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1. INTRODUCTION

Previous attempts at providing data base access in a
programming language were based on embedding data base con
structs into an existing language [Allman 76, Chamberlin 76,
Date 76, Bratsbergsengen 77, Merrett 77, and Schmidt 77].
This embedding was accomplished by calling subroutines to
execute data base functions directly, by using a preproces
sor to translate queries into subroutine calls, or by modi
fying an existing compiler. Although each of these attempts
succeeded in providing access to the data base, the result
ing programming environment was less than satisfactory. The
data base constructs are not integrated into the language
because the designers were constrained by the existing
languages [Prenner 78].

2
RIGEL is an experimental general-purpose programming

language designed for the development of data base applica
tions. It offers a better programming environment because
it was designed from the start with an emphasis on the
language mechanisms needed to develop data base applica
tions. These include relations, views, and tuples as
built-in data types, a flexible notation for expressing
relational queries which is integrated with the iteration
constructs in tne language, and a data abstraction facility
which handles the interface between a program and a data
base well. RIGEL is the language component of a sophisti
cated programming environment which provides interactive
program development, intermixed interpretive and compiled
execution of program components, and interactive debugging.
Such an interactive programming environment gives a program
mer powerful tools to support the rapid development of pro
grams [Wegbreit 71J. By the time this paper appears, the
first version of the system will be implemented.

Other new languages designed expressly for data base
applications are TAXIS [Mylopoulis 78] and PLAIN [Wasserman
78]. TAXIS seeks to make the development of applications
easier by limiting the kinds of applications which can be
written in tne language and by supporting a rigidly struc
tured programming environment. The alternative is to code
applications in a good general-purpose programming language
using a library of predefined abstractions designed specifi
cally for the class of applications (e.g., procedures to
display menus on a video terminal and to process user
requests). As with many application-specific languages, it
is not certain that TAXIS offers a clear advantage in pro
gram development time. In addition, the general-purpose

RIGEL (ri jel) is a bright bluish star — the most
luminous in the constellation Orion. itfe have followed a

tradition of naming languages after mathematicians and as
tronomical bodies. Besides, it seemed like a nice
name . . .
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ABSTRACT

Language constructs to support the development of data
base applications provided in the programming language RIGEL
are described. First, the language type system includes
relation, view, and tuples as built-in types. Tuple-values
are Introduced' to provide more flexibility in writing pro
cedures that update relations and views.

Second, an expression that produces sequences of
values, called a generator, is defined which integrates
relational query expressions with other iteration constructs
found in general-purpose programming languages. As a
result, relational expressions can be used in new contexts
(e.g., as parameters to procedures) to provide new capabili
ties (e.g.", programmer-defined aggregate functions).

Lastly, a data abstraction facility, unlike those pro
posed for other data base programming languages, is
described. It provides a better notation to specify the
interface between a orogram and a data base and to support
the disciplined use of views.

All of these constructs are integrated into a sophisti
cated programming environment to enhance the development of
well-structured programs.
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language can be used to program a wider range of data base
applications.

PLAIN, on the other hand, is a general-purpose program
ming language which takes a different approach to both the
expression of queries and data abstraction than the approach
taken in RIGEL. In PLAIN, the programmer specifies how a
high-level query is to be' processed which means that pro
grams may have to be recoded to take advantage of execution
efficiencies resulting from a change to the data base
storage structure. A more important difference is that, as
will be shown, the data abstraction facility provided in
RIGEL is better suited to defining the interface between a
program and a data base than that provided in PLAIN.

This paper presents tne design of language constructs
provided in RIGEL to express data base queries, to specify
the interface between a program and a data base, and to use
views.

The notation for expressing queries is based on expres
sions which produce a sequence of values similar to that
used in Relational PASCAL [Schmidt 77] and discovered
independently by Prenner [Prenner 77]. The use of these
expressions has been generalized to allow sequences of
values other than tuples (e.g., real) to be specified and to
allow their use in contexts other than relation constructors
(e.g., as parameters to procedures). This generalization
results in a convenient, well-integrated notation for
expressing queries which, for example, leads naturally to
programmer-defined aggregate functions (e.g., standard devi
ation) .

