

Copyright © 1979, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A UNIFIED HARDWARE DESCRIPTION LANGUAGE

FOR CAD PROGRAMS

by

J. D. Crawford

Memorandum No. UCB/ERL M79/64

17 August 1979

A UNIFIED HARDWARE DESCRIPTION LANGUAGE

FOR CAD PROGRAMS

by

J. D. Crawford

Memorandum No. UCB/ERL M79/64

17 August 1979

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

INTRODUCTION

The advent of LSI and VLSI circuits has generated a great

deal of interest in and enphasis on the use of computer-based IC

design aids. Nany efforts are underway to develop large

integrated design aid systens. These systens typically require

the use of nany prograns and one of the major considerations in

development is the connunication between the prograns.

The prograns that are used in IC design aid systens include

various translation prograns that facilitate nobility anong

levels of a hierarchical circuit design. These levels range all

the way fron specifications for individual transistors to

register diagran descriptions of large systens. Simulation

prograns are available at nany of these levels and take as input

a description of the circuit at that level. The mixed-node

simulator sinulates a circuit described at several levels in the

design tree. Nany of these prograns have been in use for sone

tine and have developed the reliability associated with software

that has been used extensively. It is desirable/ therefore, to

consider the use of existing prograns in a new integrated design

a id systen.

An efficient user environment is one in which the designer

can enter his circuit or systen into the computer once. He can

then edit the design and use available prograns to verify design

and to perforn those functions nost easily effected by a

computer. One nethod of describing a circuit involves graphics

input. Typical forns of graphic input are stick diagrams, logic

- 9 -

diagrams, or actual layout rectangles and polygons. Another

input method uses a textual description language containing

interconnectivity infornation, circuit elements and parameters

associated with the elements. Most modern simulation prograns

include translators of varying sophistication for some textual

circuit description. Thus, in the past, a CAD group supporting

more than one progran has had to require the user to learn more

than one language in which to describe his or her circuits. Each

circuit to be described has had to be translated by hand if nore

than one progran is to be used.

One proposed solution to this problen is the "cross-bar

switch" approach til. A parser-generator is used to create

translators that nap each input language to every other. This

approach allows the user to use a language to which he is

accustomed and to translate his circuit descriptions under

progran control for use with other simulators. Each circuit

description is translated twice. One translation is from the

user source to the progran source. The other is from the program

source into the internal circuit description. N languages and N

prograns require N*H translators. The schene is detailed in

F igure 1.

A second approach C23 uses at least one hi-level language

and an intermediate language. A translator exists from each

hi-level language to the intermediate language. Another

translator is used to translate fron the intermediate language

into the input language of each design-aid program. Among the

advantages of this schene are that only N+PI translators are

-3-

required for N languages and H prograns and that the design-aid

programs need not be altered for use in the scheme. However,

three separate translations are required each tine a progran is

used .

A third approach to the problem is to use a single, powerful

description language coupled with information about each "target**

design aid progran C33. It is this approach which is presented

here. The general schene is shown in Figure 2.

The unification of the textual input descriptions of

circuits has two najor advantages. The first is that the

circuits described are readable not only by any of the prograns

used at a facility, but also by all users and are therefore

appropriate for documentation. The second is that in the

development of new sinulation prograns very little attention must

be devoted to input translation. This last feature arises since

the unified description language is implemented in a single

stand-alone translator which generates a fully expanded

intermediate language <analagous to the internediate language

generated by a typical compiler). This internediate language is

very sinple to read* allowing the translator associated with each

simulator to be of a very sinple nature. Thus there is only one

translation program to maintain. Development of new sinulation

tools is expedited since the program designer can focus the vast

majority of his attention on the progran algorithns and their

inplenentat ion .

-4-

This report is divided into three parts. The first part

consists of a description of the language and the goals of

implementation. The second part presents a detailed description

of the inplenentation with reference to an exanple use with the

timing sinulator HOTIS-C C43. The third part briefly describes

the perfornance characteristics of the program. Possible

extensions and enhancements to both the language and the

inplenentation are discussed in the conclusion.

-5-

LANGUAGE GOALS

A language capable of perforning the functions herein

described must be both flexible and attractive to the user. A

new user should be able to learn the language quickly; yet there

nust be the power and flexibility required by the nore

experienced user. The second najor requirement is the

flexibility to describe circuits adequately at all levels of

structure, i.e./ from the register diagram level and higher down

to the transistor level.

It was decided that since there has been a great deal of

experience with the SPICE2 input language, the unified language

would use the SPICE2 language as a basis. The large body of

experience with SPICE2 has both shown the strengths of its input

language and clearly defined areas in need of enhancenent.

Features nay be added based on denonstrated need rather than

speculation. Therefore, the use of the SPICE2 language as a base

facilitates meeting the first requirement stated above.

Some of the enhancements that users have requested over the

years are the ability to:

1) use signal-path nanes to describe nodes,

-6-

2) pass parameters to subcircuits,

3) access nodes internal to subcircuits for output,

4) use arithmetic expressions and functions

The parameter passing capability combined with the function

evaluation provides a useful nechanisn for translation anong

levels in the design tree. Thus the subcircuit definition

facility, suitably revised, sinplifies satisfaction of the second

requ irenent.

A detailed description of the SPICE2 input language is

available in £53 and is not given here. The fornal specification

of the unified input language appears in APPENDIX C. The

language is divided into two parts. The first, a structural

hardware description language, is described below. The second,

an analysis and output processing control language, is covered

later in br ief.

The description language is based entirely on two familiar

concepts. The first is the circuit element which has some number

of signal paths associated with it (The terns node and signal

path are used interchangeably). Each element is of a certain

type and refers to a nodel of that type. The second is the nodel

of a class of circuit elenents. There are no inherent

restrictions on the magnitude of the block being modeled and thus

a nodel nay be of a transistor, a logic gate, an ALU, or an

ent ire computer.

-7-

Some preliminary concepts nust be clarified before defining

what is neant by the term model. Everything that is eventually

input to a sinulator nust be in terns of the "low-level types"

that it recognizes. A typical sinulation progran, i.e., the

analysis portion of a sinulation program, is capable of

recognizing (and analyzing) certain "low-level types." An

exanple of a low-level type for a circuit sinulator night be a

resistor of resistance R with two tenperature coefficients TCI

and TC2. A more conplex example is the HOS transistor with

thirty parameters. A low-level type for a logic sinulator night

be an N-input NOR gate with a rise time TR and a fall tine TF. N

might be limited to values from N=l Can inverter) to N=8 (an

8-input NOR gate)

Two features are common to all low-level types. First there

is some inherent interconnectivity information. A resistor is

usually assumed to be a two-terminal device. In nany practical

cases, the terminals are interchangeable. The NOR gate has a

variable number of terminals, but they are not interchangeable.

For exanple, the output node has different properties than one of

the inputs. Secondly, parameters are associated with each type.

These are nominally given a nane and a default value.

Furthermore there may be a class of values that are considered

unreasonable for a particular paraneter.

Circuit and hardware description languages designed for use

with a particular progran contain a hierarchy which is ultimately

based on the low-level types recognized by the progran. A rough

analogy nay be drawn to a high-level progranming language and the

machine language of a particular computer. An approach to the

resolution of the inconpatabiIity of the target prograns is

presented in the section on tailoring.

