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ABSTRACT

A quasi-reversible queue can be associated with certain types of

transition of a Markov chain. It is shown that if Markov chains are

coupled in a certain way, then to the resulting chain can be associated

a queuing network which is itself quasi-reversible and the stationary

distribution of the chain takes the product form. The product form

for mixed networks is derived from the result for open networks.
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1. Introduction

Kelly [1,2] has recently shown that for a large class of queuing

networks in equilibrium, the state of the queue at any single node is

independent of the state at other nodes, and hence the distribution of

the state has the product form. Furthermore, the number of customers

of a given type who leave the network form a given node form independent

Poisson processes whose history is independent of the present state of

the network. Motivated by this result, Kelly proposed to call a single

queue quasi-reversible if, in equilibrium, the customers departing from

it have the above-mentioned properties. The particular networks which

Kelly studied are obtained by interconnecting quasi- reversible queues.

In this paper we show that a network obtained by interconnecting

queues, each of which is quasi-reversible when considered in isolation,

is itself quasi-reversible; moreover, in equilibrium, the distribution

of the state has the product form. We show this in the context of a

fairly general model for Markov chains to which queues can be naturally

associated. Such a model, together with a characterization of quasi-

reversibility, was introduced earlier [3,4] and is summarized in Section

2. In Section 3 we propose a way of connecting two such chains such

that the interconnection is quasi-reversible when its components are.

In Section 4 we apply the result to queuing networks. In Section 5 we

show how the product form obtained for the open networks of Section 4

also gives the same result for mixed networks.

2. A Markov Chain Model for Networks

The model presented below was introduced in [3,4] where a detailed

-1-



analysis of its properties may be found. Let X, I be countable sets. X

is the state space, I indexes possible state transitions. For each i

in I is given a subset E. of X, a mapping (or transition) T. : E. -*• X,

and a Poisson process N = (N ), t _ 0, with intensity X _> 0. The

processes N and the initial state X- are all independent.

Assume that 2^ X l(x *= E ) is bounded. (1(0 is the indicator of
i i

(•)•) Then a Markov chain (X ), t >_ 0, can be defined in the following

manner.

Let 5t(t) = l(Xt = x), £t(A) = l(Xt e A), x e X, A C X.

<*MX> =ElX (T^xW (x)]£ (E.)dN* t>0, (2.1)
t j t— i t— t— l t —

CQ(x) = 1(XQ = x). (2.2)

Thus (X ) has right-^continuous piecewise constant sample paths. It

starts at X„ and if Xt = x € E., and dN1 = N1 - N1 =1, then X_ » T, (x),
0 t-^- i t t t- t l

We denote this Markov chain by (X ) or M = {X,I,E.,N ,X }. Later

it will be convenient to vary the intensities X = {X } and then we will

discriminate among different chains by writing M(X).

Lemma 2.1 [3]. For J C I define the counting process Y = (Yt), t > 0 by

Y0 = 0,

dYt • £ v<VdNJf

Suppose (X ) is in equilibrium, and let P(A) = Prob(Xt G A) be the sta-
Y

tionary distribution. Then X and Ffc = a(Y ,s<t) are independent if and
J t t s —

only if
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Z XjP(E )P(x) - 2 A^Pcrtc), xGx (2.3)
jGj J jGj J

Moreover, when this holds, Y is Poisson with intensity 2J XJP(E ).
jtj J

We call Y an output of the chain M, and if J contains only one

element we call Y an elementary output.

Remark. When (2.3) holds we will say that M is quasi-reversible (QR) (with

respect to the output Y). For future reference observe that P satisfies

P(A) = E£ (A), and since E(dN±) = x\lt, (2.1) gives

£xx[p(t x nE) - p(x nE )] = o, xe x,
i

when we remember that €fc(AK. (B) - E (AHb), Further since tT x C e.
t t t ii

by definition of T., we get the "balance equations" that characterize P,

£* [P(T~ x) - P(x n E )] = 0. (2.4)
i x X

It may be worth signalling at this point that we will associate a

queue to a chain M by identifying certain outputs of M with processes

which count arriving and departing customers.