The virtues of data abstractions as notations to

describe interfaces to a data base have been extolled by
researchers in programming languages and data base systems
[Hammer 76, Prenner 77, Tsichritzis 77, Brodie 78]. Several
language proposals exist with a data abstraction facility
based on the concept of abstract data types [Furtado 78,
Schmidt 78, Wasserman 78, Weber 78]. RIGEL nas a data
abstraction facility, based on a program structuring concept
developed by Wirth [Wirth 77] which provides a better nota
tion for specifying a data base interface that consists of
several relations, views, and high-level abstract opera
tions .

Finally, the language supports views as a built-in data
type. Both retrieval and update operations are provided on
views. The view and data abstraction mechanisms were
designed together so that views can be specified in an
abstraction in such a way as to separate the view represen
tation as seen by a user of the view from its implementation
and to allow updates on views to be specified as high-level
abstract operations. This approach enhances data indepen
dence because the implementation of view uodates is isolated



from the program. Moreover, view updates are specified
explicitly so that a programmer knows precisely what set of
updates are allowed, eliminating the uncertainty present in
approaches based on automatically translating view updates
[Stonebraker 75, Astrahan 76, Dayal 78].

These simple, yet powerful, language constructs can be
used together to develop a wide range of data base applica
tions. The remainder of this paper presents the details of
the language constructs. Section 2 presents the notation
for expressing queries. Section 3 describes the update con
structs. Section 4 discusses data abstraction and presents
an example of an external schema. Finally, section 5 illus
trates the use of views in a data abstraction.

Figure 1 shows the declarations for a college data base
which is used in all of the succeeding examples. There is a
student relation, course relation, professor relation, and a
relation expressing the association of a student enrolled in
a course. Each relation has a primary key as soecified in
the key-clause. To simplify the presentation, each course
is assumed to be offered only once each term and taught by
one professor.

2. GENERATORS

The fqr-statement found in conventional programming
languages is extended in RIGEL to express relational queries
by what is called a generator expression which produces a
sequence of values." ' This section illustrates the use of
generators to express queries, to define aggregate func
tions, and to construct new relations.

A fqr-statement to sum the elements of an array is
written:

sum := 0;

for i in 1..10 do

sum := sum + A [i] ;
end;

The body of the fqr-statement is executed once for each
value of i, in this example, 1, 2, ,.., 10. The variable i
is called an iteratiqn-variable and the expression 1..10 is
called a generator "because it produces or generates the
sequence of" values that are to be assigned to the
iteration-variable. The expression "i in 1..10" between the
for and do is called a bind expression because it specifies
a sequence of bindings for the iteration-variable.

The fqr-statement and bind expressions can be used to
specify retrievals from relations. For example,

for s in STUDENT where s.level=soph do
prInt(s.name, s.major);

end;



1 nameType: type = array 1..NAMESIZE of char;
2 idNumType: type = integer;
3 titleType: type = array 1..TITLESIZE of char;
4 gradeType: type = (A, 3, C, D, F, I);

6 COURSE: relation

7 c#: idNumType; /* Course number */
8 title: titleType; /* Course title */
9 p#: idNumType; /* Teaches course */

10 key c#; /* Unique courses */
11 end;

13 PROFESSOR: relation

14 p#: idNumType; /* Prof's employee # */
15 name: nameType;
16 salary: real;
17 rank: (lee, asst, assoc, full, special);
18 yearsService: integer;
19 key p#;
20 end;

22 STUDENT: relation

23 s#: idNumType; /* Student number */
24 name: nameType;
25 major: nameType;
26 level: (frosh, soph, jr, sr, grad, other);
27 key s#;
28 end;

30 /* A many-many relationship that indicates in
31 what course each student is enrolled */

