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Introduction

In this work we want to study stochastic integral equations of the form

CD Ct-vt + 1«„ . f 2a £dS +
]0,t] S s

a (s,£,x)q(ds,dx)
]0,t]xE

where V is a given process, S a semimartingale, q a quite general

white random measure (i.e., such that the measure valued process q(]0,t],«)
1 2is a martingale), a £ and a (•,£,•) are functionals of the process £,

which may at time s, depend on the whole past of £. Equations of this

type naturally include those which have been considered by various authors:

K. Ito, A.V. Skorokhod, Ph. Protter, C. Doleans-Dade, L. Galtchouk and others

Our main idea is to show that, by the way, this general integral equa

tion can be considered as an equation of the type

(2) 5 - v. + I a £dZ
' C J]0,trs <

where Z is a Banach valued process, £ a Hilbert valued one, which can

be dealt with in a surprisingly simple way, to get existence, uniqueness non

explosion theorems and stability theorems as well, in presence of Lipschitz-

type hypothesis.

The tools for doing that are mostly those which have been developed in

[10] and [11] by J. Pellaumail and the author. The main difference here is

Research supported by Army Research Office Grant DAAG29-78-G-0186 and
the National Science Foundation Grant INT78-09263.
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that in (2) Z cannot be assumed to be Hilbert valued as it is the case in

[10] and [11] because we have to consider measure valued processes to include

the case of a random-measure driving term in (1). Moreover the process a£

is an operator valued process, but its values may be unbounded operators.

But these new difficulties are easily circumvented by looking at things

properly.

The paper is organized in the following way.

As we consider random measures which are not necessarily integer

valued, we devote the first section to a short review of definitions and

mainly to introduce the notion of "control-couple" of a random measure (see

proposition 1) which plays a dominant role.

To help the reader in understanding our methods and motivations we

consider in section 2 an equation of the particular type:

(3) Ct(u) = V (<«)) + J a (ft),S,x)q(o),ds,dx)
J]0,t]xEfs

with simplified hypotheses on a, q being a general "white optional random

measure."

The results of this section 2 are thus only introductory results to

section 3. Nevertheless these are new in many respects (particularly

theorem 3), and the method of proofs exemplifies the simplicity of the

ideas and the power of the method.

In section 3 we give a general formulation, introducing the notion of

A-spaces. This notion makes possible a one treatment of apparently different

situations .and in some sense provides us with a tool for fabricating a

variety of existence, uniqueness non explosion and stability theorems in

particular situations, by introducing the convenient A-space.
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I should thank very much Professors D. Angelakos and E. Wong for the

possibility they gave me to work out this paper during a stay at the Electronics

Research Laboratory in Berkeley and the many fruitful discussions I had

during this time with faculty and students.

Notations. Through all the paper (fl,F,P) is a fixed probability space and

^t\>0 is an increasin8 family of sub a-algebras of F. All the notation

and notions used are now classical, and the reader who has doubts is

referred to the first chapter of [6] or [11].

If B is a Banach space, U'H-m denotes the norm in B, <•,•>

expresses the duality between B and Bf, and if B is a Hilbert space,

<x,y>s stands for the scalar product of x and y.

A regular process is an adapted process, the paths of which are right

continuous and have left limits.

1. Random measures

1.1 Random measures and measure valued processes. Preliminaries

We refer to J. Jacod (see [6]) for details on random measures. We give

the main definitions a slightly different form here, but it will be readily

checked that they are equivalent to J. Jacod's one in all the cases.

E being an open subspace of some space ]R (or more generally a Lusin

space!) a random measure u is a family (u(a);ds,du): oj€ft} of measures on

the measure-space (1R x|, S(m+) ®8(E)) , where 8(T) denotes the Borel

a-algebra of the topological space T. It is said to be positive, if

y(ft);ds,du) is a positive measure for every a).

One can equivalently say, that, for every o», u(w;ds,0 is a measure on

(]R ,8(3R ) taking its values in some locally convex space of measures.

In all the examples usually considered u(w,ds,#) restricted to ([0,t],

8[0,t]) takes actually its values, for all t, in a space Mu of measures

which is naturally endowed with a structure of Banach space for a suitable
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norm (this norm may be much smaller than the variation norm). Quite typically

the space of measures considered is the space of measures m on 3Rd -{0}
[x[r

such that
cI I I +
-£—|m|(dx) < * for a given r. On this space we consider

'|X' +1 f lvlrprecisely the norm m —> —LSJ—|m|(dx).
Mx|r+1

More generally, let p be a strictly positive bounded function on E,

we denote by Mp the space of measures m on (E,8(E)) such that
f I i fp(x)|m|(dx) < «> with the norm IImil := p(x)|m|(dx). This Banach space
J P J

is clearly the dual of the space Cp of continuous functions 0 on E

such that sup (|$(x) |/p(x)) < « with the norm g$g := sup (|$(x) |/p(x)).
x€E P

We consider then random measures y such that for every ft) the

random measure u(ft),ds;du) can be expressed as the difference of two

positive valued random measures such that p(x)|y|(ftj,ds,dx) < ».
p J[0,t]xE

Therefore the M valued random measure y(ft),ds,») restricted to [0,t]

has clearly bounded variation (for the norm in Mp).

We write FU(t) for the Mp-valued function on Q defined by

F (t,0)) := y(0J,]0,t],O and call FW the primitive process of y.

