Copyright © 1979, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

>
Nd

[A]

INGRES

VERSION 6.2
REFERENCE MANUAL

7120179
by

John Woodfill
Nick Whyte
Mike Ubell
Polly Siegel

Dan Ries
Marc Meyer

Paula Hawthorn
Bob Epstein
Rick Berman
Eric Allman

Memorandum No. UCB/ERL M79/43

20 July 1979

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Research Sponsored by the Air Force Office of Scientific Research
Grant 78-3596, U. S. -Army Research Office Grant DAAG29-76-G-0245,
Office of Naval Research Contract N00014-78-C-0185, National Science
Foundation Grant MCS75-03839-A01, and Joint Services Electronics
Program Contract F49620-79-C-0178.

")

"od

ny

INTRODUCTION (INGRES) 3/15/79 INTRODUCTION (INGRES)

This manual is a refercnce manual for the INGRES data base system. It documents the use of
INGRES in a very terse manner. To learn how to use INGRES, refer to the document called "A
Tutorial on INGRES".

The INGRES reference manual is subdivided into four parts:
Quel describes the commands and features which are used inside of INGRES.
Unix describes the INGRES programs which are executable as UNIX commands.
Files describes some of the important files used by INGRES.
Error lists all the user generatable error messages along with some elaboration as to what
they mean or what we think they mean.

Each entry in this manual has one or more of the following sections:

NAME section
This section repeats the name of the entry and gives an indication of its purpose.

SYNOPSIS section
This section indicates the form of the command (statement). The conventions
which are used are as follows:

Bold face names are used to indicate reserved keywords.

Lower case words indicate generic types of information which must be sup-
plied by the user; legal values for these names are described
in the DESCRIPTION section.

Square brakets ([]) indicate that the enclosed item is optional.

Braces ({}) indicate an optional item which may be repeated. In some cases
they indicate simple (non-repeated) grouping; the usage
should be clear from context.

When these conventions are insufficient to fully specify the legal format of a com-
mand a more general form is given and the allowable subsets are specnﬁed in the
DESCRIPTION section.

DESCRIPTION section
This section gives a detailed description of the entry with references to the generic
names used in the SYNOPSIS section.

EXAMPLE section
This section gives one or more examples of the use of the entry. Most of these ex-
amples are based on the following relations:
emp(name,sal,mgr,bdate)
and
newemp(name,sal,age)
and
parts(pnum, pname, color, weight, qoh)
SEE ALSO section

This section gives the names of entries in the manual which are closely related to
the current entry or which are referenced in the description of the current entry.

BUGS section
This section indicates known bugs or deficiencies in the command.

To start using INGRES you must be entered as an INGRES user: this is done by the INGRES ad-
ministrator who will enter you in the "users" file (see users(files)). To start using ingres see the
section on ingres{unix), quel(quel), and monitor(quel).

ACKNOWLEDGEMENTS

We would like to acknowledge the people who have worked on INGRES in the past:

William Zook
Karel Youssefi
Peter Rubinstein

INTRODUCTION (INGRES) ' 3/15/79

Peter Kreps
Gerald Held
James Ford

FOOTNOTE
UNIX is a trademark of Bell Laboratories.

INTRODUCTION (INGRES)

-
-yr.: LU

1}

TABLE OF CONTENTS (INGRES) 3/23/79 TABLE OF CONTENTS (. NGRES)

APPEND(QUEL) — append tuples to a relation
append [to] relname (target_list) [where qual]

COPY (QUEL) — copy data into/from a relation from/into a UNIX file.
copy relname (domname = format {, domname = format)]
direction "filename”

CREATE(QUEL) — create a new relation
create relname domname/ = format {, domname2 = format })

DEFINE(QUEL) — define subschema
define view name (target list) [where qual }
define permit oplist { on | of | to } var [(attlist)]
to name [at term] [from time to time]
[on day to day] [where qual]
define integrity on var is qual

DELETE(QUEL) — delete tuples from a relation
delete tuple_variable [where quall

DESTROY (QUEL) — destroy existing relation(s)
destroy relname {, relname}
destroy [permit | integrity] relname [integer {, integer}| alll

HELP(QUEL) — get information about how to use INGRES or about relations in the database.

help [relname] ["section”] {, relname}{, "section"}
help view [relname {, relname}]

help protect [relname {, relname}]

help integrity [relname {, relname}]

INDEX(QUEL) — create a secondary index on an existing relation.
index on relname is indexname (domain/ { ,domain2})

INTEGRITY(QUEL) — define integrity constraints
define integrity on var is qual

MACROS(QUEL) — terminal monitor macro facility
MODIFY (QUEL) — convert the storage structure of a relation
modify relname to storage-structure
[on keyl [: sortorder] [{, key2 [: sortorder]} 1]
[where [fillfactor = n] [, minpages = n]
[, maxpages = nn]]

MONITOR(QUEL) - interactive terminal monitor
PERMIT(QUEL) — add permissions to a relation
define permit oplist { on | of | to } var { (attlist)]

to name [at term] [from time to time]
[on day to day] [where qual]

PRINT(QUEL) — print relation(s)
print relname {, relname}

QUEL(QUEL) — QUEry Language for INGRES

RANGE(QUEL) — declare a variable to range over a relation
range of variable is relname

REPLACE(QUEL) — replace values of domains in a relation
replace tuple_variable (target_list) [where quall

RETRIEVE(QUEL) — retrieve tuples from a relation
retrieve [[into] relname] (target_list) [where quall
retrieve unique (target_list) [where qual]

TABLE OF CONTENTS (INGRES) 3/23/79 TABLE OF CONTENTS (INGRES)

SAVE(QUEL) - save a relation until a date.
save relname until month day year

VIEW(QUEL) — define a virtual relation
define view name (target-list) [where qual]

COPYDB(UNIX) — create batch files to copy out a data base and restore it.
copydb [—uname] database full-path-name-of-directory [relation ...]

CREATDB(UNIX) — create a data base
creatdb [~uname] [—e] [=m] [+¢) [+q] dbname

DESTROYDB(UNIX) — destroy an existing database
destroydb [—s] [—m] dbname

EQUEL(UNIX) — Embedded QUEL interface to C
equel [—d] [—f][—r]fileq...

GEO-QUEL(UNIX) — GEO-QUEL data display system
geoquel [—s] [—d] [—al[—=tT] [—tnT] dbname

HELPR(UNIX) — get information about a database.
helpr [—uname] [+w] database relation ...

INGRES(UNIX) — INGRES relational data base management system
ingres [flags] dbname [process_table]

PRINTR(UNIX) — print relations
printr [flags] database relation ...

PURGE(UNIX) — destroy all expired and temporary relations
purge [—f] [—p][—al[—s][+w] [database ...]

RESTORE(UNIX) — recover from an INGRES or UNIX crash.
restore [—a] [—s] [+w] [database ...]

SYSMOD (UNIX) — modify system relations to predetermined storage structures.
sysmod [—s] [—w] dbname [relation] [attribute] [indexes 1 [tree] [protect]
[integrities] ,

TIMEFIX(UNIX) — patch INGRES binary code for correct timezone.
timefix [—ul [=sN] [—typyzzz]) [—dX] filename ...

USERSETUP(UNIX) — setup users file
.../bin/usersetup [pathname]

DAYFILE(FILES) — INGRES login message

DBTMPLT(FILES) — database template

ERROR(FILES) — files with INGRES errors

GRAFILE(FILES) — GEO-QUEL login message

LIBQ(FILES) — Equel run-time support library
PROCTAB(FILES) — INGRES runtime configuration information
STARTUP(FILES) — INGRES startup file

TTYTYPE(FILES) — GEO-QUEL terminal type database
USERS(FILES) — INGRES user codes and parameters
INTRODUCTION(ERROR) — Error messages introduction

EQUEL(ERROR) — EQUEL error message summary
Error numbers 1000 — 1999.

PARSER(ERROR) — Parser error message summary
Error numbers 2000 — 2999.

o)

It

TABLE OF CONTENTS (INGRES) 3/23/79 TABLE OF CONTENTS (INGRES i

QRYMOD(ERROR) — Query Modification error message summary
Error numbers 3000 — 3999,

OVQP(ERROR) - One Variable Query Processor error message summary
 Error numbers 4000 — 4499.

DECOMP(ERROR) — Decomposition error message summary
Error numbers 4500 — 4999.

DBU(ERROR) — Data Base Utility error message summary
Error numbers 5000 — 5999

GEOQUEL (ERROR) — GEO-QUEL error message summary
* Error numbers 30000 — 30999.

\-

-

"

APPEND (QUEL) 1/26/79 APPEND (QUEL)

NAME
append — append tuples to a relation
SYNOPSIS
append [to] relname (target_list) [where quall
DESCRIPTION
Append adds tuples which satisfy the qualification to relname. Relname must be the name of an
existing relation. The rarger_list specifies the values of the attributes to be appended to relname.
The domains may be listed in any order. Attributes of the result relation which do not appear
in the rarget_list as result_attnames (either explicitly or by default) are assigned default values
of 0, for numeric attributes, or blank, for character attributes.
Values or expressions of any numeric type may be used to set the value of a numeric type
domain. Conversion to the result domain type takes place. Numeric values cannot be directly
assigned to character domains. Conversion from numeric to character can be done using the
ascii operator (see quel(quel)). Character values cannot be directly assigned to numeric
domains. Use the intl, int2, etc. functions to convert character values to numeric (see
quel(quel)).
The keyword all can be used when it is desired to append all domains of a relation.
An append may only be issued by the owner of the relation or a user with append permission on
the given relation.
EXAMPLE
/= Make new employee Jones work for Smith */
range of n is newemp
append to emp(n.name, n.sal, mgr = "Smith", bdate = 1975—n.age)
where n.name = "Jones" '
/» Append the newempl relation to newemp */
range of nl is newempl
append to newemp(nl.all)
SEE ALSO
copy (quel), permit(quel), quel(quel), retrieve(quel)
DIAGNOSTICS
Use of a numeric type expression to set a character type domain or vice versa will produce diag-
nostics.
BLGS

Duplicate tuples appended to a relation stored as a "paged heap" (unkeyed, unstructured) are
not removed.

COPY (QUEL) 1/19/79 COPY (QUEL)

NAME

_copy — copy data into/from a relation from/into a UNIX file.

SYNOPSIS

copy relname (domname = format {, domname = format })
direction "filename"

DESCRIPTION

Copy moves data between INGRES relations and standard UNIX files. Relname is the name of an
existing relation. In general domname identifies a domain in relname. Format indicates the for-
mat the UNIX file should have for the corresponding domain. Direction is either into or from.
Filename is the full UNIX pathname of the file.

On a copy from a file to a relation, the relation cannot have a secondary index, it must be
owned by you, and it must be updatable (not a secondary index or system relation).

Copy cannot be used on a relation which is a view. For a copy into a UNIX file, you must either
be the owner of the relation or the relation must have retrieve permission for all users, or all
permissions for all users.

The formats allowed by copy are:
i1,i2,i4 — The data is stored as an integer of length 1, 2, or 4 bytes in the UNIX file.

f4,f8 — The data is stored as a floating point number (either single or double precision) in the
UNIX file.

cl,c2,...,6255 — The data is stored as a fixed length string of characters.
¢0 — Variable length character string.

d0.d1,...,d255 — Dummy domain.

Corresponding domains in the relation and the UNIX file do not have to be the same type or
length. Copy will convert as necessary. When converting anything except character to charac-
ter, copy checks for overflow. When converting from character to character, copy will blank pad
or truncate on the right as necessary.

The domains should be ordered according to the way they should appear in the UNIX file.
Domains are matched according to name, thus the order of the domains in the relation and in
the UNIX file does not have to be the same.

Copy also provides for variable length strings and dummy domains. The action taken depends
on whether it is a copy into or a copy from. Delimitors for variable length strings and for dum-
my domains can be selected from the list of:

nl — new line character

tab — tab character

sp — space

nul or null — null character
comma — comma

colon — colon

dash — dash

Iparen — left parenthesis
rparen — right parenthesis
X — any single character X’

The special meaning of any delimitor can be turned off by preceeding the delimitor with a '\’
The delimitor can optionally be in quotes ("delim"). This is usefully if you wish to use a single
character delimitor which has special meaning to the QUEL parser.

When the direction is from, copy appends data into the relation from the UNix file. Domains in
the INGRES relation which are not assigned values from the UNIX file are assigned the default
value of zero for numeric domains, and blank for character domains. When copying in this

-1-

o)

Tay

COPY (QUEL) 1/19/79 COPY (QUEL)

direction the following special meanings apply:

cOdelim — The data in the UNIX file is a variable length character string terminated by ihe del-
imitor delim. If delim is missing then the first comma, tab, or newline encountered
will terminate the string. The delimitor is not copied.

For example:
pnum=c0 — string ending in comma, tab, or nl.
pnum=cOnl — string ending in nl.
pnum=c0Osp — string ending in space.
pnum=c0"Z" — string ending in the character "Z".
pnum=c0"%" — string ending in the character "Oh".

A delimitor can be escaped by preceeding it with a ‘\’. For example, using name =
¢0, the string "Blow\, Joe," will be accepted into the domain as "Blow, Joe".

d0delim — The data in the UNIX file is a variable length character string delimited by delim. The
string is read and discarded. The delimitor rules are identical for c¢0 and d0. The
domain name is ignored.

d1,d2,...,d255 — The data in the UNIX file is a fixed length character string. The string is read
and discarded. The domain name is ignored.

When the direction is into, copy transfers data into the UNIX file from the relation. If the file
already existed, it is truncated to zero length before copying begins. When copying in this
direction, the following special meanings apply:

¢0 — The domain value is converted to a fixed length character string and writted into the UNIX
file. For character domains, the length will be the same as the domain length. For
numeric domains, the standard INGRES conversions will take place as specified by the
«—j’, *=f, and ‘—c’ flags (see ingres(unix)).

cOdelim — The domain will be converted according to the rules for ¢0 above. The one charac-
ter delimitor will be inserted immediately after the domain.

d1,d2,...,d255 — The domain name is taken to be the name of the delimitor. It is written into
the UNIX file 1 time for d1, 2 times for d2, etc.

d0 — This format is ignored on a copy into.

d0delim — The delim is written into the file. The domain name is ignored.

If no domains appear in the copy command (i.e. copy relname () into/from "filename") then
copy automatically does a "bulk” copy of all domains, using the order and format of the domains
in the relation. This is provided as a convenient shorthand notation for copying and restoring
entire relations.

To copy into a relation, you must be the owner or all users must have all permissions set.
Correspondingly, to copy from a relation you must own the relation or all users must have at
least retrieve permission on the relation. Also, you may not copy a view.

EXAMPLE
/+ Copy data into the emp relation =/
copy emp (name =c10,sal =f4,bdate=i2,mgr=c10,xxx=d1)
from "/mnt/me/myfile"

/+ Copy employee names and their salaries into a file */
copy emp (name=c0,comma=dl ,sal=c0,nl=dl)
into "/mnt/you/yourfile"

/* Bulk copy employee relation into file +/
copy emp ()
into "/mnt/ours/ourfile"

COPY (QUEL) 1/19/79 COPY (QUEL)

/+ Bulk copy employee relation from file =/
copy emp ()
from "/mnt/thy/thyfile"

SEE ALSO
append{(quel), create(quel), quel(quel), permit(quel), view(quel), ingres(unix)
BLUGS
Copy stops operation at the first error.
When specifying filename, the entire UNIX directory pathname must be provided, since INGRES

operates out of a different directory than the user’s working directory at the time INGRES is in-
voked.

Y

sy

[¥}

CREATE (QUEL) 1/26/79 CREATE (QUEL)

NAME
create — create a new relation

SYNOPSIS
create relname (domname/ = format {, domname2 = format })

n
"

DESCRIPTION
Create will enter a new relation into the data base. The relation will be "owned” by the user and

will be set 1o expire after seven days. The name of the relation is relname and the domains are
named domnamel, domname?2, etc. The domains are created with the type specified by format.

Formats are described in the quel(quel) manual section.

> The relation is created as a paged heap with no data initially in it.
A relation can have no more than 49 domains. A relation cannot have the same name as a sys-
tem relation.