3 3 ENROLLMENT: relation

34 s#: idNumType;
35 c#: idNumType;
36 grade: gradeType;
37 key s#, c#;
38 end;

Figure 1. Example data base.

prints the name and major of all sophomore students. The
iteration-variable s is bound in turn to tuples in the STU
DENT relation that satisfy the predicate specified in the
where-clause. Other data manipulation languages refer to s
as a range variable (QUEL [Hela 75]) or cursor (SEQUEL
[Chamberlin 76]), but in programming languages it is just
another iteration-variable. By recognizing this fact,



queries can be integrated with other iteration constructs.
Notice that this notation for queries implies that each
relation has an implicitly defined generator that produces
each tuple in the relation. Although this may seem to
imply that retrievals are implemented by scanning the entire
relation, query optimizations used to implement high-level
query languages can be used to improve execution performance
[Astrahan 76, Wong 76].

To specify more complex queries, bind expressions can
be generalized to several iteration-variables. For example,
to print the name, level, and grade of students in an
Economics course, one writes

for s in STUDENT, c in COURSE, e in ENROLLMENT
where c.title="EC0N1" and c.c#=e.c# and e.s#=s.s# do

print (s.name, s.major, s.grade);
end;

In these examples, both the binding of iteration-
variables and the computation to be performed are specified.
Some queries involve passing a sequence of values to a pro
cedure, for example, professor salaries to an averaging
function to calculate average salary. The sequence of
values can be specified in the following way

p.salary : p in PROFESSOR

The colon-operator produces a value (specified by the left
operand) for each binding of iteration-variables (specified
by the right operand). The left operand is an expression;
the right operand is a bind expression. The entire expres
sion is a generator. To calculate average salaries, one
writes:

AVG(p.salary : p in PROFESSOR)

This example illustrates how bind expressions can be used to
define generators and how generators can be passed to pro
cedures. Because these are general mechanisms in the
languages, a programmer has considerable freedom to define
arbitrary procedures which take generator arguments and to
call those procedures with different sequences of values
specified by generator expressions. For instance, program
mers can define new aggregate functions as illustrated in a
later section.

Generator expressions can also be used to produce a
sequence of records by use of a record-constructor. When
combined with a relation-constructor, a temporary relation
can be created. For example, to create a temporary relation
with a tuple for each student in an Economics course one

A tuple refers to a "record in a relation." The impor
tance of this distinction is illustrated in the next sec

tion.



writes

temp :=

{<s#:s.s#, name:s.name, level:s.level, grade:e.grade> :
s in STUDENT, c in COURSE, e in ENROLLMENT
where c.title="EC0N1" and c.c#=e.c# and e.s#=s.s#}

The expression "{ . . . }" constructs a relation which in
this example is assigned to the variable temp. The expres
sion "< . . . >" constructs a record with record-field names

that are explicitly specified and expressions that specify
the values which are to be assigned to the fields. Record-
constructors are like target-lists in QUEL [Held 75].

In these examples, the use of generator expressions to
specify sequences of values has been illustrated. Genera
tors can also be specified by a procedure-like routine
called a generator. Generator routines are similar to CLU
iterators (for details see [Liskov 77] or [Rowe 78]).
Regardless of how a generator is specified, they can be used
in all of the contexts illustrated here (e.g., in bind
expressions or as arguments to procedures).

We have shown that bind expressions and generators are
fundamental unifying concepts tnat provide a good notation
for expressing queries. They extend previous work ([Prenner
77, Schmidt 77]) by allowing relational expressions (i.e.,
generators) to be passed to procedures as arguments and by
allowing generators to be specified procedurally.