The measure y will be called adapted (resp. optional, resp. predictable)

if the process Fy is the difference of two Mp-valued processes FU and

F_ such that for any $6 Cp the real valued processes $(x)F^(»,t,dx)

and $(x)F_(«,t,dx) are adapted (resp. optional, resp. predictable)
-E

A random measure y will be called white if Fy is a weak martingale;
f

E +

i.e. for every $€C , (

The "predictable dual projection" V of y is the unique (up to

P-equivalence) predictable v such that y-v is white. For the existence

of such a v either see [6], or use [8] 24.

$(x)F*V,t,dx)) is a real martingale.
E t€m+

|m| denotes the variation of m.
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It is to be remarked that, because of the separability of Cp, the

real process (IlFU(-,t, «)HJ^^ is optional (resp. predictable) if y
is optional (resp. predictable).

We will make use of the following lemma:

Lemma 1. Let B be a separable Banach space, B? its dual, U a B

valued function on B. xfl such that for every y E B, the real process

<y,U> is a process with finite variation. Let us assume that Q is an

increasing adapted process such that for every predictable (resp. optional)

subset A of ]R xQ and every y E B with Ilyll < 1, the following

inequality holds:

(1.1.1) E( lA(s,0))<y,dUg>) < E( lA(s,ft))dQ(s)) .

Then there exists a B' valued process u such that for every y E B

<y,u> is predictable (resp. optional) and for every A predictable (resp

optional)

E( lA(s,0))<y,dUs>) = E( lA(s,o))<y,u(s,oj)>dQ(s))

Moreover, ||u|l_, < 1.
a —

Proof. The inequality (1.1.1) expresses that E(

function of A is a Bf valued measure, the variation of which is smaller
»

than the positive measure A ~>E( lA(s,0))dQ (s)). One has then only to apply

a weak Radon-Nikodym theorem of the type of theorem 4 in [9], to get the

function u.

For our convenience we will agree to call weakly predictable (resp.

weakly optional) a B' -valued process U such that <y,U> is a real

predictable (resp. optional) process for every y E B.

-6-
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1-2 Isometric L -stochastic integral with respect to white random measures

Let q be an optional random measure with associated primitive process

F , with values in Mp, where p is a weight-function as in 1.1. We

assume that for every t,

E{ p(x)q(-,]0,t],dx)r} < °°

According to the definitions Fq is the difference of two Mp-valued
q+ q-

processes F and F and for every (t,w)

q % qUFH(t,ftj)ilp = UF (t,o))| + JiF "(t,tu)|| (increasing processes)

We see immediately that £ 1, •,q(o),ds,dx) ®q(u,ds,dy) defines for
T<t tT"*S;

every t a random measure with values in the dual of the space of continuous

functions on ExE weighted by p®p, and we call 3 the dual predictable

projection of this measure. We denote by b(t,ft)) the variation on the

interval [0,t] of the measure 3(w,ds,*) for the norm
p$P*

,p$pApplying lemma 1, we define an M^F(E x E)-valued process q with the

following properties: for every $ E C^(ExE) the real process

$(x,y)q(s,o),dx®dy) is predictable and for every real bounded predictable
J ExE

process Y and any t

(1.2.1) | Y(s,a))<Kx,y)$(aj,s,dx®dy)
]0,t]xExE

db(s)[
]0,t]

Y(s,ft))$(x,y)q(s,u)) dx®dy]
ExE

We write this as an equality between measure valued processes

(1.2.2) Y(s, ft)) 3 (oi, s, dx ® dy)
]0,t]xExE
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Let H be a separable Hilbert space, and let us consider the Banach

space ]L1 of H-valued Borel functions f on E such that sup (llf(x) il/p(x))
xEE

< °°. 3L1 is thus a subspace of L(Mp,ffi), the space of all bounded linear

operators from Mp into- H.

We call IL^-simple predictable process an IL-valued process Y, which can

be written:

Y=I"i-i.^^-i

where a± Ei^C L(MP,H), F± E F±. The rectangles ]s ,t ] xf may more
over be assumed disjoint.

We define the H-valued process N by:

(1.2.3) Nt(ft)) := I 1F a (F* At(ft)) -Fq (a,)) =J f a.MqCeo, ds.dx)
i i i i i J]s At,t.At]xE

If we assume £ white then it is easily derived from (1.2.3) that N

is an H-valued square integrable martingale. The martingale property of N

then implies

• EHNtB2 =I Eh <[ aoq(.,ds,.),( a.oq(.,ds»,.)>1Hl
i v*i Jjs^t.tjAt] 1 J]SiAt,tiAt] i KJ

But the martingale property for Fq also shows, that the real measure on the

Borel subsets of Is^**] xjs^co] generated by the set function

]s,t]x]u,v] —>e|i? <aioq(.,]s,t],-),aioq(.,]u,v],-)>]H}

gives measure zero to the rectangles ]s,t]x]u,v] as soon as ]s,t]H]u,v]

= 0. This measure is therefore concentrated on the diagonal and

EllN

i w-tai

t»2 =I *\K I <a,oq(-,{s},.),a,oq(.,{s},.)>1Hl
i l *1 s.<s<t. X 1 M>
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Using the fact that the a. are functions on E, we can write

(1.2.4) EllNtl|2 =E| I <Y(s,ft),x),Y(s,ft),y)>]Hq(ft),{s},dx)®q((o,{s},dy)|

If we then use the definitions of q and b as given at the beginning of

this section 1.1, we may write:

