

Copyright © 1979, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

TOOLS FOR RESEARCH IN COMPUTER WORKLOAD

CHARACTERIZATION AND MODELING

by

Steven Louis Gaede

Memorandum No. UCB/ERL M79/58

1 September 1979

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Tools for Research in Computer Workload
Characterization and Modeling

Steven Louis Gaede

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California
Berkeley, California 94720

and

Bell Telephone Laboratories
Napervilie, Illinois 60540

ABSTRACT

Workload models are required in many Computer Perfor
mance Evaluation studies. Workload models must be representa
tive of the workload that they are intended to model. Different
definitions of "representativeness" bring about different workload
modeling techniques. Each workload modeling technique has its
advantages and disadvantages. A performance-oriented approach
to the problem shows promise of overcoming its difficulties.
Further work with this approach is needed, and tools are required
to support further study. A Benchmark Driver, a Workload
Analyzer, a Workload Extractor, and a Subworkload Analyzer are
designed and built to satisfy the need for tools. The set of tools
constructed for this purpose support specific experiments with a
performance-oriented workload modeling methodology, and they
support long-range research in workload characterization and
modeling.

September 1, 1979

This research was supported 1n part by Bell Telephone Laboratories, and by the National Sci
ence Foundation under grants MCS78-24618 and MCS78-07291. «"«•«»

Tools for Research In Computer Workload
Characterization and Modeling

Steven Louis Gaede

CONTENTS

1. INTRODUCTION 1

2. THE WORKLOAD MODELING PROBLEM 3

2.1 The Resource Consumption Approach 4
2.2 The Functional Approach 6
2.3 The Performance Oriented Approach 7

3. TOOLS FOR WORKLOAD CHARACTERIZATION AND MODELING 11

3.1 The Benchmark Driver 13
3.2 The Workload Analyzer 17
3.3 The Workload Extractor 18
3.4 The Subworkload Analyzer 20

4. USE OF THE CHARACTERIZATION AND MODELING TOOLS 24

4.1 A Workload Modeling Experiment 26

5. CONCLUSION 30

6. REFERENCES 33

APPENDICES

A. Documentation for the Benchmark Driver 34
B. Documentation for the Workload Analyzer 73
C. Documentation for the Workload Extractor 93
D. Documentation for the Subworkload Analyzer 112

Acknowledgements

I am deeply indebted to many of my professors and colleagues who have

helped me with this project in their various ways. In particular, I wish to extend

my sincere appreciation to Domenico Ferrari, whose gentle guidance has pro

vided the ground upon which preliminary efforts could grow into a Research Pro

ject in this area; to Al Despain, whose willingness to review this project on short

notice was much appreciated; to Bob Holt, who participated in the original

design of the Benchmark Driver; to Bob Schulman, my UNIX * guru, who always

seemed ready and willing to answer my questions about UNIX and the CProgram

ming Language; and to the Progres Group, whose feedback at various points in
the project was quite supportive.

In addition, this research was supported in part through the generosity of

Bell Telephone Laboratories, and by the National Science Foundation under

grants MCS78-2461B and MCS7B-07291.

* Unix is a trademark of Bell Laboratories.

Tools for Research in Computer Workload

Characterization and Modeling

1. INTRODUCTION

The digital computer has received increasing acceptance as a tool with

which to handle many of the tedious tasks required of human beings. This

increased acceptance of computers has brought about a proliferation of com

puters of various size and capacities. With the increased number of computers

on the market, and with the corresponding increase in the amount of computer

software, the need to effectively compare the performance of various

hardware/software configurations becomes more acute. This need becomes

more acute both in computer procurement and system improvement studies. It

becomes more and more important that we be able to easily answer questions

such as: "will a given change in this piece of hardware, or this computer

software, be beneficial?"

Unfortunately, the current state of the art of Computer Systems Perfor

mance Evaluation is such that there are no methodological approaches to

answer questions such as these. Each new question in Computer Systems Per

formance Evaluation demands a unique combination of techniques on the part of

the investigator. In attempting to answer a question such as: "will the computer

to its job faster if this piece of hardware is changed," the first question to be

asked is: "what is the computer's 706?"

Making an adequate evaluation of a system requires examining its perfor

mance as it processes its workload. It is often difficult to evaluate a system as it

performs its day-to-day tasks, or it's "real" workload. It is usually desirable to

monitor the computer's activity as it processes a more compact "model" work

load. Problems arise, however, because there is currently no agreement on how

to construct a workload model. There are several approaches to the workload

modeling problem, and each approach has its advantages and disadvantages. No

approach is viewed as superior to the others.

-2-

One approach, however, shows the potential to solve many of the problems

with workload modeling. The performance-oriented approach uses performance

criteria as a guide to constructing a workload model. This approach shows

promise, but it also shows a need for further refinement. The purpose of a

research project at the University of California, Berkeley, was to examine these

needs and to plot a course for developing the performance-oriented approach

further. Three questions were asked in the course of this investigation:

1. What are the problems in workload characterization and modeling, and

what solutions does the performance-oriented approach have to offer?

2. What are the needs for further research in the performance-oriented

approach, and what software tools would be needed to support this

research?

3. To what specific uses could these tools be put?

This project succeeded in defining the needs for further research, constructing

tools to support this research, and plotting future courses of action.