EXAMPLE
/* Create relation emp with domains name, sal and bdate +/

create emp (name = cl0, salary = 4, bdate = i2)

SEE ALSO
append{(quel), copy{(quel), destroy(quel), save(quel)

BLUGS

w

"

DEFINE (QUEL) 2/7/79 DEFINE (QUEL)

NAME
define — define subschema
SYNOPSIS
define view name (target list) [where qual)
define permit oplist { on | of | to } var [(attlist)]
to name [at term] [from time to time]
[on day to day] [where qual]
define integrity on var is qual
DESCRIPTION
The define statement creates entries for the subschema definitions. See the manual sections
listed below for complete descriptions of these commands.
SEE ALSO

integrity(quel), permit(quel), view(quel)

ey

(¥}

DELETE (QUEL) 1/26/79 DELETE (QUEL)

NAME
delete — delete tuples from a relation
SYNOPSIS
delete tuple_variable [where qual}
DESCRIPTION
Delete removes tuples which satisfy the qualification gual from the relation that they belong to.
The wple_variable must have been declared to range over an existing relation in a previous
range statement. Delete does not have a target_list. The delete command requires a tuple vari-
able from a range statement, and not the actual relation name. If the qualification is not given,
the effect is to delete all tuples in the relation. The result is a valid, but empty relation.
To delete tuples from a relation, you must be the owner of the relation, or have delete permis-
sion on the relation.
EXAMPLE
/# Remove all employees who make over $30,000 »/
range of e is emp
delete e where e.sal > 30000
SEE ALSO

destroy(quel), permit(quel), quel(quel), range(quel)
BUGS

DESTROY (QUEL) 2/21/79 DESTROY (QUEL)

NAME
destroy — destroy existing relation(s)
SYNOPSIS
destroy relname {, relname}
destroy [permit | integrity] relname [integer {, integer}| all]
DESCRIPTION
Destroy removes relations from the data base, and removes constraints or permissions from a -
relation. Only the relation owner may destroy a relation or its permissions and integrity con-
straints. A relation may be emptied of tuples, but not destroyed, using the delete statement or
the modify statement. .
If the relation being destroyed has secondary indices on it, the secondary indices are also des-
troyed. Destruction of just a secondary index does not affect the primary relation it indexes.
To destroy individual permissions or constraints for a relation, the integer arguments should be
those printed by a help permit (for destroy permit) or a help integrity (for destroy integrity)
on the same relation. To destroy all constraints or permissions, the all keyword may be used in
place of individual integers. To destroy constraints or permissions, either the integer arguments
or the all keyword must be present.
EXAMPLE
/* Destroy the emp relation */
destroy emp
destroy emp, parts
/+ Destroy some permissions on parts, and all integrity
» constraints on employee
*/
destroy permit parts 0, 4, 5
destroy integrity employee
SEE ALSO

create(quel), delete(quel), help(quel), index(quel), modify(quel)

a

HELP (QUEL) 2/21/79 HELP (QUEL)

NAME
help — get information about how 10 use INGRES or about relations in the database.

SYNOPSIS
help [relname] ["section"] {, relname}{, "section"}
help view [relname {, relname}]
help protect [relname {, relname}]
help integrity [relname {. relname}]

DESCRIPTION
Help may be used to obtain sections of this manual, information on the content of the current
data base, information about specific relations in the data base, view definitions, or protection
and integrity constraints on a relation. The legal forms are as follow:

help "section ™ — Produces a copy of the specified section of the INGRES Reference Manual, and
prints it on the standard output device.

help — Gives information about all relations that exist in the current database.

help relname |, relname} — Gives information about the specified relations.

help "" — Gives the table of contents.

help view relname {, relname} — Prints view definitions of specified views.

help protect re/name {, relname} — Prints permissions on specified relations.

help integrity relname {, relname} — Prints integrity constraints on specified relations.

The protect and integrity forms print out unique identifiers for each constraint. These
identifiers may be used to remove the constraints with the destroy statement.

EXAMPLE
help
help help /+ prints this page of the manual =/
help quel
help emp
help emp, parts, "help", supply
help view overp_view
help protect parts, employee
help integrity parts, employee

SEE ALSO
destroy(quel)
BUGS
Alphabetics appearing within the section name must be in lower-case to be recognized.

INDEX (QUEL) 2/21/79 INDEX (QUEL)

NAME
index — create a secondary index on an existing relation.
SYNOPSIS
index on relname is indexname (domain/ { ,domain2})
DESCRIPTION
Index is used to create secondary indices on existing relations in order to make retrieval and up-
date with secondary keys more efficient. The secondary key is constructed from relname

domains 1, 2,...,6 in the order given. Only the owner of a relation is allowed to create secon-
dary indices on that relation.

In order to maintain the integrity of the index, users will NOT be allowed to directly update
secondary indices. However, whenever a primary relation is changed, its secondary indices will
be automatically updated by the system. Secondary indices may be modified to further increase
the access efficiency of the primary relation. When an index is first created, it is automatically
modified to an isam storage structure on all its domains. If this structure is undesirable, the
user may override the default isam structure by using the —n switch (see ingres(unix)), or by
entering a /modify command directly.

If a modjfy or destroy command is used on relname, all secondary indices on relname are des-
troyed.

Secondary indices on other indices, or on system relations are forbidden.

EXAMPLE
/* Create a secondary index called ‘‘x” on relation ‘‘emp”’ */
index on emp is x (mgr,sal)

SEE ALSO
copy (quel), destroy(quel), modify(quel)

BLGS
At most 6 domains may appear in the key.
The copy command cannot be used to copy into a relation which has secondary indices.

The default structure isam is a poor choice for an index unless the range of retrieval is small.

[

INTEGRITY (QUEL) 2/7/79 : INTEGRITY (QUEL)

NAME

integrity — define integrity constraints
SY\NOPSIS

define integrity on var is qual
DESCRIPTION

The integrity statement add: an integrity constraint for the relation specified by var. After the
constraint is placed, all updates to the relation must satisfy qual. Qual must be true when the
integrity statement is issued or else a diagnostic is issued and the statement is rejected.

In the current implementation, integrity constraints are not flagged — bad updates are simply
(and silently) not performed.

Qual must be a single variable qualification and may not contain any aggregates.

integrity statement may be issued only by the relation owner.

EXAMPLE
/= Ensure all employees have positive salaries */
range of e is employee
define integrity on e is e.salary > 0

SEE ALSO
destroy (quel)

MACROS (QUEL) 2/19/79 MACROS (QUEL)

NAME
macros — terminal monitor macro facility

DESCRIPTION
The terminal monitor macro facility provides the ability to tailor the QUEL language to the
user’s tastes. The macro facility allows strings of text to be removed from the query stream
and replaced with other text. Also, some built in macros change the environment upon execu-
tion.

Basic Concepts

All macros are composed of two parts, the template part and the replacement part. The template
part defines when the macro should be invoked. For example, the template ‘‘ret’’ causes the
corresponding macro to be invoked upon encountering the word “‘ret” in the input stream.
When a macro is encountered, the template part is removed and replaced with the replacement
part. For example, if the replacement part of the ‘‘ret”” macro was ‘‘retrieve”, then all in-
stances of the word “‘ret’’ in the input text would be replaced with the word ‘‘retrieve’”, as in
the statement

ret (p.all)

Macros may have parameter$, indicated by a dollar sign. For example, the template ‘‘get $1°°
causes the macro to be triggered by the word ‘‘get’’ followed by any other word. The word fol-
lowing *‘get’” is remembered for later use. For example, if the replacement part of the ‘‘get”
macro where

retrieve (p.all) where p.pnum = $1
then typing ‘‘get 35> would retrieve all information about part number 35.

Defining Macros

Macros can be defined using the special macro called ‘‘define’’. The template for the define
macro is (roughly)

{define; $t; $r)

where $t and 3r are the template and replacement parts of the macro, respectively.

Let’s look at a few examples. To define the “‘ret”” macro discussed above, we would type:
{define; ret; retrieve)

When this is read, the macro processor removes everything between the curly braces and up-
dates some tables so that ‘‘ret’’ will be recognized and replaced with the word “‘retrieve”. The
define macro has the null string as replacement text, so that this macro seems to disappear.

A useful macro is one which shortens range statements. It can be defined with
{define; rg $v $r; range of Sv is Sr}

This macro causes the word ‘‘rg’” followed by the next two words to be removed and replaced

by the words *‘range of™’, followed by the first word which followed *‘rg’’, followed by the word

*“is”", followed by the second word which followed *‘rg’*. For example, the input
rg p parts

becomes the same as

range of p is parts

Evaluation Times

When you type in a define statement, it is not processed immediately, just as queries are saved
rather than executed. No macro processing is done until the query buffer is evaluated. The
commands \go, \list, and \eval evaluate the query buffer. \go sends the results to INGRES. :list
prints them on your terminal, and \eval puts the result back into the query buffer.

MACROS (QUEL) 2/19/79 MACROS (QUEL)

It is important to evaluate any define statements, or it will be exactly like you did r.ot type them
in at all. A common way to define macros is to type .

{define . . .)
\eval
\reset

If the \eval was left out, there is no effect at all.
Quoting

Sometimes strings must be passed through the macro processor without being processed. In
such cases the grave and acute accent marks (" and *) can be used to surround the literal text.
For example, to pass the word ‘‘ret’” through without converting it to “‘retrieve’’ we could type

‘ret’
Another use for quoting is during parameter collection. If we want to enter more than one
word where only one was expected, we can surround the parameter with accents.

The backslash character quotes only the next character (like surrounding the character with ac-
cents). In particular, a grave accent can be used literally by preceeding it with a backslash.

Since macros can normally only be on one line, it is frequently useful to use a backslash at the
end of the line to hide the newline. For example, to enter the long ‘‘get’’ macro, you might
type:

{define; get $n; retrieve (e.all) \

where e.name = "$n"}

The backslash always quotes the next character even when it is a backslash. So, to get a real
backslash, use two backslashes.
More Parameters

Parameters need not be limited to the word following. For example, in the template descriptor
for define:

(define; $t; $r}

the $t parameter ends at the first semicolon and the $r parameters ends at the first right curly
brace. The rule is that the character which follows the parameter specifier terminates the
parameter; if this character is a space, tab, newline, or the end of the template then one word is
collected.

As with all good rules, this one has an exception. Since system macros are always surrounded
by curly braces, the macro processor knows that they must be properly nested. Thus, in the
statement

{define; x; {sysfn}}

The first right curly brace will close the ‘‘sysfn™ rather than the ‘‘define’’. Otherwise this
would have to be typed

{define; x; “{sysfn}’}

Words are defined in the usual way, as strings of letters and digits plus the underscore charac-
ter.

Other Builtin Macros

There are several other macros built in to the macro processor. In the following description,
some of the parameter specifiers are marked with two dollar signs rather than one: this will be
discussed in the section on prescanning below.

Idefine; SSt; SSr} defines a macro as discussed above. Special processing occurs on the template
part which will be discussed in a later section.

MACROS (QUEL) ' 2/19/79 MACROS (QUEL)

{rawdefine; $St; $3r} is another form of define, where the special processing does not take
place.
{remove; $Sn} removes the macro with name Sn. It can remove more than one macro, since it
actually removes all macros which might conflict ‘'with $n under some circumstance. For exam-
ple, typing

{define; get part $n; . . . }

{define; get emp $x; . ..}

{remove; get}

would cause both the get macros to be removed. A call to
{remove; get part}

would have only removed the first macro.

{type $3s} types $s onto the terminal.

{read $8s} types $s and then reads a line from the terminal. The line which was typed replaces
the macro. A macro called ““‘{readcount}” is defined containing the number of characters read.
A control-D (end of file) becomes —1, a single newline becomes zero, and so forth.

{readdefine; $3n; $3s} also types $s and reads a line, but puts the line into a macro named $n.
The replacement text is the count of the number of characters in the line. {readcount] is still
defined.

lifsame; $%a; $Sb; $t; $f} compares the strings $a and $b. If they match exactly then the re-
placement text becomes $t, otherwise it becomes $f.

lifeq: $Sa; $$b; $t; $f} is similar, but the comparison is numeric.
lifgt: $Sa; $$b; $t; $f) is like ifeq, but the test is for $a strictly greater than $b.

{substr; $$f; $3t; $3s} returns the part of $s between character positions $f and $t, numbered
from one. If $f or $t are out of range, they are moved in range as much as possible.

{dump; $3n} returns the value of the macro (or macros) which match $n (using the same algo-
rithm as remove). The output is a rawdefine statement so that it can be read back in. {dump}
without arguments dumps all macros.

Metacharacters

Certain characters are used internally. Normally you will not even see them, but they can ap-
pear in the output of a dump command, and can sometimes be used to create very fancy mac-
ros.

‘| matches any number of spaces, tabs, or newlines. It will even match zero, but only between
words, as can occur with punctuation. For example, \| will match the spot between the last
character of a word and a comma following it.

\" matches exactly one space, tab, or newline.

& matches exactly zero spaces, tabs, or newlines, but.only between words.
The Define Process

When you define a macro using define, a lot of special processing happens. This processing is
such that define is not functionally complete, but still adequate for most requirements. If more
power is needed, rawdefine can be used; however, rawdefine is particularly difficult to use
correctly, and should only be used by gurus.

In define, all sequences of spaces, tabs, and newlines in the template, as well as all “‘non-
spaces’” between words, are turned into a single \| character. If the template ends with a
parameler, the \& character is added at the end.

If you want to match a real tab or newline, you can use \t or \n respectively. For example, a
macro which reads an entire line and uses it as the name of an employee would be defined with

MACROS (QUEL) 2/19/79 MACROS (QUEL)

{define; get $n\n; \
ret (e.all) where e.name = "$n"}

This macro might be used by typing
get *Stan*

to get all information about everyone with a name which included *‘Stan>. By the way, notice
that it is ok to nest the ‘‘ret”” macro inside the ‘‘get’* macro.

Parameter Prescan

Sometimes it is useful to macro process a parameter before using it in the replacement part.
This is particularly important when using certain builtin macros.

For prescan to occur, two things must be true: first, the parameter must be specified in the
template with two dollar signs instead of one, and second, the actual parameter must begin with
an “‘at” sign (“‘@) (which is stripped off).

For an example of the use of prescan, see ‘‘Special Macros’’ below.
Special Macros

Some special macros are used by the terminal monitor to control the environment and return
results to the user.

{begintrap} is executed at the beginning of a query.
{endtrap} is executed after the body of a query is passed to INGRES.

{continuetrap} is executed after the query completes. The difference between this and endtrap
is that endtrap occurs after the query is submitted, but before the query executes, whereas con-
tinuetrap is executed after the query executes.

{editor} can be defined to be the pathname of an editor to use in the \edit command.
{shell} can be defined to be the pathname of a shell to use in the \shell command.

{tuplecount} is set after every query (but before continuetrap is sprung) to be the count of the
number of tuples which satisfied the qualification of the query in a retrieve, or the number of
tuples changed in an update. It is not set for DBU functions. If multiple queries are run at
once, it is set to the number of tuples which satisfied the last query run.

For example, to print out the number of tuples touched automatically after each query, you
could enter:
{define; {begintrap}; {remove; {tuplecount}}}
{define; {continuetrap}; \
{ifsame; @{tuplecount}; {tuplecount}:: \
{type @(tuplecount} tuples touched}}}

SEE ALSO
monitor(quel)

MODIFY (QUEL) 2/23/79 MODIFY (QUEL)

NAME
modify — convert the storage structure of a relation
SYNOPSIS
modify relname to storage-structure [on keyl [: sortorder) [{ , key2 [: sortorder 1} 1] [
where [fillfactor = n] [, minpages = n] [, maxpages = n]]
DESCRIPTION

Relname is modified to the specified storage structure. Only the owner of a relation can modify
that relation. This command is used to increase performance when using large or frequently
referenced relations. The storage structures are specified as follows:

isam — indexed sequential storage structure

cisam — compressed isam

hash — random hah storage structure

chash — compressed hash

heap — unkeyed and unstructured

cheap — compressed heap

heapsort — heap with tuples sorted and duplicates removed
cheapsort — compressed heapsort

truncated — heap with all tuples deleted

The paper ‘‘Creating and Maintaining a Database in INGRES’> (ERL Memo M77—71) discusses
how to select storage structures based on how the relation is used.

The current compression algorithm only suppresses trailing blanks in character fields. A more
effective compression scheme may be possible, but tradeoffs between that and a larger and
slower compression algorithm are not clear.

If the on phrase is omitted when modifying to isam, cisam, hash or chash, the relation will au-
tomatically be keyed on the first domain. When modifying to heap or cheap the on phrase must
be omitted. When modifying to heapsort or cheapsort the on phrase is optional.

When a relation is being sorted (isam, cisam, heapsort and cheapsort), the primary sort keys
will be those specified in the on phrase (if any). The first key after the on phrase will be the
most significant sort key and each successive key specified will be the next most significant sort
key. Any domains not specified in the on phrase will be used as least significant sort keys in
domain number sequence.

When a relation is modified to heapsort or cheapsort, the sortorder can be specified to be as-
cending or descending. The default is always ascending. Each key given in the on phrase can
be optionally modified to be:

key:descending

which will cause that key to be sorted in descending order. For completeness, ascending can
be specified after the colon (‘:’), although this is unnecessary since it is the default. Descend-
ing can be abbreviated by a single ‘d’ and, correspondingly, ascending can be abreviated by a
single ‘a’.

Fillfactor specifies the percentage (from 1 to 100) of each primary data page that should be filled
with tuples, under ideal conditions. Fillfactor may be used with isam, cisam, hash and chash.
Care should be taken when using large fillfactors since a non-uniform distribution of key values
could cause overflow pages to be created, and thus degrade access performance for the relation.

