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Abstract

Generalizing the definitions of L.A. Zadeh [4] and R. Lowen and

E.P. Klement [3] a larger class of finite fuzzy measures is defined. It is

shown that these fuzzy measures can be characterized in a unique way by a

finite (classical) measure and a Markoff-kernel.
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CHARACTERIZATION OF FINITE FUZZY MEASURES USING MARKOFF-KERNELS

E.P. Klement

1. INTRODUCTION

Fuzzy probability was originally introduced by L.A. Zadeh [4] in 1968.

He started with a classical probability space (X,A,P) and for each fuzzy

event y, that is a measurable function y: X ^ [0,1], he defined the

probability of y by

m(y) = ydP . (1)

More recently, the author [2] studied fuzzy a-algebras. The most important

among them are the so-called generated fuzzy a-algebras which consist of all

fuzzy sets being measurable functions with respect to some classical

a-algebra.

Together with R. Lowen [3] he gave an axiomatic definition of fuzzy

probability measures and showed that in the case of a generated fuzzy

a-algebra such a fuzzy probability measure is an integral in the sense of

(1) if and only if some condition (J) is fulfilled which guarantees a kind

of differentiability of the measure.

In this paper we study now a much larger class of finite fuzzy measures

m (not only probability measures) and show that they can be characterized

in a unique way by

m(y) = K(x,[0,y(x)[)dP(x) ,

where P is some finite measure and K denotes a Markoff-kemel.



2. BASIC DEFINITIONS AND NOTATIONS

(X,A) will denote a measurable space, that is a non-empty set X

equipped with a a-algebra A of subsets of X. B is the a-algebra of

Borel subsets of F, BO[0,1] and Bn[o,l[ are the a-algebras of Borel

subsets of [0,1] and [0,1[, respectively.

According to [2] we write a = £(A) for the fuzzy a-algebra generated

by A, that is the family of fuzzy sets y: X + [0,1] where y is

measurable with respect to A and BH[o,l]. (In this paper we restrict

ourselves to the case of generated fuzzy a-algebras.)

A fuzzy probability measure was defined in [3] to be a map m: a •+ [0,1]

fulfilling these axioms:

Va constant: m(a) = a (2)

Vy € a: m(l-y) = 1-m(y) (3)

Vy,v e a: m(y v v) +m(y Av) = m(y) +m(v) (4)

V(yn)ne^lCa' ^Ga: K W y "> W^nSJN* m(y) (5)

3. CHARACTERIZATION OF FUZZY PROBABILITY MEASURES

It was shown in [3] that a fuzzy probability measure is an integral,

i.e. there exists a probability measure P on (X,A) such that

i]i^o: m(y) = ydP

if and only if this condition (J) is fulfilled: for each ASA there

exists a number u(A) e [0,1] such that

(i) V(y,a) e ax [0,1]:

u'1(]a,l])-A - lim m^AB)-m(yAa) n u(A)

(ii) u(A)+u(Ac) = 1



(Note that this condition is sufficient only if the fuzzy a-algebra is

generated.)

Now let us consider counterexample 1 in [3]: In this example we have

X=[0,1], A=Bn[o,l] and a =£(B). PQ and P] denote the probability

measures concentrated in 0 and 1, respectively, i.e.

P0({0» =P^l}) =1 .

The fuzzy probability measure m is defined by

m(y) =

m does not fulfill condition (J) because for

y = 1

we have

but

and

f[(|-Ay) +(|vy)]dP0 +f|A(lvy)dP1 - 1

{0}

y-1(]^l]) =y_1(]f,l]) - {0} ,

m(yA3) -m(yA«)
lim =j — = 0

m(yA3) -m(yA^)
lim j 2_ =1 .

But it turns out that, if we choose the probability measure P which is

uniquely determined by

P({0}) =P({1}) =1

and the function K: Xx[0,l] —*• IR specified by



and

K(0,a) =

K(l,a) =

'2a if a < j

\ if l±a±f
2a-1 if a>|

f 0 if al4

2a 4 if \<«±\
1 ^ <x>4

K(x,a) = a if x e ]0,1[ and a e [0,1] ,

we get the following characterization of m:

Vy E a: m(y) = K(x,y(x))dP(x) .

(Note that, because of ]0,1[ being a P-null-set, in the case of xe ]o,l[

for K(x,«) each measurable function can be chosen without any change in

the result.)

4. MARKOFF-KERNELS

Examining the functions K(0,«) and K(l,») (which are the only

significant ones) we realize that they are just probability distribution

functions on [0,1]. Since a probability distribution function determines

a probability measure, this observation leads us to the study of kernels,

especially of Markoff-kernels, which are a powerful instrument in probability

theory to describe conditional distributions, Markoff-processes, etc.