The purpose of this paper is to present the results of this investigation. The

workload modeling problem is examined, and the needs for further development

of the performance-oriented approach are defined. Tools are needed to support

future research in this area, and the requirements of four such tools are out

lined. These tools were constructed as a part of the project, and their function

and operation are described. The set of tools described in this paper do more

than support general efforts in workload characterization and modeling; they

have direct applicability to a specific experiment that would serve to further

develop the performance-oriented approach. Before turning to this experiment,

however, let us take a more general and thorough look at the workload modeling

problem.

-3-

2. THE WORKLOAD MODELING PROBLEM

When making a comparison of two computer systems, the most frequently

asked question is: "which system performs better?" After scratching the surface

of such a question, it is found that the underlying question is: "which system

performs its tasks better?" Whether the systems being compared differ in

hardware, software, or both, the performance of two systems must be compared

with respect to the tasks they must perform, or the workload that they must

execute. The question of computer systems performance cannot be answered

independently of the system's workload.

When two computer systems are being compared, they must be compared

while executing the same workload. If the workload on the systems being com

pared is not held constant then the performance indices, being dependent on

the workload, are meaningless. Ideally, the workload executed in a performance

study should be the same workload as the system executes in its daily use. The

workload processed in an industrial environment will vary over periods of a day,

week, month, quarter, and fiscal year. Similarly, a workload processed in an

academic environment will vary over time periods imposed by the academic

calendar. It would be desirable then, to base a performance comparison on a

workload having a duration of a fiscal or academic year. Such a comparison

would examine system performance in response to all possible variations in the

workload, and hence the performance indices under examination would be valid.

Conducting a performance evaluation that requires a year to collect the data,

however, is obviously infeasible. What is needed is a smaller, more compact

workload that models the system's real workload.

The basic requirement of a workload model is that it accurately represent

the real workload being modeled. That is, the workload model must be

equivalent to the real workload for (at least) the parameters of interest in the

-4-

study. The difficulty in workload modeling is that at present, no tried and true

methodology exists for making a representative model of a real workload. This

problem stems from the fact that there is no agreement on what the elusive

term "representative" means. Different definitions of "representativeness"

determine different approaches to the workload modeling problem. There are

advantages and disadvantages to each of the approaches to workload modeling.

One of the approaches, however, may have the potential to overcome its draw

backs.

2.1. The Resource Consumption Approach

The most often selected approach to the workload characterization prob

lem is the resource consumption-oriented approach. This approach is based on

the premise that a model workload is representative of a real workload if they

consume the same resources at the same rate. A workload model constructed

following a resource consumption approach might be characterized in terms of

CPU time used, memory space required, and frequency and duration of I/O

operations. Although the model workload does not consume the same quantity

of resources as the real workload, the model workload (hopefully) exhibits the

same consumption patterns as the real workload. For instance, it would be

desirable for a model workload to maintain the same ratios between resources

consumed as the real workload. As well as providing a criterion for constructing

a model consisting of terminal scripts, the resource-consumption approach pro

vides the rationale for constructing synthetic workload models. There are two

major drawbacks with the resource consumption approach, however, which leave

the workload model with much to be desired.

First, the model is very sensitive to the choice of resources to be consumed

and the patterns of resource consumption to be followed. The choice of

<* '

-5-

resources to be consumed is criticaL The choice must span the set of computer

resources, and the choice must not contain redundancies. For instance, speci

fying CPU time for a model is incomplete where different instruction mixes

cause different performance characteristics to be exhibited. As well as specify

ing the amount of memory consumed, for instance, the pattern of memory

references must also be specified. The pattern of memory references in a vir

tual memory system can often be more important than the gross amount of vir

tual memory used. After examining any resource consumption specification, it

becomes clear that specifying the resources and their consumption patterns is

not as easy as it may appear on the surface.

Second, the resource consumption approach suffers in its dependency on a

particular machine and configuration. Resource consumption specifications

may be interpreted only in the context of'the machine on which they are

defined. Consider, for instance, a specification that depends on disk access

time. If the physical characteristics of the disk are changed, or even if the files

are re-arranged on the same disk, the observed performance of the model work

load is likely to change. Consider a workload model that specifies CPU time

down to the instruction mix and sequences. These specifications have little

meaning when transported to a machine having a different instruction set. Both

of the drawbacks of the resource consumption approach focus on problems

defining the workload with enough detail, yet with enough abstraction to main

tain machine independence. This points to a need for a higher-level definition of

representativeness withwhich to drive a workload modeling methodology.

-6-

2.2. The Functional Approach

The functional approach to workload characterization employs a definition

of representativeness higher than the resource consumption approach, thereby

solving some of the problems inherent in the latter. This approach is based on

the premise that a model workload is representative of a real workload if the

model performs the same functions as the real workload. If the real use of the

computer is to do payroll processing, then the model workload should do payroll

processing. If the real workload includes program compilations, then the model

should perform program compilations. The process of constructing a workload

model becomes simply reducing the number and size of the tasks executing any

of the "representative" functions. The number of tasks performing payroll pro

cessing or program compilation (for example) are reduced, and the size of the

payroll and the length of the programs to be compiled are reduced. This

higher-level definition of representativeness appears sound, but it too has its

difficulties.