3. Interconnection of two Markov Chains

Let MU(XU) ={XU,IU,E",T^,NU1,Xui}, u=1,2 be two independent
Markov chains i.e., X , X , N , N are all independent. Denote the

elementary outputs of MU by SU , where s" = 0 and

dSUi= 1(XU G E>NU±.
t t- it
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Assume given for each u a set of outputs Y , k £ KU, of the form

such that

Jk ° J£ = * ±f k* l' (3,1)

We now construct a chain M = (X,I,E.,T.,N ,X } by coupling M and

2 u
M in such a way that changes in the outputs of one of the M randomly

trigger transitions in the other. This is made precise as follows.

1 2
Let 0 be a point not in I U I . Let

I= I1 x i2 U rSdO} U {0}xl2,

and for each (i,j) in I define

E.. = E* x E2 with e" = XU,
ij i j 0

T.(x1^2) =(T*(xl),T?(x2)), with TJJ as identity map,

N 3 = (N), t >_ 0, an independent Poisson process with rate

,ij ,li 1 , ,2j 2 ,u0 n t~ 9xc.. + X c.±, X =0, (3.2)

1 2
where the c.,, c.. are prespecified nonnegative numbers satisfying the

ij ji

following conditions

£ cj; i(x2 e e2) = £ cij1(xl GEj} £>1' (3*3)
i2u{o} jeiVo}
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c,. = c" if i,h are in J, for some k and c,, = 0 if i £ U juij hj k ij k

(3.4)

if Y is not an elementary output and c.. > 0 for i € J
ij k

then cV = 0, for v i u. (3.5)

For the chain M define for each (i,j) in I the elementary output S^ by

S*j = 0 and

dS*j =1(X_ G E..)dNij.
t t- ij t

For k€ K1, I G K2 let

kO = y- Qi0 v0£ _ ^ o0j\ >\ = L St-. (3.6)

Assume that there exists probability measures P on Xu such that

P is a stationary distribution for MU(pu), u = 1,2, (3.7)

ui ui ui .ui v* ,vi v v» v uP =X +u =X + £ XVJ P (E^)c^ ,iG lu, u=i, 2.
jGiv J J (3.8)

The proof of the next result is given in the Appendix.

Theorem 3.1. Suppose that Mu(pU) is QR with respect to Yuk, kG KU.

Then

P(x\x2) =P1(x1)P2(x2), (x1,x2)ex (3.9)

is a stationary distribution for M. Furthermore M in QR with respect to

Yk0, YW, ke K1, £e K2.
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Remark. For iG j" c" is the probability that a change in Y induces
vi

a transition in S J. The constraints (3.1), (3.3) and (3.4) mean that

uk
all changes in the Y are accounted for. In queuing applications this

corresponds to the conservation of flow of customers between nodes. Con

dition (3.5) is essential although technical and is needed because a chain

can be QR with respect to an output, without being QR with respect to the

elementary outpus whose sum it is. It is easy to give examples for which

(3.9) does not hold when (3.5) is violated.

It is not necessary that the chains M (X ) have a stationary dis

tribution. The existence of a solution to (3.7), (3.8) can often be

readily established. We can see that for X = IX + EX , |p | = Ep <_ X,

1 2
so that if X is finite then p , p belong to bounded, hence weakly compact

spheres in £.. Suppose now that for each p with |p | _< X the chain

M (p ) has a unique stationary distribution P (p ) which varies continu

ously with p . Then the existence of a solution follows from the usual

fixed point argument. Note further that since the transition rates of

MU(p ) vary continuously with p , therefore the continuity of P (p ) holds

if it is unique.

4. Network of QR queues

Consider independent Markov chains M (X ) = {X ,1 ,E.,T.,N ,X },

u = l,...,n. As before let SU1, i^IU denote the elementary outputs of

MU. Let K be an index set. For each k in K we distinguish certain out

puts A and D of M such that

ui 00 i -, -r

iei"
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uk uk uk
Thus A is elementary. To anticipate the application A and D are

called respectively the arrival and departure process of type k at u.

We assume that the condition corresponding to (3.1) is satisfied i.e.,

for each u, the sets {i (k)} and {j"} are all disjoint.

