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INTRODUCTION

The advent of LSI and YLSI circuits has generated ¢ great
deal of interest in and enphasis on the use of computer-based 1IC
design aids. Many efforts are wunderway to develop large
integrated design aid systems. These systems typically require
the use of many progrens and one of the major considerations in

developnmnent is the communicaetion between the prograns.

The programs that are used in IC design aid systems include

verious traenslation programs thet facilitate nobility anmong

levels of a hierarchical circuit design. These levels range «all
the way from specifications for individual trensistors to
register diagram descriptions of large systens. Sinulation

prograns are available at many of these levels and take as input
e description of the circuit at that 1level. The mixed-node
sinulator sinulates @ circuit described at several levels in the
design tree. Many of these programs have been in use for some
tine and heve developed the reliability associated with softuware
that has been used extensively. It is desirable, therefore, to
consider the use of existing progrenms in a new integrated design

aid systen.

An efficient user environment is one in which the designer
can enter his circuit or system into the computer once. He can
then edit the design and use available prograns to verify design
and to perform those functions nost easily effected by a
comaputer. One method of describing a circuit involves graphics

input. Typical forms of graphic input are stick diagrams, logic



diagrams, or actuael 1layout rectangles and polygons. Another
input nmethod uses a textual description language containing
interconnectivity informetion, circuit elements and paramneters
associated with the elements. Most modern simulation prograns
include translators of varying sophistication for some textual
circuit description. Thus, in the past, a CAD group supporting
more than one program has had to require the user to learn mnore
than one language in which to describe his or her circuits. Each
circuit to be described has had to be translated by hand if more

than one program is to be used.

One proposed solution to this problen is the “cross-bar
switch” approach [11. R parser-generator is used to create
translators that map each input language to every other. This

approach ellows the wuser to use a language to which he is
accustoned and to translaete his circuit descriptions under
progran control for wuse with other simulators. Each circuit
description is translated twice. One translation is fron the

user source to the progran source. The cther is from the program

source into the internael circuit description. N languages and M
programns require N*H translators. The scheme is detailed in
Figure 1.

A second approach [2] uses at least one hi-level language
and an intermediate language. AR translator exists from each
hi-level language to the intermediate leanguage. Another
translator is wused to translate from the intermediate lenguage
into the input language of each design-aid progranm. Anong the

advantages of this scheme are that only N+fl translators are



required for N langueges and M programs and that the design-aid

prograns need not be altered for use in the scheme. However,
three separate transtations are required each timne a prograemn is
used.

A third approach to the problem is to use a single, pouwerful

description language coupled with information about each "target®

design «aid prograem (31. It is this approach which is presented
here. The general scheme is shown in Figure 2.

The wunification of the textual input descriptions of
circuits has tuwo major advantages. The first is that the

circuits described are readable not only by any of the prograas
used at a facility, but also by all users and are therefore
appropriate for documnentation. The second is that in the
development of new simulation prograns very little attention nust
be devoted to input translation. This last feature arises since
the unified description lenguege is inplemented in e single
stand-alone translator which generates a fully expanded
internediate language (analagous to the intermediate language
generated by a typical compiler). This intermediate language is
very sinple to read, alloving the translator associated with each
sinulator to be of a very sinple nature. Thus there is only one
translation program to maintain. Development of new simulation
~tools is expedited since the progran designer can focus the wvast
rajority of his attention on the progran algorithas and their

inplenentation.



This report is divided into three parts. The first part
consists of a description of the 1language and the goals of
inplerentation. The second part presents a detailed description
of the inplenentation with reference to an exenple use with the
tining sinulator MOTIS-C (41. The third part briefly describes
the performance characteristics of the progran. Possible
extensions and enhancements to both the language and the

inplementation are discussed in the conclusion.



LANGUAGE GOALS

A language capable of performing the functions herein
described nust be both flexible and attractive to the wuser. A
nev user should be able to learn the language quickly’ yet there
nust be the pover and flexibility required by the nore
experienced user. The second Rajor requirement is the
flexibility to describe circuits adequately at all levels of
structure, i.e., from the register diacgram level and higher down

to the transistor level.

It vas decided that since there has been a great deal of
experience with the SPICE2 input language, the unified language
would use the SPICE2 language as a basis. The 1large body of
experience with SPICE2 has both shown the strengths of its input
language and clearly defined areas in need of enhancement.
Features nmay be added based on demonstrated need rather than
speculation. Therefore, the use of the SPICE2 language as a base

facilitates meeting the first requirenent stated above.

Sone of the enhancements that users have requested over the

years are the ability to:

1) use signal-path naemes to describe nodes,



2) pass paraneters to subcircuits.
33 access nodes internal to subcircuits for output,
4) use arithmetic expressions and functions

The parameter passing capability combined with the function
evaluation provides e wuseful mechanism for transiation among
levels in the design ¢tree. Thus the subcircuit definition
facility, suitably revised, simplifies satisfaction of the second

requirement.

A detailed description of the SPICE2 input language is
available in [5] and is not given here. The fornal specification

of the wunified input language appears in APPENDIX C. The

language is divided into tuo parts. The first, a structural
hardware description 1language, is described belov. The second.
an analysis and output processing control language, is covered

later in brief.

The description 1language is based entirely on two familiar
concepts. The first is the circuit element which has some nunmber
of signal paths associaeted with it (The terms node and signal
path are wused interchangeably). Each element is of a certain
type and refers to a model of that type. The second is the model
of a «class of <circuit elements. There are no inherent
restrictions on the magnitude of the block being modeled and thus
a model nmray be of a transistor, a logic gate, an ALU, or an

entire computer.



Some preliminary concepts nust be clarified before defining
vhat is neant by the term model. Everything that is eventually

input to a simulator must be in teras of the “"low-level types®

that it recognizes. R typical simulation program, i.e., the
analysis portion of a sinmulation progran, is capable of
recognizing (and analyzing) certain “low-level types."® An

exanple of a low-level type for a circuit simulator night be a
resistor of resistance R with two tenperature coefficients TC1
and TC2. A more comrplex example is the MOS transistor with
thirty paraneters. A low-level type for a logic sinulator might
be an N-input NOR gate with a rise time TR and a fall time TF. N
night be limited to values from N=1 <Can inverter) to N=8 <(an

8-input HOR gate)

Two features are common to all low-level types. First there
is some inherent interconnectivity information. A resistor is
usually assuned to be a two-terminal device. In many practical
Cases, the terninals are interchangeable. The HOR gate has a
variable numnber of terminals, but they ere not interchangeable.
For exanmple, the output node has different properties than one of
the inputs. Secondly., parameters are associated with each type.
These are nominally given a name and a default value.
Furthermore there may be a class of values that are considered

unreasonable for a particular parameter.