A circuit description language consisting only of elenents

can thus be envisioned. Each element would have a low-level type

name, interconnectivity infornation, and parameter values

associated with it. A description of this nature would be very

lengthy and would be tailored entirely to one particular

simulator. The concept of the nodel is introduced in order to

help alleviate these two problens.

A nodel nay be used in one of two ways. First, there may be

several components of a circuit of the sane low-level type. Host

or all of the parameters may be the same for some subset of these

components. A nodel is then defined for this type, specifying a

nodel name and values for sone or all of the parameters

associated with the type. Elenents nay then refer to this nodel

nane instead of to the low-level type. Only parameter values

differing for this element need be specified. The effect of this

type of nodel is to provide a mechanisn by which the user can

subdivide low-level types and assign his own nanes to the

resulting models. This is achieved by providing a set of

parameter values different fron the default values specified by

the progran. The nodel of this type is input as shown:

nodel <ndnan> <mdtyp> (<paramIist>)

where

-9-

<paranlist> ::« C<param> « <value>3 I C<value>3

Exanple:

nodel mose nmos (vto=0.7 kp=20u phi=0.7 ganna=0.6 lanbda=0.0)

or

nodel nose nmos (0.7 20u 0.7 0.6 0.0)

An example use of this type of model is a circuit using NMOS

enhancenent and depletion devices. Two nodels, HOSE and HQSD are

defined which specify all process paraneters. Geometrical

parameters are specified with each element description. The

nodel name on the element description immediately tells the

reader whether the device was enhancenent or depletion.

The structures of which circuits are composed nay be built

from lower-level components. In the exanple just given, the

logic NOR gate nay be built out of H0S transistors. Likewise a

storage cell nay be built fron the NOR gates and some other

parts. Several storage cells may form a register. Several

registers may form a bank.

The second najor role of a nodel is to permit the user to

design an arbitrary structure fron the available low-level

types. The nodel definition consists of elenents and other nodel

definitions which are local to the nodel being defined. This

inparts a block structure to the nodel definition schene sinilar

to that found in ALGOL-like progranning languages C63. The first

line of a nodel definition of this type (type subcircuit)

provides a nodel nane and other infornation to be used within the

definition. This infornation consists of (fornal) signal path

-10-

names, (format) parameter names, and default paraneter values

local to the definition. Thus on a particular invocation of the

nodel, i.e., on an elenent description line, actual

interconnectivity infornation and actual paraneter values are

passed.

These two general forns of nodel permit convenient napping

anong levels of simulation as well as providing a powerful neans

of describing an arbitrarily conplex circuit.

Once the two types of nodel described above are understood,

the concept of the general circuit elenent is innediately

apparent. The elenent description consists of an elenent name,

interconnection infornation, a nodel nane and paraneter

infornation. Parameters specified with the elenent description

override the corresponding paraneters on the nodel. Thus, for a

particular elenent description, the nature of the nodel to which

it refers is completely transparent: It nay be a low-level type

specific to a particular simulator. It may be either of the two

forms of models described above, or it may reside on a systen

library. The form of the elenent description line is:

<elnan> <nodelist> <ndnan> (<paramIist>)

where

<nodeli st> J := £node3

<paranlist> ::= C<paran> * <value>3 I £<value>3

Exanples

alul s2 si sO databus< IS:12> alu (tsettle =40n2)

-11-

nl vout vin ground bulk nose (lOu 5u)

A sample circuit and its description is shown in

Figures 3, 4, and 5.

-12-

IHPLEHENTATIQN — GENERAL CONCEPTS

A large subset of the language is implemented at U. C.

Berkeley in a stand-alone progran called BLT (Berkeley Language

Translator). A second inpl enentation called TEKSIH exists at

Tektronix Inc. £73. Only BLT is described here. BLT takes a

circuit description in the unified hardware description language

as input and outputs a circuit description in internediate forn.

Two progran design criteria are portability and the ability to

run on a niniconputer. Due to address space limitations

associated with sone ninicomputers, disk I/O has been used

extensively. Nominally, the inplenentation is designed to

operate as follows: A circuit description is read in. It is

parsed and translated into a fully expanded forn consisting of

nodels of low-level types and elenents referring to these

models. All paraneter values are assigned. This infornation is

written to two disk files, a nodel file and an elenent file (see

Figure 6). A simulation program nay then read the nodel file,

set up the models internally, and read the element file.

One useful environment for BLT uses a main control progran

which is given a circuit description and the nane of the program

CHOTIS-C, SPLICE, etc.) to be run. The control progran calls BLT

to translate the circuit description using the appropriate

initialization file (see the section on tailoring below). The

control progran then interprets analysis and output commands

(using BLT routines) to control analysis and output (see

F igure 7).

-13-

TAILORING

One of the fundamental considerations in the implementation

of this type of unified language is the fact that nearly every

design-aid progran, even within a given class, recognizes

different low-level types.

The differences are often transparent at higher language

levels. For exanple, as mentioned above, one can describe a

logic gate (low-level type for a logic sinulator) in terns of

transistors. Thus a NOR gate elenent nay refer directly to a

low-level type or to a subcircuit nodel which defines that type

in terms of other low-level types. The model may be local to the

description or nay reside in a library.

The unified-language translator nust be able to provide

infornation that is immediately useful to a particular target

sinulator. One proposed solution £83 takes whatever information

is specified by the user and places it in a data base. Each

sinulator then searches for and uses whatever subset of the

available infornation it can recognize. Thus, for exanple, the

circuit simulator above would have to provide, or somehow have

available, subcircuits for logic gates built from transistors. A

circuit sinulator that recognizes one paraneter and another which

recognizes a related paraneter instead have no means of

connunication with the user. For exanple, if a sinulator of

bipolar transistors recognizes TAUF and the user specifies FT (a

paraneter that is nathenatica11y related to TAUF), the error

cannot be recognized until nuch later. These types of problems

-14-

are better resolved at input-translation tine.

Another proposed solution £33 specifies that each design-aid

progran be provided with exactly that subset of all possible

descriptions which it can make use of. Thus, the output of the

input-translator should generate a file consisting of a circuit

description based on the low-level types and parameters for those

types that each progran recognizes. When the author of a

design-aid progran wishes to interface his/her product to the

translator he creates a description of his progran. This

description lists the names of the low-level types his progran

handles. The names, default values, and order of the parameters

associated with each type, and the number of nodes for each type

are specified with the type. A special, one-tine run of the

tranlator generates an "initialization" file fron this list for

the target progran (see APPENDIX B and Figure 8 for instructions

and an exanple respectively). When a user wishes to simulate a

circuit* he provides the translator with the circuit description

and the name of the simulator to use. The translator then reads

the appropriate initialization file and does all appropriate

error-checking. The user is informed as to what infornation is

still needed to run a particular design-aid progran.

If the logic-gate/transistor exanple nentioned earlier is

examined for a nonent, the following points are observed: First,

a description consisting of logic gates can be modified to run on

a circuit sinulator very simply. A subcircuit is provided for

each general gate type built from transistors. The paraneters

for the logic description, typically delay times, are passed into

-15-

the subcircuit and can be used, for instance, in conjunction with

the function evaluation capability to generate aspect ratios.

The user has the option of maintaining a library of such

subc ircu its .