(1.2.5) EllN =E{J (f •u]0,t] ^ExE
<Y(s,ft),x),Y(s,ft),y)>q(s,ft),dx®dy) db(s)l

Denoting by &(1L) the spaces of ]L-valued simple predictable processes,

we write X(Y) for the process defined by:

(1.2.6) X (Y) := <Y(s,-,x),Y(s,-,y)> 3(s,-,dx®dy), ?6«(L),
*EXE -" 1

From the definition of q it is clear that for every Hilbert valued

function $,
ExE

«Kx),$(y)> q(s,«,dx®dy) is a positive finite or

infinite number. We may therefore define X (Y) for any function Y on
s

(1R xflxE) which is measurable for P®8(E), and consider the space A of

H-valued P®8(E) measurable functions Y such that

MA := [e([ X(Y)db(s))]1/2 <
[0, ]

It is not difficult to see that llYll is an Hilbertian seminorm on A and

that S(3Lj_) is dense in A. The equality (1.2.5) shows that the mapping

Y —> N extends into an isometry from A into the space of right continuous

square integrable martingales for its usual norm. All the properties of a

usual stochastic integral are derived for this mapping Y —> N through the

same standard considerations.

2In the same way we have expressed E(llN II ). We may write, for any

predictable rectangle ]s,t]xE:
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ECyllNj.-Ngtl2)
- EJyj db(s)[j <Y(s,-,x),Y(s,-,y)>Bq(s,-,dx®dy)]|

J s,t J JExE '

which gives immediately:

(1.2.7) <N>t = X (Y)db(s)
]0,t]

for the Meyer predictable process <N> of llNll (see [11]).

A process Y will be said to be locally in A if there exists an

increasing sequence (t ) of stopping times, such that lim T = +» and the
n n n

-Tn
stopped processes Y (ft),t,x) :=Y(ft),tAt ,x) belongs to A. For such a Y

! Qthe stochastic process ( YdFH) is, from what precedes,uniquely defined up

to P-equivalence and is locally a square integrable martingale.

1.3 Examples

1. Let m(ft),ds,dx) be a Poisson stationary random measure with Levy

measure a and order r (see [13]). The measures m(ft), •,•) which are

denumerable sums of distinct unit discrete masses and the measure a are
i ir

elements of MP where p(x) = -^—. For every Borel set A in E and
+ >lr+l

tE ]R the random variable | m(ft),ds,dx) is by assumption a Poisson
J]0,t]xA

random variable with average fa(A). We consider the random measure

q(ft),ds,dx) = m(ft),ds,dx) - ds®a(dx)

In this special case it is easily calculated that q(fti,s,dx® dy) is a measure,

independent of w and s, defined by:

and the function X (Y) is nothing but

Xt(Y) = llY(ftj,s,y)ll ct(dy)

-10-
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The A-stochastic integral is therefore nothing else but the one defined by

A.V. Skorokhod ([13]).

2. Let y be an integer valued random measure as described in [6].

Take its predictable dual projection yp and consider the white random

measure q = y-yp.

Using the fact that in this particular situation, we have, for all s

such that yp(ft),{s},E) = 0:

<Y(s,ft),x),Y(s,ft),y)> q(ftj,{s},dx)®q(ft},{s},dy)
JExE M

f 2
ilY(s,ftj,x)r„y(ft),{s},dx)

E B

A simple calculation shows that the increasing process X (Y)db is
]0,t] s s

exactly the process C (Y,q) in [6] Ch. III. The stochastic integral for
2

processes in G (y) as defined in [6] is therefore the A-stochastic integral

and the class of processes which are locally in A is the class of integrable

processes in [6].

1.4 The control couple of a random measure

If the white random measure q is such that, for every predictable

stopping time t the variation |q| (ft), {x(ft))},E) is zero a.s, the process

N := ( YdF ) has no predictable jump, and we know, as an immediate conse-
J

quence of the Doob-inequality and the continuity of <N>, that

(1.4.1) E(sup UN ||2) < 4E<N> » 4E<N>
s<T s ~ T T"

From formula (1.2.7) we may write

(1.4.2) E(sup llNsil2) <4E| [ X(Y)db(s)
s<x U[0,T[ s

This is the case in the above example 1.
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for all Y E &(]L) and the same inequality holds by continuity for all Y

locally in A.

If, on the contrary, the process Fq has jumps on a denumerable family

{t } of predictable stopping times, the process N = ( YdFq) has predictable

jumps only at times T , and, if we introduce as in [10] the pure jump part

Nj of N

NJ := I AM 1, ,
T [t ,°°[

n n n

We have the following expression for the quadratic variation of NJ

j<Y(a),tn(a)),x),Y(o),tii(a)),y>:Hq(a),{tn}dx)®q((u,{t },dy)

(1.4.2) [Nj] := IllY(ft),T (ft)),x)q(fti,{x },dx)
t _ n n

Then introducing the measure valued process

H

q(to,{Tn},dx©q(a),{xn},dy)
qJ(t,ft),dx®dy) =J lr ,(t)

n lV iq(u,{T },-)©q(o),{T },dyll
MP©P

and the increasing process

a(t) := I llq(ft),{T },•) ©q(a),{T },.)
P©PM

we see that

T <t
n—

(1.4.3) [N
fc J[0,t:

da(s)
ExE

<Y(«,s,x),Y(«,s,y)>Hqj(s,«,dx®dy)

p®pNow, it follows from Lemma 1 with B ». C^P(E*E)