Circuit and hardvare description languages designed for wuse
with a particular program contain a hierarchy which is ultimately
based on the low-level types recognized by the program. A rough

analogy may be drawn to a high-level progranning language and the



nachine tanguage of e particular conputer. AN approach to the
resolution of the inconpatability of the target programs is

presented in the section on teailoring.

A circuit description language consisting only of elements
can thus be envisioned. Each element would have a low-level type
nanme, interconnectivity infornation, and parcmeter values
associated with it. A description of this nature would be very
lengthy and would be tailored entirely to one perticular
sinulator. The concept of the model is introduced in order to

help alleviate these two probleas.

A model may be used in one of tuo ways. First, there may be
several conponents of a circuit of the same low-level type. HMost
or all of the paraneters may be the sasne for some subset of these
components. R nodel is then defined for this type, specifying a
nodel nape and values for some or all of the parameters
associated with the type. Elements may then refer to this model
namne instead of to the lou-~level type. Only paraneter values
differing for this element need be specified. The effect of this
type of nmodel is to provide a mechanism by which the user can
subdivide low-level types and assign his own names to the
resulting models. This is aechieved by providing a set of
paramneter values different from the default values specified by

the program. The model of this type is input as shoun!

nodel <{mdnam) <mdtyp> (<paramlist))

vhere



{paranlist> ::= [<paran> = <volue>f I {<valued)]

Exanple!

nodel mose nmpos (vto30.7 kp=20u phi=0.7 gamnma=0.6 lanbda=90.0)
or

nodel mose nmaos (0.7 20u 0.7 0.6 0.0)

An exanple use of this type of model is a circuit using NMOS
enhancenent and depletion devices. Two models, MOSE and MOSD are
defined which specify all process paranmeters. Geonetrical
parapeters are specified with each element description. The
nodel name on the -element description inmediately tells the

reader whether the device was enhancenmrent or depletion.

The structures of which circuits are conmposed may be built
from lower-level components. In the example just given, the
logic NOR gate may be built out of MOS transistors. Likewise a
storage <cell nay be built from the NOR gates and some other
parts. Several storeage cells may form a register. Several

registers may form a bank.

The second nmajor role of o model is to permit the user to
design an arbitrery structure from the available tlow-level
types. The nodel definition consists of elements and other model
definitions which are local to the model being defined. This
inparts a block structure to the model definition scheme similar
to thet found in ALGOL-like programming languages (63. The first
line of a mnodel definition of this type <(type subcircuit)
provides a model -name and other information to be used within the

definition. This information consists of (fornmal) signal path
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neaes, (formal) paraneter nanes, and default parameter values
local to the definition. Thus on a particular invecation of the
nodel, i.e., on an elenent description line, actual
interconnectivity information and actual perameter values are

passed.

These two general forms of model permit convenient nepping
among levels of simnulation as well as providing a powerful nmeans

of describing an arbitrarily complex circuit.

Once the two types of model described above are understood,
the concept of the general circuit element is inmediately
apparent. The elemnent description consists of an element nane.
interconnection infornation, a nodel nane and paramneter
infornation. Pareneters specified with the element description
override the corresponding parameters on the model. Thus, for a
particular element description, the nature of the model to which
it refers is conpletely transparent: It may be a low-level type
specific to a particular sinulator. It may be either of the two
forms of models described above, or it may reside on o systen

library. The form of the element description line is!

{elnan?> (nodelist) <madnam> (<{paramlist))

where

{nodelist) ::= [nodel

{paramlist)> :i:= [{param> = (valued] | [<{valuedl
Exanple:!

alul 52 s1 sO databus<15:12) alu (tsettle=40n2)

-11-



Al vout vin ground bulk mose (10u Su)

~

A sanple circuit and its description is shouwn in

Figures 3, 4, and 9.
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IRPLEHENTATION--GENERAL CONCEPTS

A large subset of the 1language is inplemented at U. C.
Berkeley in a stand-alone program called BLT (Berkeley Language
Translator). A second inplementation called TEKSIN exists at
Tektronix 1Inc. [71. Only BLT is described here. BLT taekes a
circuit description in the unified hardware description 1language
as input and outputs a circuit description in intermediate forn.
Two program design criteria are portability and the «ability ¢to
run eon a minicomputer. Due to address space 1limitations
associated with sone nminicomputers, disk I/0 has been used
extensively. Nominally, the inplemnentation is designed to
operate as follows: A circuit description is reaed in. It is
parsed and translated into a Fully axpanded forn consisting of
mnodels of low-level types and elements referring to these
nodels. All parareter values are assigned. This information is
written to two disk files, a model file and an element file (see
Figure 8. R simulation pregran may then read the nodel file,

set up the models internally, end read the element file.

One useful environment for BLT uses ¢ main control progran
shich is given a circuit description and the name of the progran
(MOTIS-C, SPLICE, etc.) to be run. The control program calls BLT

to ¢translate the <circuit description using the appropriate

initialization file (see the section on tailoring below). The
control programn then interprets analysis and output commands
(using BLT routines) to «control analysis and output (see
Figure 7).
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TATLORING

One of the fundamental considerations in the inplementation
of this type of unified language is the fact that nearly every
design-aid programn, even within a given <class, recognizes

different low-level types.

The differences are often transparent at higher language
levels. For exanple, as mentioned above, one can describe a
logic gate (low-level type for a logic sinulator) in teras of
transistors. Thus o NOR gate element may refer directly to a
low-level type or to a subcircuit model which defines that tuype
in terns of other low-level types. The model may be local to the

description or may reside in a library.

The unified-lenguage transiator must be able to provide
information that s iamediately wuseful to a particular terget
simulator. One proposed solution [81 takes whatever information
is specified by the wuser and places it in e data base. Each
simulator then searches for and wuses whatever subset of the
available information it can recognize. Thus., for exanple, the
circuit sinulator eabove would have to provide. or sonehow have
available, subcircuits for logic gates built from transistors. A
circuit simulator that recognizes one parameter and another which
recognizes [ related paraneter instead haeve no neans of
comrmunication with the user. For exanmple, if a simnulator of
bipolar transistors recognizes TAUF and the user specifies FT (a
parameter that is maethematically related to TAUF), the error

cannot be recognized until much later. These types of problens

-14-



are better resolved at input-translation time.