Minpages specifies the minimum number of primary pages a hash or chash relation must have.
Maxpages specifies the maximum number of primary pages a hash or chash relation may have.
Minpages and maxpages must be at least one. If both minpages and maxpages are specified in a
modify, minpages cannot exceed maxpages. .

Default values for fillfactor, minpages, and maxpages are as follows:

o

MODIFY (QUEL) 2/23/79 MODIFY (QUEL)

FILLFACTOR MINPAGES MAXPAGES
hash 50 10 no limit
chash 75 1 no limit
isam 80 NA NA
cisam 100 NA NA

EXAMPLES
/* modify the emp relation to an indexed
sequential storage structure with
“name” as the keyed domain */

modify emp to isam on name

/* if "name" is the first domain of the emp relation,
the same result can be achieved by */

modify emp to isam

/* do the same modify but request a 60% occupancy
on all primary pages */

modify emp to isam on name where fillfactor = 60
/* modify the supply relation to compressed hash

storage structure with "num" and "quan”
as keyed domains */

modify supply to chash on num, quan

/* now the same modify but also request 75% occupancy
on all primary, a minimum of 7 primary pages
pages and a maximum of 43 primary pages */

modify supply to chash on num, quan
where fillfactor = 75, minpages = 7,
maxpages = 43

/* again the same modify but only request a minimum
of 16 primary pages */

modify supply to chash on num, quan
where minpages = 16

/* modify parts to a heap storage structure */
modify parts to heap

/* modify parts to a heap again, but have tuples
sorted on "pnum" domain and have any duplicate
tuples removed */

modify parts 1o heapsort on pnum

/* modify employee in ascending order by manager,
descending order by salary and have any
duplicate tuples removed */

modify employee to heapsort on manager, salary:descending

SEE ALSO
sysmod(unix)

MONITOR (QUEL) 2/23/79 MONITOR (QUEL)

NAME
monitor — interactive terminal monitor

DESCRIPTION
The interactive terminal monitor is the primary front end to INGRES. It provides the ability to
formulate a query and review it before issuing it to INGRES. If changes must be made, one of
the UNIX text editors may be called to edit the query buffer.

Messages and Prompts.

The terminal monitor gives a variety of messages to keep the user informed of the status of the
monitor and the query buffer.

As the user logs in, a login message is printed. This typically tells the version number and the
login time. It is followed by the dayfile, which gives information pertinant to users.

When INGRES is ready to accept input, the message "go" is printed. This means that the query
buffer is empty. The message “continue" means that there is information in the query buffer.
After a \go command the query buffer is automatically cleared if another query is typed in, un-
less a command which affects the query buffer is typed first. These commands are \append,
\edit, \print, \list, \eval, and \go. For example, typing

help parts

\go

print parts
results in the query buffer containing
print parts
whereas

help parts

\go

\print

print parts
results in the query buffer containing

help parts

print parts
An asterisk is printed at the beginning of each line when the monitor is waiting for the user to
type input.

Commands

There are a number of commands which may be entered by the user to affect the query buffer
or the user’s environment. They are all preceeded by a backslash ("\"), and all are executed
immediately (rather than at execution time like queries).

Some commands may take a filename, which is defined as the first significant character after the
end of the command until the end of the line. These commands may have no other commands
on the line with them. Commands which do not take a filename may be stacked on the line;
for example

\date\go\date

will give the time before and after execution of the current query buffer.

\r

\reset Erase the entire query (reset the query buffer). The former contents of the buffer
are irretrieveably lost.

\p

\print Print the current query. The contents of the buffer are printed on the user’s termi-
nal.

Al

\list Print the current query as it will appear after macro processing. Any side effects of

macro processing, such as macro definition, will occur.

‘w

MONITOR (QUEL) 2/23/19 MONITOR (QUEL)

\eval

\e

\ed
\edit
\editor

\g
\go

\a
\append

\time
\date

\s
\sh
\shell

\q
\quit

\cd
\chdir

\i
\include
\read

\w

\write
\branch
\mark

Macro process the query buffer and replace the query buffer wil_h the result. This is
just like \list except that the output is put into the query buffer instead of to the ter-
minal.

Enter the UNIX text editor (see ED in the UNIX Programmer’s Manual); use the ED
command 'w’ followed by ’q’ to return to the INGRES monitor. If a filename is
given, the editor is called with that file instead of the query buffer. If the macro
““{editor}” is defined, that macro is used as the pathname of an editor, otherwise
“/bin/ed”’ is used. It is important that you do not use the "e" command inside the
editor; if you do the (obscure) name of the query buffer will be forgotten.

Process the current query. The contents of the buffer are macro processed,
transmitted to INGRES, and run.

Append to the query buffer. Typing \a after completion of a query will override the
auto-clear feature and guarantees that the query buffer will not be reset.

Print out the current time of day.

Escape to the UNIX shell. Typing a control-d will cause you to exit the shell and re-
turn to the INGRES monitor. If there is a filename specified, that filename is taken as
a shell file which is run with the query buffer as the parameter "$1". If no filename
is given, an interactive shell is forked. If the macro ‘‘{shell}”” is defined, it is used
as the pathname of a shell; otherwise, *‘/bin/sh’’ is used.

Exit from INGRES.

Change the working directory of the monitor to the named directory.

Switch input to the named file. Backslash characters in the file will be processed as
read. ,

Write the contents of the query buffer to the named file.
Transfer control within a \include file. See the section on branching below.
Set a label for \branch.

\ <any other character>

Macros

Ignore any possible special meaning of character following *\’. This allows the \" 10
be input as a literal character. (See also quel(quel) - strings). It is important to
note that backslash escapes are sometimes eaten up by the macro processor also: in
general, send 1wo backslashes if you want a backslash sent (even this is too simplis-
tic [sigh] — try to avoid using backslashes at all).

For simplicity, the macros are described in the section macros(quel).

Branching

The \branch and \mark commands permit arbitrary branching within a \include file (similar to
the *‘goto”’ and ‘*:* commands in the shell). \mark should be followed with a label. \branch

MONITOR (QUEL) 2/23/19 MONITOR (QUEL)

should be followed with either a label, indicating unconditional branch, or an expression pre-
ceeded by a question mark, followed by a label, indicating a conditional branch. The branch is
taken if the expression is greater than zero. For example,

\branch ?{tuplecount} <=0 notups
branches to label ‘‘notups” if the **{tuplecount}>> macro is less than or equal to zero.

The expressions usable in \branch statements are somewhat restricted. The operators +, —, =,
[/, <=, >=, <, >, =, and != are all defined in the expected way. The left unary operator
“!” can be used as to indicate logical negation. There may be no spaces in the expression,
since a space terminates the expression.

Initialization

Al initialization (login) time a number of initializations take place. First, a macro called "{path-
name}" is defined which expands to the pathname of the INGRES subtree (normally
"/mnt/ingres"); it is used by system routines such as demodb. Second, the initialization file
.../files/startup is read. This file is intended to define system-dependent parameters, such as
the default editor and shell. Third, a user dependent initialization file, specified by a field in
the users file, is read and executed. This is normally set to the file ‘‘.ingres” in the user’s
home directory. The startup file might be used to define certain macros, execute common
range statements, and soforth. Finally, control is turned over to the user’s terminal.

An interrupt while executing either of the initialization files restarts execution of that step.
Flags

Certain flags may be included on the command line to INGRES which affect the operation of the
terminal monitor. The —a flag disables the autoclear function. This means that the query
buffer will never be automatically cleared; equivalently, it is as though a \append command
were inserted after every \go. Note that this means that the user must explicitly clear the query
buffer using \reset after every query. The —d flag turns off the printing of the dayfile. The —s
flag turns off printing of all messages (except errors) from the monitor, including the login and
logout messages, the dayfile, and prompts. It is used for executing "canned queries", that is,
queries redirected from files.

SEE ALSO
ingres(unix), quel(quel), macros(quel)
DIAGNOSTICS
g0 You may begin a fresh query.
continue The previous query is finished and you are back in the monitor.
Executing . . . The query is being processed by INGRES.
>>ed You have entered the UNIX text editor.
> >sh You have escaped to the UNIX shell.

Funny character nnn converted to blank A
INGRES maps non-printing ASCII characters into blanks; this message in-
dicates that one such conversion has just been made.

INCOMPATIBILITIES

BLGS

Note that the construct

\rprint parts
(intended to reset the query buffer and then enter "print parts”) no longer works, since "rprint"
appears 10 be one word.

"

PERMIT (QUEL) 2/7/79 PERMIT (QUEL)

NAME
permit — add permissions to a relation
SYNOPSIS
define permit oplist { on | of | to } var [(attlist)]
to name [at term] [from time to time)
[on day to day | [where qual]
DESCRIPTION
The permit statement extends the current permissions on the relation specified by var. Oplist is
a comma separated list of possible operations, which can be retrieve, replace, delete, append,
or all; all is a special case meaning all permissions. Name is the login name of a user or the
word all. Term is a terminal name of the form ‘ttyx’ or the keyword all; omitting this phrase is
equivalent to specifying all. Times are of the form ‘hh:mm’ on a twenty-four hour clock which
limit the times of the day during which this permission applies. Days are three-character abbre-
viations for days of the week. The qual is appended to the qualification of the query when it is
run.
Separate parts of a single permit statement are conjoined (ANDed). Different permit statements
are disjoined (ORed). For example, if you include
...toericatttyd. ..
the permit applies only to eric when logged in on tty4, but if you include two permit statements
...loericatall. ..
...toall at tty4 . . .
then when eric logs in on tty4 he will get the union of the permissions specified by the two
statements. If eric logs in on ttyd he will get only the permissions specified in the first permit
statement, and if bob logs in on tty4 he will get only the permissions specified in the second
permit statment.
The permit statement may only be issued by the owner of the relation. Although a user other
than the DBA may issue a permit statement, it is useless because noone else can access her rela-
tions anyway.
Permit statements do not apply to the owner of a relation or to views.
The statements
define permit all on x to all
define permit retrieve of x to all
with no further qualification are handled as special cases and are thus particularly efficient.
EXAMPLES
range of e is employee
define permit retrieve of e (name, sal) to marc
at ttyd from 8:00 to 17:00
on Mon to Fri
where e.mgr = "marc"
range of p is parts
define permit retrieve of e to all
SEE ALSO

destroy(quel)

PRINT (QUEL) 1/26/79 PRINT (QUEL)

NAME
print — print relation(s)

SYNOPSIS
print relname {, relname}

DESCRIPTION
Print displays the contents of each relation specified on the terminal (standard output). The
formats for various types of domains can be defined by the use of switches when ingres is in-
voked. Domain names are truncated to fit into the specified width.

To print a relation one must either be the owner of the relation, or the relation must have "re-
trieve to all" or "all to all" permissions.

See ingres(quel) for details.

EXAMPLE
/* Print the emp relation */
print emp
print emp, parts

SEE ALSO
permit(quel), retrieve(quel), ingres(unix), printr(unix) handle long lines of output correctly —
no wrap around.

Print should have more formating features to make printouts more readable.
Print should have an option to print on the line printer.

QUEL (QUEL) 2/23/79 QUEL (QUEL)

NAME
quel — QUEry Language for INGRES

DESCRIPTION
The following is a description of the general syntax of QUEL. Individual QUEL statements and
commands are treated separately in the document; this section describes the syntactic classes
from which the constituent parts of QUEL statements are drawn.

1. Comments

A comment is an arbitrary sequence of characters bounded on the left by *“/*** and on the right
by 6&*/35:

/= This is a comment */
2. Names

Names in QUEL are sequences of no more than 12 alphanumeric characters, starting with an al-
phabetic. Underscore () is considered an alphabetic. All upper—case alphabetics appearing
anywhere except in strings are automatically and silently mapped into their lower—case coun-

terparts.

3. Keywords

The following identifiers are reserved for use as keywords and may not be used otherwise:
abs all and
any append ascii
at atan avg
avgu by concat
copy cos count
countu " create define
delete destroy exp
float4 float8 from
gamma help in
index intl int2
int4 integrity into
is log max
min mod modify
not of on
onto or permit
print range replace
retrieve save sin
sqrt sum sumu
to unique until
view where

4. Conslants

There are three types of constants, corresponding to the three data types available in QUEL for
data storage.

4.1. String constants

Strings in QUEL are sequences of no more than 255 arbitrary ASCII characters bounded by dou-
ble quotes (" "). Upper case alphabetics within strings are accepted literally. Also, in order 1o
imbed quotes within strings, it is necessary to prefix them with *\" . The same convention ap-
plies to *\" itself.

Only printing characters are allowed within strings. Non-printing characters (i.e. control charac-
ters) are converted Lo blanks.

QUEL (QUEL) 2/23/79 QUEL (QUEL)

4.2. Integer constants

Integer constants in QUEL range from —2,147,483,647 to +2,147,483,647. Integer conslants
beyond that range will be converted to floating point. If the integer is greater than 32,767 or
less than —32,767 then it will be left as a two byte integer. Otherwise it is converted o a four
byle integer.

4.3. Floating point constants

Floating constants consist of an integer part, a decimal point, and a fraction part or scientific
notation of the following format:

{<dig>} [.<dig>] [e|]E [+]-] {<dig>}]

Where <dig> is a digit, [] represents zero or one, |} represents zero or more, and | represents
alternation. An exponent with a missing mantissa has a mantissa of 1 inserted. There may be
no extra characters embedded in the string. Floating constants are taken to be double-precision

quantities with a range of approximately -10%10 10 and a precision of 17 decimal digits.
5. Attributes
An attribute is a construction of the form:

variable.domain

Variable identifies a particular relation and can be thought of as standing for the rows or tuples
of that relation. A variable is associated with a relation by means of a range statement. Domain
is the name of one of the columns of the relation over which the variable ranges. Together
they make up an attribute, which represents values of the named domain.

6. Arithmetic operators

Arithmetic operators take numeric type expressions as operands. Unary operators group right
to left; binary operators group left to right. The operators (in order of descending precedence)

are:
+,— (unary) plus, minus
*k exponentiation
*./ multiplication, division

+.— (binary) addition, subtraction

Parentheses may be used for arbitrary grouping. Arithmetic overflow and divide by zero are
not checked on integer operations. Floating point operations are checked for overflow,
underflow, and divide by zero only if the appropriate machine hardware exists and has been en-
abled.

7. Expressions (a_expr)
An expression is one of the following:

constant

attribute

functional expression

aggregate or aggregate function A

a combination of numeric expressions and arithmetic operators

For the purposes of this document, an arbitrary expression will be refered to by the name
a_expr.

8. Formats

Every a_cxpr has a format denoted by a letter (c, i, or f, for character, integer, or floating data
types respectively) and a number indicating the number of bytes of storage occupied. Formats
currently supported are listed below. The ranges of numeric types are indicated in parentheses.

QUEL (QUEL) 2/23/79 QUEL (QUEL)

cl — ¢255 character data of length 1—255 characters

il 1-byte integer (—128 to +127)

i2 2-byte integer (—32768 to +32767)

i4 4-byte integer (—2,147,483,648 to +2,147,483,647)

f4 4-byte floating (—10°® 10 +10%, 7 decimal digit precision)
f4 8-byte floating (—10%® to +10%, 17 decimal digit precision)

One numeric format can be converted to or substituted for any other numeric format.
9. Type Conversion.

When operating on two numeric domains of different types, INGRES converts as necessary 10
make the types identical.

When operating on an integer and a floating point number, the integer is converted to a floating
point number before the operation. When operating on two integers of different sizes, the
smaller is converted to the size of the larger. When operating on two floating point number of
different size, the larger is converted to the smaller.

The following table summarizes the possible combinations:
il i2 i4 f4 f8

i1 — il i2 i4 f4 f8

i2— 2 i2 i4 f4 f8

i4 — i4 i4 i4 f4 f8

f4 — f4 f4 f4 f4 f4

f8 — f8 f8 f8 f4 f8

INGRES provides five type conversion operators specifically for overriding the default actions.
The operators are:

intl(a_expr) result type il
int2(a_expr) result type i2
int4(a_expr) result type i4
floatd(a_expr) result type f4
float8(a_expr) result type f8

The type conversion operators convert their argument a_expr to the requested type. A_expr can
be anything including character. If a character value cannot be converted, an error occures and
processing is halted. This can happen only if the syntax of the character value is incorrect.

Overflow is not checked on conversion.
10. Target_list

A target list is a parenthesized, comma separated list of one or more elements , each of which
must be of one of the following forms:

a) result_atiname is a_expr

Resuli_atname is the name of the attribute to be created (or an already existing attribute name
in the case of update statements.) The equal sign (‘‘="") may be used interchangeably with is.
In the case where a_expr is anything other than a single attribute, this form must be used 1o as-
sign a result name to the expression.

b) atribute

In the case of a retrieve, the resultant domain will acquire the same name as that of the attribute
being retrieved. In the case of update statements (append, replace), the relation being updated
must have a domain with exactly that name.