U(t,w) = 4 q(t,ft), «)db(s) + 4
]0,t]

qJ(t,ft), Oda(s)
]0,t]

and

-12-



QO,ft)) = 4 IIqCt,ft),01l ,^db(s) + 4
]0,t] M1^

Hqj(t,ft),-)ll ~ da(s)
]0,t] Mf®p

p®pthat there exists aweakly optional process y» which values in M^9 and a posi

tive increasing regular process A such that for any optional subset G

of m x ft;

(1.4.4) 4E l.(s,«)d(<N>, +[Nj] )
v» is

<Y(s, •,x) ,Y(s, •,y) >y(s, •,dx®dy)= E dA

ExE

Moreover lly(s,ft), •) II -. < 1 for all s and w.

Proposition 1. If q is a white optional random measure, with values

in M , and y and A are the above defined processes, for every H-valued

process, locally in A, and every stopping time x, we have

E(sup [|
t<T

Y(s,-,x)q(.,ds,dx)lr)
]0,t]xE

< E dA

]0,T[ JEXE
<Y(s,«,x),Y(s,«,y)>BY(s,*,dx®dy)

Proof. We have only to use the formula (1.4.4) and the "stopped

Doobfs Inequality" proved in [10] (see also [11]) which says:

sup UN II < 4E[<N> +[NJ] ] .
t<T T" T~

Definition. A couple (Y»A) having the properties of the proposition 1

with respect to the random measure q will be called a "control couple"

for q.
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2. A particular example of a stochastic equation driven by a white

random measure: Introductory results

2.1 M is again the dual of the space of continuous functions with bounded

weight p(x) on E_. We consider an optional white random measure q(u),ds,dx),

such that, for every t, q(u), ]0, t], -) E p.

H being a separable Hilbert space we consider the class of H-valued

processes, which are adapted, and the paths of which are right continuous and

have left limits in every point (we call them regular H-valued processes).

We consider a "functional a" which, by definition, to each regular

H-valued predictable process £, and to each x E E associates an

H-valued predictable process (agft)»5fX))g6:iR+ wit* the following properties:

(i) For every s, ft), £ and h E H with llhll < 1, the real function

x —> <h,a (ft),£,x)> is Borel and such that sup |<h,a (ft),$,x)>| /p(x) < «.
xEE s

(ii) For every stopping time x, aT(ft),£,x> =a («,£•,as), as soon as

£ (ft)) = €'(a)) for all s < T.
s s

(iii) The following "Lipschitz-condition" is fulfilled for every t E ]R+:

(L) sup (Bat(-,£,x) -aA*,V>x)ll„/p(x)) < L sup 11$ -VK-
xSE C t H ~ t 8<t s s H

where ^t^^^H- is aD- increasing positive adapted process.

Vt being an H-valued regular process we consider the following stochastic

integral equation:

(2.1) 5 =V+f a (ft),C,x)q(ft),ds,dx) .

A process £ defined on a stochastic interval [0,x] (resp. [0,t[)

will be called a strong solution of (2.1) if processes on both sides of (2.1)

are equal up to P-equivalence on [0,t] (resp. [0,t[).

-14-



2.2 Remark. Although, in many respects, this equation is more general than

the ones considered in [12], [6], [4], because of the generality on q, the

boundedness assumption (i), which will be removed later, is a restriction

compared to the hypothesis made in the just mentioned papers, when considering

their particular settings. We add it here in order to demonstrate in a simple

way, the method which will be applied in a more general setting in Section 4.

2.3 Existence, uniqueness/ non explosion and stability statements

Theorem 1. (1) Under the assumptions made in 2.1 above, there exists

a unique stopping time t and a unique (up to P-equivalence) process £ on

[0,t[ such that

(i) T is predictable and on the set {t<<»} we have

lim sup ll£JI_, « -H»
t Jo.

t+T

(i.e. t is, when finite, an explosion time).

(ii) £ is a strong solution of (2.1) on [0,t[.

(2) If, to the previous hypothesis, we add the following one: there

exists a constant such that

sup [lla. (ft),£>x)ll /p(x)] < d(l + sup 11C lw)
xEE fc H ~ 8<t S H

then P{t=-H»} = 1 (no explosion).

Theorem 2 (Stability theorem). Let us consider the equation (2.1) and

the equation:

(2.2) Vt = Vt +
[0,t] _

where q1 is another white random measure in the same space B1, the

-15-
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functional a being submitted to hypotheses (i), (ii), (iii).

We consider (y,A) the control couple of q, as defined in 1.3 and

(y ,A ) the control couple of q-q'.

Then, if B, is a solution of (2.1) on [0,t[, equation (2.2) admits

a solution £' on [0,x[ and moreover, for every e > 0, there exists a

stopping time, x , such that P{x < x} < e and
£ £ —

E{ sup »Ct-C;il^} <R(p )
t<u
— £

1 £
where p is any number such that P{A > p } < — for some function R

£ X £ — 2 £

such that lim R (p) = 0. (This function R depends only on £, A and L.)
p+0 e

2.4 Proof of Theorem 1.1.° This proof follows the same line as the proof of

the existence and uniqueness theorem in [11]. We will therefore omit a few

details.