Another proposed solution [3] specifies that each design-aid
progran be provided with exactly that subset of all possible
descriptions which it can make use of. Thus, the output of the
input-translator should generate a file consisting of a circuit
description based on the low-level types and parameters for those
types theat each program recognizes. Yhen the author of a
design-aid progran wishes to interface his’her product to the
translator he creates a description of his progran. This
description lists the names of the lov-level types his progran
handles. The names, default values, and order of the parameters
associated with each type, and the nuaber of nodes for each type
ecre specified with the type. A special, one-tine run of the
tranletor generates an "initialization® file fron this 1list for
the target program (see APPENDIX B and Figure 8 for instructions
and an example respectively). When a user wishes to sinulate a
circuit, he provides the translaetor with the circuit description
and the name of the sinulator to use. The translator then reads
the appropriate initialization file and does all appropriate
error-checking. The user is informed as to what information is

stitl needed to run a particulaer design-aid progran.

If the 1logic-gate/transistor exanple nentioned earljer is
exanined for a moment, the following points are observed! First,
a description consisting of logic gates can be nodified to run on
@ circuit simulator very sinply. A subcircuit is provided for
each general gate tupe built fronm transistors. The paraneters

for the logic description, typically delay times, are passed into

-15-



the subcircuit and can be used, for instance, in conjunction with
the function evaluation capability to generate aspect ratios.
The user hes the option of naintaining e library of such

subcircuits.

If the reverse situation is considered, the difficulties are
more severe. Suppose a description exists consisting entirely of
trensistors (say extracted directly fromn the IC artwork). A
seperate program nmust be used to extract logic gates from the
transistor description. If this gate extraction program uses the
interrediate language for the circuit sinulator, Q logic
description can be generated in the unified input language and
the designer is left with the sinple case described above. The
use of subcircuit models in the file or on a library is all that

is then needed.

The approach of tailoring the intermediate file to each
"tnrgef' progran addresses three important issues. First, it
mininizes the effort required for a design-aid progran to read a
circuit description. Second, useful feedback is provided to the
designer (or possibly to another progran) regarding what
infornation has not yet been provided for a conplete
characterization of the circuit. Third, since the tailoring
concept is quite general, the types of models and parameters are
not linited in any way. A nodel could be of o rectangle or a
polygon. The paraneters would then be co-ordinates. A model
might be of an entire IC package and the spec-sheet information
could be specified in the paremeter list. The important thing to

note is that the interface is not limited ¢to use with

-xs-



sinulators. Exanple progrems which could interface to the

internediate language are translators which go up the design tree

using pattern matching techniques to locate higher 1level
structures. Placenent and routing prograns or other wutilities
could be interfaced. If this concept is extrapolated somewhat,

the problen of interfacing a number of programs to form an
integrated IC design system could be substantially reduced by

interfacing to a sinple internediate language.

There are somne other features incorporated into the
taitoring schene. First, global nodes may be specified. These
nodes are electrically common. Typical global nodes might have

the names GROUND or VYCC. They may then be referenced within a
subcircuit model without being formally declared on the

subcircuit nodel definition line.

The second feature is the ability to specify key first words
for special statements for the target program. For exanple.,

MOTIS-C requires a statment of the forn:

VYPLUS=<Cvalue)

The inclusion of YPLUS as a keyword in the initialization file

enables Q shell routine to be inserted which uses BLT utilities

and translates the line according to a specified format.
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IMPLEMENTATION--PROGRAM DETAILS AND DATA STRUCTURES

The irplenentation of the language is described in detail in
this section. The subset of the language that is implemented s
detailed in APPENDIX C. The program is written in FORTRANH 1IV.
The prograen is currently running on an HP Series-1000 E under the
RTE-IVA operating system at U. C. Berkeley. It is also running
on the CDC 64900 at U. C. Berkeley. It is further designed to run
on an HP 3000. In order to achieve this portability without
rainteining several versions, the following approech is wused:
Standard FORTRAN-IY is used throughout. However, where machine
dependent coding occurs (usually related to I/0 and character
nanipulation), Q superset of FORTRAN which requires a
pre-processor called SUBST is used. SUBST is available on the
U. €. Berkeley IC-CAD research machine (HP 1000). It is also on
the HP 3000 contributed library. SUBST recognizes two
specifications:

1) @ statement of the forn

*CALL FNANE"

results in the inclusion of the contents of file FNANE

ot the point of the call.

2) R statement of the forn

s/this/that/

changes all occurrences of ‘this’ to ‘that.’

-18-



If SUBST is not available at an installation, a small

progran

nay be written to perform these two functions. The

translator uses the functions in four ways!

1)

2)

3

4)

The =*CALL feature is wused to include files of
substitution commands. These *CALL’s appear at the

beginning of each source file.
The *CALL feature is used to include CONMON blocks.
Thus change to o COMMON block requires no further

edjustment other than reconpilation of the affected

routines.

The substitute feature is used to substitute values for

constants., for exanple, the nunber "80" for the pattern

"linelength."

The substitute feature is used to substitute either

nothing or a "C" in the first colunn as appropriate for

statements of the forn

if conputer=={computertype) <(fortran staetement?

if computer!=Ccomputertype> <fortran statenmen)

where

{computertype)> ti= 1000 | 3000 | 6400

~19-



{fortran statement> ::!= <any legal FORTRAN statement>

The details of the use of SUBST and thg source file

structure are given in APPENDIX A.

BLT wuses a memory manager that was originally written for
SPICE2. This manager is currently running on several nmachines
including a COC 6400, an AMDAHL 470, and an HP 3000 £91. The
manager controls memory in a large erray from which tables may be
sllocated, extended, released and cleared. BLT maintains an
integer array IMEM equivalenced to REAL aerray RMEM end to CONPLEX
array CHEM. The starting address of IMEM is passed to the
manager at the start of the program on the HP machines. On the
COC machine, the address of the first word of data storage (BLANK
COMMON) is passed and the limit to memory growth is deternmined by
the total amount of memory available on the machine. The calls
to the manager are described below. Further details on the

menory manager are available in [101].

1) CALL SETMEM(starting address, memory size) initializes

memory.

2 CALL GETN4C(pointer,length) gets a block of integer

nemory of length ‘length’. Pointer is set to offset of

first vord.
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3) CALL GETHB(pointer.,length) gets a block of double
precision real memory of length ‘length’. Pointer is

set to offset of first uword.

4) CALL CLRHEMC(pointer) releases the entire block and

renders ‘pointer’ meaningless.