Inside the target list the keyword all can be used to represent all domains. For example:

range of e is employee
retrieve (e.all) where e.salary > 10000

QUEL (QUEL) 2/23/19 QUEL (QUEL)

will retrieve all domains of employee for those tuples which satisfy the qualification. All can be
used in the target list of a rerrieve or an append. The domains will be inserted in their ‘‘create”
order, that is, the same order they were listed in the create statement.

11. Comparison operators
Comparison operators take arbitrary expressions as operands.

(less than)

(less than or equal)
(greater than)

(greater than or equal)
(equal to)

(not equal to)

I

I

IvVvVAA

T

They are all of equal precedence. When comparisons are made on character attributes, all
blanks are ignored.

12. Logical operators
Logical operators take clauses as operands and group left-to-right:

not (logical not; negation)
and (logical and; conjunction)
or (logical or; disjunction)

Not has the highest precedence of the three. And and or have equal precedence. Parentheses
may be used for arbitrary grouping.

13. Qualification (qual)

A qualification consists of any number of clauses connected by logical operators. A clause is a
pair of expressions connected by a comparison operator:

a_expr comparison_operator a_expr
Parentheses may be used for arbitrary grouping. A qualification may thus be:

clause

not qual

qual or qual
qual and qual
(qual)

14. Functional expressions

A functional expression consists of a function name followed by a parenthesized (list of)
operand(s). Functional expressions can be nested to any level. In the following list of func-
tions supported () represents an arbitrary numeric type expression. The format of the result is
indicated on the right.

abs(n) — same as n (absolute value)

ascii(n) — character string (converts numeric to character)
atan(n) — f8 (arctangent)

concat(a,h) — character (character concatenation. See 16.2)
cos(n) — f8 (cosine)

exp(n) — f8 (exponential of)

gamma(n) — {8 (log gamma)

log(n) — 8 (natural logarithm)

mod(n,b) — same as & (1 modulo b. n and b must be il, i2, or i4)
sin(n) — f8 (sine)

sqrt(n) — f8 (square root)

15. Aggregale expressions
Aggregate expressions provide a way to aggregate a computed expression over a set of tuples.

-4-

»

QUEL (QUEL) 2/23/79 QUEL (QUEL)

15.1. Aggregation operators
The definitions of the aggregales are listed below.

count — (i4) count of occurrences

countu — (i4) count of unique occurrences

sum — summation

sumu — summation of unique values

avg — (f8) average (sum/count)

avgu — (f8) unique average (sumu/countu)

max — maximum

min — minimum

any — (i2) value is 1 if any tuples satisfy the qualification, else it is 0

15.2. Simple aggregate
aggregation_operator (a_expr [where qual])

A simple aggregate evaluates to a single scalar value. A_expr is aggregated over the set of tu-
ples satisfying the qualification (or all tuples in the range of the expression if no qualification is
present). Operators sum and avg require numeric type a_expr; count, any, max and min permit a
character type attribute as well as numeric type a_expr.

Simple aggregates are completely local. That is, they are logically removed from the query, pro-
cessed separately, and replaced by their scalar value.

15.3. “‘any’’ aggregate

It is sometimes useful to know if any tuples satisfy a particular qualification. One way of doing
this is by using the aggregate count and checking whether the return is zero or non-zero. Using
any instead of count is more efficient since processing is stopped, if possible, the first time a tu-
ple satisfies a qualification.

Any returns 1 if the qualification is true and 0 otherwise.

15.4. Aggregate functions

aggregation_operator (a_expr by by_domain
{, by _domain} [where qual])

Aggregate functions are extensions of simple aggregates. The by operator groups (i.e. parti-
tions) the set of qualifying tuples by by domain values. For more than one by_domain, the
values which are grouped by are the concatenation of individual by_domain values. A_expris as
in simple aggregates. The aggregate function evaluates to a set of aggregate results, one for
each partition into which the set of qualifying tuples has been grouped. The aggregate value
used during evaluation of the query is the value associated with the partition into which the tu-
ple currently being processed would fall.

Unlike simple aggregates, aggregate functions are not completely local. The by_list, which
differentiates aggregate functions from simple aggregates, is global to the query. Domains in
the by list are automatically linked to the other domains in the query which are in the same re-
lation.

Example:
/* retrieve the average salary for the employees
working for each manager +/
range of e is employee
retrieve (e.manager, avesal=avg(e.salary by e.manager))

15.5 Aggregates on Unique Values.

It is occasionally necessary to aggregate on unique values of an expression. The avgu, sumu,
and countu aggregates all remove duplicate values before performing the aggregation. For ex-
ample:

QUEL (QUEL) 2/23/79 QUEL (QUEL)

count(e.manager)
would tell you how many occurrences of ¢./manager exist. But
countu(e.manager)
would tell you how many unique values of e.manager exist.
16. Special character operators
There are three special features which are particular to character domains.
16.1 Pattern matching characters
There are four characters which take on special meaning when used in character constants

(strings):
* matches any string of zero or more characters.
? matches any single character.

.1 matches any of characters in the brackets.
These characters can be used in any combination to form a variety of tests. For example:

where e.name = "+" — matches any name.

where e.name = "E+" — matches any name starting with "E".

where e.name = "+ein” — matches all names ending with "ein"

where e.name = "x[aeiou]*" — matches any name with at least one vowel.

where e.name = "Allman?" — matches any seven character name starting with "Allman".
where e.name = "[A—J]*" — matches any name starting with A,B,..,J.

The special meaning of the pattern matching characters can be disabled by preceding them with
a "\". Thus "\«" refers to the character "+". When the special characters appear in the target list
they must be escaped. For example:

title = "\#\#\x ingres \#*\»"
is the correct way to assign the string "++* ingres *++" to the domain "title".
16.2 Concatenation

There is a concatenation operator which can form one character string from two. Its syntax is
"concat(field1, field2)". The size of the new character string is the sum of the sizes of the origi-
nal two. Trailing blanks are trimmed from the first field, the second field is concatenated and
the remainder is blank padded. The result is never trimmed to 0 length, however. Concat can
be arbitrarily nested inside other concats. For example:

name = concat(concat(x.lastname, ","), x.firstname)
will concatenate x.lastname with a comma and then concatenate x.firstname to that.

16.3 Ascii (numeric to character translation)

The ascii function can be used to convert a numeric field to its character representation. This
can be useful when it is desired to compare a numeric value with a character value. For exam-
ple: '
retrieve (...)
where x.chardomain = ascii(x.numdomain)

Ascii can be applied to a character value. The result is simply the character value unchanged.
The numeric conversion formats are determined by the printing formats (see ingres(unix)).

SEE ALSO
append(quel), delete(quel), range(quel), replace(quel), retrieve(quel), ingres(unix)

BUGS .
The maximum number of variables which can appear in one query is 10.

[13

QUEL (QUEL) 2/23/79

Numeric overflow, underflow, and divide by zero are not detected.
When converting between numeric types, overflow is not checked.

QUEL (QUEL)

RANGE (QUEL) 2/29/79 RANGE (QUEL)

NAME .
range — declare a variable to range over a relation

SYNOPSIS
range of variable is relname

DESCRIPTION
Range is used to declare variables which will be used in subsequent QUEL statements. The vari-

able is associated with the relation specified by relname. When the variable is used in subse-
quent statements it will refer to a tuple in the named relation. A range declaration remains in
effect for an entire INGRES session (until exit from INGRES), until the variable is redeclared by a
subsequent range statement, or until the relation is removed with the destroy command.

EXAMPLE
/+ Declare tuple variable e to range over relation emp */

range of e is emp

SEE ALSO
quel(quel), destroy(quel)

BUGS
Only 10 variable declarations may be in effect at any time. After the 10th range statement, the
least recently referenced variable is re—used for the next range statement.

"

REPLACE (QUEL) 2/29/79 REPLACE (QUEL)

NAME
replace — replace values of domains in a relation
SYNOPSIS
replace tuple_variable (target_list) [where qual]
DESCRIPTION
Replace changes the values of the domains specified in the rarget_list for all tuples which satisfy
the qualification qual. The tuple_variable must have been declared to range over the relation
which is to be modified. Note that a tuple variable is required and not the relation name. Only
domains which are to be modified need appear in the rarget_list. These domains must be
specified as result_attnames in the rarger_list either explicitly or by default (see quel(quel)).
Numeric domains may be replaced by values of any numeric type (with the exception noted
below). Replacement values will be converted to the type of the result domain.
Only the owner of a relation, or a user with replace pemission on the relation can do replace.
If the tuple update would violate an integrity constraint (see integrity(quel)), it is not done.
EXAMPLE
/* Give all employees who work for Smith a 10% raise =/
range of e is emp
replace e(sal = 1.1 = e.sal) where e.mgr = "Smith"
SEE ALSO
integrity (quel), permit(quel), quel(quel), range(quel)
DIAGNOSTICS)
Use of a numeric type expression to replace a character type domain or vice versa will produce
diagnostics.
BUGS

RETRIEVE (QUEL) 2/29/79 RETRIEVE (QUEL)

NAME

retrieve — retrieve tuples from a relation

SYNOPSIS

retrieve [[into] relname] (target_list) [where qual]
retrieve unique (target_list) [where qual]

DESCRIPTION

Retrieve will get all tuples which satisfy the qualification and either display them on the terminal
(standard output) or store them in a new relation.

If a relname is specified, the result of the query will be stored in a new relation with the indi-
cated name. A relation with this name owned by the user must not already exist. The current
user will be the owner of the new relation. The relation will have domain names as specified in
the targer_list result_attnames. The new relation will be saved on the system for seven (7) days
unless explicitly saved by the user until a later date.

If the keyword unique is present, tuples will be sorted on the first domain, and duplicates will
be removed, before being displayed.

The keyword all can be used when it is desired to retrieve all domains.

If no result relname is specified then the result of the query will be displayed on the terminal
and will not be saved. Duplicate tuples are not removed when the result is displayed on the
terminal.

The format in which domains are printed can be defined at the time ingres is invoked (see
ingres(unix)).

If a result relation is specified then the default procedure is to modify the result relation to an
cheapsort storage structure removing duplicate tuples in the process.

If the default cheapsort structure is not desired, the user can override this at the time INGRES is
invoked by using the -r switch (see ingres(unix)).

Only the relation’s owner and users with retrieve permission may retrieve from it.

EXAMPLE

/+ Find all employees who make more than their manager */
range of e is emp
range of m is emp
retrieve (e.name) where e.mgr = m.name
and e.sal > m.sal
/+ Retrieve all domains for those who make more
than the average salary */
retrieve into temp (e.all) where e.sal > avg(e.sal)
/+ retrieve employees’s names sorted =/
retrieve unique (e.name)

SEE ALSO

modify(quel), permit(quel), quel(quel), range(quel), save(quel), ingres(unix)

DIAGNOSTICS

BLGS

SAVE (QUEL) 3/10/77 SAVE (QUEL)

NAME
save - save a relation until a date.
SYNOPSIS
save relname until month day year
DESCRIPTION
Save is used to keep relations beyond the default 7 day life span.
Month can be an integer from 1 through 12, or the name of the month, either abbreviated or
spelled out.
Only the owner of a relation can save that relation. There is an INGRES process which typically
removes a relation immediately after its expiration date has passed.
The actual program which destroys relations is called purge. It is not automatically run. Itisa
local decision when expired relations are removed.
System relations have no expiration date.
EXAMPLE '
/* Save the emp relation until the end of February 1987 */
save emp until feb 28 1987
SEE ALSO

create(quel), retrieve(quel), purge(unix)

VIEW (QUEL) 2/7/79 VIEW (QUEL)

NAME
view — define a virtual relation

SYNOPSIS
define view name (target-list) [where qual]

DESCRIPTION
The syntax of the view statement is almost identical to the retrieve into statment; however, the
data is not retrieved. Instead, the definition is stored. When the relation name is later used,
the query is converted to operate on the relations specified in the rarger-list.

All forms of retrieval on the view are fully supported, but only a limited set of updates are sup-
ported because of anomolies which can appear. Almost no updates are supported on views
which span more than one relation. No updates are supported that affect a domain in the
qualification of the view or that affect a domain which does not translate into a simple attribute.

In general, updates are supported if and only if it can be guaranteed (without looking at the ac-
tual data) that the result of updating the view is identical to that of updating the corresponding
real relation.

The person who defines a view must own all relations upon which the view is based.

EXAMPLE
range of e is employee
range of d is dept
define view empdpt (ename = e.name, e.sal, dname = d.name)
where e.mgr = d.mgr

SEE ALSO
retrieve(quel), destroy(quel)

COPYDB (UNIX) 3/14/79 COPYDB (UNIX)

NAME
copydb — create batch files to copy out a data base and restore it.

SYNOPSIS
copydb [—uname] database full-path-name-of-directory [relation ...]

DESCRIPTION X
Copydb creates two INGRES command files in the directory: Copy.out, which contains Quel in-
stuctions which will copy all relations owned by the user into files in the named directory, and
copy.in, which contains instructions to copy the files into relations, create indexes and do
modifies. The files will have the same names as the relations with the users INGRES id tacked
on the end. (The directory MUST NOT be the same as the data base directory as the files have
the same names as the relation files.) The —u flag may be used to run copydb with a different
user id. (The fact that copydb creates the copy files does not imply that the user can necessarily
access the specified relation). If relation names are specified only those relations will be includ-
ed in the copy files.
Copydb is written in Equel and will access the database in the usual manner. It does not have
to run as the INGRES user.

EXAMPLE
chdir /mnt/mydir
copydb db /mnt/mydir/backup
ingres db <backup/copy.out
tp rl backup
rm —r backup
tp x1
ingres db <backup/copy.in

DIAGNOSTICS
Copydb will give self-explanatory diagnostics. If ‘‘too many indexes’ is reported it means that
more than ten indexes have been specified on one relation. The constant can be increased and
the program recompiled. Other limits are set to the system limits.

BUGS

Copydb assumes that indexes which are ISAM do not need to be remodified. Copydb cannot tell
if the relation was modified with a fillfactor or minpages specification. The copy.in file may be
edited to reflect this.

CREATDB (UNIX) 3/14/79 CREATDB (UNIX)

NAME

creatdb — create a data base

SYNOPSIS

creatdb [—uname] [—e] [—m] [£c¢] [+q] dbname

DESCRIPTION

Creatdb creates a new INGRES database, or modifies the status of an existing database. The per-
son who executes this command becomes the Database Administrator (DBA) for the database.
The DBA has special powers not granted to ordinary users.

Dbname is the name of the database to be created. The name must be unique among all
INGRES users.

The flags +c¢ and =+q specify options on the database. The form +x turns an option on, while
—x turns an option off. The —e¢ flag turns off the concurrency control scheme (default on).
The +q flag turns on query modification (default off).

Concurrency control should not be turned off except on databases which are never accessed by
more than one user. This applies even if users do not share data relations, since system rela-
tions are still shared. If the concurrency control scheme is not installed in UNiX, or if the spe-
cial file /dev/lock does not exist or is not accessible for read-write by INGRES, concurrency con-
trol acts) as though it is off (although it will suddenly come on when the lock driver is installed
in UNIX).

Query modification must be turned on for the protection, integrity, and view subsystems to
work, however, the system will run slightly slower in some cases if it is turned on. It is possi-
ble to turn query modification on if it is already off in an existing database, but it is not possible
to turn it off if it is already on.

Databases with query modification turned off create new relations with all access permitted for
all users, instead of no access except to the owner, the default for databases with query
modification enabled.

Database options for an existing database may be modified by stating the —e flag. The database
is adjusted to conform to the option flags. For example:

creatdb —e +q mydb
turns query modification on for database ‘‘mydb’’ (but leaves concurrency control alone). Only
the database administrator (DBA) may use the —e flag.

When query modification is turned on, new relations will be created with no access, but previ-
ously created relations will still have all access to everyone. The deslroy command may be used
to remove this global permission, after which more selective permissions may be specified with
the permit command.

The INGRES user may use the —u flag to specify a different DBA: the flag should be immediate-
ly followed by the login name of the user who should be the DBA.

The —m flag specifies that the UNIX directory in which the database is to reside already exists.
This should only be needed if the directory if a mounted file system, as might occur for a very
large database. The directory must exist (as .../data/base/dbname), must be mode 777, and
must be empty of all files.

The user who executes this command must have the U_CREATDB bit set in the status field of
her entry in the users file.

The INGRES superuser can create a file in .../data/base containing a single line which is the full

pathname of the location of the database. The file must be owned by INGRES and be mode 644.

When the database is created, it will be created in the file named, rather than in the directory

.../data/base. For example, if the file .../data/base/ericdb contained the line
/mnt/eric/database

then the database called ‘‘ericdb’> would be physically stored in the directory

/mnt/eric/database rather than in the directory .../data/base/ericdb.