Everything is based on the following "local existence and uniqueness

lemma":.

Lemma 2. Let us assume that equation (2.1) has a solution £° on the

stochastic interval [0,x] (x may be identically zero); then there

exists a stopping time a such that P{a>x} > 0 and £° can be extended

into a solution £ of (2.1) on [0,crj.

AQ Q

Proof. Call £ the process equal to £ on [0,x] and to £ on

[x,«[, and n(s) = sup (la (ft),£°,x)ll_/p(x)) . We can clearly choose a posi-
xEE s M

tive number I, such that the stopping time a:

inf{t: t>x, (1VL HA -A) >h on {sup (!l£°HTJ+n(s)) < 1}
a := i t t x z s<x s H ~

x on the set {sup ||£ ||„ + n(s) > 1}
s<x s H
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has the property P{a>x} > 0.

Then we introduce the following complete metric space M of H-valued

regular processes on [0,a[:

11 := {?! «-1[o.T]"5-i[o.T]' E{0^ll5t»H-1[a>x}}<"}
with the metric

£ e

C(£,5') = [E{ sup U£ -£Mlb]1/2
x<t<a C s B

According to the choice of a this space is not empty. With each

M we may then associate the process $£ defined by

* £ := V +
t* t

ds

]0,t]
ag(ft),£,x)q(ft),ds,dx)

The properties of the control couple (y,A) for q give:

E( sup l« 51 -l{a>T})
0<t«T lO'TJ

<2E(oSuPT[l5t»^l{T<a})
+ 2E( dA (

[T,a[ t J
<at(ft),£,x),at(ft),S,y)> y(ft),t,dx®dy)))

ExE

<2l2 +2E(f (L (sup HA°jh +l2))^
J[x,a[ C s<t s s H t

< 2£2 + E( sup BC II2) + I2 < oo
x<s<a s

Therefore $ maps M into M and the same usage of (y,A) and of the

definition of a leads to:
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2 f f
E( sup 11$ £-* S»l ) < E dA.( <a rft),£,x)-a<.(ft),£,,x)

0<f<fT C C M J IV rrT C JlTvl? t t0<t<a J [x,a[ " •'exe
at(ft),£,y)-at(ft),C,,y)>Hy(ft),t,dx^ay))

<E(f L sup ilC-^il2 dA )
J[x,a[ z s<t s s ffi c

<±E(suPH€g-^) .
s<a

This inequality shows that the mapping $ is a contraction in ]M and

there is therefore a unique fixed point £ for the mapping $: £ = <J>(£) .

But noticing, from property (ii) in 2.1 that the process as(o),C,x) is then

defined on [0,a], and setting

5T := VT + a (ft),^,x)q(ft),ds,dx)
T J]0,X]JE S

we get the unique extension £ of £° which is a solution of (2.1) on

[O.cr].

We can now conclude the proof of theorem 1. We skip details which may

be found in [11] Ch. III.§6 or in [10]. The class of couples (£,a) where

£ is a solution of (2.1) on [0,a] is non empty according to the above

lemma (apply it with x= 0, £Q = VQ). We define x as the essential

supremum of the family of stopping times a, and choose among the above a's

an increasing denumerable family (a ) such that [0,x[ = U[0,a ]. Because
n n

n

of the uniqueness of the solution on every [0,cr ] (take two solutions
n i

£, V on [0,a ], consider the stopping time x = inf{t: [|£ -£fH >0} Da :
t t — n

it follows immediately from the above lemma that x = a ) the process £ is

uniquely defined on [0,x[ by saying that its restriction to [0,a ] is

the unique solution on [0,a ]. Defining the stopping times a* by
ii n

we see that [0,x[ = U[0,af].
n n
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If for some n the inequality P{a' =x<°°} > 0 were to hold, we could
n '

find, using the lemma, a stopping time a1 such that P{cr' >x} > 0 and a

solution on [0,a']- This would contradict the definition of x. Therefore

Qn < x on {x<«} with probability one which implies: either x = -H» or

lim 0£aill ° -H». This proves too that x is predictable,
n n

2.5 Proof of theorem 1.2°

The proof, as in [11], rests on a lemma which we have proved in [11],

and which we state again:

Lemma 3. Let A be an adapted increasing positive process defined on

the stochastic interval [0,x[, and bounded by I. Then, for every adapted

increasing positive process $ such that

E(* ) < K + pE( $ dA ) (p and K constants)
[O,0[ s~ s

for all stopping time a £ x, the following inequality holds

[2p£]
E($ ) < 2K I (2pJDJ

where [x] denotes the integer part of x.

The proof of the non explosion part of the theorem (compare with [11],

Ch. Ill §2) consists in setting $fc = sup II£ II, where £ is the maximal
s<t s

solution of (2.1) defined on [0,x[ as above, and to use again the control

couple (y,A) to write for every o < x:

(2.5.1) E(« ) •< 2E(sup IIV il2 ) + 2E(
o~ . s 1

s<a

d(l + sup |£ I )dA.)
]0,a[ s<t s M *
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2

If an := inf^t: (At +sup DV | )>n-} H x, we have for every stopping
s<t

time a < a :
— n

(2.5.2) E(* ) < 2n(l+d) + 2d
]0,a[ C t

This last inequality together with the lemma 2 implies E($ ) < «>.
n

But, since lim P{a =x} =1, x cannot be an explosion time and
n-*»

p{T=oo} = i.