If the reverse situation is considered, the difficulties are

nore severe. Suppose a description exists consisting entirely of

transistors (say extracted directly fron the IC artwork). A

separate program must be used to extract logic gates from the

transistor description. If this gate extraction progran uses the

internediate language for the circuit sinulator, a logic

description can be generated in the unified input language and

the designer is left with the sinple case described above. The

use of subcircuit models in the file or on a library is all that

is then needed.

The approach of tailoring the internediate file to each

"target" progran addresses three important issues. First, it

minimizes the effort required for a design-aid progran to read a

circuit description. Second, useful feedback is provided to the

designer (or possibly to another progran) regarding what

infornation has not yet been provided for a conplete

characterization of the circuit. Third, since the tailoring

concept is quite general, the types of nodels and paraneters are

not limited in any way. A nodel could be of a rectangle or a

polygon. The paraneters would then be co-ordinates. A nodel

night be of an entire IC package and the spec-sheet infornation

could be specified in the paraneter list. The inportant thing to

note is that the interface is not limited to use with

-16-

simulators. Example programs which could interface to the

internediate language are translators which go up the design tree

using pattern matching techniques to locate higher level

structures. Placenent and routing programs or other utilities

could be interfaced. If this concept is extrapolated somewhat,

the problen of interfacing a nunber of programs to form an

integrated IC design systen could be substantially reduced by

interfacing to a sinple internediate language.

There are sone other features incorporated into the

tailoring schene. First, global nodes nay be specified. These

nodes are electrically connon. Typical global nodes night have

the names GROUND or VCC. They nay then be referenced within a

subcircuit nodel without being fornally declared on the

subcircuit nodel definition line.

The second feature is the ability to specify key first words

for special statements for the target program. For example,

MOTIS-C requires a statnent of the forn:

VPLUS=<value>

The inclusion of VPLUS as a keyword in the initialization file

enables a small routine to be inserted which uses BLT utilities

and translates the line according to a specified fornat.

-17-

IMPLEMENTATION--PROGRAFI DETAILS AND DATA STRUCTURES

The implementation of the language is described in detail in

this section. The subset of the language that is inplenented is

detailed in APPENDIX C. The progran is written in FORTRAN IV.

The progran is currently running on an HP Series-lOOO E under the

RTE-IVA operating systen at U. C. Berkeley. It is also running

on the CDC 6400 at U. C. Berkeley. It is further designed to run

on an HP 3000. In order to achieve this portability without

Maintaining several versions, the following approach is used:

Standard FORTRAN-IV is used throughout. However, where machine

dependent coding occurs (usually related to I/O and character

nanipulation), a superset of FORTRAN which requires a

pre-processor called SUBST is used. SUBST is available on the

U. C. Berkeley IC-CAD research nachine (HP 1000). It is also on

the HP 3000 contributed library. SUBST recognizes two

spec if icati ons :

1) a statenent of the forn

*CALL FNANE"

results in the inclusion of the contents of file FNAHE

at the point of the call.

2) A statenent of the forn

s/this/that/

changes all occurrences of 'this' to 'that.'

-18-

If SUBST is not available at an installation* a snail

progran nay be written to perform these two functions. The

translator uses the functions in four ways:

1) The *CALL feature is used to include files of

substitution connands. These *CALL's appear at the

beginning of each source file.

2) The *CALL feature is used to include COMMON blocks.

Thus change to a COMMON block requires no further

adjustnent other than reconpiI ation of the affected

rout ines.

3) The substitute feature is used to substitute values for

constants, for exanple, the nunber "80" for the pattern

•1inelength."

4) The substitute feature is used to substitute either

nothing or a nC" in the first column as appropriate for

statenents of the forn

if computer==<computertype> <fortran statement>

if computer!=<computertype> <fortran statemen)

where

<computertype> :: = 1000 I 3000 i 6400

-19-

<fortran statenent> :?= (any legal FORTRAN statenent)

The details of the use of SUBST and the source file

structure are given in APPENDIX A.

BLT uses a nenory manager that was originally written for

SPICE2. This manager is currently running on several machines

including a CDC 6400, an AMDAHL 470, and an HP 3000 £93. The

manager controls nenory in a large array fron which tables nay be

allocated, extended, released and cleared. BLT maintains an

integer array IHEM equivalenced to REAL array RMEM and to COMPLEX

array CMEH. The starting address of IMEH is passed to the

manager at the start of the progran on the HP machines. On the

CDC nachine, the address of the first word of data storage (BLANK

COMMON) is passed and the limit to memory growth is determined by

the total anount of memory available on the nachine. The calls

to the nanager are described below. Further details on the

nenory nanager are available in £103.

1) CALL SETHEH(starting address, memory size) initializes

memory.

2) CALL GETM4(pointer,length) gets a block of integer

nemory of length 'length'. Pointer is set to offset of

f irst word.

-20-

3) CALL GETM8(pointer,Iength) gets a block of double

precision real nenory of length 'length'. Pointer is

set to offset of first word.

4) CALL CLRHEM(pointer) releases the entire block and

renders 'pointer' meaningless.

5) CALL EXTMEM(pointer,amount) extends memory block

starting at 'pointer' by 'amount' words (of type of

block)

6) CALL RELNEH(pointer,anount) releases amount of words

fron block referenced by 'pointer'.

7) CALL SIZMEM(pointer,size) returns size of block

referenced by 'pointer' in 'size'

The nain data structures in the progran are maintained in

IHEM by the nenory nanager. All tables are of integer type with

the exception of two* SYMBS is a table of type real which

contains all strings used by the progran. A string, as used

here, is up to eight characters six on the HP 1000) left

justified in a word with right blank fill. VALS is a table of

type real which contains all real values used in the progran.

SYMBS and VALS are double precision real on the HP nochines.

SYMBS and VALS are accessed by integer functions

FNDVR(identifier) and PTVAL(vaIue), respectively. Each function

returns an integer corresponding to the location of the

identifier (or value) in SYMBS (or VALS). This location is

-21-

ascertained by a linear search for a natch in SYMBS (or VALS).

If no natch is found, the new identifier (or value) is appended

to the end of the table. If it is found that the linear search

results in a serious performance degredation, a hashing schene

may be implemented that is completely transparent to the rest of

the progran by rewriting only these two routines.

The integer pointers returned by FNDVR (or PTVAL) are used

to represent the strings (real values) everywhere else in the

program and data. Thus, only one copy of a particular string

(value) appears in the data. The advantages of this schene are

threefold. First, significant space savings result when using

nochines that have nultiword real and string storage. Secondly

all compares are integer operations which are faster on the above

nochines. Third, since no type nixing is required, and the

strings and values are isolated, portability and simplicity are

enhanced.

In general the following convention is used in the integer

tables. Pointers to other tables are positive. The first entry

in a table of pointers to strings and values is the length of the

table unless the size of the table is predefined. The remaining

entries are positive and negative integers indicating strings and

values respectively (see Figure 9).

References in this report to strings and values will in fact

be to the integer pointers. The word 'address' refers to an

offset in a table. For exanple, in a description of the table

MDPARS, 'address' means IMEM(MDPARS+address) .

-22-

PROGRAM STRUCTURE

BLT is divided into three logical sections. They are (1)

initialization, (2) parsing, and (3) setup and disk file

creation. These three sections are treated in order.