In attempting to raise the level of detail from that of the resource con

sumption approach, the functional approach merely transforms the question of

representativeness into another domain. Rather than specifying the actual pro

grams and commands to be executed in the workload, all are used, except with

a reduction in the size of the input to the programs. What remains is to reduce

the size of the inputs used in the model workload. The inputs must be reduced in

such a way that they are representative of the inputs encountered in the real

workload. But this is no less complicated than the original problem of selecting

a representative workload. How, for instance, is a "representative" subset of

payroll data, or programs to be compiled, to be selected? Should a representa

tive subset cause the same code paths to be executed? Should the subset cause

the same resources to be consumed at the same rate? It is clear that the

-7-

functional approach merely shifts the question of representativeness from the

actual processing done to the data used by the processing, leaving few problems

solved along the way.

2.3. The Performance Oriented Approach

A third approach to the workload modeling problem again transforms the

problem of representativeness, but in a more constructive manner than the

functional approach. The performance-oriented approach to workload charac

terization is based on the premise that a model is representative of a real work

load if the executing model causes the system to exhibit the same performance

characteristics as the real workload. A workload model constructed with the

guidance of a performance-oriented approach would be calibrated in such a way

that it puts the subject system through the same "paces" as the real workload.

The goal of a performance comparison is presumably to examine different sys

tems under all of the load levels that they are expected to encounter. A

performance-oriented approach to workload design would thus well serve the

purposes of such a performance comparison. Although this approach, like the

others, has its own drawbacks, the performance-oriented approach has the

inherent quality that it guides the construction of the workload model.

The performance-oriented approach is essentially a black-box approach to

workload modeling. Rather than being concerned with the fine details of what

goes on inside the workload model, the performance-oriented approach

emphasizes what goes on outside the model. What is really of importance is the

performance that the workload induces .on a system, which is what the outside

world sees. A black-box approach to computer systems performance evaluation

is an approach quite consistent with the rest of the engineering world. The digi

tal computer system, being a man-made machine, is a part of this engineering

-3-

worid, and perhaps we would benefit by approaching it from this perspective.

One possible drawback to the performance-oriented approach might be

that, like the functional approach, it merely transforms the question of

representativeness into a different domain. The functional approach was criti

cized for transforming the question of representativeness from "what programs

are representative?*' to "what input data are representative?" Similarly, one

might criticize the performance-oriented approach for transforming the ques

tion of representativeness from "what programs and data are representative?"

to "what performance indices are of importance?" Since a workload is con

sidered "representative" if its performance indices match those of the original

workload, it might appear that emphasis is shifted away from the construction

of a workload towards choosing appropriate performance indices. But this

change in emphasis is precisely the change in emphasis needed to define a work

load modeling effort!

Rather than allowing the workload characterization process to become

bogged down in the details of what resource consumption rates are representa

tive, or what program inputs are representative, it forces the characterization

process to focus on the variables of interest in the performance study. For

instance, if interactive services are to be compared, the performance indices of

interest would necessarily relate to the responsiveness of the system (Ferrari,

1979a). If, for instance, two disk scheduling algorithms are to be compared, per

formance indices of interest would relate to disk access time and disk queue

lengths. Once the needs of a performance evaluation are defined in terms of the

performance indices of interest, the criterion for determining the representa

tiveness of a workload model are automatically established. In the context of a

given study, the model workload is representative if the performance indices of

interest match those of the real workload. Thus the needs of the performance

-9-

evaluation efforts guide the construction of a model workload which, in turn,

aids in the collection of the data of interest in the performance evaluation

study. If the performance indices used to calibrate the workload model are

more comprehensive than the indices required by a given study, the validity of

the model is likely to be enhanced and made applicable to other evaluation

efforts as well (Ferrari, 1978).

A second potential criticism of the performance-oriented approach is that,

like the resource consumption approach, it lacks in machine independence. The

performance-oriented approach provides guidance in constructing and calibrat

ing a workload model from a real workload, but what if the workload model is to

be transported to a different machine? If the second machine hosts the same

programming languages and system commands, the workload may be tran

sported quite simply. If the second machine is only similar to the original, a

functional approach may be taken, and the system commands could be

translated to perform the same functions on the second machine. If the

difference between the two machines is fairly drastic, a combination of func

tionaland resource consumption approaches might be taken in transporting the

workload model. Little real application has been made of the performance-

oriented approach, so little has been done towards solving problems such as

this. It is probable that further insights will be gained as the performance-

oriented approach receives more attention in the literature.

The performance-oriented approach to workload modeling has received

some attention, but studies which adequately examine its validity and practical

ity are non-existent. Nolan and Strauss (1974) make an early attempt at using

performance criteria for building a workload model on the Xerox Sigma-7/UTS

timesharing system. Their efforts, however, are more directed towards the con

struction of the workload model than towards evaluating its representativeness.

-10-

Ferrari (1979a) presents a precise methodology for constructing a workload

model from a real workload. This methodology outlines the modeling process

from the characterization of the workload to the verification of the model. The

emphasis of this effort, however, is placed in the development of the methodol

ogy, and does not put it to a practical test of validity. Both of these papers pro

vide direction for a performance-oriented workload modeling effort, but neither

approach is proved to be valid nor shown to be practical.

It is clear that the need at present is for investigation into the validity of

the performance-oriented approach. The reason that Nolan and Strauss (1974)

and Ferrari (1979a) fall short of this need is that they both lacked the tools with

which to test their methodologies, and to make quantitative assessments of

their validity. What is needed in each case is a set of tools with which to con

struct a model workload and assess its validity. The performance-oriented

approach to workload modeling shows more promise than the resource con

sumption or the functional approaches. Thus efforts toward developing tools for

further research in the performance-oriented approach would be well placed.