3. A-spaces of processes and associated stochastic integrals

This concept of A-space is suggested by different approaches to stochastic

integration, in order to propose a unique model in situations apparently as

different as the isometric Hilbert valued integral (see [8]) and integra

tion with respect to random measures as described above.

3.1 A-spaces

Let B be a Banach space, H a Hilbert space, TL a closed subspace

of the Banach space of bounded linear operators from IB into H (with the

uniform norm) A and A two positive increasing adapted processes. We

consider a vector space of processes, the values of which are (possibly

unbounded) operators from B into H. This vector space will be called a

A-space associated with 1L, A, A, and the functional A, if there* exists

an increasing sequence (x ) of stopping times such that lim x = +» a.s.
n n

n

and

(i) for each <3> E A, ^t^))^^ ±s a positive adapted process such that

for each n, E(A • X ($)dA ) < ».
nJ]0,xn[ C c

(ii) The mappings * ~* E(A • A„($)dAj, n>0 are seminorms
Tn J]0,xn[ t fc
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on A giving to A a structure of complete vector space.

(iii) The set of simple predictable H-valued processes is a dense sub-

space of A.

We denote by A(3L,A,A,A) such a A-space associated with 1L, A and A.

A process X is said to be locally in A, if there exists an increasing

sequence (a^) of stopping times, such that lim a = +» and the process
n

1-iQ a jX is in A for every n.

3.2 A-stochastic integral

Let Z be a B-valued regular process. We say that the A-space

A(3L,A,A,A) is associated with Z if, for every simple predictable IL-valued

process Y and every stopping time a the following inequality holds:

E(l YdZall^) <E(AQ_<
]0,a[

Xg(Y)dAs)

where, by definition, for Y := 7 a «1,
f „ i ± l-i-'lJ"!

variable YdZ is given by

YdZ* :- I^ .. (z« -Z\ )J i Jfi X Z± 3±

the H-valued random

where Z is the process stopped strictly before a. (See [11], Ch. I.)

'zt(ft)) if t<a(w)
z;(ft)) := -{

I Z (w) if t > a(ca)

The definition of the A-stochastic integral for every process Y which

belongs locally to A is immediate from the inequality (3.2.1) (see [11]

Ch. I §2).
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We say that the A-space A(]L,A,A,A) is ^-associated with Z, or

that 2Z jls controlled in A(IL,A,A,A) if for every stopping time a and

every single i-valued predictable process Y (therefore, for every

Y E A(1L,A,A,A)) the following inequality holds:

f 2
E(sup II YdZll^) <E(Ax_.
s<x J]0,s]

A (Y)dA) .
[0,X[ S s

4. Examples of A-spaces

4.1 Example 1. Let A be an increasing adapted, right continuous process

The space A of all predictable processes $ with values in £(H:€)

2
such that A • Il$(s)!TdAa is a finite random variable for all t is

J]0,t]
clearly a A-space A(JC(H;(B) ,A,A,A) with At($) = 11$ II.

Let us assume that Z is a regular H-valued semimartingale. Let A

be a *-dominating process for Z: this means (cf. [11]) that, for every

stopping time a and every simple <£(H;fi)-valued predictable process Y,

we have

E{- sup i
0<t<a

YdZll2} <E{A •[ ||Y B2dA }
]0,t] € " ° 3 S

-22-

]0,a]

Therefore Z is controlled in A(£(H,€) ,A,A,A).

It is clear, from the definition, that every locally bounded predictable

process Y belongs to A and its stochastic integral, as defined in

section 3.1 above, is nothing but the usual one.

4.2 Example 2. The isometric integral with respect to martingales.

Let M be an H-valued right continuous square integrable martingale,

H being an Hilbert space. It was proved (see [12]) that the set function



]s,t] xf ~~>E{lF»(Mt-Ms) } can be extended into a measure Vk, on P,

with values in HG^^H and is absolutely continuous with respect to the

real measure o^: ]s,t] xf ~> Edj,* ([iM^Mjl2)) which actually turns out to
be the variation of v^. It was shown in [12] that there exists a predictable

H®1 H valued process QM> defined up to an equivalence as the density

0f hi With resPect t0 Oft* taking its values in the set of positive

symmetric elements of H ®1 H and such that trace QM(ft),t) = UQ (ft),t)II \*

= 1, ol^ a.e.

Denoting by QM(ft),t) the nuclear operator from H into H defined

by <h»V0),t^8>]H a <h®8»QM^W,t^>' what we Proved in [12^ can be rephrased
by saying that the following space is a A-space: a process X belongs to

A iff for every (ft),t) the domain of the operator X(ft),t) contains

Q^/2(ft),t)(H),

[ trace(XoQoX*)dcxM =f IXoOji^dCL, <«
jH+xfi M ^ Jm+xfi ^M H.S "M

(where H*WH s denotes the Hilbert-Schmidt norm for operators) and X lies

in the closure of the simple predictable JC(H;€)-valued processes for the

Hilbert norm [E( A (X)d<M >)]1/2, where
]0,-[ S s

A (X) = trace(X oQ (s)oX*) .
S S M S

We have moreover in this case the isometry formula:

f
Ell

r 2
XdMll = E(

]0,oo[
A (X)d<M> ) .

]o,-[ s s

The space A(.C(H;<B) ,1,<M>,A) is therefore the A-space associated with M.