-23-

INITIALIZATION

A nunber of tables are set up at initialization. FRSTUD is

a list of keywords. It contains the words "MODEL", "ENDS" and

any command keywords ("PLOT", "SWEEP", etc.). This table is

searched to natch the first word on an input line. If a natch is

found, the appropriate routines are called to handle the rest of

the line. MDTYP, and MDPARS contain the types of nodels known to

the simulator, and the locations of the default paraneter lists,

respectively. NDMIN and NDMAX contain the minimum and naxinum

nunber of nodes associated with each type of nodel. All four

tables are of the sane length. The entries in these four tables

are a function of the target progran for a particular run. The

tables are called "parallel" in that the ith entry in each

contains infornation about the sane item (in this case a nodel

type). The ith entries in the four tables constitute a C

STRUCT £113 or PASCAL RECORD £63 containing information about a

nodel type. The first entry in each is the number of model types

(if the first entry is 'n' then n entries follow and the size of

the table is n+1). n is the nunber of low-level nodel types

defined in the initialization file for the target progran.

DEFVRS and DEFVAL are also parallel tables. Each is a table of

tables. Each entry in MDPARS points to a table in both DEFVRS

and DEFVAL. The first entry in a DEFVRS or DEFVAL table is the

length or nunber of paraneters 'n' . The next n entries are the

paraneter nanes (DEFVRS) and the default values (DEFVAL).

-24-

Initialization is accomplished by reading a data file into

the tables described above. This file is created in a special

run that is done once for a particular sinulation program. The

special run is used to define nodel types recognized by the

progran. The paraneters, their order, and their default values

are defined at this point as are additional keywords to be

recognized in FRSTWD.

-25-

THE PARSER

The parser is technically a parser and senantic analyzer.

It handles topological infornation and analysis requests. When

an input line is read, the first word is scanned and table FRSTWD

is searched. If a natch is found the appropriate routine is

called. The elenent line has no entry in FRSTWD and is

recognized by the absence of any of the features that define the

other types of input lines.

The primary translation of the topology description is

detailed below and in Figures 10 and 11 The nodel definition

structure resides in HDLST. Since a nodel of type SUBCKT is

treated as a macro definition containing elenents and models

(which nay be of type SUBCKT) the inherent definition structure

is a nulti-way tree. This tree is represented as a

right-threaded binary tree £123. Lou level models have no

descendants and consist of four integers:

1) RLINK: a (positive) pointer to the right brother or a

(negative) pointer to the father,

2) LTYPEs a (positive) pointer to the entry in MDTYP

corresponding to the model type,

-26-

3) MNAME! a pointer to the name (in SYMBS), and

4) DPARAMS: a (positive) pointer to the parameter list in

PLSTS.

A nodel of type SUBCKT has six entries:

1) RLINK: a (positive) pointer to the right brother or a

(negative) pointer to the father,

2) LTYPE/LLINK: '0' if there are no nodels defined within

the model or a (negative) pointer to the first son,

3) MHAHE: a pointer to the nane (in SYMBS),

4) FPARAMS: a pointer to a formal parameter list in

DEFVRS and DEFVAL,

5) FNODES: a pointer to the node list in NDLST, and

6) ELEMENTS: a pointer to the elenent list.

The tree just described is built as the nodels are read.

The tree is developed with the aid of OPTSTK, NUPTR, OLDPTR and

ANCPTR. OPTSTK is a stack which reflects the nesting of the

models. HUPTR is the new nodel entry. OLDPTR is the previous

nodel entry. ANCPTR is the parent or model within which the

current nodel is defined. The ENDS line marks the end of the

current model of type SUBCKT. This indicates that OPTSTK should

be popped and a pointer established fron the last model to the

parent.

The element lists are linked list structures all of which

are in ELST. Each entry consists of five integers:

1) LINK? 'nil' (the lost entry) or a pointer to the next

entry,

2) HTYPE: the elenent type (to be later matched with a

model nane),

3) ENAME: a pointer to the elenent nane (in SYMBS),

4) OPARAHS: nil (no paraneters specified) or a pointer to

a list of overriding paraneters in LKEYS (the keywords

or entries of '-1' depending whether keyword or

positional paraneter specification is used) and EPLSTS

(the values of the paraneters), and

5) NODES: a pointer to the nodelist in (NDLST).

The structure of MDLST and ELST is shown in Figure 11. The

structure of each nodel and element is shown in Figure 10.

OELSTK is a stack of pointers to elements reflecting the

nested structure of the nodel definitions. Thus, as a SUBCKT

MODEL definition is entered, the position of the current elenent

is pushed and a new list is started for the new SUBCKT MODEL.

-28-

When an ENDS input line is encountered, OELSTK is popped and the

elenent list may be continued. OELSTK operates in parallel with

OPTSTK (see above). Together they contitute a C STRUCT (PASCAL

RECORD) of information to be saved on entry to a SUBCKT MODEL

definition. OELPTR is the last elenent. NELPTR is the current

elenent.

If no errors are discovered in the circuit description, the

parsing part of the progran leaves a tree of nodels in MDLST. An

elenent list is associated with the root and with each SUBCKT

node I.

Analysis commands are handled in a sinple nanner. An

attempt has been nade to provide facilities to allow a control

progran to read analysis commands \nterpretively. At present,

they are read by BLT into a table called IANAL. Each type of

command has an integer associated with it which corresponds to

its position in FRSTUD. When a command is read, the appropriate

routine is called and an entry in IANAL is made. The entry

consists of

1) LENGTH: the length (in integers) of the connand entry,

2) ANTYPEJ the connand type (as described above), and

-29-

3) COMMAND? the specifications of the command (the format

and neaning of the specifications is inherent in the

value of ANTYPE).

-30-

THE SETUP PHASE

After the topology has been completely described, the 'GO'

connand initiates the setup phase and if no errors are found the

disc file is created.

First, all non-SUBCKT MODELS, both those locally defined and

the low-level type default nodels are written to disc. During

the parse phase described above a table is maintained whose ith

elenent points to the MDLST entry of the ith model read in. This

table also reflects the order in which the models are written

out. Entries for the low-level types (the entries in MDTYP) are

created at this tine. The setup phase requires four additional

tables CKTREE, CKTEL, NDMAP, and NM2. CKTREE is built in the

setup phase and reflects the calling sequence specified by the

elenent lines. It is a nultiway tree in which a path exists

upward fron each leaf to the root. CKTEL contains pointers to

the leaves of the tree defined in CKTREE. The leaves compose the

actual circuit, and the upper nodes ore the subcircuits which

were expanded to produce the final circuit. Each node in the

tree consists of three entries:

1) PARENT: a pointer to the next level up the calling

sequence,

-31-

2) ELEMENT: a pointer to the elenent (in ELST), and

3) MODEL: a pointer to the nodel (.in MDLST).

A CKTREE entry is shown in Figure 12 along with the

structure of CKTREE and CKTEL.

CKTREE is built as follows: The element list associated

with the root is expanded. If the nodel type of an element is

SUBCKT, the current entry is pushed on OELSTK and the elenent

list of the SUBCKT is expanded. The actual nodel to which an

elenent refers is determined by notching the elenent type with

all model names in the current level. If no natch is found the

next level up is searched. If no match is found at all, MDTYP is

searched. If there is still no natch, an error is generated. If

a match is found in MDTYP it is put in CKTREE as negative to

indicate the nodel was not defined locally to the circuit

description. If a notch is found in MDLST, then CKTREE is traced

upwards from the current position. If the same nodel is found, a

recursive situation exists and on error is generated. If no

recursion exists, there are two possible cases: (1) the model is

o type other than SUBCKT or (2) the model is of type SUBCKT.