Assume given nonnegative numbers (routing probabilities) r"^, r" ,

1_< u, v£ n, k,£ in K such that r£" = 0, and for all u,k

u0 -l v*1 V* uvi /V^-v x , v,-vrk + S Ij rk X<x G Ei (oO = 1, xv G XV (4.1)
R v=l i&K k \W

We now define the interconnected chain M = (X,I,E.,T.,NX,XX) as

A — A X... X A ,

I = U Iux(iv U {0}),
Uj^V

and for each u^v, i^Iu, jGiv define

E^ ={x^x1,...^")^" € e" xV € EV}, EU° ={x|xU € EU},

T^(x1,...,xn) =(x1,...,T^(xu)...TJ(xv)...,xn),

T"V xn) =(x1,...)^(xu)>...>xn),

""me me iiiLCLtutiueuLtiu caain ri = ^.A, !,£,. ,T. ,IN*

follows. Let

and let N , N be independent Poisson processes with respective rates

xuv __ ui uv vj vu .u0 ,ui uOA±J -X c±j + X cj±, A± =X c± C4.2)

where
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uv uv u

Cij = TkZ' if f°r SOme k,Z xE Jk and J = iyW* (4.3)

= 0, otherwise,

U0 U0 ... c . . rz TU // #\
c = r , if for some k i ^ J, (4.4)

(Thus changes in the departure processes trigger changes in the arrival

processes.) Let S.., S denote the elementary outpus of M and define

the outputs D, , for 1 < u < n, k G K, by

Suppose now that there exist probability measures P on X such that

P is a stationary distribution for M (p ), u = l,...,n, (4.6)

pul - Xui +£ £ AVJpX)c™ i €IU, u- l....,n. (4.7)
v=l.£lv J ^

The result below is proved in the Appendix.

Theorem 4.1. Suppose that each M (p ) is QR with respect to its

uk
departure processes D , k £ K. Then

P(x1,...,x11) = P1(x1),...,Pn(x11) (4.8)

is a stationary distribution for M. Furthermore M is QR with respect to

the departure processes D, , 1 <_ u <_ n, k £ K.

Remark. M can be interpreted as the chain describing the network
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In u
built from the component queuing systems M ,...,M . Each M serves

uk
customers of class k £ K, and A is the number of customers who

arrive at Mu, or leave from it, during [0,t]. Depending on the specifi

cation of Mu customers may or may not change class when in service at u.

Class k customers can arrive at M whenever its state x £ E ,. v either

ui (k)
form outside the network in a Poisson stream with rate X or from

inside the network. ,The movement of the latter is determined as follows.

If a customer who has just completed service at u is of class k (indi-

uk
cated by a change in D ), he either leaves the network with probability

r, n or he changes into a class %customer and moves to M with probability

r, provided M is in state x £ E. ... The number of customers of

1 0
class k who leave the network from u during [0,t] is D, , and the

theorem asserts that M is QR with respect to these departure processes.

In many cases the rates p given in (4.7) can be obtained without

solving for the P simultaneously. Observe first that if i does not

correspond to an arrival i.e., i ^ i (k) for all k, then c.. = 0 by (4.3),
u Jl

and so (4.7) simplifies to

pui = xui^ ±^ {± (k)|k G k}, u= l,...,n. (4.9)

But if i = i (k) then, by (4.3),
u

pulu(k) =AUlu(k) +£ £ r™ £ AVJPW). (4.10)
v=l l£K .Ctv j

Now the last sum is just the average rate of departures of class I from

node v. Suppose that at each node and for each class the average rate of
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arrivals equals the average rate of departures. (This always holds for

queuing networks but need not hold for the more general chains considered

vivw
here.) Then the last sum in (4.10) simply equals p , the average

arrival rate of class I at node v and so (4.10) simplifies to

ui (k) ui (k) n vi (£)
U * U V^ V* vu V r-P =X + E £ ra P ,kG K, u = l,...,n. (4.11)

v=l tf=K

Thus, under the above-mentioned assumption (4.7) is replaced by the

simpler (4.9), (4.11), which do not involve the PV.

5. Mixed Networks

Consider now an interconnection of chains as in the preceding

section and suppose in addition that (4.7) is replaced by (4.9), (4.11).