If we use the fact that N := (

for every simple Y, and

YdZ) is a square integrable martingale

-23-



no,t:
<N>t = J^ trace(XoQMoX*)d<M> ([11] §14)

•J

[Nj]t - I ilYT .6Z
X <t n n

n—

where the x 's are predictable stopping times, it is easily seen that one
n

can write

<M>t +[NJ]t = trace(XoQ oX*)d(<M> +[MJ])
]0,t] M

for some optional nuclear operator valued process §„. Using the basic
M

inequality in [10] (or [11] §10), and defining yt(Y) - trace(Xo^oX*), we
may write

Ellsup XdMll2 <4E (y X)d[<M> +[*$] ]
s<x J]0,s] ® J]0,x[ S s s

M is therefore controlled in A(JC(H;€) ;4,<M>+[M^],p).

4.3 Example 3. The §1 provides us immediately with a third example of two

A-spaces: in this example 1^ is the set of continuous mappings from B1

into H, which are defined by Borelian mappings $ from E into H such

that ll$(x)ll/p(x) is bounded. If we define

Ag(Y) =

Us(Y) =

<Y(ft),s,x) ,Y(ft),s,y)> q (ft),s,dx®dy)
E

r

<Y(ft),s,x),Y(ft),s,y)>y(ft),s,dx®dy)
E

and b, A and Fq as in §1.2, then we see that A(lL,l,b,A) is aA-space

associated with Fq, while Fq is controlled in A(]L,l,A,u) (with A =b

and A = \i where Fq has no predictable jump).
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4.4 Remark. With these three examples as building blocks, the reader can

produce a variety of A-spaces associated with processes and stochastic

integrals.

5* Theorems for general stochastic integral equations

5«1 The general equation under consideration

We consider a Banach valued process Z (with values in B). We assume

Z controlled in the A-space A(]L,A,A,A) where I, is a closed subspace of

«C(B;H) (H separable Hilbert space), and V is a regular H-valued

process.

The equation under study is the following:

(5.1.1) ?t = v + a £ dZ
]0,t]~s s

where the functional a has the following properties:

(i) For every regular H-valued process £, a£ is a process locally

in A(]L,A,A,A).

(ii) For every stopping time x the random variable a £ depends

only on the values of £ on [0,x[.

(iii) For every 3 > 0, there exists an increasing adapted positive
S

process L such that for every couple (£,£') of H-valued regular

processes for which sup «£ II < B, and sup ||£MI < g, and for every
+ s m ss

t E ]R the following Lipschitz condition holds:

(L ) A. (a£-aC) <L? sup II£ -£'!l2
fc ~ ~ ~ Z s<t s s
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5.2 Typical example

A typical example of equation (5.1.1) is the following:

Ct = vt + a1CdS +
]0,t]^S s

2PJ„ , f f 3
a £dM +

]0,tFs s J]0,t]
a (•,s,£,x)q(«,ds,dx)

where S is a G-valued semi-martingale, M a K-valued square integrable

martingale (<B and K Hilbert) and q is a white random measure of some

order a. To S, M and Fq we associate the A-spaces defined in examples
19 "\

of §3, and assume for the functionals a , a and a properties (i)

to (iii) above.

By considering the process Z, with components S, M and Fq, taking

its values in Cx]RxM where if is the Banach space of measures weighted
|x|r

by -_j_i—f we see immediately that the situation reduces to the one
|x|r+l

described in 5.1. It is to be noted here that, in this situation,
3
a (ft),s,C,«) is no longer necessarily continuous in x as in §1 above.

The reader will check for himself that the Lipschitz condition on a3

expresses in our general context the one considered by A.V. Skorokhod [cf.

[13]) and others ([4], [6]).

5.3 Existence, uniqueness, non explosion theorems

Theorem 3. Under the assumptions made in 5.1, there exists a unique

stopping time x and a unique (up to P-equivalence) process £ on [0,x[

such that

(1) x is predictable and on the set {x<<»} we have lim sup II£ II = -H»
t+x t m

(i.e. when finite x(w) is an explosion time).

(2) £ is a strong solution of (5.1.1) on [0,x[.
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Proof. As in the proof of Theorem 1 the core of the proof consists in

proving a "local existence and uniqueness lemma" which reads exactly as

lemma 2. Because the Lipschitz coefficient process L in (L.) depends on

the bound 3 for the processes £ and £f, a slight modification in the

proof has to be made.

We define |° -as in the proof of lemma 2 and n(s) = A (a£°) . We
s

choose a $ > 0 such that

P{sup(||£°[l +n(s))< $} > 0
s<x

and then define

and

a:= inf{t: t>x,(l VL23)At(At-AT) >-|> on the set
{sup ll£°ll;H +n(s))<8}

s<x

a := x on {sup (l£| +n(s)) >3>
s<x s M

For every regular H-valued process £ we set £2^ = (lAy|i-)'£ and
consider the functional

a2f5(?) :- a(C2S) .

The same reasoning as in the proof of lemma 1 shows that £ —> $2^£ :=

Vi- + a= (&dz0 maPs M into H and
J]0,t]-S s

E< sup (l$f£-$26£MI )<E{I •[ L26 sup ||£ -£'||2 dA }0<t«j t t H cr J[T>a[ t s<t s s H 3

in view of the properties of A(]L,A,A,A) and of property (L ).

Therefore

6($2B£,$26£') <4$(£,£»)
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26
and $ is a contraction.