-11-

3. TOOLS FOR WORKLOAD CHARACTERIZATION AND MODELING

An examination of the problems in workload characterization and modeling

has revealed that the performance-oriented approach shows promise. The

performance-oriented approach guides the modeling effort through its definition

of representativeness. Aworkload modeling methodology that provides this gui

dance may prove to be quite practical. Questions regarding the validity of the

approach have been raised, and preliminary answers have been given. The

answers to the questions surrounding the performance-oriented approach can

not be answered without having the experience of applying it. It would be desir

able at this point to apply a performance-oriented workload modeling methodol

ogy to construct a workload model, and to follow through on the analysis

required to answer the questions raised about it. More precisely, the analysis

which is needed at this point is the comparison of a workload to its model from

the performance point of view.

Unfortunately, the reason that this analysis has not yet been done is that

there are no tools for research in this area. Many systems provide a means by

which aworkload maybe artificially executed, but on no system does there exist

the comprehensive set of tools that such an investigation requires. Afirst step

necessary to allow such an investigation to take place, then, is the construction

of tools for research inworkload characterization and modeling.

What are the requirements for tools to support experimentation with the

performance-oriented approach toworkload modeling? The most important tool

would be one that allows aworkload to be placed on asystem. As well as provid

ing the ability to apply aworkload to the system, this tool would also be required

to collect data on the performance of the system as the workload executes. A

second requirement is for a tool that will, once the performance data is col

lected, analyze the data in such a way that the behavior of the workload may

-12-

then be characterized. Once the activity of the workload is characterized, it

would be desirable to extract representative subsets of the real workload from

which to construct the model workload. A third requirement is for a tool that

would extract portions of a real workload for inclusion in a model. The fourth

and final tool that would be required is one that, given performance data from

the execution of the model workload, analyzes the data. The goal of this tool

would be to answer the question: "is the model workload representative of the

real workload?" Clearly, answering this question would be the goal of research in

workload modeling.

The goal of a research project at the University of California, Berkeley was

to develop the specifications for tools to satisfy the above requirements, and to

construct those tools. In this way, the preliminary needs of research in work

load modeling could be met, and the door would be opened for further investiga

tion, into the performance-oriented approach. The four tools whose function is

briefly described above were deemed necessary to support the needed research.

The Benchmark Driver provides the ability to apply a workload to a UNIX *

timesharing system. The Workload Analyzer provides statistical summaries of

performance data for use in the characterization process. The Workload Extrac

tor provides the means by which representative portions of the real workload

may be used in the construction of a model workload. Finally, the Subworkload

Analyzer analyzes the performance data from execution of the model workload

for use in answering the question "is the model representative of the real work

load?" The function and features of each of the tools is described in the following

pages, and more complete details of the use, structure, and the program listings

of the tools may be found in the appendices.

* UNIXis a trademark of Bell Laboratories.

-13-

3.1. The Benchmark Driver

The UNIX Benchmark Driver is designed with two basic needs in mind: the

need to be able to place a repeatable workload on a machine, and the need to

easily modify the workload. A repeatable workload is needed in order to per

form experiments with reproducible results. An easily modifiable workload is

easy to tune in order to meet some modeling criterion. When used to develop a

workload model under a performance-oriented approach, the Driver executes

interactive terminal scripts and produces performance statistics as output (see

Figure 1).

7Zr&tlA/AL

Computer
SY$T€A\

LUCZKW*0

Figure 1: Function of the Benchmark Driver

The Driver places a repeatable workload on the system by preparing a number

of driver command scripts, and starting a number of concurrently executing

processes that read commands from the script files. The workload imposed on

the system is made easily modifiable by allowing an analyst to interactively

specify the number of concurrent processes (or simulated "terminals") to exe

cute, and which script files each process is to execute.

-14-

The Benchmark Driver assembles a driver script file for each simulated

"terminal" inresponse to commands typed by the system analyst (see Figure 2).

7£KMia/Al

[tteeAteo ei M*.tsr)

&*/ffcou.

Dt}V£K
SOtifr
flLE5

Figure 2: Operation of the Benchmark Driver

It basically takes a number of shorter script files prepared by the analyst and

repeats them in a file to be used as input to a process. One file is prepared for

each terminal to be simulated. If more than one simulated terminal is to exe

cute the same set of script files, the Driver will optionally permute the order of

files executed by each simulated terminal, thereby avoiding placing a com

pletely homogeneous workload on the system. An analyst might, for instance,

prepare scripts containing commands for an editor session, a script for program

compilation, and a script which executes several user programs. The analyst

£HfA

o

O

o

-15-

might indicate to the Driver that 20 terminals are to execute the edit script 10

times, the compilation script 5 times, and the program execution script 15

times. Twenty driver script files, one for each terminal, would be created in

such a way that the ordering of the 30 files specified by the analyst would be

different in each file. The Benchmark Driver would then proceed to start 20

processes, each process reading commands from one of the script files created

by the driver. Although the construction of driver script files sounds simple, the

files themselves are actually a bit more sophisticated.

The files created by the Benchmark Driver contain extra information to

gather performance data for the benchmark run, and to increase the "realism"

of the simulated terminals. The file (optionally) contain commands at the begin

ning and end of the driver script which enable the statistics-gathering capabili

ties of the system. In order to simulate the time that a terminal will sit idle as a

user "thinks" between commands, random waits are inserted between each com

mand in the files created by the Driver. The wait times are simulated by issuing

a UNK.I sleep command. This function of the Driver may be activated or de

activated by commands placed within the script files prepared by the system

analyst. The distribution of the random "think" times is under control of the

analyst. The distribution may be either uniform or exponential, the parameters

of which may be set by the analyst.