3. UPDATES

In this section language constructs to specify updates
(replaces, deletes, and appends) and data base transactions
are presented. Replaces and deletes are specified using an
extension to the fqr-statement which identifies relations to
be modified, called an update-statement. Simple statements,
used inside the update-statement are provided to carry out
replaces and deletes. An additional statement, which may be
used anywhere, is available to append tuples to relations.
A language construct is also provided to define data base
transactions, a sequence of updates that appear to con
current data base users as an atomic operation. At the end
of this section, an extension to the language type system is
described which allows updates to be performed in procedures
called from the body of an ujDdate-statement.

The replace- and delete- statements, when used inside
an update-statemdnt, cause the corresponding action to take
place. For example, suppose all professors are to be given
raises but that the amount of raise is dependent on current

RIGEL is a strongly-typed language; thus, all variables
must be declared. The declaration constructs have been om

itted to simplify the presentation.
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salary, rank, and years of service. Assume that a function,
called newSalary, is provided that calculates tne
professor's new salary. To update salaries one writes

update p in PROFESSOR do

r?.Place P 5Z
p<salary:newSalary(p.salary,p.rank, p.yearsService)>;

end;

The semantics of this statement are: open the relation for
update, replace each tuple by the constructed record speci
fied in the by-clause, and do the update (i.e., physically
change the PROFESSOR relation) after all iterations have
been completed (i.e., just before executing the statement
following the update-statement). The expression
"p< ...>"' constructs a new record by making a copy of p
and then changing the specified fields in parallel. This
simultaneous change is needed to avoid integrity violations
that might arise from constraints that relate two record
fields.

To delete tuples, a delete-statement rather than a
replace-statement is used " in the body of the ugdate-
statement. For example, to delete all courses taught by A.
Johnson, one writes

update c in COURSE for p in PROFESSOR
where p.name="Johnson, A." and p.p#=c.p# do

delete c;
end;

In this example, the COURSE relation can be updated but not
the PROFESSOR relation. Deletes and replaces to different
relations can be intermixed in the body of the update-
statement. However, a relation can only have one updatable
iteration-variable active at a time. This restriction is
enforced by a run-time check. The update constructs
described nere do not solve the problem of non-functional
updates.

Records are inserted into a relation by using an
append-statement. For example,

append

<s#:1024,name:"Smith, K.",major:"EECS",level:jr>
to STUDENT;

inserts a new student into the STUDENT relation. In con
trast to the delete- and replace-statements, the app_end-
statement is not used in the body of an update-statement.

A data base transaction is expressed by using a
transaction-block, e.g.,



transaction

updates COURSE,PROFESSOR;

begin
update p in PROFESSOR

where p.name="Johnson, A." do
update c in COURSE where c.p#=p.p# do

delete c;
end;

delete p;
end;

end;

This example deletes Professor Johnson and all courses s/he
teaches. The updates list is required because update-
statements may occur in called procedures; without it,
interprocedural data-flow analysis would be required to
determine which relations might be changed. The ability to
group together updates in order to maintain data base
integrity is a necessary language feature for the develop
ment of data base applications.

A major problem in designing the update constructs is
to allow a "procedure, called in the body of an update-
statement, to replace or delete a tuple. For instance, in
the salary increase example at the beginning of this sec
tion, a proceoure updateSalary that takes a PROFESSOR tuple
and replaces the salary could have been provided rather than
newSalary. The updates would then be coded

update p in PROFESSOR do
updateSalary(p);

end;

The problem is what type is the formal 'argument to
updateSalary? Up to this point, an iteration-variable bound
to a tuple in a relation has been treated as a record-value.
That is, the iteration-variable is actually bound to a copy
of the tuple. However, to do updates, a reference to the
tuple is needed rather than to a copy. The solution is to
introduce a type that denotes "a reference to a tuple in a
relation." UpdateSalary can then be coded as follows

updateSalary: prqcedure(a: tuple PROFESSOR'type) =
begjln

L!r.PL§£® a 9.Y. a< * • • >'

end;

The tuple-type specifies the type of relation of which the
tuple is a member. In this case, "PROFESSOR1type" specifies
the type of the variable PROFESSOR. The suffix "'type" is
an example of an attribute function.