Case one indicates that the elenent is on elenent of the

circuit. The paraneters and nodes are notched. An entry is

created in CKTEL and the process continues. Case two requires

that the current elenent be pushed and the element list

ossociated with the nodel be expanded.

-32-

Whenever a case one element is found it is output to the

elenent file. In order to do this, all parameters and nodes nust

be 'bound'. Each node nane is resolved by searching the list of

formal nodes associated with the current subcircuit model (the

one being expanded). If the node is not there, it is local to

this SUBCKT and its full pathname is:

thisnode : thissubckt : nextlevelup : etc ? root.

If the node is a formal node passed into this model then the

elenent of the next level up in CKTREE is searched for the actual

name used for this formal node. The above procedure is repeated

on this nodenane, treating it as the formal node. This goes on

until the level at which the node is local is reached. Thus the

resolution of references to nodes is also block structured.

A parameter is resolved in the sane way os a node with one

exception. If the paraneter does not appear on the SUBCKT call,

the default of the SUBCKT nodel is returned. If a value is

passed at any level that value is returned.

A nodel on the file is setup in the following fornat.

1) The low-level nodel type (pointer to MDTYP)

-33-

2) The nunber of paraneters for this type

3) The values (real) of the paraneters for this nodel

An elenent on the file contains this infornation:

1) The file nodel referred to (sinply 'i' for the ith

nodel on the nodel file).

2) Nunber of nodes

3) the nodes (internal...sinpIe integers).

4) Nunber of overridden paraneters.

5) paraneter pairs consisting of

a. The paraneter nunber (integer)

b. The new value of the paraneter <real)

Figure 13 shows the structure of the nodel and elenent files and

sanple entries.

-34-

INTERFACE OF MOTIS-C WITH BLT

HOTIS-C is a tining sinulator written at U.C. Berkeley based

on the HOTIS progran developed at Bell Laboratories £133. It

runs on the CDC 6400 conputer on canpus. The progran was put up

on an HP 1000 conputer in order to develop an interface which

would pernit HOTIS-C to read the internediate file generated by

BLT.

The structure shown in Figure 7 roughly describes the

overlay structure of the two prograns. Since the overlay

structure available on the HP 1000 does not allow return fron an

overlay, a utility was developed locally to pernit the usual tree

structure overlay to one level. If a linearly linked overlay

structure is all that is available, the calls to the segments nay

be renoved fron the nain routine. Since the segnents are called

in order, the linear structure nay be imposed by putting the call

to the next segnent at the end of the current segment. The last

segnent nay then call the first segnent to deternine if nore

processing needs to be done. In the actual implementation of the

BLT/HOTIS-C progran* MAIN calls the overlay segments INIT, PARSE,

PASS2, RDHOT, TRAN, and PLOT directly.

One major change was nade to HOTIS-C prior to interface with

BLT. The fixed array data structures originally in the progran

were replaced with data areas dynanically nonaged by the HPSPICE

nenory nanager. It should be noted that this change is in no way

related to the fact that BLT uses this nanager. It was done

solely to increase the power and flexibility of the MOTIS-C

-35-

program, enabling it to handle larger circuits.

The subroutine READN and its associated scanning subroutines

were replaced by a set of routines that read the BLT internediate

file directly into the HOTIS-C data structures. The structures

are unchanged fron the original version, except for the

incorporation of the dynamic memory managenent.

Once the circuit description is read in, analysis nay

proceed. During analysis, the voltages at each plot point are

written to disk. The results are then read and plotted by the

plot routine PLOT. Utilities are provided which enable PLOT to

swap out the analysis environment, swap in the input environment,

and UNMAP the internal node numbers to the full user specified

node path names. These nay then appear on the output as

appropriate. The output fron the inverter chain shown in

Figures 3, 4, and 5 appears in Figure 14.

-36-

PERFORMANCE CHARACTERISTICS

BLT was found to run about twenty-five percent slower than

the SPICE2 input routines on the CDC 6400 conputer. A progran

counter frequency distribution progran was run on BLT to study

the dynanic behavior of the progran, i.e., where BLT spends its

tine. BLT spends about seventy percent of its tine doing three

tasks.

The overhead incurred when extending a block of nenory is

somewhat greater than is desirable, i.e., a good deal of time is

spent in routines COHPRS and C0PY4. This is a function of the

design of the nenory nanager, whose behavior is optimized for use

with only a few blocks of nenory. BLT uses about twenty.

Changes to the nenory nanager which would substantially increase

perfornance in this area could be effected transparent to BLT.

Additionally, C0PY4, which noves blocks of nenory fron one

location to another, nay usually be speeded up dramatically by

coding it in assembler Cas in SPICE2).

Character manipulation in scanning routines GETCHR, GTCRD

and GETWD is tine-consuming. This difficulty is circumvented in

SPICE2 by neans of packing eight characters into a word and using

the assenbly routine MOVE to extract bytes.

Appreciable tine is also spent in routine FNDVR which does a

linear search of the table SYMBS (where all strings reside).

This search corresponds approximately to the symbol table search

in a conpiler. The linear search is adequate for snail jobs but

-37-

a schene such as the following should be implemented for use on

larger circuits! An integer hash table and an integer table of

pointers parallel to SYMBS can be allocated. These tables, in

conjunction with a hash function with nodulus the sane size as

the hash table can be used to implement an efficient hashing

schene with collision resolution by chaining £143. This schene

approxinately doubles the nenory required to store the strings on

the CDC nachine and increases the nenory by thirty-three percent

and twenty-five percent for string storage on the HP 3000 and

HP 1000 respectively.

-38-

CONCLUSION

The developnent of the translator BLT and the interface to

the tining sinulator HOTIS-C raised a nunber of interesting

issues. BLT, in expanding the circuit description to the

simplified internediate forn, retains a great deal of infornation

that nust be connunicated to other routines for useful feedback

to the user to be acconplished. For exanple, the internal node

nunbers nust be unnapped for output plotting, as mentioned in the

previous section.

Another issue that arises is that of responsibility for

error-checking. Certain types of errors, e.g., syntax and

invalid paraneter nanes, nay be detected by BLT. Those errors

particular to the "target" progran nust be checked for by that

progran. For exanple, a general translator such as BLT has no

way of knowing that MOTIS-C requires a finite capacitance at all

non-voltage-source nodes.

The concepts presented in this report can be generalized. A

single input language can be used in an environnent wherein a

nunber of design aid prograns are available under the control of

a nain progran. A translator such as BLT can be used by the nain

progran to translate circuit descriptions in the unified input

language for use by the other prograns. The sane concept could

be applied to a graphical input systen. Another approach night

translate graphical input into the unified language for

docunentation purposes. A graphics-macro would map directly into

a subcircuit. Libraries and user definitions would be available

-39-

to provide information about low-level types for particular

prograns. The general concept of using a connon structural

design language as a data base is described in £83. A single

translator such as BLT, coupled with initialization files for

each design aid progran provides a powerful tool. It takes

infornation fron various sources and expands it into a forn that

nininizes the conplexity of the front-end of each design aid

progran. While a translator such as BLT has limited use on its

own, it can becone a most powerful utility in an integrated

design aid systen.

