~1 ~9 1
0 <. x (u) - x (a») <_ y (w) - y (a)), (3.5)

or

x'M <yXW, i= 1,2. (3#6)

Since f is convex and increasing it follows from (3.5) and (3.3) or from

(3.6) that

f(x1(o))) + f(x2(u))) <f(y1(aj)) + f(y2(w))

The assertion follows by taking expectations.

We can now state the main result .

Theorem 3.1. For each t >_ 0, (x^x2) -< (y1^2).

Corollary 3.1. For each t>0, ExJ +Ex2 <Ey1 +Ey2. In particular
I* t» u t

the RR policy is optimal.

Proof. The first assertion follows from Theorem 3.1 and Lemma 3.1 by

taking f(n) = n. To prove the optimality of the RR rule observe that,

if no arrivals are permitted after T, then the cost (1.1) is equal to
SCO OO

12 f 1 2(x +x )dt for the RR rule and E \ (y +y )dt for the alternative
0 JQ

policy. The optimality is immediate.

-7-



We now prove the Theorem with the aid of two lemmas.

Lemma 3.2. Let x , y i = 1,2 be random variables with x _< x <^ x

~1 -2 ~1 -2 12
+ 1 a.s. and x +x <_ y +y a.s. Let S ,S ,... be a sequence of

random variables mutually independent and independent of the x , y ,

and each exponentially distributed with parameter y. Let

S = max{s| £ S < t} (3.7)
i=l

Let

Xt =(x±-St)+' *t =^"V* (3*8)

Then

-1-2.-1., J -1,-2.-1,-2
:t ^ Xt " ' ~ " " " " "x <x^<x +la.s. and x +x^<y + y^ a.s.

t t — yt t

~i Ai ~i Ai *
Proof. Let u be a sample point, let x (w) = x , y (w) = y , S (w) = s.

19 1 19 19

Suppose x_<x_<x+l, x + x £ y + y . It is trivial to check

- , /^l Ax"•" xA2 A\"•" /a1 A\"** « « r^l A."f ,-*2 ^ NT ^'"•l * vT"
that then (x -s) _< (x -s) £ (x -s) + 1 and (x -s) + (x -s) £ (y -s)

a2 *> + «
+ (y -s) . n

Lemma 3.3. For each t there exist random variables x (defined on some

probability space) such that x and x have the same distribution and

-1 -2 -1 ~2 ~1 "2
either x < i < x + 1 a.s. or x < x < x + 1 a.s.

t — t — t t — t — t

Proof. Let 0 < t, < t« ... < t„ < T be the arrival times. Recall that
12 N

12 12x = x by assumption. Hence if 0 < t < t., x and xfc have the same
-1 ~2

distribution and so the assertion is true for 0 _< t < t... Let x = x

1 2
be a random variable with distribution as x and x . Now at t-+,

1~ 1~
11 2 2 ~1 ~i -2 -2
x , = x +1 and x , = x . Let x . = x +1 and x,. , = x . Thent + tr t + tr t1+ t1+
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~i i -2 -1 -2
x . and x^ , have the same distribution and x^ , < x , < x . + 1. Let

t. < t -f-t < t2« Let S be a random variable defined as in (3.7) and inde

pendent of the x . It is easy to see that x and x = (x -S )
t»"T t-Tt t_+t t- t

have the same distribution and that

'4i+ti\i+ti~41+t +ia-s- <3-9>

Thus the assertion is true for t- <_ t < t« also. Now at t_, according to

11 2 2 -1-1
the RR rule xfc . - xt and x^ , = x^ +1. Let x , = x and

t2+ V V V 4+ V
x„ , = x^ +1. Then x , and x , have the same distribution and,t2+ t2- t2+ t2+

because of (3.9).

-1 -2 -1 , -
xt , < x , < xfc + 1 a.s.t2+- t2+- t2+

We can now proceed in the same way and prove the assertion for t« <_ t < t ,

The assertion follows by repeating the argument. a

Proof of Theorem 3.1. We prove the result by induction on N, the number

12 12 12 1of arrivals. Since xQ = xQ = yQ = yQ, then, if N = 0, xt» xt> y ,
2

y all have the same distribution and so the assertion is immediate.

Suppose the result is true for N-1, and let t be the time of Nth arrival.