There is a problem with introducing values of type
tuple into the language. In actuality, tuple-values are



addresses on secondary memory. Consider the following pro
gram fragment

for s in STUDENT where s.name="Smith, K." do
x : = s ;

end;

After executing this code, x would reference Smith's tuple
in the STUDENT relation. Somewhere later in the program one
might try to reference Smith's tuple through x. This cannot
be allowed because the tuple might have been moved by a
later update from this program or from a concurrent user or
by a change in tne storage structure used to store the STU
DENT relation. This restriction is achieved by not allowing
tuple-values to be assigned. In this example, the assign
ment "x := s" is flagged as a compile-time error.

This section has presented a complete set of update
constructs which have been carefully integrated into the
retrieval mechanisms presented in the previous section. The
introduction of tuple-values allows replaces and deletes to
be executed in procedures called from the body of an
update-statement, which enhances the power of procedures in
the language. This feature is exploited in the view update
mechanism discussed below. Before discussing the view
mechanisms though, the data abstraction constructs must be
presented.

4. DATA ABSTRACTION

In this section the data abstraction facility provided
in RIGEL is described. Data abstractions are used to define

the interface between a program and a data base, as well as
the interfaces between parts of a large program. The
abstraction facility is also used to separate the represen
tation of a view from the code which implements it. Thus,
the data abstraction facility is extremely important for the
development of well-structured data base applications.

Data abstraction mechanisms can be provided in a
language by abstract data types (ADT) or by modules. An ADT
mechanism allows a programmer to associate primitive opera
tions with one data structure type (e.g., a stack with qqp,
£H?l!2' isEmpty, and top operations) . The declaration of an
ADT adds a new type to the language which can be used, for
example, to declare variables of that type (e.g., stack).
Thus an ADT mechanism is designed to define one type which
can be used to create several instances of the object. For
example, ADT's are provided in SIMULA [Birtwistle 73]
because simulation programs are concerned with the movement
of multiple instances of various types of entities through a
system.

The difference between ADT's and modules is that

modules do not define a single type. A module mechanism is
designed to allow several types, variables, and procedures
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to be declared together and to be used in an application
program as a unit. A simple example would be an I/O subrou
tine library which defines types (buffer and file descriptor
types), variables (status variables), and procedures (qpen-
File, read, etc.). A program that uses the I/O module
creates only one instance of the objects it defines, called
importing the module. Modules are provided in MODULA [Wirth
77] because system programs are primarily concerned with
interfaces between pieces of hardware and software. These
interfaces are comprised of more than one type and are only
instantiated once in a program.

ADT's can be used like modules and modules can be used
to define ADT's, but, each is more convenient for the use
for which it was defined. More extensive comparisons of
these two abstraction mechanisms are available elsewhere
([Goos 78, Wirth 77']). Nevertheless, ADT's are best suited
to problems which require multiple instantiations of one
type while modules are best suited to problems which require
one instantiation of a collection of types, variables, and
procedures.

The predominant use of data abstraction in data base
applications is to define the interface between a program
and a data base, called an external sqhema by some data base
practitioners. This interface" is often quite complex and
only one instance is needed. Clearly, modules are the most
natural notation for their specification.

A module in RIGEL nas three sections: visible, private,
and initialization. The visible section defines the objects
that can be accessed by the user of the module, called its
client. The private section implements the objects defined
in the visible section. Objects local to the private sec
tion cannot be directly accessed by the client. Tne ini
tialization section is executed when the module is defined

so that necessary initialization can be completed.

The visible section specifies the abstract semantics
and the private section specifies the implementation. Used
correctly, modules provide a means for isolating a client
program from the representational details of the abstrac
tion. Figure 3 shows a module definition for an interface
to the college data base that might bemused by a program
that is scheduling professors and classes. The visible sec
tion includes all declarations that must be seen by an
application programmer to use the relations and procedures.
After importing the module, the relations and procedures are

The binding of program variables COURSE and PROFESSOR
to relations stored in a data base is not shown. Language
mechanisms to control this binding were discussed in a pre
vious paper [Prenner 78]; details are also given in the
language specification [Rowe 78].