5) CALL EXTHEM(pointer,amount) extends menory block
starting at ‘pointer’ by ‘amount’ words Cof type of

block)

6) CALL RELHEM(pointer,anount) releases anmnount of words

from block referenced by ‘pointer’.

7) cALL SIZHEW(pointer.,size) returns size of block

referenced by ‘pointer’ in ‘size’

The main deta structures in the program are maintained in
IHEM by the memory manager. All tables are of integer tupe with
the exception of two!: SYMBS is a table of tupe real which
contains all strings used by the progran. A string., as used
here, is up to eight characters six on the HP 1000) left
justified in a wvord with right blank fill. VALS is a table of
type real which contains all reel values wused ih the progran.
SYMBS and VYALS are double precision real on the HP machines.
SYHMBS and VYALS are accessed by integer functions
FHDVRCidentifier) and PTVYAL(value), respectively. Each function
returns an integer corresponding to the 1location of the

identifier (or value) in SYMBS <(or YALS). This locetion is
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ascertained by a linear search for ¢ match in SYHBS <(or VALS).
If no match is found, the new identifier (or value) is appended
to the end of the table. If it is found thet the 1linear search
results in a serious performnance degredation, a hashing schene
may be inplemented that is completely transparent to the rest of

the progran by rewriting only these two routines.

The integer pointers returned by FNDVYR C(or PTVAL) are used
to represent the strings (real values) everywhere else in the
program and data. Thus, only one copy of a particular string
(value) appears in the data. The edvantages of this scheme are
threefold. First, significant space savings result when using
machines that have multiword recl and string storage. Secondly
all conpares are integer operations which are faster on the above
nachines. Third, since no type nmixing is required, and the
strings and values are isolated, portability and simplicity are

enhanced.

In general the following convention is used in the integer
tables. Pointers to other tables are positive. The first entry
in a table of pointers to strings and values is the length of the
table wunless the size of the table is predefined. The remaining
entries are positive and negative integers indicating strings and

values respectively (see Figure 9).

References in this report to strings and values will in fact
be to the integer pointers. The wvord ‘address’ refers to an
offset in a table. For example, in e description of the table

MDPARS, ‘address’ means IMEM(MNDPARS+address).
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PROGRAH STRUCTURE

BLT is divided into three logical sections. They are (1)
initialization, (2) parsing, and (3) setup end disk file

creation. These three sections are treated in order.
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INITIALIZATION

A number of tables are set up at initialization. FRSTWD s
a 1list of keuywords. It conteins the words "MODEL", "ENDS®" and
any comnand keywords (°PLOT®, °"SHEEP®", etc.). This table is
searched to match the first word on an input line. If a match is
found, the appropriate routines are called to handle the rest of
the line. HDTYP, and HDPARS contain the types of models knoun to
the simnulator, and the locations of the default parameter 1lists,
respectively. NDAIN and HDMAX contein the minimum and maxinun
nuaber of nodes associated with each type of nodel. All  four
tables are of the same length. The entries in these four tables
are a function of the tnrge§ programn for a particular run. The
teables are called “paraellel™ in that the ith entry in each
contains information about the same item C(in this case a nmodel
typel. The ith entries in the four tables constitute a C
STRUCT [111 or PASCAL RECORD [61 containing information about a
nodel type. The first entry in eeach is the number of model types
(if the first entry is *n’ then n entries follow and the size of
the table is n+1). n is the number of low-level nodel types
defined in the initicalization file for the taerget progran.
DEFVRS and DEFYAL are also parallel tables. Each is a table of
tables. Each entry in MDPARS points to a table in both DEFVYRS
and DEFYAL. The first entry in a DEFYRS or DEFVYAL table is the
length or nunber of parameters *n’. The next n entries are the

paraneter nanes (DEFVRS) and the default values (DEFVAL).
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Initialization is acconplished by reading a data file into
the tablies described above. This file is created in a special
run that is done once for a particuler simulation progran,. The
special run is wused to define model types recognized by the
programn. The paranmeters, their order, and their default wvalues
are defined at this point as are odditional keywords to be

recognized in FRSTHD.

-25~



THE PARSER

The parser is technically a parser and semantic analyzer.
It handles topological information and analysis requests. When
an input line is read, the first word is scanned and table FRSTHYD
is searched. 1If e match is found the appropriate routine is
called. The element 1line hes no entry in FRSTYD and is
recognized by the absence of any of the features that define the

other types of input lines.

The primary translation of the topology description is
detailed below and in Figures 10 and 11 The nmodel! definition
structure resides in MNDLST. Since a nodel of type SUBCKT is
treated as a macro definition containing elements and models
(which nmay be of type SUBCKT) the inherent definition structure
is a nulti-way tree. This tree is represented as e
right-threaded binary tree [12]1]. Louw 1level nodels have no

descendants and consist of four integers:

1) RLINK!: a (positive) pointer to the right brother or a

(negative) pointer to the father,

2) LTYPE: a (positive) pointer to the entry in NDTYP

corresponding to the rodel tuype,
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3) MNAME! a pointer to the name (in SYHWBS), and

4) DPARAMS: a (positive) pointer to the parameter list in

PLSTS.
R model of type SUBCKT has six entries!

1) RLINK: a (positive) pointer to the right brother or a

(negative) pointer to the father,

2) LYYPE/LLINK: ‘0’ if there are no models defined within

the model or a (negative) pointer to the first son,
3) MNAME: a pointer to the name (in SYMBS),

4) FPARANS: o pointer to a formal parameter 1list in

DEFYRS and DEFVAL,
5) FNODES: a pointer to the node list in NDLST, and
6) ELEMENTS! a pointer to the elenent list.

The tree just described is built as the nodels are read.
The tree is developed with the oid of OPTSTK, NUPTR, OLDPTR and
ANCPTR. OPTSTK is a stack which reflects the nesting of the
models. NUPTR is the new nodel entry. OLDPTR is the previous
nodel eﬁtrg. ANCPTR is the parent or model within which the
current nmodel is defined. The ENDS line marks the end of the

current model of type SUBCKT. This indicates that OPTSTK should



be popped and a pointer established from the last model to the

parent.

The elenent lists are linked list structures all of which

are in ELST. Each entry consists of five integers!

1) LINK:! ‘nil’ (the last entry) or a pointer to the next

entry,

2) HTYPE!: the element type (to be later matched with a

nodel nanme),

3) ENAME: a pointer to the element name ¢(in SYMBS),

4) OPARANS:! nil (no parameters specified) or a pointer to
¢ list of overriding parameters in LKEYS (the keywords
or entries of '-1’ depending whether keyword or
positional parameter specification is used) and EPLSTS

(the values of the parameters), and

5) HODES: o pointer to the nodelist in (NDLST).