Recall that these equations are used to solve for the {p }, the {X }

being given exogenuously and corresponding, in the network interpretation,

to prespecified external arrival rates and service rates. If (4.11) gives

a unique solution to the {p }, the network is said to be open, otherwise

uiu(k) uO
it is called mixed. In particular, if X =0 and r =0, for all

u,k the network is closed, and in this case (4.11) is homogeneous and the

{p } are at best determined uniquely only up to a multiplicative constant.

Suppose now that the network is mixed. It is then possible, neglect

ing some trivial cases (see [5]), to partition the set of node-class pairs

{1,.,.. ,n} x K into two disjoint sets 0 and C such that r, = 0, r = 0
I,, v ICx, J6K.

(k) n
if (u,k) e 0, (v,£) e C, and X u = 0, r" = 0, (u,k) G C. Then

(4.11) splits as follows.

ui (k) ui <k) vu vi (£)
P U = X U + X. r™ p V , (u,k) €E 0 (5.1)

(vfi)eo
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ui (k) ui (I)
P U - £ r™ V , (u,k) GC (5.2)

<v,£)GC *fc

-uiu(k)Assume that (5.1) gives a unique solution denoted {p } (which

depends upon the {X }), and that (5.2) gives a positive solution denoted
ui (k)

— u
p which is unique up to a multiplicative constant. Suppose that

for u = l,...,n, P is a stationary distribution for the component chain

M (p ), and suppose it is QR with respect to its departure processes

Duk, kG K. Then, by Theorem 4.1, ^(x1,...^11) =P1^1,... ,Pn(xn) is a

stationary distribution for the interconnected chain, or the mixed

network, M.

However, the mixed network has many stationary distributions and P

is usually the least interesting one of them. To see this interpret the

sets C,0 as follows: if a customer of class k enters node u then he is

"trapped" in the network if (u,k) G c, whereas if (u,k) G o then he will

eventually leave the network. Thus the stationary distribution of the

mixed network depends in particular on the number and type of trapped

customers.

Let X be a subset of X and suppose that there is a unique stationary

probability measure on X i.e., if Prob{X = x} = P(x), x G x, then

Prob{Xt=x} = P(x), x G x, t _> 0.

We will show that P is just the restriction of P to X. To see this we

first "open" the mixed network. Fix 0 < e < 1, and consider the compo

nent chains MU(XU) where XU± = XU1 if i? {i (k)|k G K}, and

ui (k) ui (k)
X U - X u , (u,k) G 0 (5.3)
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.ui (k) ui (k)
X u « ep u , (u,k) G c (5.4)

Now interconnect these chains using the routing probabilities r where

r™ - r™, <v,£) G 0, (u,k) G 0 (5.5)

*Ik =(1~E)rIk ' (V,£) G Cj (u,k) G° (5,6)

We now apply Theorem 4.1 to obtain a stationary distribution for the

interconnected chain M(e). We first solve for the rates {p },

ui (k) ui (k) vi (£)
- uv J ~ u , V ~vu - v ' / ,n d n

<vfA)G0

ui (k) „ui (k) vi (£),
~ u r u V1 ~vu ~ v / t \ <= ^
P = ^ = L rot P (u»k> e c-

(v,£)GC *R

Substituting from (5.3)(5.6) into (5.1), (5.2) shows that p = p~U .

Hence P(x ,...,x ) = P (x ,...,P (x ) is again a stationary distribution

for the chain M(e) i.e. P satisfies the balance equations (2.4) for the

chain M(e) which we may write as

Lx^PCT^x) -P(x H e.)] = 0, xGx. (5.7)
± e i i

Observe that in (5.7) the term in [ ] does not depend on e.

Theorem 5.1. Suppose P(X) > 0. Then P is just the restriction of P to

X I.e.,

P(x) = [£ P(y)3"1P(x), xex.
y^K
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Proof. From (5.3), (5.4) it is easy to see that the rates {X } in (5.7)

are continuous in e and, so P satisfies the balance equations for the

mixed network which is obtained by setting e = 0,

:ir^^-l

ZAo[p(Ti x) " p(x nEi)j =°' xeX (5'8)

By assumption P is the unique solution to the balance equations

rira, -1£ X [P(T"x)-P(x H e.)] = 0, x G
• vi A JL

X

£ p(x) =i
xGx

From (5.8) it follows that the restriction of P to X is an invariant

measure for the mixed network and so the result follows from the unique

ness of P. a

Remark. From Theorem 4.1 it follows also that the mixed network is QR

with respect to the departure processes D^ , (u,k) G 0.
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Appendix