One of the most important requirements of the Benchmark Driver is that it

collect performance data from each simulated terminal, and this requirement

was not neglected in its design (see Figure 2). System performance data is col

lected for each command executed by the Driver. A unique time stamp indi

cates the completion time of the command. CPU time statistics indicate the

user and system time for the command. The response time for the command is

given along with the time expansion factor, indicating the percentage of elapsed

-16-

time during which the CPU was also processing the command. In order to col

lect this data, the Benchmark Driver executes a UNIX shell* and editor that have

been modified to produce the data for every command processed. In addition,

the modified shell and editor also execute the sleep command (used to simulate

"think" times) in such a way that no performance data is collected for this "com

mand." Through mutual cooperation between the Driver, the shell, and the edi

tor, the Benchmark Driver is able to collect the performance data deemed

necessary to characterize the workload.

Compromises between realism and practicality were (of course) necessary

in the design of the Benchmark Driver. A driver that would be almost ideal

would be an external computer that transfers commands to the subject com

puter via the latter's own I/O lines. Driving a system in this manner would be

ideal because there would be little (if any) difference in the system's response to

commands "typed" by the driver computer and commands typed by. the real

users. Even the code paths executed within the operating system would be the

same. Such an approach, however, is not always practical, and the simpler

internal driver was chosen for this collection of tools. Compromises such as

these are necessary in any effort such as this. The design decisions followed by

others, along with the compromises made are often enlightening. The interested

reader is referred to descriptions of other benchmark drivers, particularly

those described by Abrams and Treu (1977), Fogel and Winograd (1974), Turner

(1976), and the University of Michigan Computing Center (1978).

With the ability to drive a UNIX system with a prepared workload established,

other tools are needed to support the remainder of the workload characteriza

tion and modeling tasks.

*The sheU is the commandinterpreter used in the ran «™» sharing system.

-17-

3.2. The Workload Analyzer

Once a workload is applied to a system and performance data from its exe

cution is gathered, it is desirable to summarize the data. Many lines of perfor

mance data are useless without the capability to reduce the data into a manage

able summary. Once the performance data is summarized statistically, the

workload may be characterized in terms of the performance that it induces on

the system. The Workload Analyzer provides the facility to examine the perfor

mance data produced by the Benchmark Driver, and produces the statistical

summary needed to characterize the workload (see Figure 3).

booMuw
Cjfr&ACV&U*M)(X)
snvnsn*5

Figure 3: Function of the Workload Analyzer

The Workload Analyzer partitions the workload into chronologically sequen

tial "subworkloads," and provides a statistical summary of each subworkload. A

subworkload is simply defined as the "next" n interactions processed by the sys

tem, where "n" is a parameter of the Analyzer. Thus a subworkload is a quantum

of time in the execution of the workload, where "time" is measured in commands

executed (in contrast to minutes and seconds). The Workload Analyzer

-18-

partitions the workload into subworkloads by examining the output files from

each of the simulated terminals, and selecting the statistics from each in a

strict chronological order. A separation is made between subworkloads every

time "n" statistics lines have been examined. The Workload Analyzer also indi

cates which statistics lines were used from each simulated terminal. A workload

viewed in terms of subworkloads allows it to be viewed in small segments, the

performance indices of which each have the same statistical significance. A

workload examined in this manner readily displays the different "paces" through

which the workload puts a system. Once the various subworkloads are examined

in terms of the performance that they induce on the system, the more represen

tative ones may be selected for inclusion in a workload model. Once the

representative subworkloads are selected for inclusion in a workload model, a

tool is needed that will extract the subworkloads from the real workload.

3.3. The Workload Extractor

The Workload Extractor is a tool that will extract portions of a real workload

for inclusion in a model workload. The Workload Extractor assumes that the

"real" workload was applied to the system with the Benchmark Driver, and that

the driver script files still exist. The Workload Extractor acts as an editor that,

under the user's direction, selects lines from a driver script file and places the

extracted lines in a file to be used late as a driver script file (see Figure 4).

Given a set of subworkloads that are chosen as "representative," a model work

load is constructed by extracting the commands comprising each subworkload

from each driver script file, one file at a time.

Although it may appear on the surface that a standard line editor may be

used to perform this extraction, the functions of the Extractor are actually quite

a bit more complex. The Analyzer, since it examines only the statistics lines

-19-

scams

extractor

Figure 4: Function of the Workload Extractor

provided by a simulated terminal, counts as commands only those commands

which produce a performance statistic line. There are many commands which

do not produce statistics lines, most obviously the sleep command used to simu

late user "think" times. Therefore, when the Analyzer indicates which lines from

which terminals are included in a subworkload, the line number ranges given are

not lines in the driver script file, but ranges of command lines for which statis

tics are produced. The Extractor, given these command number ranges, must

know which commands cause statistics lines to be generated, and handle the

extraction process accordingly. Additionally, the Extractor must know about

special commands, such as the edit command. Suppose, for instance, that one

terminal's contribution to a subworkload is five lines from the "middle of an edi

tor session. Blindly extracting these five command lines from the driver script

would place editor commands amidst shell commands. The Extractor handles

problems such as this by ensuring that the editor is properly entered and/or

exited in these cases.