-1-

CREATDB (UNIX) 3/14/79 CREATDB (UNIX)

EXAMPLE
creatdb demo
creatdb —ueric —q erics_db
creatdb —e +q —c —u:av erics_db

FILES
.../files/dbtmplt6.2
B .../files/data/base/*
- .../files/datadir/* (for compatibility with previous versions)
, SEE ALSO
) demodb(unix), destroydb(unix), users(files), chmod(I), destroydb(quel), permit(quel)
DIAGNOSTICS

No database name specified.
You have not specified the name of the database to create (or modify) with the com-
mand.
You may not access this database
Your entry in the users file says you are not authorized to access this database.
You are not a valid INGRES user
You do not have a users file entry, and can not do anything with INGRES at all.
You are not allowed this command
The U_CREATDB bit is not set in your users file entry.
You may not use the —u flag
Only the INGRES superuser may become someone else.
<name> does not exist
With —e or —m, the directory does not exist.
<name> already exists
Without either —e or —m, the database (actually, the directory) already exists.
<name> is not empty
With the —m flag, the directory you named must be empty.
You are not the DBA for this database
With the —e flag, you must be the database administrator.

DESTROYDB (UNIX) 3/14/79 DESTROYDB (UNIX)

NAME
destroydb — destroy an existing database

SYNOPSIS
destroydb [—s] [—m] dbname

DESCRIPTION
Destroydb will remove all reference to an existing database. The directory of the database and
all files in that directory will be removed.

To execute this command the current user must be the database administrator for the database
in question, or must be the INGRES superuser and have the —s flag stated.

The —m flag causes destroydb not to remove the UNIX directory. This is useful when the direc-
tory is a separate mounted UNIX file system.

EXAMPLE
destroydb demo
destroydb —s erics_db

FILES
.../data/base/*
.../datadir/* (for compatibility with previous versions)

SEE ALSO
creatdb(unix)

DIAGNOSTICS

invalid dbname — the database name specified is not a valid name.

you may not reference this database — the database may exist, but you do not have permission
to do anything with it.

you may not use the —s flag — you have tried to use the —s flag, but you are not the INGRES
superuser.

you are not the dba — someone else created this database.

database does not exist — this database does not exist.

EQUEL (UNIX) 3/14/79 EQUEL (UNIX)

NAME

equel — Embedded QUEL interface to C
SYNOPSIS

equel [=d][—f][—r]fileq..
DESCRIPTION

Equel provides the user with a method of interfacing the general purpose programming language
“C* with INGRES. It consists of the EQUEL pre-compiler and the EQUEL runtime library.

Compilation
The precompiler is invoked with the statement:
equel [<flags>] filel.q [<flags>] file2.q ...

where filen.q are the source input file names, which must end with .q. The output is written to
the file ““filen.c’’. As many files as wished may be specified.
The flags that may be used are:

—d Generate code to print source listing file name and line number when a run-time error oc-
curs. This can be useful for debugging, but takes up process space. Defaults to off.

—f Forces code to be on the same line in the output file as it is in the input file to ease inter-
preting C diagnostic messages. EQUEL will usually try to get all C code lines in the output
file on the same lines as they were in the input file. Sometimes it must break up queries
into several lines to avoid C-preprocessor line overflows, possibly moving some C code
ahead some lines. With the —f flag specified this will never happen and, though the line
buffer may overflow, C lines will be on the right line. This is useful for finding the line in
the source file that C error diagnostics on the output file refer to.

—r Resets flags to default values. Used to supress other flags for some of the files in the ar-
gument list.

The output files may than be compiled using the C compiler:
cc filel.c file2.c ... —lq
The —Iq requests the use of the EQUEL object library.

All EQUEL routines and globals begin with the characters "II", and so all globals variables and
procedure names of the form Ilxxx are reserved for use by EQUEL and should be avoided by
EQUEL users.

Basic Syntax

EQUEL commands are indicated by lines which begin with a double pound sign (““##’). Other
lines are simply copied as is. All normal INGRES commands may be used in EQUEL and have the
same effect as if invoked through the interactive terminal monitor. Only retrieve commands
with no result relation specified have a different syntax and meaning.

The format of retrieve without a result relation is modified to:

retrieve (C-variable = a_fcn { , C-variable = a_fen })
optionally followed (immediately) by:

[where qual

|

##

This statement causes the ‘‘C-code™ to be executed once for each tupie retrieved. with the
“*C-variable’’s set appropriately. Numeric values of any type are converted as necessary. No
conversion is done between numeric and character values. (The normal INGRES ascii function
may be used for this purpose.)

/» C-code */

EQUEL (UNIX) 3/14/79 EQUEL (UNIX)

Also, the following EQUEL commands are permitted.

ingres [ingres flags] data_base_name
This command starts INGRES running, and directs all dynamically following queries
to the database data_base_name. It is a run-time error 10 execute this command
twice without an intervening “‘## exit’’, as well as to issue queries while an “‘##
ingres’ statement is not in effect. Each flag should be enclosed in quotes to avoid
confusion in the EQUEL parser:

#4# ingres "—f4f10.2" "—i212" demo

#4# exit
Exit simply exits from INGRES. It is equivalent to the \q command to the teletype
monitor.

Parametrized Quel Statements

Quel statements with target lists may be ‘‘parametrized’”. This is indicated by preceding the
statement with the keyword ‘‘param™. The target list of a parametrized statement has the form:

(tl_var, argv)

where ¢/_var is taken to be a string pointer at execution time (it may be a string constant) and
interpreted as follows. For any parametrized EQUEL statement except a retrieve without a result
relation (no “‘into rel””) (i.e. append, copy, create, replace, retrieve into) the string #/_var is tak-
en to be a regular target list except that wherever a ‘%’ appears a valid INGRES type (f4, f8, i2,
i4, c) is expected to follow. Each of these is replaced by the value of the corresponding entry
into argv (starting at 0) which is interpreted to be a pointer to a variable of the type indicated
by the ‘%’ sequence. Neither argv nor the variables which it points to need be declared to EQU-
EL. For example:

char »argv[10];

argv[0] = &double_var;
argv[1] = &int_var;
H## param append to rel
("dom1 = %f8, dom2 = %i2", argv)
/+ 1o escape the "% <ingres_type>" mechanism use "%%" */
/+ This places a single ‘%’ in the string. */

On a retrieve to C-variables, within ¢/ _var, instead of the C-variable to retrieve into, the same
‘%’ escape sequences are used to denote the type of the corresponding argv entry into which
the value will be retrieved.

The qualification of any query may be replaced by a string valued variable, whose contents is
interpreted at run time as the text of the qualification.

The copy statement may also be parametrized. The form of the parametrized copy is analogous
to the other parametrized statements: the target list may be parametrized in the same manner as
the append statements, and furthermore, the from/into keyword may be replaced by a string
valued variable whose content at run time should be into or from.

Declarations

Any valid C variable declaration on a line beginning with a “‘##° declares a C-variable that
may be used in an EQUEL statement and as a normal variable. All variables must be declared
before being used. Anywhere a constant may appear in an INGRES command, a C-variable may
appear. The value of the C-variable is substituted at execution time.

Neither nested structures nor variables of type char (as opposed to pointer to char or array of
char) are allowed. Furthermore, there are two restrictions in the way variables are referenced
within EQUEL statements. All variable usages must be dereferenced and/or subscripted (for ar-
rays and pointers), or selected (for structure variables) to yield Ivalues (scalar values). Char
variables are used by EQUEL as a means to use swrings. Therefore when using a char array or

-2-

EQUEL (UNIX) 3/14/79 EQUEL (UNIX)

pointer it must be dereferenced only to a *‘char »**. Also, variables may not have parentheses
in their references. For example:

#4# struct xxx
##{ .
int i

#it int *ip;
) #sstruct_var,

/* not allowed */
delete p where p.ifield = *(sstruct_var)->ip

/= allowed »/
delete p where p.ifield = =struct_var[0]->ip

C variables declared to EQUEL have either global or local scope. Their scope is local if their de-
claration is within a free (not bound to a retrieve) block declared to EQUEL. For example:

/+ globals scope variable */
int Gint;

func(i)
int i
##
/* local scope variable */
int *gintp;

)

If a variable of one of the char types is used almost anywhere in an EQUEL statement the con-
tent of that variable is used at run time. For example:

char »dbname[MAXDATABASES + 1I;
int current_db;

dbname[current_db] = "demo";
ingres dbnamelcurrent_db]

will cause INGRES to be invoked with data base ‘“demo’’. However, if a variable’s name is 10 be
used as a constant, then the non-referencing operator ‘#’ should be used. For example:

char *demo;
demo = "my_database";

/* ingres —d my_database */
H# ingres "—d" demo

N
/* ingres —d demo */
#i# ingres "—d" #demo

The C-preprocessor’s #include feature may be used on files containing equel statements and
declarations if these files are named anyvihing.q.h. An EQUEL processed version of the file.
which will be #included by the C-preprocessor, is left in anything.c.h.

Errors and Interrupts

INGRES and run-time EQUEL errors cause the routine Ilerror to be called. with the error number
and the parameters to the error in an array of string pointers as in a C language main routine.
The error message will be looked up and printed. before printing the error message. the routine
(«Ilprint_err) () is called with the error number that ocurred as its single argument. The error
message corresponding to the error number returned by («IIprint_err)() will be printed. Print-
ing will be supressed if (xIlprint_err) () returns 0. Ilprint_err may be reassigned to, and is use-

-3-

EQUEL (UNIX) 3/14/79 EQUEL (UNIX)

ful for programs which map INGRES errors into their own error messages. In addition, if the
*—d" flag was set the file name and line number of the error will be printed. The user may
write an Ilerror routine to do other tasks as long as the setting of llerrflag is not modified as
this is used to exit retrieves correctly.

Interrupts are caught by equel if they are not being ignored. This insures that the rest of
INGRES is in sync with the EQUEL process. There is a function pointer, Hinterrupt, which points
to a function to call after the interrupt is caught. The user may use this to service the interrupl.
It is initialized to "exit()" and is called with —1 as its argument. For example:

extern int (+Ilinterrupt) ();
extern reset();

setexit();
Ilinterrupt = reset;
mainloop();

To ignore interrupts, signal() should be called before the ## ingres satatement is executed.

FILES
.../files/error6.2_»
Can be used by the user to decipher INGRES error numbers.
/lib/libq.a
Run time library.
SEE ALSO
.../doc/other/equeltut.q, C reference manual, ingres(UNIX), quel(QUEL)
BUGS

The C-code embedded in the tuple-by-tuple retrieve operation may not contain additional
QUEL statements or recursive invocations of INGRES.

There is no way to specify an il format C-variable.

Includes of an equel file within a parameterized target list, or within a C variable’s array sub-
scription brackets, isn’t done correctly.

HELPR (UNIX) 3/14/79 HELPR (UNIX)

NAME
helpr — get information about a database.
SYNOPSIS
helpr [—uname] [=w] database relation ...
DESCRIPTION
Helpr gives information about the named relation(s) out of the database specified, exactly like
the help command.
Flags accepted are —u and +u. Their meanings are identical to the meanings of the same flags
in INGRES.
SEE ALSO
ingres(unix), help(quel)
DIAGNOSTICS

bad flag — you have specified a flag which is not legal or is in bad format.

you may not access database — this database is prohibited to you based on status information in
the users file.

cannot access database — the database does not exist.

INGRES (UNIX)

NAME

3/14/79 INGRES (UNIX)

ingres — INGRES relational data base management system

SYNOPSIS

ingres [flags] dbname [process_table]

DESCRIPTION

This is the UNIX command which is used to invoke INGRES. Dbname is the name of an existing

data base.
ed “+x

The optional flags have the following meanings (a ‘‘+’> means the flag may be stat-

to set option x or ‘““—x"’ to clear option x. ‘‘—" alone means that ‘“—x>* must be

stated to get the x function):

+U

—uname

—cN
—ilN

—fixM.N

—-rM

-nM

*a
+b

+d
+s

Enable/disable direct update of the system relations and secondary indicies. You
must have the 000004 bit in the status field of the users file set for this flag to be ac-
cepted. This option is provided for system debugging and is strongly discouraged for
normal use.

Pretend you are the user with login name name (found in the users file). If name is
of the form :xx, xx is the two character user code of a user. This may only be used
by the DBA for the database or by the INGRES superuser.

Set the minimum field width for printing character domains to N. The default is 6.
Set integer output field width to N. /may be 1, 2, or 4 for il’s, i2’s, or i4’s repec-
tively.

Set floating point output field width to M characters with N decimal places. / may be
4 or 8 to apply to f4’s or f8’s respectively. x may be e, E, f, F, g, G, n, or N to
specify an output format. E is exponential form, F is floating point form, and G and
N are identical to F unless the number is too big to fit in that field, when it is output
in E format. G format guarantees decimal point alignment; N does not. The de-
fault format for both is n10.3.

Set the column seperator for retrieves to the terminal and print commands to be X.
The default is vertical bar.

Set modify mode on the retrieve command to M. M may be isam, cisam, hash,
chash, heap, cheap, heapsort, or cheapsort, for ISAM, compressed ISAM, hash
table, compressed hash table, heap, compressed heap, sorted heap, or compressed
sorted heap. The default is ‘‘cheapsort™.

Set modify mode on the index command to M. M can take the same values as the
—r flag above. Default is ‘‘isam”’.

Set/clear the autoclear option in the terminal monitor. It defaults to set.

Set/reset batch update. Users must the 000002 bit set in the status field of the users
file to clear this flag. This flag is normally set. When clear, queries will run slightly
faster, but no recovery can take place. Queries which update a secondary index au-
tomatically set this flag for that query only.

Print/don’t print the dayfile. Normally set.

Print/don’t print any of the monitor messages, including prompts. This flags is nor-
mally set. If cleared, it also clears the —d flag.

Wait/don’t wait for the database. If the +w flag is present, INGRES will wait if cer-
tain processes are running (purge,restore, and/or sysmod) on the given data base.
Upon completion of those processes INGRES will proceed. If the —w flag is present,
a message is returned and execution stopped if the data base is not available. If the
+w flag is omitted and the data base is unavailable, the error message is returned if
INGRES is running in foreground (more precisly if the standard input is from a ter-
minal), otherwise the wait option is invoked.

Process_table is the pathname of a UNIX file which may be used to specify the run-time
configuration of INGRES. This feature is intended for use in system maintenance only, and its
unenlightened use by the user community is strongly discouraged.

Note: It is possible to run the monitor as a batch-processing interface using the *<’, *>" and I
operators of the UNIX shell, provided the input file is in proper monitor-format.

n

INGRES (UNIX) 3/14/79 INGRES (UNIX)

EXAMPLE

ingres demo

ingres —d demo

ingres —s demo < batchfile

ingres —f4g12.2 —il3 +b —rhash demo

FILES
.../files/users — valid INGRES users
.../data/base/* — data bases _
.../datadir/* — for compatability with previous versions
.../files/proctab6.2 — runtime configuration file

SEE ALSO
monitor{(quel)

DIAGNOSTICS

Too many options to INGRES — you have stated too many flags as INGRES options.

Bad flag format — you have stated a flag in a format which is not intelligible, or a bad flag en-
tirely.

Too many parameters — you have given a database name, a process table name, and ‘“‘some-
thing else”” which INGRES doesn’t know what to do with.

No database name specified

Improper database name — the database name is not legal.

You may not access database name — according to the users file, you do not have permission to
enter this database.

You are not authorized to use the flag flag — the flag specified requires some special authoriza-
tion, such as a bit in the users file, which you do not have.

Database name does not exist

You are not a valid INGRES user — you have not been entered into the users file, which means
that you may not use INGRES at all.

You may not specify this process table — special authorization is needed to specify process
tables.

Database temporarily unavailable — someone else is currently performing some operation on
the database which makes it impossible for you to even log in. This condition should
disappear shortly.

GEO-QUEL (UNIX) 3/14/79 GEO-QUEL (UNIX)

NAME
geoquel — GEO-QUEL data display system

SYNOPSIS
geoquel [—=s]1 [—d] [—a][—tT] [—tnT] dbname

DESCRIPTION
GEO-QUEL is a geographical interface to INGRES.

Dbname is the name of an existing data base.

The format of the graphic output depends upon the type of terminal in use. GEO-QUEL will look -
up the terminal type at login time and produce output appropriate for that terminal. If the ter-

minal in use is incapable of drawing graphic output then a display list is generated for a Tek-

tronix 4014 but will only be displayed if the results are saved with SAVEMAP and then re-
displayed.

The flags are interpreted as follows:

-s Don’t print any of the monitor messages, including prompts. This is inclusive of the
dayfile.

—d Don’t print the dayfile.

—a Disable the autoclear function in the terminal monitor.

—tT Set the terminal type to T. T can be gtd0, gtd2, or 4014 for DEC’s GT40-GT42, and
Tektronix’s 4014 respectively.

—tn7 Do not display output but prepare the display list for a terminal of type 7, where T'is
from the above list.

EXAMPLE
geoquel demo
geoquel —d demo
geoquel —s demo < batchfile

FILES
.../files/grafile6.2
.../files/ttytype

SEE ALSO
GEO-QUEL reference manual

DIAGNOSTICS
The diagnostics produced by GEO-QUEL are intended to be self-explanatory. Occasional mes-
sages may be produced by INGRES; for an explanation of these messages see the INGRES system
documentation.

i3

PRINTR (UNIX) 3/14/79 PRINTR (UNIX)

NAME
printr — print relations

SYNOPSIS
printr [flags] database relation ...