The structure of NDLST and ELST is shown in Figure 11. The

structure of each model and element is shown in Figure 10.

BELSTK is a stack of pointers to elements reflecting the
nested structure of the model definitions. Thus, as a SUBCKT
MODEL definition is entered, the position of the current element

is pushed and a new list is started for the new SUBCKT MODEL.
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When an ENDS input line is encountered., OELSTK is popped and the
elenen£ list may be continued. DELSTK operates in parallel with
OPTSTK (see above). Together they contitute a C STRUCT (PASCAL
RECORD3 of information to be saved on entry to a SUBCKT HODEL
definition. DELPTR is the last element. NELPTR is the current

element.

If no errors are discovered in the circuit description, the
parsing part of the program leaves a tree of models in MDLST. An
elenent 1list is associated with the root and with each SUBCKT

model.

Analysis conmands are handled in a simple nmanner. An
attemnpt has been nmade to provide facilities to allow a control
progran to read analysis commands interpretively. At present,
they are read by BLT into a teble called IANAL. Each type of
commend has an integer associated with it which corresponds to
its position in FRSTYUD. Hhen o command is read, the appropriate
routine is called and an entry in IANAL is made. The entry

consists of
1) LENGTH: ¢the length (in integers) of the commend entry,

2) ANTYPE ! the command type (as described above), and
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3 COMMAND:! the specifications of the command Cthe fornmat
eand nmeaning of the specifications is inherent in the

value of ARTYPE).

-30-



THE SETUP PHASE

After the topology has been conpletely described, the GO’
coarand initiates the setup phase and if no errors are found the

disc file is created.

First, all non-SUBCKT MODELS, both those locally defined and
the low-level type default models are written to disc. During
the parse phase described above a table is maintained whose ith
elenent points to the MDLST entry of the ith model read in. This
table also reflects the order in which the models are written
out. Entries for the low-level types (the entries in MDTYP) are
created at this time. The setup phase requires four additional
tables CKTREE, CKTEL, HNDMAP, and NH2. CKTREE is built in the
setup phase and reflects the calling sequence specified by the
elenent 1lines. It is a nultiway tree in which a path exists
upward from each leaf to the root. CKTEL <contains pointers to
the leaves of the tree defined in CKTREE. The leaves conmpose the
eactual circuit, and the wupper nodes are the subcircuits which
were expanded to produce the final circuit. Each node in the

tree consists of three entries:

1) PARENT: a pointer to the next level up the calling

sequence,
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2) ELENENT: a pointer to the element Cin ELST), and

3) MODEL: a pointer to the model Cin MDLST).

A CKTREE entry is shown in Figure 12 along with the

structure of CKYREE and CKTEL.

CKTREE is built aos follows: The element list associated
with the root is expanded. If the model type of an elenent is
SUBCKT, the <current entry is pushed on OELSTK and the element
list of the SUBCKT is expanded. The actual nmodel to which an

element refers is determined by natching the element type with

all model names in the current level. If no match is found the
next level up is searched. If no match is found at all, HMDTYP is
searched. If there is still no match, an error is genherated. If

o match is found in HDTYP it is put in CKTREE as negative to
indicate the model was not defined locally to the <circuit

description. If o match is found in HDLST, then CKTREE is traced

upvards from the current position. If the same mrodel is found, a
recursive situstion exists and an error is generated. If no
recursion exists, there are two possible cases: (1) the nodel is

¢ type other than SUBCKT or (2) the model is of tupe SUBCKT.
Case one indicates that the element is an element of the
circuit. The paremeters and nodes are maotched. An entry is
created in CKTEL end the process continues. Case two requires
that the current element be pushed and the element 1list

associated with the mnodel be expanded.
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Uhenever a case one elemaent is found it is cutput to the
elenent file. 1In order to do this, all parameters and nodes must
be ‘bound’. Each node nane is resolved by searching the list of
fornal nodes associated with the current subcircuit model <(Cthe
one being expanded). If the node is not there, it is local to

this SUBCKT and its full pathnane is:

thisnode ! thissubckt ! nextlevelup ! etc ! root.

If the node is o formal node passed into this model then the

elenment of the next level up in CKTREE is searched for the actual

name used for this formal node. The above procedure is repeated
on this nodename, treating it as the formal node. This qoes on
until the level at which the node is local is reached. Thus the

resolution of references to nodes is also block structured.

R parameter is resolved in the same way as a node with one

exception. If the paraneter does not appear on the SUBCKT caltl,

the default of the SUBCKXT model is returned. If « value is

passed at any level thaet value is returned.

R nodel on the file is setup in the following fornat.

1) The low-level model type (pointer to MDTYP)
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2) The number of paramneters for this type

3) The values (real) of the parameters for this model.

An element on the file contains this information!

1) The file model referred to (simply 'i’ for the

nodel on the nodel file).
2) Nunber of nodes
3) the nodes (internal.. .sinple integers).
) Nunber of overridden parameters.
3) parameter pairs consisting of
a. The parameter number Cinteger)
b. The new value of the parameter (real)

Figure 13 shous the structure of the nodel and element files

sanple entrios.
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INTERFACE OF MOTIS-C WITH BLT

MOTIS-C is o tining simulator written at U.C. Berkeley based
on the HOTIS program developed at Bell Laboratories [131. It
runs on the COC 6400 computer on campus. The prograa uwaes put up
on an HP 1000 conmputer in order to develop an interface ®hich
would permit MOTIS-C to read the intermediate file generated by

BLT.

The structure shown in Figure 7 roughly describes the
overleay structure of the two prograns. Since the overlay
structure available on the HP 1000 does not allow return fron an
overlay., a utility was developed locally to permit the usual tree
structure overlay to one level. If a linearly 1linked overlay
structure is all that is aveailable, the calls to the segments nay
be renoved from the main routine. Since the segments are called
in order, the linear structure mnay be inposed by putting the call
to the next segment at the end of the current segmnent. The 1last
segnent nmay then call the first segnent to determine if more
processing needs to be done. In the actual implementation of the
BLT/MOTIS-C progran, MAIN calls the overlay segments INIT, PARSE,

PASS2, RDMOT, TRAN, and PLOT directly.

One major change was made to MOTIS~C prior to interface with
BLT. The fixed array data structures originally in the progran
vere replaced with data areas dynamically managed by the HPSPICE
nenory manager. It should be noted that this change is in no way
related to the fact that BLT uses this manager. It was done

solely to increase the power and flexibility of the HOTIS-C
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progran, enabling it to handle larger circuits.