11



1 scheduleSchema: module =

2 visible

4 COURSE: relation

5 c#: idNumType;
6 title: titleType;
7 p#: idNumType;
8 key c#;
9 end ;

11 PROFESSOR: relation

12 p#: idNumType;
13 name: nameType;
14 salary: real;
15 rank: (lee, asst, assoc, full, special);
16 yearsService: integer;
IV key p#;
18 end;

20 assignProf: procedure(prof: nameType,
21 class: titleType);

23 scheduleReport: procedure;
24 ...

26 P?.iZate

28 assignProf: procedure =
29 begin
30 "uPdate c in COURSE for p in PROFESSOR
31 w!l?.re c. title = class and p.name = orof do
32 replace c by c<p#: p.p#>;
33 eD.d;
34 end;
35 ...

36 en_9l'

Figure 3. Example module declaration.

accessed in the usual way. For example, to assign Professor
R. Burns to teach PHYSICS 1, one writes

assignProf("Burns, R.", "PHYSIC51");

Notice that the number of arguments and their types are
given in the visible section because a client must know this
information to use the procedure. They are not repeated in
the private section where tne procedure body is specified to
avoid needless inconsistency errors and to insure that if

12



the argument declarations are changed only one change to the
program text is necessary.

Modules provide a better notation than ADT's for speci
fying a program interface to a data base. For example, only
those relations and views which a program may access are
declared in the visible section. Moreover, high-level
abstract operations can be associated with the data by
declaring them in the module, thus providing a complete
specification of the data base interface.

5. VIEWS

This section illustrates the use of updatable views in
RIGEL. A view is an abstract relation which can be used to
simplify the access to a data base, to protect parts of a
data base, and to enhance data independence [Chamberlin 75].
The definition of a view is comprised of the declaration of
the abstract relation which the view simulates and the
specification of how a view tuple is constructed from the
tuples in the underlying relations (called the base rela-
tions). These parts are called, respectively, the abstract
relation declaration and the gapping specification. The
user of a view should only see the abstract relation
declaration because the mapping specification is part of the
view implementation. This separation and information hiding
can be achieved by putting the abstract relation declaration
in the visible section of a module and the mapping specifi
cation in the private section of a module. In this way, the
use of modules complements the use of views.

For performance and consistency reasons, queries on a
view are translated into queries on the base relations
rather than being executed directly on a materialization of
the view [Stonebraker 75]. This translation is possible for
all retrievals but not for all updates. Views and updates
exist for which no sequence of operations on the base rela
tions will produce a correct update when the data is
accessed through the view (i.e., undefined updates). Other
examples exist for which more than one sequence of opera
tions will produce a correct view update but each produces a
very different meaning on the underlying data (i.e., ambigu
ous updates) [Dayal 78]. The problem is to decide how view
update facilities should be provided in a language. There
are four possibilities:

(1) Views may not be updated.

(2) Views may be updated but the programmer must specify
what base relation updates are to be executed, i.e.,
for those updates that are to be allowed, the program
mer must specify the translation of the high-level
operation.

(3) Views may be updated only by updates that can be unam
biguously translated to base relation updates by some

13



update translation algorithm.

(4) Views may be updated and language constructs are pro
vided to allow a programmer to specify the translation
of ambiguous and undefined updates that are not handled
by the translation algorithm, i.e, all updates are
allowed.

The first alternative was rejected because it seriously res
tricts the utility of views.

Several attempts were made to formulate language con
structs to allow programmer-defined augmentations to an
update translation algorithm, i.e., the fourth alternative.
Each attempt introduced significant language complexity and,
in most cases, resulted in programs that would be impracti
cal to execute .