DESCRIPTION .
Printr prints the named relation(s) out of the database specified, exactly like the print command.
Retrieve permission must be granted to all people to execute this command.

Flags accepted are —u, +w, —¢, —i, —f, and —v. Their meanings are identical to the mean-
ings of the same flags in INGRES.

SEE ALSO
ingres(unix), print(quel)

DIAGNOSTICS
bad flag — you have specified a flag which is not legal or is in bad format.

you may not access database — this database is prohibited to you based on status information in
the users file. :

cannot access database — the database does not exist. -

PURGE (UNIX) 3/14/79 PURGE (UNIX)

NAME

purge — destroy all expired and temporary relations

SYNOPSIS

purge [—f] [—pl[—all—s][+w][database..]

DESCRIPTION

Purge searches the named databases deleting system temporary relations. When using the —p
flag, expired user relations are deleted. The —f flag will cause unrecognizable files to be delet-
ed, normally purge will just report these files.

Only the database administrator (the DBA) for a database may run purge, except the INGRES
superuser may purge any database by using the —s flag.

If no databases are specified all databases for which you are the DBA will be purged. All data-
bases will be purged if the INGRES superuser has specified the —s flag. The —a flag will cause
purge to print a message about the pending operation and execute it only if the response if a
‘y’. Any other response is interpreted as “‘no’’.

Purge will lock the data base while it is being processed, since errors may occur if the database
is active while purge is working on the database. If a data base is busy purge will report this and
go on to the next data base, if any. If standard input is not a terminal purge will wait for the
data base to be free. If —w flag is stated purge will not wait, regardless of standard input. The
+w flag causes purge to always wait.

EXAMPLES

purge —p +w tempdata
purge —a —f

SEE ALSO

save(quel), restore(unix)

DIAGNOSTICS

BUGS

who are you? — you are not entered into the users file.

not ingres superuser — you have tried to use the —s flag but you are not the INGRES su-
peruser.

you are not the dba — you have tried to purge a database for which you are not the DBA.

cannot access database — the database does not exist.

If no database names are given, only the databases located in the directory data/base are
purged, and not the old databases in datadir. Explicit database names still work for databases
in either directory. ‘

RESTORE (UNIX) 3/14/79 RESTORE (UNIX)

NAME

restore — recover from an INGRES or UNIX crash.

SYNOPSIS

restore [—a] [—s 1 [+w] [database ...]

DESCRIPTION

Restore is used to restore a data base after an INGRES or UNIX crash. It should always be run
after any abnormal termination to ensure the integrity of the data base.

In order to run restore, you must be the DBA for the database you are restoring or the INGRES
superuser and specify the —s flag.

If no databases are specified then all databases for which you are the DBA are restored. All da-
tabases will be restored if the INGRES superuser has specified the —s flag.

If the —a flag is specified you will be asked before restore takes any serious actions. It is advis-
able to use this flag if you suspect the database is in bad shape. Using /dev/null as input with
the —a flag will provide a report of problems in the data base. If there were no errors while
restoring a database, purge will be called, with the same flags that were given to restore, to re-
move unwanted files and system temporaries. Restore may be called with the —f and/or —p
flags for purge. Unrecognized files and expired relations are not removed unless the proper
flags are given. In the case of an incomplete destroy, create or index restore will not delete files
for partially created or destroyed relations. Purge must be called with the —f flag to accomplish
this.

Restore locks the data base while it is being processed. If a data base is busy restore will report
this and go on to the next data base. If standard input is not a terminal restore will wait for the
data base to be free. If the —w flag is set restore will not wait regardless of standard input. If
+w is set it will always wait.

Restore can recover a database from an update which had finished filling the batch file. Updates
which did not make it to this stage should be rerun. Similarly modifies which have finished re-
creating the relation will be completed (the relation relation and attribute relations will be up-
dated). If a destroy was in progress it will be carried to completion, while a create will almost
always be backed out. Destroying a relation with an index should destroy the index so restore
may report that a secondary relation has been found with no primary.

If interrupt (signal 2) is received the current database is closed and the next, if any, is pro-
cessed. Quit (signal 3) will cause restore to terminate.

EXAMPLE

restore —f demo
restore —a grants < /dev/null

DIAGNOSTICS

All diagnostics are followed by a tuple from a system relations.

“No relation for attribute(s)”” — the attributes listed have no corresponding entry in the rela-
tion relation

““No primary relation for index’’ — the tuple printed is the relation tuple for a secondary index
for which there is no primary relation. The primary probably was destroyed the
secondary will be.

“No indexes entry for primary relation’’ — the tuple is for a primary relation, the relindxd
domain will be set to zero. This is the product of an incomplete destroy.

““No indexes entry for index”® — the tuple is for a secondary index, the index will be destroyed.
This is the product of an incomplete destroy.

“relname is index for’’ — an index has been found for a primary which is not marked as in-
dexed. The primary will be so marked. This is probably the product of an incom-
plete index command. The index will have been created properly but not modified.

“No file for”> — There is no data for this relation tuple, the tuple will be deleted. If, under the
—a option, the tuple is not deleted purge will not be called.

-1-

RESTORE (UNIX) 3/14/79 RESTORE (UNIX)

*‘No secondary index for indexes entry’’ — An entry has been found in the indexes relation for
: which the secondary index does not exist (no relation relation tuple). The entry will
be deleted. :

SEE ALSO
purge (unix)

BUGS
If no database names are given, only the databases located in the directory data/base are re-
stored, and not the old databases in datadir. Explicit database names still work for databases in
either directory.

.

SYSMOD (UNIX) 3/14/79 SYSMOD (UNIX)

NAME
sysmod — modify system relations (o predetermined storage structures.

SYNOPSIS
sysmod [—s] [—w] dbname [relation] [attribute] [indexes] [tree] [protect] [integri-
ties]

DESCRIPTION

Sysmod will modify the relation, attribute, indexes, tree, protect, and integrities relations to
hash unless at least one of the relation, attribute, indexes, tree, protect, or integrities parame-
ters are given, in which case only those relations given as parameters are modified. The system
relations are modified to gain maximum access performance when running INGRES. The user
must be the data base administrator for the specified database, or be the INGRES superuser and
have the —s flag stated.

Sysmod should be run on a data base when it is first created and periodically thereafter to main-
tain peak performance. If many relations and secondary indices are created and/or destroyed,
svsmod should be run more often.

If the data base is being used while sysmod is running, errors will occur. Therefore, sysmod will
lock the data base while it is being processed. If the data base is busy, sysmod will report this.
If standard input is not a terminal sysmod will wait for the data base to be free. If —w flag is
stated sysmod will not wait, regardless of standard input. The +w flag causes sysmod to always
wait.

The system relations are modified to hash; the relation relation is keyed on the first domain,
the indexes, attribute, protect, and integrities relations are keyed on the first two domains, and
the tree relation is keyed on domains one, two, and five. The relation and attribute relations
have the minpages option set at 10, the indexes relation has a minpages value of 5.

SEE ALSO
modify (quel)

TIMEFIX (UNIX) 3/14/79 TIMEFIX (UNIX)

NAME
timefix — patch INGRES binary code for correct timezone.

SYNOPSIS o
timefix [—ul [—sN] [—tyyyzzz] [—dX] filename ...

DESCRIPTION
Timefix can be used to change the INGRES system to use local time. As delivered, the INGRES
system assumes it is in the Pacific Time Zone, eight hours behind Greenwich Mean Time.
Timefix can automatically patch the necessary INGRES code to reflect the true timezone of your
installation.
INGRES uses the UNIX supplied routine ctime(III) for converting the UNIX base time to local
time. Timefix is first compiled on your system in order to get the ctime routine for your installa-
tion. It then can correct the necessary INGRES programs at which point your INGRES system will
be correct and not have to be changed again.
To use timefix you must be logged in as ingres and then use the serup command:

setup timefix
This command performs the following steps: (1) compiles timefix.c, (2) runs timefix on the
necessary INGRES programs.
If for any reason, timefix.c cannot be compiled on your system, another method exists for up-
dating INGRES. Timefix can be run with the local time expressed using the —s —t and —d flag
options. Their meanings are:
—sN N is the number of seconds ahead/behind GMT.
~tyyyzzz yyy and zzz are the two, three character timezone names.
—-dX if X is 0, then daylight savings time is disabled, otherwise daylight savings time
will occur according to the rules specified in ctime(1II).
The flags can be given in any order. You must be logged in as ingres and then use the setup
command giving the proper time conversions. For example, in Hartford, Connecticut you
would type:
setup timefix —s18000 —tESTEDT —dl

If the —u flag is specified then rimefix reports what it would do but does not actually update the
files.

EXAMPLES
setup timefix
setup timefix —s18000 —tESTEDT —d1

DIAGNOSTICS
Timefix depends on the existence of a namelist. If the namelist (i.e. symbol table) is not
present then an error message is given. If all the symbols related to the ctime routine cannot be
found then it is assumed that the file need not be corrected. If the file cannot be opened for
reading and writing then an error message is issued.

BLGS
Timefix will not work for timezones which are +10 or =11 hours from GMT.

SEE ALSO

ctime(I11)

]

USERSETUP (UNIX) 3/14/79 USERSETUP (UNIX)

NAME

usersetup — setup users file

SYNOPSIS

.../bin/usersetup [pathname]

DESCRIPTION

FILES .

The /etc/passwd file is read and reformatted to become the INGRES users file, stored into

.../files/users. If pathname is specified, it replaces ““...”’. If pathname is ¢“="""the result is
written to the standard output.

The user name, user, and group id’s are initialized to be identical to the corresponding entry in
the /etc/passwd file. The status field is initialized to be zero, except for user ingres, which is
initialized to all permission bits set. The “‘initialization file>’ parameter is set to the file .ingres
in the user’s login directory. The user code field is initialized with sequential two-character
codes. All other fields are initialized to be null.

After running usersetup, the users file must be edited. Any users who are to have any special
authorizations should have the status field changed, according to the specifications in
users(files). To disable a user from executing INGRES entirely, completely remove her line
from the users file.

As UNIX users are added or deleted from the /etc/passwd file, the users file will need to be
editted to reflect the changes. For deleted users, it is only necessary to delete the line for that
user from the users file. To add a user, you must assign that user a code in the form "aa" and
enter a line in the users file in the form:
name:cc:uid:gid:status:flags:proctab:initfile::databases

where name is the user name (taken from the first field of the /etc/passwd file entry for this
user), ccis the user code assigned, which must be exactly two characters long and must not be
the same as any other existing user codes, uid and gid are the user and group ids (taken from
the third and fourth fields in the /etc/passwd entry), status is the status bits for this user, nor-
mally 000000, flags are the default flags for INGRES (on a per-user basis), proctab is the default
process table for this user (which defaults to =proctab6.2), and databases is a list of the data-
bases this user may enter. If null, she may use all databases. If the first character is a dash
(““="), the field is a comma separated list of databases which she may not enter. Otherwise, it
is a list of databases which she may enter.

The databases field includes the names of databases which may be created.

Usersetup may be executed only once, to initially create the users file.

.../files/users
/etc/passwd

SEE ALSO

BLGS

ingres(unix), passwd(V), users(files)

It should be able to bring the users file up to date.

DAYFILE (FILES) 3/14/79 DAYFILE (FILES)

NAME
.../files/dayfile6.1 — INGRES login message

DESCRIPTION

The. contents of the dayfile reflect user information of general system interest, and is more or
less analogous to /ete/motd in UNIX. The file has no set format; it is simply copied at login
time to the standard output device by the monitor if the —s or —d options have not been re-
quested. Moreover the dayfile is not mandatory, and its absence will not generate errors of any
sort; the same is true when the dayfile is present but not readable.

i)

DBTMPLT (FILES) 3/14/79 DBTMPLT (FILES)

NAME
.../files/dbtmplt6.2 — database template

DESCRIPTION
This file contains the template for a database used by creaidb. It has a set of entries for each
relation to be created in the database. The sets of entries are separated by a blank line. Two
blank lines or an end of file terminate the file.

The first line of the file is the database status and the default relation status, separated by a
colon. The rest of the file describes relations. The first line of each group gives the relation
name followed by an optional relation status, separated by a colon. The rest of the lines in each
group are the attribute name and the type, separated by a tab character.

All the status fields are given in octal, and have a syntax of a single number followed by a list
of pairs of the form

+xx=N :
which says that if the + x flag is asserted on the creatdb command line then set (clear) the bits
specified by N. '

The first set of entries must be for the relation catalog, and the second set must be for the attri-
bute catalog.

EXAMPLE
3—c—1+q+2:010023
relation: —¢—20
relid cl2
relowner c2
relspec il

attribute: —c—20
attrelid cl12
attowner c2
attnamecl?2

(other relation descriptors)

SEE ALSO
creatdb(unix)

ERROR (FILES) 3/14/79 ERROR (FILES)

NAME ,
.../files/error6.2_? — files with INGRES errors

DESCRIPTION
These files contain the INGRES error messages. There is one file for each thousands digit;
hence, error number 2313 will be in file error6.2_2.
Each file consists of a sequence of error messages with associated error numbers. When an er-
ror enters the front end, the appropriate file is scanned for the correct error number. If found,
the message is printed; otherwise, the first message parameter is printed.
Each message has the format

errnum <TAB> message tilde.

Messages are terminated by the tilde character (‘™’). The message is scanned before printing.
If the sequence % is encountered (where # is a digit from 0 to 9), parameter » is substituted,
where %0 is the first parameter.
The parameters can be in any order. For example, an error message can reference %2 before it
references %0.

SEE ALSO
error (UTIL)

EXAMPLE

1003 line %0, bad database name %1~
1005 In the purge of %1,

a bad %0 caused execution to halt™
1006 No process, try again.”

"

GRAFILE (FILES) 3/14/79 GRAFILE (FILES)

NAME
.../files/grafile6.2 — GEO-QUEL login message

DESCRIPTION -

The contents of the grafile (GEO-QUEL dayfile) reflect user information of general system in-
terest, and is more or less analogous to /etc/motd ‘in UNIX. The file has no set format; it is
simply copied at login time to the standard output device by GEO-QUEL if the —s or —d options
have not been requested. Moreover the grafile is not mandatory, and its absence will not gen-
erate errors of any sort; the same is true when the grafile is present but not readable.

LIBQ (FILES)

NAME

3/14/79 LIBQ (FILES)

libg — Equel run-time support library

DESCRIPTION

Liby all'lhe routines necessary for an equel program to load. It resides in /lib/libq.a, and must
be specified when loading equel pre-processed object code. It may be referenced on the com-
mand line of cc by the abbreviation —Iq.

Several useful routines which are used by equel processes are included in the library. These
may be employed by the equel programmer 1o avoid code duplication. They are:

int Hatoi(buf, i)

char *buf

int i

char *IIbmove(source, destination, len)
char *source, *destination;

int len;

char *Ilconcatv(buf, argl, arg2, ..., 0)
char *buf, *argl, ...;

char *Iitos(i)

int i

int IIsequal(sl, s2)
char *sl, *s2;

int Illength(string)
char *string;

IIsyserr(string, argl, arg2, ...);
char *string;

Ilatoi
IITbmove

[Iconcatv

Hitos

[Isequal
Illength
IIsyserr

Iatoi is equivalent to atoi(UTIL).

Moves len bytes from source 1o destination, returning a pointer to the location after
the last byte moved. Does not append a null byte.

Concatenates into buf all of its arguments, returning a pointer to the null byte at
the end of the concatenation. Bufmay not be equal to any of the arg-n but argl.

Ilitos is equivalent to itoa(IIl).
Returns 1 iff strings sl is identical to s2.
Returns max (length of siring without null byte at end, 255)

Hsyserr is diferrent from syserr(util) only in that it will print the name in
llproc_name, and in that there is no 0 mode. Also. it will always call exit(—1)
after printing the error message.

There are also some global Equel variables which may be manipulated by the user:

int
char
char
nt
int

[lerrflag:
*IImainpr:
(*Iprint_err) (}:
[rel_err():
IIno_err():

LIBQ (FILES)

Herrflag

ITmainpr

[Iprint_err

[Iret_err

IIno_err-

SEE ALSO

3/14/79 LIBQ (FILES)

Set on an error from INGRES to be the error number (see the error message sec-
tion of the “INGRES Reference Manual™) that ocurred. This remains valid from
the time the error occurrs to the time when the next equel statement is issued.
This may be used just after an equel statement to see if it succeded.

This is a string which determines which ingres to call when a "## ingres” is is-
sued. Initially it is "/usr/bin/ingres".

This function pointer is used to call a function which determines what (if any) er-
ror message should be printed when an ingres error occurs. It is called from Iler-
ror() with the error number as an argument, and the error message corresponding
to the error number returned will be printed. If (*Ilprint_err) (<errno>) returns
0, then no error message will be printed. Initially Ilprint_err is set to Ilret_err()
to print the error that ocurred.