-20-

The Benchmark Driver allows a workload to be placed on a UNIX system, the

Workload Analyzer allows the workload to be characterized by representative

subworkloads, and the Extractor allows the representative subworkloads to be

assembled to form a model workload. So far, this collection of tools makes it

easy to construct and execute workload models, but it does not provide a means

to analyze the performance of the workload model as a modeling methodology

may require.

3.4. The Subworkload Analyzer

The Subworkload Analyzer provides an alternative means to analyze the

performance of the model workload other than with the Workload Analyzer. It

may be recalled that the Workload Analyzer classifies subworkloads as

sequences of commands as they are executed in chronological order. Once a

workload is modeled with a set of subworkloads, and the workload model is exe

cuted, it may happen that the commands are not executed in the model in the

same order in which they were executed in the real workload. Hence the lines

demarking each subworkload become fuzzy, as does the definition of a subwork

load.

A short example may help to clarify this point. Suppose, for instance, that

a real workload on a system involves two terminals processing interactive com

mands. A model workload was constructed by extracting two subworkloads of

100 commands each from the real workload. The first subworkload consists of

commands 1 through 75 in terminal 1, and 1 through 25 in terminal 2 (see Fig

ure 5). The second subworkload consists of commands 76 through 125 in termi

nal 1, and 26 through 75 in terminal 2. The subworkloads as included in the

model sare separated by the double line. Suppose that, after executing the

model workload, the first 100 commands processed are commands 1 through 71

-21-

from terminal 1 and 1 through 29 from terminal 2. This is indicated by the

dashed line. There are still 100 commands in the first subworkload, but not the

100 commands that were extracted to create the first subworkload. The first

subworkload in the model no longer matches the corresponding subworkload in

the real workload. Because the commands executed in the subworkloads are

not the same, the performance of the model cannot be compared to the real

workload. It might be desirable, then, to artificially maintain the original "boun

daries" between subworkloads when creating the model.

The Subworkload Analyzer provides the capability to maintain a one-to-one

correspondence between the commands comprising a subworkload in the real

workload and the commands executed in the model workload. Thus the statis

tics generated by a subworkload in the real workload (as analyzed by the Work

load Analyzer) will be generated by the same commands in the model (as

analyzed by the Subworkload Analyzer). The Subworkload Analyzer (see Figure

6), rather than accumulating statistics in chronological order, extracts statis

tics lines from each driver output file until a flag indicating the end of a

subworkload is reached. Operation of the Subworkload Analyzer is supported by

the Workload Extractor, which places a flag between each set of lines extracted

at the direction of the user. With the aid of the Subworkload Analyzer, the per

formance of the model workload may be compared to that of the real workload,

and the question: "is the model representative of the real workload?" may be

answered.

This box of tools for workload characterization and modeling is thus filled

with four tools. The Benchmark Driver allows a workload to be imposed on a sys-

tern. The Workload Analyzer aids in characterizing the workload. Once

representative subworkloads are selected, they may be removed from the real

workload with the help of the Workload Extractor. A model workload may be

-22-

TERMINAL1

command 1

command 71

command 72

command 73

command 74

command 75

command 76

Command 125

TERMINAL 2

command 1

#

•

command 25

==========

command 26

command 27

command 28

command 29

command 30

•

•

•0

command 75

Figure 5: Maintaining the Original Boundaries Between Subworkloada

-23-

U)DWlJOfiC

Figure 6: Function of the Subworkload Analyzer

constructed from extracted subworkloads, the performance of which may be

examined by the Subworkload Analyzer. Clearly this set of tools is the

comprehensive facility needed to assist in research in the practicality and the

validity of the performance-oriented approach to workload modeling.

-24-

4. USE OF THE CHARACTERIZATION AND MODELING TOOLS

No collection of tools would be complete without an owner's manual, and it

would be unwise to leave the reader without suggestions for using the tools

described in this paper. Four tools useful in workload characterization and

modeling efforts have been described, and it is timely to propose some uses to

which these tools might be put. The four tools presented in this paper support

five phases of a workload modeling effort. The tools facilitate placing a "real"

workload on a UNIX system, characterizing that workload, extracting representa

tive portions of the real workload, placing the model workload on the system,

and evaluating the model's performance. The approach to workload characteri

zation and modeling supported by these tools is the performance-oriented

approach. The tools give feedback on the workioad's performance, rather than

its function or its patterns of resource consumption. The ideal use for this set of

tools, thus, is for further research in performance-oriented workload modeling

methodologies. As was the earlier conclusion, this is an area in the field showing

promise, and it is deserving of further exploration.

A particularly useful application of the set of tools described in this paper is

to study and attempt to verify a performance-oriented workload modeling

methodology. One such methodology was recently proposed in a paper by Fer

rari (1979a). Ferrari proposes a methodology based on the performance-

oriented definition of representativeness. A model is representative of a real

workload if the model induces the same performance on the system as the real

workload. Ferrari's methodology begins by characterizing the real workload in

terms of the performance that it induces on the system. For the comparison of

interactive systems, performance indices of interest might be command

response times and the variance from the mean of response time. Whatever the

choice of indices, the performance of the real workload is examined by

-25-

subworkloads, each subworkload having a length on the order of 100 interac

tions. Each subworkload has associated with it a value" for each of the perfor

mance indices of interest. The set of performance values for each subworkload

may be considered as coordinates in a performance "space." One point in the

performance space represents a single subworkload. With all of the subwork

loads represented in this space, a clustering algorithm is used to define sets of

subworkloads whose performance characteristics are similar. One subworkload

is then chosen as a representative from each cluster. The point closest to the

center of mass of each cluster is selected. A model workload is constructed

using the interactions from each subworkload chosen as a representative of a

cluster. The model is executed and performance data from each subworkload is

collected. The values of the performance indices for each subworkload are

weighted to account for the size of the clusters from which they come. The

answer to the question: "is the model representative of the real workload?" is

answered by comparing the weighted performance indices from of the model

with the aggregated performance indices from each cluster in the real workload.