A kernel (from (X,A) to ([0,1[, sn[o,l[)) is a function

K: XxBH[0,l[ -> ]R

such that these conditions are fulfilled:



VB e BO[0,1[: K(-,B): X— R is A-B-measurable (6)
x -* K(x,B)

Vx e X: K(x,«): Bn[o,l[ -> r is a measure (7)
B -• K(x,B)

A kernel is called a Markoff-kernel iff

Vxe X: K(x,[0,l[) = 1 , (8)

that means that K(x,«) is a probability measure for each x e X. For

more details about kernels we refer to [1].

5. FINITE FUZZY MEASURES

Now let P be a finite measure on (X,A) and K a Markoff-kernel

from (X,A) to ([0,1[, BH[0,1[).

Lemma. The function

m: a —*• 1R

y K(x,[0,y(x)[)dP(x)

fulfills these properties

m(0) = 0 (9)

V\i,\) £ a: m(y Vv)+m(.y Av) = m(y)+m(v) (10)

V(vJn)ne^Ca^Ga: K)ne^f » => <mfon»nEH +m(u) (11)

Proof. First of all we denote that the function

K(-,[0,y(.)[): X-> IR

x -+ K(x,[0,y(x)[)



is measurable for each y £ a because of the measurability of both K(«,B)

and y. Hence the integral

'K(x,[0,y(x)[)dP(x)

always exists and m is well-defined. (9) is obviously fulfilled because of

K(x,<j>) = 0 .

To show (10) it is sufficient to know that for any A, Be BH[o,l[ and for

each x G X

K(x,AUB) + K(x,AHB) = K(x,A) + K(x,B)

holds, which is a consequence of the additivity of the measure K(x,-)- The

proof of (11) follows immediately by the continuity from below of the proba

bility measure K(x,«) and by Levi's theorem of monotone convergence. •

It is obvious that, in general, m does not fulfill properties (2) and

(3), even if P is a probability measure. For example it is sufficient to

consider this special Markoff-kemel

f 1 if 0 e B
K(x,B) = { (x g X, Be sn[o,l[)

[0 if 0 ^ B

and an arbitrary probability measure P. For the constant fuzzy set

we get

m(y) - 1 ,

which violates both (2) and (3).
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Conversely, it is straightforward that each fuzzy probability measure

fulfills conditions (9)-(ll).

So we can give this

Definition. A map m: a •* R is called a finite fuzzy measure if and

only if it fulfills (9)-(ll).

6. CHARACTERIZATION OF FINITE FUZZY MEASURES

The following theorem establishes the main result of this paper: each

finite fuzzy measure can be characterized by a finite measure and a Markoff-

kernel.

Theorem. Let m be a finite fuzzy measure. Then there exists one and

only one finite measure P on (X,A) and a P-almost everywhere uniquely

determined Markoff-kernel K such that

Vy 6 a: m(y) = K(x,[0,y(x)[)dP(x) . (12)

Proof. (1) First we show that for each a e d)^[0,l]

P : A -* R
a

A-*• m(aAlA)

is a finite measure on (X,A): For each aG d)n[o,l] we obviously have

PaU) =m(0) =0 ,

Pa(X) =m(a) <* ,

P (A) > 0 .
av ' —

To prove the a-additivity of P let (An)nG1Nc A be a sequence of pairwise

disjoint sets. Using (10) and (11) we get



* »

(2) Now we put

P ( u AJ = m(sup Ml k ))
a'neiN n k^iN my1An

= sup m(aA 1 |< )

k n '
= sup I m(aAl. )

keiN n=l Mn

=1 w •

P = P.

and show that for each ae djn[o,l], P is absolutely continuous with

respect to P. In order to do that we choose an a e d)n[o,l] and an A e A

and assume P(A) = 0. Then P (A) = 0 follows by

0 <Po(A) =m(aA 1A) <m(lA) = P(A) » 0 .

(3) This allows us to apply Radon-Nikodym's theorem telling that for

each a e qn[o,l] there exists an A-B-measurable function f : X -»• R
a

such that

VA G A: P (A) =
av '

f dP .
a

Now we remember the following property of the Lebesgue-integral:

(VAGA fdP =

JA
gdP) => f = g p-a.e.

Using it leads us to these results:

f0 = 0 P-a.e.,

f-j = 1 P-a.e.,

Va G qn[0,l]: f = sup fQ P-a.e.
a 3QiP[0,a[ 3

(13)
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For our construction of the Markoff-kernel K we must have that these

equalities hold everywhere. That can be easily done by changing (if neces

sary) the values of the functions f in a P-null-set to get the desired
a '

overall equalities. Of course, for these modified functions (13) still

holds.