If t < t the result is immediate by the induction hypothesis. So

suppose t _> t . By the induction hypothesis there exist random variables

x. » y_ such that xfc and x^ and y^ and y have the same
E — t — r — t* — t" — f- —

N N UN N N CN
distribution and such that (3.2), (3.3) hold. Without losing generality

~2 -1-2 2 2
we may suppose that x„ <x <x + 1 a.s. Then x , = x + 1,

t— — t— — t — • t + t
N N N N N
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1 t
x . = x . Suppose, without losing generality, that the alternative
N V

2
policy assigns the arrival at t to the second queue so that y ,

N n t +

2 11 11-22 -1 -1
= y + 1 and y = y _. Let x = x , x = x. + 1, y » y. ,

N V CN tN V tN"
-2 -2 -1-2-1 19 12y = y + i.# it is clear that x <_ x <_ x +1, and x + x < y + y

V . .
Let x=(t-tN) _> 0, and define x^, yT by (3.9). Then, x£ and x1, and
y and y have the same distribution and so it follows from Lemma 3.1

T

that (x^,x2) <(y^,y2). n

4. The Send-to-Expected Shorter Queue (SES) Policy

We suppose again that the initial queue length distributions are

known and that no further observations are made. If the initial distri

butions of the two queues are the same, then the RR policy coincides

with the policy which assigns an arrival to the queue with the shorter

expected queue length. From Theorems 2.1, 3.1 it might be conjectured

that this SES will be optimal even when the initial distributions are

not the same. We give here an example to show that this conjecture is

false.

Suppose the initial distribution is as follows, x = 1 a.s.,

2 fn wi

X° =to wi
with probability (l+e)n

with probability 1 - (l+e)n

where e > 0. There are only two arrivals, the first at t. = 0 and the

1 2
second at t = T to be specified later. Since Ex = 1 < Ex = 1 + e,

the SES policy assigns the first arrival to the first queue so

1 2 2x^ = 2 a.s., xQ+ = xQ a.s. (4.1)
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Let xt, t >_ 0 be the resulting queue lengths assuming no further arrivals,

Then at time T the second arrival will be sent to the queue with the

shorter expected length and hence this customer will face an expected

waiting time of y_1(Ex^ -Ex2) and so the total cost incurred by the SES
policy is

00

Jl =E\ (\+\)dt +y_1(Ex^ ~Ex2) +y"1 (4.2)

where the last term is simply the expected service time for the second

arrival. (Here - denotes minimum.)

Consider the alternative policy which assigns the first arrival to

the second queue giving queue lengths

1 = 1 - -, . _ 2 2
y0+ = x0 = Xa'S" yo+ = xo + 1= n+1with prob(l+e)n""1 (4.3)

with prob l-(l+e)n~1

Let yfc be the resulting queue lengths assuming no further arrivals and

suppose that the arrival at T is sent to the first queue. The resulting

cost is

-00

J2 =E)(y^t^t +v'hy* +y"1 (4.4)

We will show that for certain values of n,T J± -J£ >0and so the SES
policy cannot be optimal.

To evaluate J , J observe that

EJ" \dt -i ^oV^-1)
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and so, from (4.1),

00 00 «1

Ef xjdt =3y_1, Ef x2dt =̂ (l+e) (n+1)
Jo Jo

Similarly, from (4.3),

(y*+y2)dt =(3+e)y_1 +\- (l+e)(n+l),

and so, substituting into (4.2), (4.4),

y(J1-J2) =-e+(Ex* *Ex2) -Ey* (4.5)

Let S be a sequence of independent random variables each exponen

tially distributed with parameter y. Let

s .

S = max{s|2 s 1 T*-
i=l

Then from (4.1) and (4.3) it follows that

Ex* =E(2-ST)+, Ex2 =(^)E(n-ST)+,Ey^ =E(1-ST)+ (4.6)

From properties of the exponential distribution

Prob{ST =0} =ProMS1 >T} =e~yT,

Prob{ST =1} =ProMS1 <T <_ S2} =yTe"MT

and so, from (4.6)

Ex* - 2e-1JT + Mte""1, Eyi = a"*1. (4.7)
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Now

Ex* >^(n-EST) =1+e-J*
T n T n

Select T so that Ex_ < 1 and then select n so that Ex < 1 - —
T T n

1 2
Then Ex < Ex and so, from (4.5),

y(Jx-J2) =-e+Ex* -Ey*

-yT -yT
= - e + e + uTe , from (4.7)

> 0

for £ sufficiently small.

5. Concluding remarks

Suppose the arrivals during [0,T] form a Poisson stream of rate

A < 2y. According to the result of Foschini-Salz [4], as T •* « and under

heavy traffic (A+2y), the average system time due to the SS policy

approaches the same value as that given by the M/M/2 system. Hence it

is significantly iower than the average time incurred by Bernoulli

splitting i.e., by randomly assigning an arrival with probability one-

half to either queue. On the other hand if the RR policy is adopted

the distribution of the interarrival times at each node is the sum of two

independent exponential random variables each with parameter A i.e., the

two-stage Erlang distribution Er(2). Thus the RR policy applied to

Poisson arrivals results in two parallel queuing systems each of which

is Er(2)/M/1. It is easy to show that the resulting average system

time is also less than that obtained by Bernoulli splitting. Thus
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Bernoulli splitting, while analytically attractive since it preserves

exponential interarrival distributions, appears to be a very poor

assignment policy.
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Figure Caption

Fig. 1. Network with the queues,
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