The model is considered representative of the real workload if the performance

induced by the model is, within some error, equal to that of the real workload.

The workload characterization and modeling technique proposed by Ferrari

is consistent with the performance-oriented definition of representativeness.

Because of its novelty, however, many questions concerning its use and validity

remain. First and foremost, will the methodology produce a representative

model workload? If not, might the methodology be modified so that it will? What

clustering technique is best for choosing representative subworkloads? What is

a good scale for the model, ie„ how many subworkloads in the real workload

should be represented by one subworkload in the model? Preliminary answers

to these questions may be obtained by using simulation models, but the real test

-28-

ofpracticality and validity ofthe technique is to apply it on a real system.

4.1. AWorkload Modeling Experiment

Clearly, the tools presented in this paper provide the means to put this

workload modeling methodology to a live test. In the process of actually using

and experimenting with the proposed methodology, the answers to the above

questions may be found. Therefore, we wish to propose an experiment with

which the technique proposed by Ferrari (1979a) may be validated and possibly

improved. There is one underlying assumption in the experiment which makes

it practical to execute in a controlled environment. It is assumed that, if the

workload modeling technique works to make a model from a real workload, then

it will also work to make a model of a simulated workload. With this assumption

it is possible to construct from scratch a workload to be considered "real" and

then proceed to make a model of it. This will aUow attention to be focused on

the modeling process rather than monitoring a real system in execution. The

procedure for this experiment, then, involves foUowing the six steps outlined

below.

1. Use the Benchmark Driver to prepare and execute a workload that is to

be considered the "real" workload. In order to produce approximately

250 points in the performance "space," with 100 interactions per

subworkload, a total of 25,000 commands would be required. Variation

should be emphasized in developing the "real" workload so that both

"light" and "heavy" use of the machine is simulated. The 25,000 com

mands could be executed by anywhere from 10 to 50 terminals on the

VAX 11/780 computer*. Experimenting with the number of simulated

* VAX is a registered trademark of Digital Equipment Corporation. The VAX 11/780 is the
computer used for research computing in the Computer Science Division, EECS Department
at the University of California, Berkeley.

*>

-27-

terminais may yield some interesting results.

2. Use the Workload Analyzer to obtain performance data on the work

load. If 100 interactions per subworkload are used. 250 subworkloads

will be obtained. 250 points in the performance space should provide

enough points to produce a significant number of clusters.

3. Locate approximately 20 to 25 clusters in the performance space. This

would cause 20 to 25 subworkloads to be included in the model, which

would be a reasonable ten-to-one reduction in workload size. The point

(or subworkload) closest to the center of mass of each cluster should

be chosen as "representative." A simple euclidian clustering algorithm

may be used, or more sophisticated approaches might be taken. The

interested reader is referred to Diday (1979).

4. Use the Extractor to construct a workload model consisting of the 20

to 25 subworkloads that were representative of the "real" workload.

The driver script files are used as input to the extractor, and ready-to-

execute scripts are the output.

5. Execute the Model Workload either by using the Benchmark Driver, or

by manually starting up the appropriate number of shells.

8. Analyze the execution of the model workload with the Subworkload

Analyzer. The weighting procedure described by Ferrari (1979a) is

used to arrive at performance values for the "real" and the "model"

workload. Once these values are obtained, the performance induced

on the system by the model workload may be compared to that of the

"real" workload. The closeness to which the two sets of performance

indices match indicates the degree to which the model is representa

tive of the real workload.

-28-

One of the major benefits of such an experiment is expected to be the

opportunity to tinker with the methodology and to tune some of its parameters.

The fine details of the experiment are left vague because they are simply not

known at this time. The details not explicitly specified in the experiment are

left open so that the experiment may focus on finding out "what works best." For

instance, the numerical values specified above were estimated by Ferrari

(1979b), and they aim for a 10:1 reduction in size from the real to the model

workload. It may turn out that a larger or smaller modeling scale works better,

so changes in the parameter values should be tried. Step 5 in the experiment,

for instance, does not specify whether the subworkloads making up the workload

model should be executed independently, or one after another in one combined

run. If the subworkloads are executed independently, there will be no transition

problems between subworkloads. It takes processing several commands before

a computer system reaches a stable level of performance. If this startup tran

sient is significant, it will affect the performance of each subworkload, if exe

cuted one at a time. Similarly, if the subworkloads are executed one after

another, a performance transient will be encountered as the system finishes

executing one subworkload and begins processing the next. It may be

discovered that the startup transient in performance is greater than the tran

sient encountered when passing from one subworkload to the next, and it is

better to execute the subworkloads in the model one after the next. Thus

changes in the experimental procedure should also be tried in order to find out

which techniques work best. The major thrust of this experiment should there

fore be to improve and tinder with the workload modeling methodology, rather

than simply to attempt to prove or disprove its validity.