The subroutine READN and its associated scanning subroutines
vere replaced by a set of routines that read the BLT intermediate
file directly into the MOTIS-C data structures. The structures
are unchanged fron the original version, except for the

incorporation of the dynamic meaory management.

Once the circuit description is read in, analysis nay
proceed. Puring analysis, the voltages at each plot point are
written to disk. The results are then read and plotted by the
plot routine PLOT. Utilities are provided which enable PLOT to
swap out the analysis environment, swap in the input environment.
and UNNAP the internal node numbers to the full wuser specified
node path nanos.. These may then appear on the output as
appropriate. The output from the inverter <chain shown in

Figures 3, 4, and § appears in Figure 14.
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PERFORMANCE CHARACTERISTICS

BLT was found to run about twenty-five percent slower than
the SPICE2 input routines on the CDC 6400 computer. 4 progran
counter frequency distribution program was run on BLT to study
the dynamic behavior of the program, i.e., where BLT spends its
tine. BLT spends about seventy percent of its tinme doing three

tasks.

The overhead incurred when extending a block of nenory is
sonevhat greater than is desirable, i.e., a good deal of time is
spent in routines COHPRS and COPY4. This is a function of the
design of the memory manager, whose behavior is optimized for use
with only a few blocks of nmenmory. BLT wuses about twenty.
Changes to the memory manager which would subsiontiullg increase
performance in this area could be effected transparent to BLT.
Additionally, COPY4, which noves blocks of nmemory from one
location to another, may usually be speeded up dranatically by

coding it in assenbler Cas in SPICE2).

Character nanipulation in scanning routines GETCHR. GTCRD
and GETUD is time-consuming. This difficulty is circunvented in
SPICE2 by means of packing eight characters into a word and using

the assembly routine MOVE to extract bytes.

Appreciable time is also spent in routine FNDVYR which does a
linear search of the table SYMBS (where all strings reside).
This search corresponds approximately to the symbol table search

in a conpiler. The linear search is adequate for small jobs but
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a schempe such as the following should be inplemented for use on
larger circuits: An integer hash table and an integer table of
pointers parallel to SYMBS can be allocated. These tables, in
conjunction with a hash function with modulus the same size as
the hash table can be used to implenent an efficient hashing
scheme with collision resolution by chaining [141. This schene
approximately doubles the memory required to store the strings on
the CDC machine and increases the memory by thirty-three percent

and tventy-five percent for string storage on the HP 3000 and

HP 1000 respectively.
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CONCLUSION

The development of the translator BLT and the interface to
the timing sinulator MHOTIS-C raised e number of interesting
issues. BLT, in expanding the circuit description to the
sinplified intermediate form, retains a great deal of information
that aust be communicoted to other routines for useful feedback
to the wuser to be accomplished. For example, the internal node
nunbers aust be unmapped for output plotting, as mentioned in the

previous section.

Another issue that>orises is that of responsibility for
error-checking. Certain types of errors, e.g., syntax and
invalid paramneter names, mnay be detected by BLT. Those errors
particular to the “"target" program must be checked for by that
progrean. For exanmple, a general translator such as BLT has no
way of knowing that MOTIS-C requires a finite capacitance at ail

non-voltage~source nodes.

The concepts presented in this report can be generalized. 8
single input language can be used in an environment wherein a
nunber of design aid prograns are available under the control of
¢ nain program. A translator such as BLT can be used by the main
progran to translate circuit descriptions in the wunified input
language for wuse by the other programs. The sanme concept could
be applied to o graphical input system. Another approach night
transliate graphical input into the wunified language for
documentation purposes. A graphics-mnacro would map directly into

a subcircuit. Libraries and user definitions would be available
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to provide information about 1low-level types for particular
prograns. The general concept of wusing a common structural
design language as a data base is described in [81. A single
translator such as BLT, coupled with initialization files for
each design aid program provides a powerful tool. It takes
information from various sources and expands it into a form that
nininizes the comnplexity of the front-end of each design aid
progran. W®hile a translator such as BLT has limited use on its
oun, it can become a nmost powerful utility in an integrated

design aid systen.

Future wvork on BLT may involve the addition of an arithmetic
expression and function eveluation capability. Generalization of
signal-path names to include busses and parts of busses uould be
worthuhile. BLT vould be more powerful if a library is searched
for resolution of model names., i.e., during the set-up phase.,
when no wuser defined nodel is found for an element, a library
should be searched before searching the table of low-level
types. A scheme of ¢this type is wused in the TEKTRONIX

inplenentation of the Berkeley language, TEKSIM [71.

BLT, in its current inplementation, provides only skeletal
facilities for the incorporation of analysis conmmands. A
poverful coamand language needs to be developed. An imnmediate
need is to enhance the initialization facility for analysis
coanands to allow the CAD program designer to have BLT parse then
accordingly. This would make it as convenient to add or clter a
conmand as it currently is to add or alter a model type. This

enhancenent could make use of routines already written.
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Current work at Berkeley includes interfacing the mixed-node
Simulator SPLICE [15]1 to BLT on the CDC 6400. MOTIS-C is being

interfdced to BLT on the CDC machine as well.
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APPENDIX A~~INPLEHENTATION ON THE HP 1000.

The source exists on several files on FMGR cartridge JC.
The names of all source files on the account start with the ©°&°*
character. The source files associated with the input translator
start with the tuwo character sequence *"&I". The reason for this
will become clear. The relocatables start with “ZI*. At load
time, three mnore files are loaded with the "%ZI" files. They are
"XHEH" which contains the dynamic memory manager, Z%ASLOC which
contains function "IADRS" wvhich returns the address of its
eargunent, and “XZLINK" which is used by the tree-structure overlay

procedure mentioned in the section on the MOTIS-C/BLT interface.

The structure of each source file is now discussed. The
first 1line of each of the source files is a "*CALL" to a file
"SBCONP*" which can be e copy of one of any of “SB1000", "SB6400",
or "SB3000" depending on which comnputer the compile is to take

place.

Once the appropriate file is copied into °SBCOMP®, the
program °"SUBST" may be run, taking as input a source file and
creating o temporary file as output. This temporary output file
nay then be submitted to the FORTRAN conmpiler for the particular

nachine (FTN4 on the 1000, RUNW on the 6400, and FORTRAN on the

3000).