Future work on BLT nay involve the addition of an arithmetic

expression and function evaluation capability. Generalization of

signal-path nanes to include busses and parts of busses would be

worthwhile. BLT would be nore powerful if a library is searched

for resolution of nodel nanes, i.e., during the set-up phase,

when no user defined nodel is found for an elenent, a library

should be searched before searching the table of low-level

types. A schene of this type is used in the TEKTRONIX

inplenentation of the Berkeley language, TEKSIM £73.

BLT, in its current inplenentation, provides only skeletal

facilities for the incorporation of analysis connands. A

powerful connand language needs to be developed. An immediate

need is to enhance the initialization facility for analysis

connands to allow the CAD progran designer to have BLT parse then

accordingly. This would nake it as convenient to add or alter a

connand as it currently is to add or alter a nodel type. This

enhancenent could nake use of routines already written.

-40-

Current work at Berkeley includes interfacing the nixed-node

sinulator SPLICE £153 to BLT on the CDC 6400. MOTIS-C is being

interfaced to BLT on the CDC nachine as well.

-41-

ACKNOWLEDGEMENTS

There are a great number of people without whose help and

support this work would not have been possible. I would like to

thank ny research advisor, Prof. D. 0. Pederson, for his constant

encouragement and vision throughout the developnent of BLT. I

would like to thank ny wife Angela for her patience and

understanding for the duration. Prof. A. R. Newton was

instrumental in the fornulation of the project and his ideas and

interest were invaluable. E. Cohen provided constant help with

progranning problens and an excellent software environnent in

which to work. Prof. R. W. Dutton and his research group at

Stanford University were also instrumental in the developnent of

the project. R. I. Dowell and L. Scheffer of Hewlett Packard

were extrenely helpful and provided a great deal of practical

expertise. Nunerous discussions with G. R. Boyle of Tektronix

Inc. on the issues involved in the implementation were

invaluable. The financial support of Hewlett Packard and the

encouragenent of H. Brooksby and R. C. Smith are gratefully

acknowledged. Finally I would like to thank all of ny colleagues

in the U. C. Berkeley IC-CAD group who provided a good working

environnent as well as a vast anount of expertise in all areas

related to the project.

-42-

REFERENCES

£13 R. I. Gardner, "A Universal Translator for Digital

Design Tools,* private communication, Hughes Aircraft

Co.

£23 L. A. O'Neill* etal, "Designers Workbench--Efficient

and Economical Design Aids," 16th Design Automation

Conference Proceedings, 1979.

£33 J. fr. Crawford, A. R. Newton, D. 0. Pederson, and

G. R. Boyle/ "A Unified Hardware Description Language

for CAD Prograns," 1979 International Symposium on

Conputer Hardware Description Languages and their

Applicati ons.

£43 S. P. Fan, H. Y. Hsueh* A. R. Newton, and

D. 0. Pederson* "MOTIS-C: A New Circuit Sinulator for

MOS LSI Circuits," in 1977 IEEE International Synposiun

on Circuits and Systens Proceedings.

£53 E. Cohen* A. Vladinirescu, and D. 0. Pederson, "SPICE2

Users Guide*" Department of Electrical Engineering and

Conputer Sciences, U. C. Berkeley, Version 2E.3* April

20* 1979.

-43-

£63 A. V. Aho, and J. D. Ullnan, "Principles of Conpiler

Design," Addison-Wesley* 1978.

£73 G. R. Boyle, Tektronix Inc.* private communication.

£83 W. M. vanCleenput, "A Structural Design Language for

Conputer Aided Design of Digital Systens*" Technical

Report No. 136* Stanford Electronics Laboratories,

Stanford University* April, 1977.

£93 R. I. Dowell*

conmunication

Hewlett Packard Co. pri vate

£103 E. Cohen* "Progran Reference for SPICE2," ERL

Menorandun, ERL-M592* Electronics Research Laboratory*

U. C. Berkeley* June 14, 1976.

£113 D. M. Ritchie, "C Reference Manual," Bell Laboratories,

Murray Hill* N. J., May I, 1977.

£123 D. E. Knuth* "The Art of Conputer Progranning," Vol. 1,

Addison-Wesley * 1973.

£133 B. R. Chawla* H. K. Gunnel* and P. Kozak, "MOTIS—An

HOS Tining Sinulator," in IEEE Transactions on Circuits

and Systens* Vol. CAS-22* No. 12* Dec. 1975.

-44-

£143 D. E. Knuth* "The Art of Conputer Progranning," Vol. 3*

Addison-Wesley, 1973

£153 A. R. Newton* "The Sinulation of Large-Scale Integrated

Circuits*" ERL Menorandun, UCB/ERL M78/52, Electronics

Research Laboratory* U. C. Berkeley, July, 1978.

-45-

APPENDIX A--IMPLEHENTATION ON THE HP 1000.

The source exists on several files on FHGR cartridge JC.

The nanes of all source files on the account start with the "&"

character. The source files associated with the input translator

start with the two character sequence "61". The reason for this

will become clear. The relocatables start with "21*. At load

tine* three nore files are loaded with the uZlm files. They are

"2HEH" which contains the dynamic nenory nanager* 3ASL0C which

contains function "IADRS" which returns the address of its

argunent* and "3LINK" which is used by the tree-structure overlay

procedure mentioned in the section on the MOTIS-C/BLT interface.

The structure of each source file is now discussed. The

first line of each of the source files is a "*CALL" to a file

"SBCOHP" which can be a copy of one of any of "SB1000"* "SB6400",

or "SB3000" depending on which conputer the conpile is to take

place.

Once the appropriate file is copied into "SBCOHP", the

progran "SUBST* nay be run* taking as input a source file and

creating a tenporary file as output. This tenporary output file

nay then be subnitted to the FORTRAN conpiler for the particular

nachine (FTN4 on the 1000, RUNW on the 6400, and FORTRAN on the

3000).

The following pertains to the HP1000. A conpile nay be

effected be bringing a "M" file into ED and issuing the connand

")U)CHP". to ED.)CMP is a ED procedure file which runs "SUBST"

-46-

on the current file in ED* and generates a temporary file. This

tenporary file is then compiled. The relocatable file thus

produced is given the sane nane as the source file but with the

"&" replaced by a "Z". For exanple* the following connand

sequence to ED will result in the conpilation of "UNIT":

E &INIT

)U)CMP

At conpletion of ")CMP" the relocatable file naned "*INIT" will

contain the current relocatable version of INIT (in the absence

of conpile errors* of course). The progran nay be loaded by

running ED and issuing the connand ")U)NLD".)NLD creates and

executes a file which* when executed* concatenates all of the

relocatables and runs the systen loader* LOADR* on the

concatenat ion.

-47-

APPENDIX B--USE OF BLT WITH A DESIGN-AID PROGRAM

BLT nay be interfaced with a design-aid progran in a

straightforward nanner. The common blocks used by BLT are

contained in ilBLK. The nain progran is called NAIN calls BLT

and the analysis prograns. Thus a call to the nain subroutine of

the new progran can be included in MAIN.

A file which describes the new progran nust be prepared.

The fornat of this file is:

XYZZY

<PR0GRAH NAME>

KEYWDS

<K1> <K2> <K3> . . .

MODELS

<M1> (<HINNODES>*<HAXNODES>) <NUHPARAHS> <P1>=<V1> <P2>=<V2> ...