Proof of Theorem 3.1. Using (2.3) and (3.8) the hypothesis may be

expressed as

E,-ui, uiN„u//muN-l u. v- /.ui, ui. _u/T,u._)u/ uN u ^ vu . ,- u(X +y )P ((T±) x )= 2^ (x +V )p (E±)p (x ),x G X ,kG K ,
Jv tu
k Jk (Al)

Consider k in K . If Y is elementary, then J is a singleton, and so

(Al) implies

£ cf.XuiPu((T,f)"1xu) = i:cU.XuiPU(EU)PU(xU), all j, (A2)
j!

ju "^ ~ XN"r "' ,u ij
k

where, if Y, is not elementary, then c..u =0 by (3.5), and once again

(A2) holds.

From (2.4) P satisfies

£ ^VSlP^^rVVpV" nE^)] =0. (A3)
Iu

Also from (2.4), P is an equilibrium distribution for M if

T!a:LJ[p(tT:1"x)-p(x He,.)] = 0.
Y ij ij

In particular, the P given by (3.9) is an equilibrium distribution if

E £ (Alic^+x2jc2,)[p1((Tb"1x1)P2((T^)"1x2)-p1(x1 nEJ)P2(x2 nE2)]
i o IJ J1 1 J 1 J

iGl1 jGlz
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+uS ? ^^[^((T^'Vj-P^/ nE^)]PV(xV) =0. (A4)

Now, by (3.3),

c±0 =1- JLc^Kx €Ej).
IV

and so

c^0pv(xv) =pv(xv) -£ c" pv(xv n&
iv

Substituting this into (A4) gives the equivalent condition

? £ auV((tu)_1xu)-pu(xu ne")]pv(xv)
urv Tu l i i '

E £ £ *Uic" PU((TV)-1xU)[PV((T*)-1xV)-PV<xVnE^)] =0
UlFV «— U s- VU^V iGlu jGiv (A5)

Because of (3.1) and (3.4), (A2) allows us to replace in the second sum

above the expression P ((T.) x ) by P (E )P (x ). After we do this and

rearrange terms, we can rewrite (A5) as

£ £ Uui+ £avjc>v(e^)][pu((t")-1xu)-pu(xu ne")]pv(xv) =o,
u*vlu IV

112 2
and since this condition is implied by (A3) it follows that P (x )P (x )

is an equilibrium distribution as asserted.

kO
Next, using (2.3) and (3.6), M is QR with respect to Y if
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£ A10P(Ei0)P(x) - £ A10P(I-;X).

By (3.9) and (3.2) this can be rewritten as

£ »11cJ0P1(kJ)P1<x1)P2(x2) - £ a^/utV^W)

which is immediate from (A2). In a similar way it can be shown that M
0£

is QR with respect to Y . The theorem is proved.

Proof of Theorem 4.1. The proof is obtained by induction on n. Consid

the chain M obtained by interconnecting the chains MU(XU), u = l,...,n-l

with routing probabilities rUY, ru0 where
kl' k

-uv uv -uO _ uO, « un .
rkA rk£' rk " rk + Erk »1 < «. v < n-1

I

and

Xui =AUi + £ XnJpn(E")c"" 1<u<n-1, i6IU.

Using the restrictions implied by (4.3) and the assumption that the sets

Uu(k)} and {J^} are disjoint it is easy to check that the Xu satisfy

PUi -AUl +£ £ ?"pW)c™ ieI", u=l,...,n-l
v=ljeiv J J*

By the induction hypotliesis

P(x1,...,xn-1)=P1(x1),...,pn-1(xn-1)

-16-
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is a stationary distribution for the chain M and M is QR with respect

to its departure processes D , 1 £ u <^ n-1, k G K which we defined in

the natural way.

Now the chain M is obtained in a straightforward way by intercon

necting the two chains M and M (X ). The chains M and M (p ) are QR

with respect to the relevant outputs and so it follows by Theorem 3.1

that

P(x ,...,x ) = P(x ,...,x )P (x )

is a stationary distribution for M and M in QR with respect to the D ,
K.
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