Returns its single integer argument. Used to have (*Ilprint_err)() cause printing
of the error that ocurred.

Returns 0. Used to have (*llprint_err)() suppress error message printing.
IIno_err is used when an error in a parametrized equel statemenr occurs to
suppress printing of the corresponding parser error.

atoi(util), bmove(util), cc(I), equel(unix), exit(Il), itoa(Ill), length(util), sequal(util),

syserr(util)

PROCTAB (FILES) 3/14/79 PROCTAB (FILES)

NAME

.../files/proctab6.2 — INGRES runtime configuration information

DESCRIPTION

The file .../files/proctab6.2 describes the runtime configuration of the INGRES system.

The process table is broken up into logical sections, separated by lines with a single dollar sign.
The first section describes the configuration of the system and the parameters to pass to each
system module. All other sections contain strings which may be macro-substituted into the first
section,

Each line of the first section describes a single process. The lines consist of a series of colon-
separated fields.

The first field contains the pathname of the module to be executed.

The second field is a set of flags which allow the line to be ignored in certain cases. If this field
is null, the line is accepted; otherwise, it should be a series of items of the form “+—=X,
where any of ““+—=""may be omitted, and X is a flag which may appear on the INGRES com-
mand line. The characters ‘““+—="" are interpreted as the sense of the flag: “‘+* will accept
the line if the flag ““+ X is stated on the command line, *—"" will accept if ““—X " is stated,
and ““="" will accept if the ‘X’ flag is not stated at all. These may be combined in the forms
**+=""and “—="". For example, the field:

+=&

will acept the line if the EQUEL flag (‘&) is stated as *““‘+&* or is not stated, but the line will
be ignored if the ‘*“—&” flag is stated.

If any flag item rejects the line, the entire line is rejected.

The third field is a status word. The number in this word is expressed in octal. The bits have
the following meaning:

000010 close diagnostic output

000004 close standard input

000002 run in user’s directory, not database
000001 run as the user, not as INGRES

The fourth field is a file name to which the standard output should be redirected. It is useful
for debugging.

The fifth field describes the pipes which should be connected to this process. The field must be
six characters long, with the characters corresponding to the internal variables R_up, W_up,
R_down, W_down, R_front, and W_front respectively. The characters may be a question mark,
which leaves the pipe closed; a digit, which is filled in from the file descriptors provided by the
EQUEL flag or the ““@"’ flag; or a lower case letter, which is connected via a pipe with any oth-
er pipes having the same letter; this last action is done on the fly to conserve file descriptors.

The sixth and subsequent fields are arbitrary parameters to be sent to the modules. There must
be a colon after the fifth field even if no parameters are present. but there need not be a colon
after the last parameter.

The last module executed (usually the last line in the first section) becomes the parent of all
the other processes.

The second through last sections of the process table consist of a single line which names the
section followed by arbitrary text. The pathname field and all parameter fields of each line of
the first section are scanned for strings of the form **Sname’: this string is replaced by the text
from the corresponding section. For convenience. the name Spathname is automatically
defined to be-the pathname of the root of the INGRES subtree.

The DBU routines want to see two parameters. The first parameter is the pathname of the
“ksort”” routine. The second parameter is a series of lines of the form:

73

PROCTAB (FILES) 3/14/79 PROCTAB (FILES)

command_name:place_list

where command_name is the name of one of the possible INGRES commands executed by the
DBU routines, and place_list is a comma-separated list of the actual location(s) of that com-
mand. Each ‘‘place’ is a two-character descriptor: the first character is the overlay in which
that command resides; and the second character is the function within that overlay. If a com-
mand is in more than one place, INGRES will try to avoid calling in another overlay. For exam-
ple:

create:a0,ml
means that the create command may be found in overlay “‘a’” function 0 or in overlay “m™

[P L)

function 1. If already in overlay 2’ or “‘m” the create command resident in that overlay will
be called; otherwise, overlay ‘‘a’” will be called.

EXAMPLE
The following example will execute a three process system unless the ‘&’ flag is specified (as
“—&), when a two-process system will be executed with the monitor dropped out and the cal-
ling (EQUEL) program in its place. Notice that there are two lines for the parser entry, one for
the EQUEL case and one for the non-EQUEL case. In the EQUEL case, output from the
parser is diverted to a file called ‘‘debug.out’’.

$pathname/bin/overlaya::000014::bc??23:$pathname/bin/ksort:$dbutab
Spathname/bin/parser: + =&:000014::adcb??:

$pathname/bin/parser: —&:000014:debug.out:01cb??:
$pathname/bin/monitor: + =&:000003::? ?da??:$pathname/files/startup
$

dbutab

create:a0,ml

destroy:al,m2

modify:m0

help:a2

$

STARTUP (FILES) 3/14/79 STARTUP (FILES)

NAME
.../files/startup — INGRES startup file

DESCRIPTION .
This file is read by the monitor at login time. It'is read before the user startup file specified in
the users file. The primary purpose is to define a new editor and/or shell to call with the \e or
\s commands.

SEE ALSO

monitor(quel), users(files)

LR

W

TTYTYPE (FILES) 3/28/79 TTYTYPE (FILES)

NAME

.Miles/uylype — GEO-QUEL terminal type database

DESCRIPTION

BUGS

The ttytype file describes each terminal on your system. GEO-QUEL will not attempt to display
graphical output on terminals that are not capable of displaying it. There is a sample of the file
in .../geoquel/ttytype.sample. This is a copy of the file in use on the Berkeley system.

The ttytype file consists of a series of lines; the first character is the terminal id, and the rest of
the line tells the type of the terminal. The first of these characters is a terminal class, and the
rest signify the brand, or some other more descriptive indication. A completely blank line ter-
minates the useful part of the file, after which comments may appear unrestricted. In the sam-
ple file the currently recognized (defined) terminal types are listed as comments.

The current version of GEO- QUEL only looks for terminals of graphic nature and therefore only
the graphic terminals need be in this database. If any other system or sub-system wishes to use
this ﬁle all terminals must be kept up to date.

USERS (FILES) 3/14/79 USERS (FILES)

NAME
.../files/users — INGRES user codes and parameters

DESCRIPTION
This file contains the user information in fields seperated by colons. The fields are as follows:
* User name, taken directly from /etc/passwd file.
* User code, assigned by the INGRES super-user. It must be a unique two character code.
* UNIX user id. This MUST match the entry in the /etc/passwd file.
* UNIX group id. Same comment applies.
* Status word in octal. Bit values are:
0000001 creatdb permission
0000002 permits batch update override
0000004 permits update of system catalogs
0000020 can use trace flags
0000040 can turn off qrymod
0000100 can use arbitrary proctabs
0000200 can use the =proctab form
0100000 ingres superuser
* A list of flags automatically set for this user.
* The process table to use for this user.
* An initialization file to read be read by the monitor at login time.
* Unassigned.
* Comma seperated list of databases. If this list is null, the user may enter any database. If it
begins with a ‘=", the user may enter any database except the named databases. Oth-
erwise, the user may only enter the named databases.

EXAMPLE
ingres:aa:5:2:177777. —d:=special:/mnt/ingres/.ingres::
guest:ah:35:1:000000:::::demo,guest

SEE ALSO
initucode (util)

INTRODUCTION (ERROR) 3/30/79 INTRODUCTION (ERROR)

NAME
Error messages introduction

DESCRIPTION
This document describes the error returns which are possible from the INGRES data base system
and gives an expianation of the probable reason for their occurrence. In all cases the errors are
numbered moox where n indicates the source of the error, according to the following table:

1 = EQUEL preprocessor

2 = parser

3 = query modification

4 = decomposition and one variable query processor
5 = data base utilities

30 = GEO-QUEL errors

For a description of these routines the reader is referred to The Design and Implementation of
INGRES. The xcxin an error number is an arbitrary identifier.

The error messages are stored in the file .../files/error6.2_n, where n is defined as above. The
format of these files is the error number, a tab character, the message to be printed, and the
tilde character (**™*’) to delimit the message.

In addition many error messages have “%/"” in their body where i is a digit interpreted as an
offset into a list of parameters returned by the source of the error. This indicates that a param-
eter will be inserted by the error handler into the error return. In most cases this parameter
will be self explanatory in meaning.

Where the error message is thought to be completely self explanatory, no additional description
is provided.

EQUEL (ERROR) 3/30/79 EQUEL (ERROR)
Vel

NAME
EQUEL error message summary

SYNOPSIS
Error numbers 1000 — 1999,

DESCRIPTION
The following errors can be generated at run time by EQUEL programs.

ERRORS
1000 In domain %0 numeric retrieved into char field.

Equel does not support conversion at run-time of numeric data from the data base to
character string representation. Hence, if you attempt to assign a domain of numeric
type to a C-variable of type character string, you will get this error message. To con-
vert numerics to characters use the "ascii" function in QUEL.

1001 Numeric overflow during retrieve on domain %0.

You will get this error if you attempt to assign a numeric data base domain to a C-
variable of a numeric type but with a shorter length. In this case the conversion
routines'may generate an overflow. For example, this error will result from an attempt
to retrieve a large floating point number into a C-variable of type integer.

1002 In domain %0, character retrieved into numeric variable.
This error is the converse of error 1000.

1003 Bad type in target list of parameterized retrieve "%0".
Valid types are %f8, %f4, %i4, %i2, %c.

1004 Bad type in target list of parameterized statement "%0".
Valid types are %f8, %f4, %id4, %i2, %il, %c.

1]

[0

PARSER (ERROR) 3/30/79 PARSER (ERROR)

NAME

Parser error message summary

SYNOPSIS

Error numbers 2000 — 2999.

DESCRIPTION

The following errors can be generated by the parser. The parser reads vour query and translates
it into the appropriate internal form; thus, almost all of these errors indicate syntax or type
conflict problems.

ERRORS
2100

2103

2106

2107

2108

2109

2111

2117

2118

2119

2120

2121

line %0, Attribute “%1° not in relation %2’

This indicates that in a given line of the executed workspace the indicated attribute
name is not a domain in the indicated relation.

line %0, Function type does not match type of attribute ‘%1’

This error will be returned if a function expecting numeric data is given a character
string or vice versa. For example, it is illegal to take the SIN of a character domain.

line %0, Data base utility command buffer overflow

This error will result if a utility command is. too long for the buffer space allocated to it
in the parser. You must shorten the command or recompile the parser.

line %0, You are not allowed to update this relation: %1

This error will be returned if you attempt to update any system relation or secondary
index directly in QUEL (such as the RELATION relation). Such operations which
compromise the integrity of the data base are not allowed.

line %0, Invalid result relation for APPEND ‘%1’

This error message will occur if you execute an append command to a relation that
does not exist, or that you cannot access. For example, append to junk(...) will fail if
junk does not exist.

line %0, Variable ‘%1’ not declared in RANGE statement

Here, a symbol was used in a QUEL expression in a place where a tuple variable was
expected and this symbol was not defined via a RANGE statement.

line %0, Too many attributes in key for INDEX

A secondary index may have no more than 6 keys.

line %0, Invalid relation name ‘%1’ in RANGE statement

You are declaring a tuple variable which ranges over a relation which does not exist.
line %0, Out of space in query tree - Query too long

You have the misfortune of creating a query which is too long for the parser to digest.
The only options are to shorten the query or recompile the parser to have more buffer
space for the query tree.

line %0. MOD operator not defined for floating point or character attributes
The mod operator is only defined for integers.

line %0, no pattern match operators allowed in the target list

Pattern match operators (such as **>*) can only be used in a qualification.
line %0, Only character type domains are allowed in CONCAT operator

PARSER (ERROR) 3/30/79 PARSER (ERROR)

2123

2125
2126
2127

2128
2129

2130

2132

2133

2134

2135

2136
2137
2138

2139

2500

2502
2503
2504
2505
2506
2507

line %0, “%]1.all" not defined for replace

line %0, Cannot use aggregates ("avg" or "avgu") on character values

line %0, Cannot use aggregates ("sum” or "sumu") on character values

line %0, Cannot use numerical functions (ATAN, COS, GAMMA, LOG, SIN, SQRT,
EXP, ABS) on character values A

line %0, Cannot use unary operators ("+" or "—") on character values

line %0, Numeric operations (+ — * /) not allowed on character values

Many functions and operators are meaningless when applied to character values.
line %0, Too many result domains in target list

Maximum number of result domains is MAXDOM (currently 49).

line %0, Too many aggregates in this query

Maximum number of aggregates allowed in a query is MAXAGG (currently 49).
line %0, Type conflict on relational operator

It is not legal to compare a character type to a numeric type.

line %0, "%1" is not a constant operator.
Only “dba’ or ‘usercode’ are allowed.

line %0, You cannot duplicate the name of an existing relation(%1)

You have tried to create a relation which would redefine an existing relation. Choose
another name.

line %0, There is no such hour as %1, use a 24 hour clock system
line %0, There is no such minute as %1, use a 24 hour clock system
line %0, There is no such time as 24:%1, use a 24 hour clock system

Errors 2136-38 indicate that you have used a bad time in a permit statement. Legal
times are from 0:00 to 24:00 inclusive.

line %0, Your database does not support query modification

You have tried to issue a query modification statement (define), but the database was
created with the ~q flag. To use the facilities made available by query modification,
you must say:

creatdb —e +q dbname
to the shell.

syntax error on line %0
last symbol read was: %1

A 2500 error is reported by the parser if it cannot otherwise classify the error. One
common way to obtain this error is to omit the required parentheses around the target
list. The parser reports the last symbol which was obtained from the scanner. Some-
times, the last symbol is far ahead of the actual place where the error occurred. The
string "EOF" is used for the last symbol when the parser has read past the query.

line %0, The word ‘%1, cannot follow a RETRIEVE command, therefore the com-
mand was not executed.

line %0, The word ‘%1’, cannot follow an APPEND command, therefore the command
was not executed.

line %0, The word “%1°, cannot follow a REPLACE command, therefore the command
was not executed.

line %0, The word ‘%1, cannot follow a DELETE command, therefore the command
was not executed.

line %0, The word “%1’, cannot follow a DESTROY command, therefore the com-
mand was not executed.

line %0, The word ‘%1, cannot follow a HELP command, therefore the command was

-2.

PARSER (ERROR) 3/30/79 PARSER (ERROR)

2508
2509
2510
2511
2512
2513
2514
2515

2700

2701

2702

2703

2704

2705

2707

2708

2709

not executed.

line %0, The word “%1°, cannot follow a MODIFY command, therefore the command
was not executed.

line %0, The word "%1’, cannot follow a PRINT command, therefore the command
was not executed.

line %0, The word "%1°, cannot follow a RETRIEVE UNIQUE command, therefore
the command was not executed.

line %0, The word “%1’, cannot follow a DEFINE VIEW command, therefore the
command was not executed.

line %0, The word ‘%1, cannot follow a HELP VIEW, HELP INTEGRITY , or HELP
PERMIT command, therefore the command was not executed.

line %0, The word “%1’, cannot follow a DEFINE PERMIT command, therefore the
command was not executed.

line %0, The word ‘%1°, cannot follow a DEFINE INTEGRITY command, therefore
the command was not executed.

line %0, The word ‘%1’, cannot follow a DESTROY INTEGRITY or DESTROY PER-
MIT command, therefore the command was not executed.

Errors 2502 through 2515 indicate that after an otherwise valid query, there was some-
thing which could not begin another command. The query was therefore aborted,
since this could have been caused by misspelling where or something equally as
dangerous.

line %0, non-terminated string
You have omitted the required string terminator (*).
line %0, string too long

Somehow, you have had the persistence or misfortune to enter a character string con-
stant longer than 255 characters.

line %0, invalid operator

You have entered a character which is not alphanumeric, but which is not a defined
operator, for example, "?".

line %0, Name too long "%1°

In INGRES relation names and domain names are limited to 12 characters.

line %0, Out of space in symbol table - Query too long

Your query is too big to process. Try breaking it up with more \go commands.
line %0, non-terminated comment

You have left off the comment terminator symbol (*‘s/*).

line %0, bad floating constant: %1

Either your floating constant was incorrectly specified or it was too large or too small.
Currently, overflow and underflow are not checked.

line %0, control character passed in pre-converted string

In EQUEL a coatrol character became embedded in a string and was not caught until the
scanner was processing it.

line %0, buffer overflow in converting a number

Numbers cannot exceed 256 characters in length. This shouldn’t become a problem
until number formats in INGRES are increased greatly.

QRYMOD (ERROR) 3/30/79 QRYMOD (ERROR)

NAME

Query Modification error message summary

SYNOPSIS

Error numbers 3000 — 3999,

DESCRIPTION

These error messages are generated by the Query Modification module. These errors include
syntactic and semantic problems from view, integrity, and protection definition, as well as run
time errors — such as inability to update a view, or a protection violation.