If we define then

a' =: inf{t: tj>T, ll£ J__ > 28} A a
t Jn

and notice that P{a! >x} > 0 and <& (£), V +
c J]o,t]-s' s

P-equivalent processes on [x,a![, we see the lemma is proved. The end of

the proof of the theorem goes very much like the proof of theorem 1, and

details are left to the reader.

Theorem 4. If, to the assumptions given in §5.1, we add the following

one:

A.(a£) < d(l +sup II£ ||2)
Z ~ - s<t s M

a £ dZ are two

for some constant d, then P{x=«} = 1 (no explosion).

Proof. Doing the same as in the proof of theorem 1.2° if we set

2
= sup II £ ll-jjj , we may write for every stopping time a < x

s<t

E(*_J < 2E(sup IIV 01) + 2E(sup
3<a s M S«J

< 2E(sup [!VaI|2 ) + 2E(1 «
s«7 S E a

Defining then for every n

?s* «.li>

As£ dAg) .
]0,a[

0, := inf{t: AfcVAfc + sup IIVjll >n} Ax
"t "t -~l " s"H

s<t

we have for every stopping time a < a :
— n

E($a_) <_ 2n(l+d) + 2d
]0,(7[

$tdAt
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We use the lemma 3 to see that E(<f> ) < <» and therefore, since
cr

lim P{an =x} = 1, x is a.s. not an explosion time.
n-*»

5.4 Stability theorems

We consider two equations:

(5.4.1) £ = V +
t t

(5.4.2) £J. = v; +

a£ dZ

]o,tr s s

a'£f dZ*
]o,tr s s

of the type considered in 5.1.

We assume more precisely that Z and Zf are B-valued regular processes

controlled respectively in A(1L,A,A,A) and A(]L,A',A',A') where L is a

closed subspace of «C(B;H) and V and V are regular H-valued processes.

The functionals a and a1 verify the conditions (i) and (ii) with respect

to the A-spaces considered for Z and Z' and the condition (iii) with the

same Lipschitz coefficient-processes L (independent of 8 > 0).

£ being the solution of (5.4.1) on [0,cr[ we define and assume:

(5.4.3) d := E{sup A (a£-a'£)} < «
x s<a s

(5.4.4) d' := E sup IIV -V'lli <»
o/„ 3 3 H
s<a

The proximity of Z and Z' will be expressed through the considera

tion of Z-Z' and making the following assumptions:

(iv) Z-Z' is controlled in A(lL;Q,Q,u)

(v) for every regular processes £ and £'

Ut(a'£-a'£«) <L sup f|£ -£M|2
z s<t s M
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(vi) For the solution £ of (5.4.1) on [0,a[

d9 := E{sup u (a£-af£)} < «
s<0 s

(vii) c := E{sup ]i (a£)} < <»
s<a s ~

Theorem 5. Under the above assumptions and the hypothesis that the

positive random variables A^, Aa_, A^_, A^., Qg_, Qg. are finite, the

equation (5.4.2) has a (unique) strong solution £' on [0,a[. Let e > 0

be given and q be a positive number such that P{L 0 V0 0 VO >a> < -
G G" ^G~^G~ V<Q-_V*J 2'

Then there exists afunction R^d^d^q), determined by the functional

a and the processes A, A and L only, such that lim R (d..,d0,q) =0
d.,d-,q-K) £ X 2

and a stopping time G < g such that: L l
£ —

(a) p{a£ <a} _< e

(b) E(supil£ -£'B2) <r(d d9,q)
t<a c E w l l:

e

Let % > 0 such that

p{vwA;-VA<;-^>£f

A function R is given by

[4pJl] ,

Vdl'd2'q) := 2K I Wr
j=0

where

K := 6(d' +d1£ +d2q+cq) , p := I+q

Proof. In the same way as in [11] §7, and assuming that (5.4.2) has a

solution £' on [0,a[, we define the stopping time a by setting

a£ := aAinf{t: A^ VL^' VAJ. >1} Ainf{t: QtQt VL^ VQt >q}
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From the definition of q and % it is clear that

p{a£ <a} <_ e .

We write then * := sup !l£ -£*II_ and use J. Pellaumail's decomposition:
S t<a C C M

£ -ri a v _vf +
st st t t

]0,t]
(a £-a'£)dZ +
~s^ s^ s

]0,t]
<5;«-*;^)dzs

]0,t]
(a'£'-a«£)d(Z -Z') +
~s ~s s s

a £ d(Z -Z') .
~S S3

]0,t]

]0,t]
(«;5-«.Od<z-z;)

Using the control A-spaces we may write for every x < G

E(» ) < 6d' + 6E[A A (a£-a'£)dA + L _A'
T J S t X X >

+6E[L Q [ $ dQ +Q f ufa'£-a£)dQe]
T T J[0,x[ t t T J[0,x[ S s

+ 6E iv-
[0,X[

U3(a£)dQs]

From there on we derive

\jfc\}
[0,x[

E(*) < 6(d» + d il+d.q + cq) + (£+q) * d(A'+0 )
J[0,X[ t ' *

Now we apply lemma 3 to get the inequality (b) of the theorem and the

expression for R .

We are only left to prove that £' actually exists on [0,a[. For

this we consider any stopping time a1 such that the two equations have

solution on [o,a'[. The above reasoning shows that (5.4.2) has no explosion

as long as the solution of (5.4.1) has none. This completes the proof.
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