(4) Now we are able to define for each a e [0,1]

ga = SUP fft 'a 6Gd|n[osa] p

Note that each g is the supremum of a countable family of measurable

functions and hence itself measurable. We also have for each a G [0,1]

and each A g A

P (A) =
av '

because of (11) and Levi's theorem. Furthermore, for each x G X

g dP
3a

hx: [0,1] —-R

a- ga(x)

is a probability distribution function which determines in a unique way a

probability measure Qx on ([0,1[, 8n[o,l[) fulfilling

Qx([a,6[) = hx(3) -hx(a) (a,3 G [0,1], a< 6) .

(5) Putting K: Xxgn[o,l[ -+ R it is trivial that K(x,«) is a
(x,B) — Qx(B)

probability measure for each x G X.

In order to show that K(.,B) is measurable for each B G sn[o,l[

we first prove that



^«

n

V = {C|CGBn[o,l[, K(-,C) is A-B-measurable}

is a Dynkin-system on [0,1 [: [0,1 [ belongs to V because of the insura

bility of

K(x,[0,l[) =QX([0,1[) =1 (xGX) .

Given C, D G V such that C c D we have

K(x,D\C) =Qx(D\C) =Qx(D)\Qx(C) = K(x,D) -K(x,C) (x G X)

which implies that K(-,D\C) is measurable, too.

Finally, if (Cfl)nG]N is a sequence of pairwise disjoint elements of V,
we get

K(x, u C ) = Q ( u C ) = I Q (CJ = I K(x,C) (x G X)
nG]N n x nGlN n n=l x n n=l n

and hence the measurability of K(«, u CM).
i

Because of the measurability of
nGIN n

K(x9[a,0[) =Qx([a,3[) =hx(0) -hx(a) =g$(x) -ga(x)

for any a, 3 G [0,1], a <3 and any x G X it follows that the Dynkin-
system V contains

{[a,3[|a,3e[0,l], a<3> ,

which is a n-stable generator of the a-algebra 8n[o,l[. On the other

hand, V is a subset of BO[o,l[. Now a well-known classical result

establishes the equality of V and BO[o,l[. Hence K is a Markoff-

kernel.

(6) Next we show that property (12) is fulfilled: if v e o is a

step function, i.e.
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y = I Va1=1 ^ Ai

(A., pairwise disjoint), we get

n n f
m(y) = I m(a. M. ) = £ g dP

1=1 i 1=1 JA. ai

= I f K(x,[0,a.[)dP(x) =f JK(x,[0,a.[).l, (x)dP(x)
i=l jAi 1 JAi 1=1 1 Ai
K(x,[0,y(x)[)dP(x) .

For an arbitrary ]i e o there exists always an increasing sequence

(sn)ne]jyj of step functions such that

Then we have

m(y) = sup m(s ) =
nG]N n

sup

new

y = sup s

nGlN
n

K(x,[0,sn(x)[)dP(x) K(x,[0,y(x)[)dP(x)

(7) The uniqueness of the measure P follows by

P(A) = m(lA) (AG A) ,

the P-almost everywhere uniqueness of K follows directly from Radon-

Nikodym's theorem. •

An immediate consequence of this theorem is that each fuzzy probability

measure defined on a generated fuzzy a-algebra can be characterized by a

probability measure and a Markoff-kerne1, regardless whether it fulfills

condition (J) or not.
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Finally we note that it had not led to a larger class of fuzzy measures

if we had admit general kernels instead of Markoff-kernels, as long as the

result was still a finite measure, i.e. the function K(-,[0,1[) was inte

grate with respect to P. It is easily seen that in this case properties

(9)-(!!) are fulfi11ed,too. But we would lose the uniqueness of the measure

P (and hence the P-almost everywhere uniqueness of the kernel K) in our

theorem.

7. ACKNOWLEDGMENTS

This paper was written while the author was a Visiting Research Associate

at the Department of Electrical Engineering and Computer Sciences, University

of California, Berkeley supported by a Postdoctoral Research Exchange Grant

of the Max Kade Foundation, Inc., New York.

I would like to express my thanks for valuable discussion and helpful

comments to B. Rauchenschwandtner, W. Schwyhla and L.A. Zadeh.

8. REFERENCES

[1] H. Bauer: Probability Theory and Elements of Measure Theory, New York,
Holt, Rinehart and Winston (19727.

[2] E.P. Klement: Fuzzy a-algebras and fuzzy measurable functions, to
appear in: Fuzzy Sets and Systems.

[3] R. Lowen and E.P. Klement: Fuzzy probability measures, submitted for
publication to: Fuzzy Sets and Systems.

[4] L.A. Zadeh: Probability measures of fuzzy events, J. Math. Anal. Appl.
23, 421-427 (1968). ^~


	Copyright notice 1979
	ERL-79-40