ERRORS
3310

3320

3330

3340

3350

3360

3490

3491

3492

3493

3494

3500

3590

%0 on view %]1: cannot update some domain
You tried to perform operation %0 on a view; however, that update is not defined.
%0 on view %1: domain occurs in qualification of view

It is not possible to update a domain in the qualification of a view, since this could
cause the tuple to disappear from the view.

%o on view %1: update would result in more than one query

You tried to perform some update on a view which would update two underlying rela-
tions.

%0 on view %]1: views do not have TID’s

You tried to use the Tuple IDentifier field of a view, which is undefined.

%0 on view %]1: cannot update an aggregate value

You cannot update a value which is defined in the view definition as an aggregate.
%0 on view %]1: that update might be non-functional

There is a chance that the resulting update would be non-functional, that is, that it
may have some unexpected side effects. INGRES takes the attitude that it is better to
not try the update.

INTEGRITY on %]1: cannot handle aggregates yet

You cannot define integrity constraints which include aggregates.
INTEGRITY on %1: cannot handle multivariable constraints

You cannot define integrity constraints on more than a single variabie.
INTEGRITY on %]1: constraint does not initially hold

When you defined the constraint, there were already tuples in the relation which did
not satisfy the constraint. You must fix the relation so that the constraint holds before
you can declare the constraint.

INTEGRITY on %]l: is a view

You can not define integrity constraints on views.

INTEGRITY on %]1: You must own ‘%1’

You must own the relation when you declare integrity constraints.

%0 on relation %1: protection violation

You have tried to perform an operation which is not permitted to you.
PERMIT: bad terminal identifier "%2"

In a permit statement, the terminal identifier field was improper.

o

QRYMOD (ERROR) 3/30/79 QRYMOD (ERROR)

3591

3592

3593

3594

3595

3700
3701

PERMIT: bad user name "%2"

You have used a user name which is not defined on the system.
PERMIT: Relation “%1’ not owned by vou

You must own the relation before issuing protection constraints.
PERMIT: Relation "%1" must be a real relation (not a view)
You can not define permissions on views.

PERMIT on %]1: bad day-of-week ‘%2’

The day-of-week code was unrecognized.

PERMIT on %1: only the DBA can use the PERMIT statement

Since only the DBA can have shared relations, only the DBA can issue permit state-
ments.

Tree buffer overflow in query modification
Tree build stack overflow in query modification

- Bad news. An internal buffer has overflowed. Some expression is too large. Try mak-

ing your expressions smaller.

OVQP (ERROR) 3/30/79 OVQP (ERROR)

NAME

One Variable Query Processor error message summary

SYNOPSIS

Error numbers 4000 — 4499,

DESCRIPTION

These error messages can be generated at run time. The One Variable Query Processor actually
references the data, processing the tree produced by the parser. Thus, these error messages are
associated with type conflicts detected at run time.

ERRORS
4100

4101

4102
4103
4104
4105

4106
4107

4108
4109

4110

4111

4112

4199

OVQP query list overflowed

This error is produced in the unlikely event that the internal form of your interaction
requires more space in the one variable query processor than has been allocated for a
query buffer. There is not much you can do except shorten your interaction or recom-
pile OVQP with a larger query buffer.

numeric operation using char and numeric domains not allowed

Occasionally, you will be notified by OVQP of such a type mismatch on arithmetic
operations. This only happens if the parser has not recognized the problem.

unary operators are not allowed on character values

binary operators cannot accept combinations of char and numeric fields
cannot use aggregate operator "sum” on character domains

cannot use aggregate operator "avg" on character domains

These errors indicate type mismatches — such as trying to add a number to a character
string.

the interpreters stack overflowed -- query too long
the buffer for ASCII and CONCAT commands overflowed

More buffer overflows.

cannot use arithmetic operators on two character fields
cannot use numeric values with CONCAT operator

You have tried to perform a numeric operation on character fields.
floating point exception occurred.

If you have floating point hardware instead of the floating point software interpreter,
you will get this error upon a floating point exception (underflow or overflow). Since
the software interpreter ignores such exceptions, this error is only possible with float-
ing point hardware.

character value cannot be converted to numeric due to incorrect syntax.

When using intl, int2, int4, float4, or float8 to convert a character to value to a
numeric value, the character value must have the proper syntax. This error will occur
if the character value contained non-numeric characters.

ovgp query vector overflowed
Similar to error 4100.
you must convert your 6.0 secondary index before running this query!

The internal format of secondary indices was changed between versions 6.0 and 6.1.of
INGRES. Before deciding to use a secondary index OVQP checks that it is not a 6.0 in-
dex. The solution is to destroy the secondary index and recreate it.

0w

DECOMP (ERROR) 3/30/79 DECOMP (ERROR)

NAME

Decomposition error message summary

SYNOPSIS

Error numbers 4500 — 4999,

DESCRIPTION

These error messages are associated with the process of decomposing a multi-variable query
into a sequence of one variable queries which can be executed by OVQP.

ERRORS
4602

4610
4611
4612
4613
4614

4615

4620

query involves too many relations to create aggregate function intermediate result.

In the processing of aggregate functions it is usually necessary to create an intermedi-
ate relation for each aggregate function. However, no query may have more than ten
variables. Since aggregate functions implicitly increase the number of variables in the
query, you can exceed this limit. You must either break the interaction apart and pro-
cess the aggregate functions separately or you must recompile INGRES to support more
variables per query.

Query too long for available buffer space (gbufsize).
Query too long for available buffer space (varbufsiz)
Query too long for available buffer space (sgsiz)
Query too long for available buffer space (stacksiz)
Query too long for available buffer space (agbufsiz).

These will happen if the internal form of the interaction processed by decomp is too
long for the available buffer space. You must either shorten your interaction or
recompile decomp. The name in parenthesis gives the internal name of which buffer
was too small.

Aggregate function is too wide or has too many domains.

The internal form of an aggregate function must not contain more than 49 domains or
be more than 498 bytes wide. Try breaking the aggregate function into two or more
parts.

Target list for "retrieve unique” has more than 49 domains or is wider than 498 bytes.

DBU (ERROR) 3/30/79 DBU (ERROR)

NAME

Data Base Utility error message summary
SYNOPSIS

Error numbers 5000 — 5999
DESCRIPTION

The Data Base Utility functions perform almost all tasks which are not directly associated with
processing queries. The error messages which they can generate result from some syntax
checking and a considerable amount of semantic checking.

ERRORS
5001 PRINT: bad relation name %0

You are trying to print a relation which doesn’t exist.
5002 PRINT: %0 is a view and can’t be printed

The only wa& to print a view is by retrieving it.
5003 PRINT: Relation %0 is protected.

You are not authorized to access this relation.
5102 CREATE: duplicate relation name %0

You are trying to create a relation which already exists.
5103 CREATE: %0 is a system relation

You canneot create a relation with the same name as a system relation. The system
depends on the fact that the system relations are unique.

5104 CREATE %0: invalid attribute name %1

This will happen if you try to create a relation with an attribute longer than i2 charac-
ters.

5105 CREATE %0: duplicate attribute name %1

Attribute names in a relation must be unique. You are trying to create one with a du-
plicated name.

5106 CREATE %0: invalid attribute format "%2" on attribute %1 4

The allowed formats for a domain are cl —c255, il, i2, i4, f4 and f8. Any other for-
mat will generate this error.

5107 CREATE %0: excessive domain count on attribute %1

A relation cannot have more than 49 domains. The origin of this magic number is ob-
scure. This is very difficult to change.

5108 CREATE %0: excessive relation width on attribute %1

The maximum number of bytes allowed in a tuple is 498. This results from the deci-
sion that a tuple must fit on one UNIX “page”. Assorted pointers require the 14 bytes
which separates 498 from 512. This "magic number"” is very hard to change.

5201 DESTROY: %0 is a system relation

The system would immediately stop working if you were allowed to do this.
5202 DESTROY: %0 does not exist or is not owned by you

To destroy a relation, it must exist, and you must own it.
5203 DESTROY: %0 is an invalid integrity constraint identifier

Integers given do not identify integrity constraints on the specified relation. For exam-
ple: If you were to type "destroy permit parts 1, 2, 3", and 1, 2, or 3 were not the

-1-

H

L1}

DBU (ERROR)

5204

5300

5301

5302

5303

5304

5305

5306

5401
5402

5403

5404
5405

5410
5411

5500
5501

5502

5503

3/30/79 DBU (ERROR)

numbers "help permit parts” prints out for permissions on parts, you would get this er-
ror.

DESTROY: %0 is an invalid protection constraint identifier

Integers given do not identify protection constraints on the specified relation. Example
as for error 5203.

INDEX: cannot find primary relation

The relation does not exist — check your spelling.
INDEX: more than maximum number of domains

A secondary index can be created on at most six domains.
INDEX: invalid domain %0

You have tried to create an index on a domain which does not exist.
INDEX: relation %0 not owned by you

You must own relations to put indicies on them.

INDEX: relation %0 is already an index

INGRES does not permit tertiary indicies.

INDEX: relation %0 is a system relation

Secondary indices cannot be created on system relations.
INDEX: %0 is a view and an index can’t be built on it

Since views are not physically stored in the database, you cannot build indicies on
them.

HELP: relation %0 dbes not exist
HELP: cannot find manual section "%0"

Either the desired manual section does not exist, or your system does not have any
on-line documentation.

HELP: relation %0 is not a view

Did a "help view" (which prints view definition) on a nonview. For example: "help
view overpaidv" prints out overpaidv’s view definition.

HELP: relation %0 has no permissions on it granted
HELP: relation %0 has no integrity constraints on it

You have tried to print the permissions or integrity constraints on a relation which has
none specified.

HELP: tree buffer overflowed
HELP: tree stack overflowed

Still more buffer overflows.

MODIFY: relation %0 does not exist

MODIFY: you do not own relation %0

You cannot modify the storage structure of a relation you do not own.
MODIFY %0: you may not provide keys on a heap

By definition, heaps do not have keys.

MODIFY %0: too many keys provided

You can only have 49 keys on any relation.

DBU (ERROR) 3/30/79 DBU (ERROR)

5504 MODIFY %0: cannot modify system relation

System relations can only be modified by using the sysmod command to the shell; for
example

sysmod dbname
5507 MODIFY %0: duplicate key "%1"
You may only specify a domain as a key once.
5508 MODIFY %0: key width (%1) too large for isam .

When modifying a relation to isam, the sum of the width of the key fields cannot
exceed 245 bytes.

53510 MODIFY %0: bad storage structure "%]1"

The valid storage structure names are heap, cheap, isam, cisam, hash, and chash.
5511 MODIFY %0: bad attribute name "%1"

You have specified an attribute that does not exist in the relation.
3512 MODIFY %0: "%1" not allowed or specified more than once

You have specified a parameter which conflicts with another parameter, is inconsistant
with the storage mode, or which has already been specified.

5513 MODIFY %0: fillfactor value %1 out of bounds
Fillfactor must be between 1 and 100 percent.

5514 MODIFY %0: minpages value %1 out of bounds
Minpages must be greater than zero.

5515 MODIFY %0: "%]1" should be "fillfactor", "maxpages”, or "minpages"”
You have specified an unknown parameter to modif.

5516 MODIFY %0: maxpages value %1 out of bounds

5517 MODIFY %0: minpages value exceeds maxpages value

5518 MODIFY %0: invalid sequence specifier "%1" for domain %2.

Sequence specifier may be “‘ascending’ (or ‘‘a”*) or ‘‘descending” (or **d”’) in a modi-
Jy. For example:

modify parts to heapsort on
pnum:ascending,
pname:descending

3519 MODIFY: %0 is a view and can’t be modified
Only physical relations can be modified.

5520 MODIFY: %0: sequence specifier "%1" on domain %2 is not allowed with the specified o)
storage structure. :

Sortorder may be supplied only when modifying to heapsort or cheapsort.
5600 SAVE: cannot save system relation "%0"

System relations have no save date and are guaranteed to stay for the lifetime of the
data base.

5601 SAVE: bad month "%0"
5602 SAVE: bad day "%0"
5603 SAVE: bad year "%0"

(4

4

N

DBU (ERROR)

5604
5800
5801
5803

5804
5805

5806

5807

5808

5809

5810

5811

5812

5813

5814

5815

5816

3/30/79 DBU (ERROR)

This was a bad month, bad day, or maybe even a bad year for INGRES.
SAVE: relation %0 does not exist or is not owned by you

COPY: relation %0 doesn’t exist

COPY: attribute %0 in relation %1 doesn’t exist or it has been listed twice
COPY: too many attributes

Each dummy domain and real domain listed in the copy statement count as one attri-
bute. The limit is 150 attributes.

COPY: bad length for attribute %0. Length="0%1"
COPY: can’t open file %0

On a copy "from”, the file is not readable by the user.
COPY: can’t create file %0

On a copy "into", the file is not creatable by the user. This is usually caused by the
user not having write permission in the specified directory.

COPY: unrecognizable dummy domain "%0"

On a copy "into", a dummy domain name is used to insert certain characters into the
unix file. The domain name given is not valid.

COPY: domain %0 size too small for conversion.
There were %2 tuples successfully copied from %3 into %4

When doing any copy except character to character, copy checks that the field is large
enough to hold the value being copied.

COPY: bad input string for domain %0. Input was "%1". There were %2 tuples suc-
cessfully copied from %3 into %4

This occurs when converting character strings to integers or floating point numbers.
The character string contains something other than numeric characters (0-
9,4+ ,~,blank,etc.).

COPY: unexpected end of file while filling domain %0.
There were %1 tuples successfully copied from %2 into %3

COPY: bad type for attribute %0, Type="%]1"
The only accepted types are i, f, ¢, and d.

COPY: The relation "%0" has a secondary index. The index(es) must be destroyed be-
fore doing a copy "from"

Copy cannot update secondary indices. Therefore, a copy “from" cannot be done on
an indexed relation.

COPY: You are not allowed to update the relation %0
You cannot copy into a system relation or secondary index.
COPY: You do not own the relation %0.

You cannot use copy to update a relation which you do not own. A copy "into" is al-
lowed but a copy "from"” is not.

COPY: An unterminated "c0" field occurred while filling domain %0. There were %1
tuples successfully copied from %2 into %3

A string read on a copy "from" using the "c0" option cannot be longer than 1024 char-
acters.

COPY: The full pathname must be specified for the file %0

DBU (ERROR)

5817

5818

5819

5820
5821

5822

3/30/79 DBU (ERROR)

The file name for copy must start with a "/".
COPY: The maximum width of the output file cannot exceed 1024 bytes per tuple

The amount of data to be output to the file for each tuple exceeds 1024. This usually

happens only if a format was mistyped or a lot of large dummy domains were specified.
COPY: %0 is a view and can’t be copied

Only physical relations can be copied.

COPY: Warning: %0 duplicate tuples were ignored.

On a copy "from", duplicate tuples were present in the relation.

COPY: Warning: %0 domains had control characters which were converted to blanks.
COPY: Warning: %0 c0 character domains were truncated.

Character domains in c¢0 format are of the same length as the domain length. You had
a domain value greater than this length, and it was truncated.

COPY: Relation %0 is protected.
You are not authorized to access this relation.

1Y

4~

GEOQUEL (ERROR) 3/30/79 GEOQUEL (ERROR)

NAME
GEO-QUEL error message summary

SYNOPSIS
Error numbers 30000 — 30999.

DESCRIPTION
The following errors can be generated by the GEO-QUEL subsystem of INGRES. These errors are
all associated with errors in the graphics processor.

ERRORS
30210 GEO-QUEL is creating a MAPRELATION relation .

30300 line %0, In attempting to do a MAP, SHADE, or OVERLAY the relation ‘%1’ does
not exist or is not owned by you

30301 line %0, Failed to obtain information to put a tuple in MAPRELATION relation
30310 line %0, Failed to complete MAP

30330 line %0, Failed while building temporary relation in SHADE command

30331 line %0, Maximum polygon value is 0.0 which causes floating point exception
30332 line %0, Too many sides (maxside) in polygon (zoneid: %1, groupid: %2)

30340 line %0, Failed while trying to obtain range limits for axes in POINTGRAPH or LINE-
GRAPH

30341 line %0, The linetype specified (%1) in the linegraph command does not make sense
for the device

30342 line %0, %1 does not exist or cannot be accessed by you

30350 line %0, There is no current center definition for this map: %1

30400 line %0, Error in creating destination file ‘%1’ in SAVEMAP

30401 line %0, Too many domains for SHADE(shadédoms)

30402 line %0, Too many domains for POINTGRAPH of LINEGRAPH (graphdoms)
30410 line %0, Error in creating destination file ‘%1’ in SAVEMAP

30420 line %0, You may specify only one boundary when using “cellcount” and ‘cellwidth’
30421 line %0, Only one cellwidth per command has meaning

30422 line %0, Only one cellcount per command has meaning

30423 line %0, Only one upper bound per command has meaning '
30424 line %0, Only one lower bound per command has meaning

30425 line %0, %1 does not exist or cannot be accessed by you

	Copyright notice 1979
	ERL-79-43