The following pertains to the HP1000. A conpile nmay be
effected be bringing a "&I" file into ED and issuing the command

"JUXCHP". to ED. J)CHP is a ED procedure file which runs *“SUBST"
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on the current file in ED, and generates a temporary file. This
temporary file is then conmpiled. The relocatable file thus
produced is given the same name as the source file but with the
“&" repleced by a *%°, For examnple, the following connmand

sequence to ED will result in the compilation of "&INIT":

E &INIT

yuolrcue

At completion of "I)CHNP" the relocatable file named "XINIT® will
contain the current relocatable version of INIT (in the absence
of conpile errors, of course). The progran mray be loaded by
running ED and issuing the coamand *")JU)JNLD". INLD creates and
executes a file which, wuvhen executed, concatenates all of the
relocatables and runs the system loader., LOADR, on the

concatenation.
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APPENDIX B--USE OF BLT WITH A DESIGN-AID PROGRAMN

BLT may be interfaced with a design-aid progrem in a
straightforward manner. The coanon blocks used by BLT are
contained in &IBLK. The main program is called MAIN calls BLT
and the analysis programns. Thus a call to the main subroutine of

the new progran can be included in MARIN.

R file which describes the nev progream nust be prepared.

The format of this file is:

£yYzzy

CPROGRAN HNANME>

KEYWDS

C(K1> <K2> <K3>

HODELS

CH1> C(KNINNODES>,<MAXNODES>) <NUNPARANSY <P1>=<CV1) (P2>=(V¥2)>

<H2>

GLOBAL
{NODE1> <NODE2> ...

END
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Xyzzy is the passvord that indicates that & new
initialization for e program is being created. This word is
vired into subroutine INIT and should be changed by the
inplenentor. PROGRAM NAME is the name of the program for which
the initializetion is being generated. 1f ﬁn initialization for
this progran exists, it is destroyed and replaced by the new
one. The wuser specifies PROGRAM NAME as the first line of the
circuit description to declare which progrem is to be run. K1,
K2, etc. are keywords which, when encountered as the first
identifier on a user input-line, are treated as analysis
conmands. N1, W2 etc. are the names of the low-level types to be
recognized by the programn. For exanple, if the vord NAND appears
here, the wuser nmay define nmodels of type MAND. MINNODES and
MAXNODES are the minimum and maxinum number of nodes allowed for
elements of this nodel type. HNUMPARAMS is the total number of
paraneters associated with this type. Pl, Vi and P2, ¥2 are
keyvword/default-value pairs. An exanple lovu-level type

definition line is!
NAND (2,9) 2 TRISE=10NS TFALL=2NS

NODE1l, NODEZ2, etc. are defined as global nodes. When these are
encountered any wvhere in the user input that a node is legal,
they are treated as gliobal nodes. Thus if VDD is defined as a
global node, all connections to ¥DD are made to the same internal
node even if ¢the reference to VDD occurs inside a subcircuit
definition. The number of global nodes and their internally
napped values are written out on the analysis file described

below. A sanmple initializaeation is shown in figure 8.
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The initialization file which contains the informnation
generated about each program is called INITXX. When a new file
is generated, it is called NINITX. This filed must be renanmed
and cataloged as appropriate for the local file system under name

INITXX for future use by BLT.

BLT generates three files when run. They are FELSXX,
MODSXX, and ANALXX which contein the intermediate representation
of the elenents, the nodels, and the analysis comnands.
respectively. The files are composed of variable 1length binary
records. The routines wused to read and write them are in &110
and are called RE and WR, respectively. RE and WR wuse file
input/output routines local to each machine. RE reads a record
of the length corresponding to the length of the record written

out by WR.

ANALXX is read first. The first read returns one integer
(the total numnber of nodes in the circuit). The next read is
also of 1length one and returns NGLOBE (the number of global
nodes). The next read is of length HNGLOBE and each positive
integer is the mnapped internal node number for the corresponding
global node. Each non-positive integer indicates that the
corresponding gtobal node was not used in the this circuit
description. Each successive read is of an analysis command.
The first integer is the integer number corresponding to which
command it is Caccording to the order specified in the KEYWDS
section of ¢the initialization file). The second number is the
nunber of paramneters. The remaining entries are the parometers

themselves wvhose characteristics are a function of the type of
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coamand. The file is read until end-of-file.

The nodel file is then read. It alse is read to
end-of-file. Each record contains MNTYPE (the nmodel type),
follouwed by NUMPHS C(the number of parcmeters). The remainder of
the record consists of NHUNPHS real values corresponding to the
parecneters. The size of each paraneter depends on the the nunber
of wvords wused to represent a REAL or DOUBLE PRECISION number on

the particular mnachine.

The elenent file is last. Each etement occup{es a record.
The first entry in the record is the mnodel nuaber NODHUN, i.e.,
MODNUM corresponds to the NMODNUMth record read from the nodel
file. The second entry is NUMNODS C(number of nodes) followed by
NUNNODS integer node numbers. The next entry is OPNS Cnumber of
overriden paraneters) folloved by OPMS integer/real pairs where
the integer is the number of the paranmneter and the real is the

new value.

Analysis nmay then proceed. When post-processing is done it
is desirable to unmap the integer node numbers into the full
signal path nemes. This is accomplished by the following FORTRAN

sequence:

c ... GET INPUT ENVIRONMENT
CALL GETIN

c ... UNMAP NODES

CALL UNMAPCINTND,BUF,LEN)
INTND IS THE INTERNAL NODE NUNBER

OO0

PATH HANE.

-51a-
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c ... LEN IS THE LENGTH OF THE SIGNAL PATH NAME C(NUMBER OF ASCII STRI}

c ... OF LENGTH maxwordlength OR LESS).

c N

c ... RETRIEYE ANALYSIS ENYIRONMENT.
CALL GETAN

Care nust be exercised when variables are referenced between
the calls to GETIN and GETAN. No calls to the memory manager

should be nade at this tine.
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APPENDIX C--FORMAL LANGUAGE DESCRIPTION

The format for the language description is taken from [61.

Non-termninals

lover case. Terninals are upper case.

Literals aeare enclosed in quotes, e.g., "end® is e literal.

Comments are

enclosed in "(" and *")", @.g., ( This is a connent

}. Features that are not inplemented in BLT are indicated by

asterisks (*).