<M2> ...

GLOBAL

<H0DE1> <N0DE2> . ..

END

-48-

XYZZY is the password that indicates that a new

initialization for a progran is being created. This word is

wired into subroutine INIT and should be changed by the

inplenentor. PROGRAM NAME is the nane of the progran for which

the initialization is being generated. If an initialization for

this progran exists* it is destroyed and replaced by the new

one. The user specifies PROGRAM NAME as the first line of the

circuit description to declare which progran is to be run. Kl*

K2* etc. are keywords which* when encountered as the first

identifier on a user input-line, are treated as analysis

connands. Ml* M2 etc. are the nanes of the low-level types to be

recognized by the progran. For exanple* if the word HAND appears

here* the user nay define nodels of type NAND. MINNODES and

MAXNODES are the nininun and naxinum nunber of nodes allowed for

elenents of this nodel type. NUHPARAHS is the total nunber of

paraneters associated with this type. PI* VI and P2* V2 are

keyword/default-value pairs. An exanple low-level type

definition line is:

NAND (2*9) 2 TRISEMONS TFALL»2NS

N0DE1* N0DE2* etc. are defined as global nodes. When these are

encountered any where in the user input that a node is legal*

they are treated as global nodes. Thus if Vf>t> is defined as a

global node* all connections to VDD are nade to the sane internal

node even if the reference to VDD occurs inside a subcircuit

definition. The nunber of global nodes and their internally

napped values are written out on the analysis file described

below. A sanple initialization is shown in figure 8.

-49-

The initialization file which contains the infornation

generated about each progran is called INITXX. When a new file

is generated* it is called NINITX. This filed nust be renamed

and cataloged as appropriate for the local file systen under nane

INITXX for future use by BLT.

BLT generates three files when run. They are FELSXX*

MODSXX* and ANALXX which contain the internediate representation

of the elenents* the nodels* and the analysis connands,

respectively. The files are conposed of variable length binary

records. The routines used to read and write then are in 1110

and are called RE and «R, respectively. RE and WR use file

input/output routines local to each nachine. RE reads a record

of the length corresponding to the length of the record written

out by WR.

ANALXX is read first. The first read returns one integer

(the total nunber of nodes in the circuit). The next read is

also of length one and returns NGLOBE (the nunber of global

nodes). The next read is of length NGLOBE and each positive

integer is the napped Internal node nunber for the corresponding

global node. Each non-positive integer indicates that the

corresponding global node was not used in the this circuit

description. Each successive read is of an analysis connand.

The first integer is the integer nunber corresponding to which

connand it is (according to the order specified in the KEYWDS

section of the initialization file). The second nunber is the

nunber of paraneters. The remaining entries are the paraneters

thenselves whose characteristics are a function of the type of

-50-

command. The file is read until end-of-file.

The nodel file is then read. It also is read to

end-of-file. Each record contains MTYPE (the model type),

followed by NUMPMS (the number of parameters). The remainder of

the record consists of NUMPMS real values corresponding to the

paraneters. The size of each paraneter depends on the the nunber

of words used to represent a REAL or DOUBLE PRECISION number on

the particular machine.

The elenent file is last. Each elenent occupies a record.

The first entry in the record is the nodel number NODNUM* i.e.,

HODNUN corresponds to the MODNUMth record read fron the model

file. The second entry is HUHHODS (nunber of nodes) followed by

NURNODS integer node numbers. The next entry is OPMS (number of

overriden paraneters) followed by OPMS integer/real pairs where

the integer is the nunber of the parameter and the real is the

new value.

Analysis nay then proceed. When post-processing is done it

is desirable to unnap the integer node nunbers into the full

signal path nanes. This is accomplished by the following FORTRAN

sequence:

... GET INPUT ENVIRONMENT

CALL GETIN

. . . UNMAP NODES

CALL UNHAP<INTND,8UF*LEN)

C ... INTND IS THE INTERNAL NODE NUMBER
C ... BUF IS A BUFFER TO STORE THE ASCII REPRESENTATION OF THE SIGNAL
C ... PATH NAME.

-51-

.. LEN IS THE LENGTH OF THE SIGHAL PATH NAME (NUM8ER OF ASCII STRU

.. OF LENGTH naxword length OR LESS).

. RETRIEVE ANALYSIS ENVIRONNENT.

CALL GETAN

Care nust be exercised when variables are referenced between

the calls to GETIN and GETAN. No calls to the nenory manager

should be nade at this tine.

-52-

APPENDIX C--FORMAL LANGUAGE DESCRIPTION

The fornat for the language description is taken fron £63.

Non-terninals are lower case. Terminals are upper case.

Literals are enclosed in quotes* e.g., "end* is a literal.

Connents are enclosed in "<" and ">", e.g.* < This is a comment

>. Features that are not inplenented in BLT are indicated by

asterisks (*).

<>

cktdesc -> prognane
title

stlist

"end"
{>

prognane -> IDENT
<>

title -> STRING
{>

stlist -> stmt

Istnt stlist
<>

stnt -> elmnt

Inodel

isubdef

<>

elmnt -> elnon spnlist ndnan ":" paranlist
<>

elnan -> IDENT

(>

nodelist -> Inlist

IInli st nodelist

<>

Inlist -> IDENT

IIDENT "(" bindex •)•*

<>

bindex -> INTCOHST*

IINTCOHST "i" INTCOHST*

IINTCOHST ",• intlist*

O

intlist -> INTCOHST

IINTCOHST intlist

<>

ndnan -> IDENT

<>

paranlist -> paran
tparan paranli st

<>

paran -> expr
IIDENT "»• expr

<>

model -> "model" mdnan mdtyp •»• paranlist

-53-

o

ndnan ->

<>

mdtyp ->
<>

subdef ->

<>

defIine ->

<>

expr ->

<>

tern ->

{>

factor ->

<>

exponent ->

IDENT

IDENT

d e fIine

st I ist

"ends"

"nodel" ndnan "subckt" ">" (nodelist) paranlist

expr ■♦■ tern*
Itern

term "*" factor*

Ifactor

factor "A"

IIDENT

IINTCOHST

IREALCONST

INTCOHST

exponent*

APPENDIX D—MOTIS-C PROGRAM LISTING :

Persons who wish to obtain the MOTIS-C program may do so from

Doris R. Simpson, ERL Publications Office, 433 Cory Hall, University

of California, Berkeley, CA 94720.

-55-

Legend:

SL —> Simulation language

T —> Translator

S —> Simulator

SL1 SL2

^IZ ^Jz

SL3

\Jz
T11 T21 T31 r>SL1 ->T1—S1

T1-2 T22
ZE

T23 |->SL2->T2 S2

T31 T32
I

T33 r>SL3->T3—S3

Rg. 1 Cross—bar switch approach to
translation among three simulation languages

MRCBS2

Legend:

IF —> Initialization file

ED —> Expanded circuit description
SIF —> Simple interface

UHDL

Fig. 2 Unified language approach to
communication among design aid programs

MRBG

Fi
g.