An experiment such as this is essential to further research in

performance-oriented approaches to workload modeling. A methodology cannot

• \

-29-

be of general use until some experience with its use gained and its details are

determined. Performing the experiment proposed above would increase our

body of knowledge in this area, and it would provide a means with which to

define more precisely the procedures in the modeling methodology.

-30-

5. CONCLUSION

The increasing popularity of digital computers has made more urgent the

need to evaluate their performance. The first step in any performance evalua

tion study is to determine what tasks the computer is to execute as its perfor

mance is being evaluated. This step usually involves making a model of the real

day-to-day workload placed on the computer system. Making a model workload

involves characterizing the activity on the system and constructing a model

which is representative of the real workload. This is where the problems in work

load modeling begin: different definitions of what is "representative" bring about

different approaches to workload modeling. The resource-consumption

approach to workload modeling suffers in its dependence on exact specifications

of the resources to be consumed and their rates of consumption. The functional

approach suffers in its dependence on a representative model of the computer

system's inputs. The performance-oriented approach might be said to suffer

from its dependence on a correct selection of performance indices, but it was

shown that this actually guides, rather than hinders, the workload modeling

effort.

What the performance-oriented approach suffers from the most is a lack of

attention. The papers on the subject propose methodologies based on the

performance-oriented approach, but they do not actually evaluate the modeling

techniques based on actual experience. Tools are needed to support further

investigation in the performance-oriented approach. The purpose of this paper

is to explore the requirements for tools to satisfy these needs, and to describe

the tools developed to meet the requirements. The Benchmark Driver provides

the capability to load a UNIX system with a repeatable, easily modifiable work

load. The Workload Analyzer analyzes the system's performance induced by the

workload, and the Workload Extractor provides the capability to extract portions

-31-

of the workload for stand-alone execution. Finally, the Subworkload Analyzer

provides statistics on the execution of extracted portions of a workload.

These tools do more than support a general need for further investigation;

they support specific applications in a workload modeling experiment. The four

tools described in this paper find direct application in an experiment designed

to further develop a recently-proposed workload modeling methodology. These

tools do well in supporting current efforts in this field, but to what use might

they be put in the future? What possible developments may be seen in the

future of workload characterization and modeling?

The digital computer, being a man-made machine, is a part of a more gen

eral field of engineering, and perhaps we would benefit from viewing it in this

context. At one point in this presentation we alluded to performance transients,

as if the computer were just another one of the many dynamic systems found in

engineering. Just as an electronic circuit requires time to reach a steady-state

or a chemical reaction requires time to reach an equilibrium, a computer sys

tem requires time to respond to a sudden change in its workload. When a com

puter system is subjected to a sudden change in tasks to perform, its perfor

mance does not instantaneously jump to some constant value. Just like any

other dynamic system, a computer undergoes a transition from one perfor

mance level to another. If a change in its workload (input) causes a change in

its performance (output), perhaps a computer system also has a transfer func

tion that determines its response to a given workload (Ferrari, 1979b).

Once again, properties such as this might be explored using the tools for

workload characterization and modeling presented in this paper. The tools pro

vide the capability to place a workload on a machine, the capability to place a

portion of the workload on the machine by itself, and the ability to analyze the

response of the machine to the changes in workload. In the abstract, the tools

-32-

provide the ability to apply different inputs to a system and to measure the

system's output in response to the changing inputs. This would be a first step in

searching for a computer system transfer function. Being able to describe the

performance of a system in such a straightforward and simple way would open

up many new perspectives on the computer system. If a computer system could

be viewed as any other system in the engineering world, the field of computer

systems performance evaluation would reap the benefits of many years of

engineering experience.

o>

0 ,

-33-

6. REFERENCES

[1] Abrams, M. D., and Treu, S., Amethodology for interactive computer service
measurement. Communications of the ACM 20(12) (December 1977), pp.
936-944. ™

[2] Diday, Edwin, Problems of Clustering and Recent Advances, Laboratoire de
Recherche en Informatique et Automatique, Research Report No. 337, Janu
ary 1979.

[3] Ferrari, Domenico, Computer Systems Performance Evaluation, Prentice-
Hall, 1978.

[4] Ferrari, Domenico, Characterizing a workload for the comparison of
interactive services, Proceedings 1979 NCC, pp. 789-796. (a)

[5] Ferrari, Domenico, Personal communication, June, 1979. (b)

[6] Fogel, M., and Winograd, J., EINSTEIN: An Internal Driver in a Time-Sharing
Envoronment. Operating Systems Review 6(3), October 1974, pp. 6-14.

[7] Nolan, Lawrence E. and Strauss. Jon C, Workload characterization for
timesharing system selection, Software Practice and Experience 4(1974),
pp. 25-39.

[8] Turner, R., Functional specification for SCRIPT-11. Internal documents,
Digital Equipment Corporation, Maynard, MA, 1976.

[9] University of Michigan Computing Center, The D4.0 Terminal Simulator DSR
andThe D4.2 Terminal Simulator Monitor, Internal Documents, University of
Michigan Computing Center. 1978.

- 34 -

APPENDICES

In the interest of paper conservation, the appendices have
been omitted from this report. The complete set of appendices is
available from the author, or they may be found in a M. S. Project
by the same title filed in the E. R. L. Reference Library.

i *

. t

	Copyright notice 1979
	ERL-79-58