{}
cktdesc -

{3}

prognane =->
(>

title -

{3

stlist =>

{3}
stat -

{?}

elant -)

{}

elnan -

{1}

nodelist ->

«
inlist ->

{)
bindex ->

)
inttist ->

{}

adnan =)

()

paranlist -

(
paraem -

{y
model -

prognane
titte
stlist
"end"
IDENT
STRING

stnt
Istat stlist

elnnt
Inodel
isubdef
elnan spalist mndnamn “:" paranlist

IDENT

lnlist
ftnlist nodelist

IDENT
{IDERT “C(" bindex ®*)"s

INTCORSTe
IINTCOHST "1™ INTCONSTs
IINTCONST ",® intlists

INTCOHST
ITNTCOHST intlist

IDENT

paran
iparan paranlist

expr
IIDENT "=" expr

"nodel” ndnanm Aadtyp °:" paramlist
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{3
ndnan -
{1}
ndtyp -
{}
subdef ->

()

defline =)
{3

expr ->

{3}
tern -2

(]
factor =

{}

exponent -=>

IDENT
IDENT
defline

stlist
“ends®

“model® mdnanm "subckt™

expr "+° ternmns#

Itern

term "2" factorx

{factor

factor "*°
ITDENT
IINTCONST
IREALCONST

INTCONST

exponent*

(nodelist) paranlist



APPENDIX D—-MOTIS-C PROGRAM LISTING :

Persons who wish to obtain the MOTIS-C program may do so from

Doris R. Simpson, ERL Publications Office, 433 Cory Hall, University

of California, Berkeley, CA 94720,
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Legend:

SL —> Simulation language
T —> Translator
S —> Simulator

SL1  [SL2  [SL3
7110 [T21 [T31

l | [
12 [T22 (123

| | |
731 [T32 [T33
] l |

Fig.- 1

Cross—bar switch approach to
translation among three simulation languages
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Legend:

IF —> |nitialization file

ED —> Expanded circuit description

SIF —> Simple interface

UHDL
IFF21F3
BLT
ED
/ \ A\
SIF1 SIF2 SIF3
ST S S3
Fig. 2 Unified lanquage approach to

communication among design aid programs
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INVERTER CHAIN 3 STAGES
MODEL EDRV NMOS: VTO=.8 KP=28U GAMMA=.7 PHI=.6 LAMBOA=0%
- CGB=38FF
MODEL DLOD NMOS: VTO=-3 KP=20U GAMMA=, 7 PHI=.6 LAMBDA=8$
CGB=3@FF
MODEL INP PULSE: 18 8 SN 2N 2N 48N 186N
MODEL INV SUBCKT: (IN OUT) WD=6U LL=8U
EDR OUT IN GND EDRV: W=WD L=6U
DLD VPLUS OUT OUT DLODs W=3U L=LL
ENDS

MODEL INCH SUBCKT: C(IN OUTY WD=5U LL=8U
INV1 IN OUT1 INV: WD LL

INV2 0QUT1 OUT INV: WD LL

ENDS

MODEL LINCH SUBCKT: (IN OUT) WD=12U LL=6U
INCHI IN OUT1 INCH:. WD LL

INCH2 OUT1 OUT INCH: WD LL

ENDS

Fig. S Inverter Chaint Input description




INVI IN1 OUT1 INV: WD=8U LL=7U

INCHI OUT1 OUT2 INCH: 18U 6U

LINCHI QUT2 OUT3 LINCH:

LINCH2 OUT3 OUT4 LINCH: 18U &Y

VIN IN1 GNB INP:  TD=18N

;

SET OUT1 @.3 (0UT2 8.3 OUTI;LINCHI 8.3 O0UT3 2.33
OUT1: LINCH2 8.3 0UT4 8.3

;
SET QUT1s INCH1 8.7 0OUT1s INCH1s LINCHI 8.7$
OUT1: INCH2: LINCH1 8. 7$
OUT1s INCHIs LINCH2 8.7 0UT1s INCH2s LINCH2 9.7
;
SWEEP TIME FROM @ TO 288N BY 2N
PLOT OUT! OUT2 OUT1:LINCH1 OUT3 OUT1s LINCH2 OUT4
PLOT OUT1: INCH1 OUT1s INCHIs LINCH1 OUT1: INCH2s LINCH1$
OUT1s INCHI1s LINCH2 OUT1: INCH2: LINCH2
VPLUS=18Y

s
END

Fig. S (con.)? Inverter Chaim Input desoription
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XYZZY

MOTIS

KEY¥WDS

TRAN VPLUS VBG SET

MODELS

NAND2 3 4 ARA=8 ARL=8 CA=0 CL=8

NOR2 3 4 ARO=8 ARL=Z CO=@ CL=08

ANDOI (1,9) 8 ARA=@ ARO=0 ARL=B CA=@ C0=8 CL=8 NA=@ NC=0

ORANI (2,6) 8 ARO=8 ARA=Z ARL=@ CO=8 CA=@ CL=0 NO=8 NA=§

NMOS (3,4) 38 W=1 L=1 AS=1 AD=1 VT0=8 KP=24.17U $
GAMMA=8 PHI=, 6 LAMBDA=8 CGS=@ CGD=8 CGB=0

PMOS (3,4) 38 Wel L=1 AS=1 AD=] VTO=8 KP=24.17U $
GAMMA=@ PHI=, 6 LAMBDA=@ CGS=P CGD=G CGB-8

C 2 2 C=1PF IC=8

PULSE 2 7 V1=0 V2=8 TD=8 TR=8 TF=8 P¥=0 PER=0

OC 2 2 NH=@ NL=§

GLOBAL

GND @ VPLUS

END

Fig. 8 Sample initialization




VALS:

PLSTS: o=+ | 3 22 4 ---
\I \
SYMBS:

Fig. 9 Sample table
MODEL - SUBCKT ELEMENT
RLINK RLINK L INK
LTYPE LTYPE/LLINK MTYPE
MNAME MNAME ENAME
DPARAMS - [FPARAMS OPARAMS

FNODES NODES

ELEMENTS

Fig. 10 MDLST entries for model and
subckt model. ELST entry.

MRSTT



Legend:

M —> Model entry in MDLST
S —> Subckt model entry in MDLST
E —> Element entry in ELST
ROOT
E4E3E2E
M1 > S2 > M3
EQESK
M4 > SO
\\\>E7EﬂEq.
Fig. 11 MDLST and ELST

MRMDLST



Fig. 12 Exponded-—-Ciréuit Tree Structure
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MODEL ELEMENT

ENTRY ENTRY
MTYPE | MODEL #
# PMS # NODES
PM #1 'NODE #1
PM #2 NODE #?2

# PMS
PMNAME
VALUE
PMNAME
VALUE

Fig. 13 File Structure

HPFSTRUCT
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