3
In

ve
rt

er
ch

ai
n

:
G

at
e

re
p

re
se

n
ta

ti
o

n

M
A

IN
L

F
ig

.
4

In
v

e
rt

e
r

C
h

a
in

:
C

ir
c
u

it
D

ia
g

ra
m

V
P

L
U

S

0
U

T
1

0
U

T
1

:I
N

C
H

1

IN
1

M
A

IN
C

INVERTER CHAIN 3 STAGES

MODEL EDRV NMOS: VTQ=. 8 KP-20U GAMMA-.7 PHI-. 6 LAMBDA»0$

CGB-30FF

MODEL DLOD NMOS: YTO—3 KP-20U GAMMA-. 7 PHI=. 6 LAMBDA»0$

CGB-30FF

MODEL INP PULSE: 10 0 5N 2N 2N 48N 100N

»

MODEL INV SUBCKT: (IN OUT) WD-6U LL-9U

EDR OUT IN GND EDRV: W-WD L»6U

DLD VPLUS OUT OUT DLOD: W»3U L=LL

ENDS

:

MODEL INCH SUBCKT: (IN OUT) WD-5U LL-8U

INV1 IN OUT1 INV: WD LL

INV2 OUT1 OUT INV: WD LL

ENDS

i

MODEL LINCH SUBCKT: (IN OUT) WD-12U LL-6U

INCH1 IN OUT1 INCH: WD LL

INCH2 OUT1 OUT INCH: WD LL

ENDS

Fig. 5 Inverter Chain: Input deeoription

INV1 INI OUTl INV: WD-8U LL-7U

INCHl OUTl 0UT2 INCH: 10U 6U

LINCHl 0UT2 0UT3 LINCH:

L1NCH2 0UT3 0UT4 LINCH: 10U 6U

VIN INI GND INP: TD-10N

SET OUTl 0.3 0UT2 0.3 OUTl: LINCHl 0.3 OUTS 0.3$

OUTl: LINCH2 0.3 0UT4 0.3

i

SET OUTl: INCHl 9.7 OUTl: INCHl: LINCHl 9.7$

OUTl: INCH2:LINCHl 9.7$

OUTl: INCHl: LINCH2 9.7 OUTh INCH2: LINCH2 9.7

i

SWEEP TIME FROM 0 TO 200N BY 2N

PLOT OUTl 0UT2 OUTl: LINCHl 0UT3 OUTl:LINCH2 0UT4

PLOT OUTl: INCHl OUTl: INCHl: LINCHl OUTl: INCH2: LINCH1$

OUTl: INCHl: LINCH2 OUTl: INCH2: LINCH2

VPLUS-10V

:

END

Fig. 5 (con.) Inverter Chain: Input description

Fig. 6

expanded

description

BLT structure

MRBLT

F
ig

.
7

B
L

T
g

n
d

M
O

T
IS

-C
:

P
ro

g
ra

m
S

tr
u

c
tu

re

M
A

IN

B
L

T
M

O
T

IS
-C

IN
IT

v
*»

U
R

R
I

T
M

H
T

XYZZY

MOTIS

KEYWDS

TRAN YPLUS VBG SET

MODELS

NAND2 3 4 ARA-0 ARL»0 CA«0 CL«0

N0R2 3 4 ARQ-0 ARL-0 CO-0 CL»0

ANDOI (1.9) 8 ARA»0 ARO°0 ARL»0 CA«0 CQ»0 CL-0 NA«0 NO«0
ORANI (2.6) 8 ARO«0 ARA»0 ARL-0 CO=0 CA«0 CL»0 NO«0 NA«0
NMOS (3.4) 30 W»l L»l AS-1 AD«1 VTO-0 KP-24.17U $

GAMMA-0 PHI-. 6 LAMBDA»0 CGS-0 CGD-0 CGB-0

PMOS (3.4) 30 W°l L»l AS«1 AD«1 VTO«0 KP-24.17U $
GAMMA-0 PHI-.6 LAMBDA-0 CGS-0 CGD»0 CGB-0

C 2 2 C«1PF IC-0

PULSE 2 7 V1»0 V2«0 TD»0 TR«0 TF=0 PW-0 PER»0

DC 2 2 NH»0 NL°0

GLOBAL

GND 0 YPLUS

END

Fig. 8 Sample initialization

VALS: o o o

TFT

PLSTS:

SYMBS:

Fig. 9 Sgmple tgble

MODEL SUBCKT ELEMENT

RLINK RLINK LINK

LTYPE LTYPE/LLINK MTYPE

MNAME MNAME ENAME

DPARAMS FPARAMS OPARAMS

FNODES NODES

ELEMENTS

Fig. 10 MDLST entries for model and

subckt modeL ELST entry.

MRSTT

f ,

Legend:

M -> Model entry in MDLST
S -> Subckt model entry in MDLST
E -> Element entry in ELST

E4E3E2E1

Fig. 11 MDLST ond ELST

MRMDLST

Fig. 12 Expanded—Circuit Tree Structure

MRCKTREE

MODEL

ENTRY

MTYPE

PMS

PM #1

PM #2

ELEMENT

ENTRY

MODEL #

NODES

NODE #1

NODE #2

PMS

PMNAME

VALUE

PMNAME

VALUE

Fig. 13 File Structure

HPFSTRUCT

is.

i

v>

o
I

e>
is.

oc

UJ

i© os
(-4 Ul

OC <MO««<>4*«<-*0O0OO00O000 00~«~«~*«'«CM~«~«»»m.m«-iw00OO0OOO0000O~«-*<M«-«.4*«O
000

UJ~ I + I I I l+ + + +-».*-V+.4.-*. + +-»-l I I I I I I I I I I t •*• + •*• + •*•+ + •*••*••*•+•*.+ I I I I I I +
(j tiitiitutiitijuitiiiiitiiiiiujtiituujiijtijuiu»ii^i»itiiiiiiiitiit«iiitt.ittfi^nff^nfinf^fi^^««t^nimnif^num^fimt^inmimmi
<c oosonmsd stoicmo is. oMot>- or> as v»*rotors, o eoosar* mror^sx>ascncovotnoN.is(MON.o(\<rwrijN.oN.Q3ir>oo

•• >»<M ^u)«rto<0inco«*r4ooNoc>iiresooror^csiroro^rs.s0o^<si^r^r?<Mrocrks0^e9CKjfs.o9^
2C -ji— a^axTtooivntSMOTOv^—m~ as ^ cmr^<M to invfloio airmen-<rov «-•?»-ovorsi so a><Mor>-<x>tror<>»*o
o o=>

333ZU

a •-•

UR I II

UJ

-1+ • >«•

O^0^9S0^C0O}09CDCO0300000300<X>0D03C00900CD0009000000C000a000C0QD00030000a)Q9a>CD00(D00C0C000000D00rw
00090000000000 0 0000000000000000000000 0 0 000000000000
♦ I < I I • I • • I • I • • I I t I I • I
UlUlUl111UlUJUlUlUJUlUlUlUlUJUlUlUlUJUlUJUJUJUJUlUiUJUJUJUJUlUlUJUlUJUlUJUJUlUJUlUtUJUIUJUlUJUIUIUIUIUl
ooooooooooooooooooooooooooooooooooooo oooooooooooooo)
000
oooooocM^Noa»o(M^s0coocMvssooocM'r\oa>o<M«s0coocM<rs0O9OCM«'S0CDOCM<ri0CDOcv)«iaoDO

O CM^ SO CO -* »* — -< « CM fsl Ol CMCMto to f> m ro •< • in tn tn min so m> so so <j>is. ^. is. ^ rs. co oo oo co co«s on cfs as on >4

	Copyright notice 1979
	ERL-79-64