The third alternative attempts to support arbitrary
view updates by using the standard update constructs defined
for relations. However, snould one desire an ambiguous
update no convenient notation is supplied for the programmer
to express that update. Another consequence of adopting
this alternative is that a programmer would not know whether
a particular view update was legal until it was translated,
or in some cases, executed [Stonebraker 75, Astrahan 76,
Dayal 78]. Moreover, the update translation algorithms
depend on the view mapping specification which the program
mer presumably cannot access. The second alternative, on
the other hand, acknowledges that only a limited set of view
updates are possible and provides a way to associate the
appropriate semantics with the view update expressed as a
high-level abstract operation. In most applications,
because few distinct view updates are required, the burden
on the programmer to specify the translation would be insig
nificant. Moreover, data independence would be enhanced by
the discipline of explicitly coding the view updates as
high-level operations. Consequently, the second alternative
was judged superior to the third alternative.

The remainder of this section presents the language
constructs provided in RIGEL to define and use views. The
presentation is based on a module that might be used by the
professor of a class. The module is comprised of a view of
the students enrolled in the class and operations that s/he
might access to handle some typical actions: adding and
dropping students, counting the number of classes a student
is taking, assigning grades, and calculating the grade point
average of various groups of students.

Figure 4 shows the visible section of the courseView
module. It includes the view for EC0N1 and the abstract
operations. Assuming that the module has been imported into
the current scope, a query to list students with incompletes
is written:
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1 courseView: module =

2 visifc)!^

4 EC0N1: view

5 s#: idNumType;
6 name: nameType;
7 grade: gradeType;
8 end ;

10 addStudent: procedure(student: nameType);

11 dropStudent: Procedure(
12 student: tuple ECONl'type);
13 assignGrade: Procedure(
14 student: tuple ECONl'type;
15 courseGrade: gradeType);
16 countClasses : procedure(
17 student: tuple ECONl'type): integer;
18 avgGPA: Procedure(
19 grades: generator:gradeType): real;

21 p_riy_atq
22 ...

23 en_d; /* courseView */

Figure 4. Visible section of courseView module

for s in EC0N1 where s.grade = I do
orint(s.name);

end

To add a student to the course, the addStudent procedure is
invoked, e.g.,

addStudent("Smith, K.")

To assign a grade to each student the following is executed

update s in EC0N1 do
assignGrade(s,getGrade(s.name));

end

where qetGrade is a function that returns a grade for each
student (e.g., it might be read from a terminal). Notice
that the type of the first argument to assignGrade is a
tuple in the view. AssignGrade will perform an update on
the student's tuple in the ENROLLMENT base relation.

Other examples to illustrate view use are

15



/* calculate class grade point average */
avgGPA(s.grade: s in EC0N1 where s.grade not= I)

/* gpa of students taking more than 4 courses */
avgGPA(s.grade: s in EC0N1 where countClasses (s) > 4)

These examples illustrate the power and convenience of gen
erator expressions and generators as arquments to pro
cedures. AvgGPA is an example of a programmer-defined
aggregate function.

The implementation of this module is shown in Figure 5.
Lines 8 to 12 complete the view declaration. The view map
ping is specified by a generator expression which produces
the tuples in the abstract relation. The particular course
for which this module defines a view is specified as a con
stant in the mapping specification. Obviously, a better way
to structure this module would be to make the course a
module parameter so that one module could be used for all
courses rather than having to define a separate module for
each one.

CountClasses takes a view tuple and accesses the
ENROLLMENT base relation to find the number of classes in
which the student is enrolled. AvgGPA takes a generator
argument and calculates the grade point average of the
grades returned by the generator. ToGPA is an array that
maps grades to the obvious numerical ranking. AddStudent is
a procedure which causes a new tuple to be inserted into the
view by performing an update on the ENROLLMENT base rela
tion. The implementation of these operations could be
expressed directly on the base relations without reference
to the base relation tuples that produced a specific view
tuple.

DropStudent takes a view tuple as an argument and
deletes the tuple in the ENROLLMENT base relation that
represents the student's enrollment. The problem is how to
access the ENROLLMENT tuple given a view tuple. One solu
tion would be to execute a query to find the tuple, e.g.,

update e in ENROLLMENT for c in COURSE
where student.s#=e.s# and c.c#=e.c# and c.title="ECONl"
do

delete e;
end;

where student is the argument to the procedure dropStudent.
This solution is intolerably inefficient. Additionally,
this implementation of the update implies an update to the
ENROLLMENT relation for each student dropped rather than
deferring the change until all students to be dropped have
been processed. In other words, the semantics of the view
update are wrong. A better solution would be to allow
dropStudent to access the base tuples directly. This solu
tion is achieved by allowing the base relation tuples used
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1 courseView: module =

2 Yisi^i?
3 ...

4 private

6 /* view mapping specification */

8 EC0N1: view =

9 <s#:e.s#, name:s.name, grade:e.grade> :
10 e in ENROLLMENT, s in STUDENT, c in COURSE
11 where c. title = "EC0N1" and c.c# = e.c#
12 and s.s# = e.s#;

14 countClasses: procedure =
15 begin
16 return COUNT(x in ENROLLMENT
17 where x.s# = student.s#);
18 end;

20 /* initialize grade point mapping */

22 toGP: array gradeType of real:= [4,3,2,1,0,0

24 avgGPA: Procedure =
25 bec^in
26 return AVG(toGP[g]: g in grades
27 where g nqt= I);
28 end;

30 addStudent: procedure =

31 ^12-n
32 if (s in STUDENT, c in COURSE
33 wher_e s.name = student
34 and c.name = "ECONl")

35 then

36 append
37 <s#: s.s#, c#: c.c#, grade: I>
38 to ENROLLMENT;
39 else

40 print("No such course or student");
41 fi;
42 end;

44 assignGrade: P£qc.qdure =
4 5 ~>ec[in
46 L^Pla?.?. student' base .e by
47 student'base.e<grade:courseGrade>;
48 end;

50 dropStudent: P£qqqdur_e =
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51 begin
52 cte.i^te student' base .e ;
53 en_d;

55 end /* Course view */

Figure 5. Private section of courseView module

to construct the view tuple to be accessed given a view
tuple.

Associated with each view tuple is a record, called the
Yliw tup_le base record, which has a field that holds the
current value for each iteration-variable bound in the map
ping specification for the view, e.g., the base record
declared for EC0N1 view tuples is

record

e: tuple ENROLLMENT'type;
s: tuple STUDENT'type;
c: tuple COURSE'type;

end

To access this record given a view tuple, say student, one
applies the "base" attribute-function to student" i.e.,
"student'base." Thus, to access the ENROLLMENT base relation
tuple, one writes

student *base.e

Because this is just a value of type tuple in a relation,
delete is a legal operation. In this way, dropStudent can
delete the appropriate base tuple directly. AssignGrade
also uses this feature to replace the grade stored in the
ENROLLMENT tuple.

This section has illustrated the language constructs
provided in RIGEL to support the disciplined use of views.
The approach to views taken here is very different from that
taken in other languaqes. An explicit specification is
given for the type of the abstract relation that the view
simulates and for the update operations that are allowed on
the view. Another important difference is that it is possi
ble to separate the view declaration from the view implemen
tation in accordance with the principles of information hid
ing by defining the view inside a module. Recall that a
module is the language construct used to specify the data
base interface to a program.

6. CONCLUSION

The main contribution of this paper is to show how
various programming language concepts can be generalized and
used together to provide a good environment for writing data
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base applications. First, the language type system was
extended'to allow definition of objects of type relation,
view, and tuple and to support their disciplined use.
Second, generators were introduced as a notation to specify
complex retrievals and updates on tuples in views and rela
tions. Finally, the use of modules, along with relations
and views, was shown to provide a convenient notation for
specifying program interfaces to data bases.
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