

Copyright © 1979, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN IMPROVED ALGORITHM FOR MDLTI-TERMINAL

NETWORK FLOW SYNTHESIS

by

Dan Gusfield

Memorandum No. UCB/ERL M79/76

27 November 1979

7t w ELECTRONICS RESEARCH LABORATORY
•<<

College of Engineering
University of California, Berkeley

94720

An Improved Algorithm for Multi-Terounal Network
Flow Synthesis

Dan Gusfield

University of California, Berkeley

1. INTRODUCTION

The multi-terminal network flow synthesis problem is one of the few nicely
solved problems in the area of network design. It is used widely in courses and

texts [1,2,3,4] on network flows and combinatorial optimization, as an example of an
elegantly solved combinatorial optimization problem. The solution used in these

texts is due to Gomory and Hu [5], and is also cited as an example of a non-direct

application of maximum spanning trees. For examples where this problem arises,

see also Chien [6]. For NP - hard network design problems see Wong [7], or Garey
and Johnson [8].

"We present a simpler algorithm, improving the Gomory-Hu method in speed,
simplicity of needed data structures, and most important, in the clarity of the
underlying combinatorics. We show that the use of the maximum spanning tree in
the Gomory-Ku algorithm is both unnecessary and undesirable. We then discuss a

secondary objective: minimizing the number of edges in the solution, and the distri
bution of node degree.

»

2. PROBLEM SET UP AND MAIN RESULT

Let R be a weighted undirected graph on n nodes and e edges, and for each
edge (i,j) in R, let r(i,j) denote its weight Ris called the flow requirements graph
and r(i,j) is the i,j flow requirement. Let r(i,j) =0 for any i,j pair not an edge in R.

For Gan undirected network with nnodes and a flow capacity on each edge, let
f(i,j) denote the maximum achievable flow in Gbetween nodes i and j. Gis called
feasible for R if f(i,j) ^ r(i,j) for all node pairs i,j.

Heaearch supported by NSF grants MCS77 - 09906. MCS78 - 07291

-2-

Given R, we seek a network G with edge capacities, which is feasible for R, and

whose sum of edge capacities is minimum among all networks feasibLe for R. Any

such network is called optimal for R. We may further seek an optimal network G*

with flow function f*r such that for any other optimal network G and its flow function

f. f*(Lj) ^ f(i,j) for all i,j pairs. Such a network is called uniformly optimal, and
always exists [5],

Main Result

We give a simple algorithm which avoids spanning trees, runs in time

Max[e, nlogn], and produces a network G* with the following desirable properties: G*

is uniformly optimal; it is planar; no node has degree greater than four; and G* has

as few edges as any uniformly optimal network produced by the Gomory - Hu

method. This constitutes a strong arguement against the use of the maximum

spanning tree.

In the next section, we sketch the Gomory - Hu method (algorithm A) to find an

optimal network, and present a simpler algorithm (algorithm B) that produces a

planar uniformly optimal network with one node of high degree. In section 4. we

compare the two algorithms, and in section 5. we discuss the number of edges in

the networks produced, and modifications to algorithm B so that no node has

degree greater than four.

3. ALGORITHMS FOR AN OPTIMAL NETWORK

Algorithm A

1) Given the requirements graph R, compute a maximum weight

spanning tree T of R.

2) Decompose T into a sum of subtrees, each having edges of equal

weight. To do this, define the decomposition of a tree T-

recursively. If w. is the smallest edge weight in T-

then T. is decomposed into one copy of T- with weight

-3-

w. on each edge, plus the decomposition of each subtree of

T- resulting from deleting all edges of weight w. from T-,

and subtracting w. from the weights of all the remaining edges.

3) For every tree T- in the decomposition, create a cycle C-
»

containing all the nodes of T-. Set the capacity of every edge
4
I in C. to w./2, where w. is the weight of each edge in T^.

Superimpose all of the cycles, merging common edges and summing the

capacities. The resulting network is optimal for R.

Figure 1 shows the workings of the algorithm.

Algorithm A produces an optimal network G for R, but in general Gwill not be

uniformly optimal. To find a uniformly optimal network, Gomory and Hu suggest

adding the following step at the beginning of algorithm A:

0) For each node i in R, compute u(i) = Max[r(i,k)]. For

every pair i,j change r(i,j) to Min[u(i),u(j)]. making R

a complete graph on n nodes.

We now present an alternative algorithm.

Algorithm B

1) For each node i, compute u(i) = Max[r(i,k)], and define u(n+l) = 0.
k

2) Sort the u(i) values. Assume u(i) £.u(i+l) for i = l.n.

3) For i = 2 through n repeat the following:

a. Create edge i,i-l with capacity u(i)/2.

b. Create edge i.l with capacity [u(i) - u(i+l)]/2,

provided that the capacity is non-zero.

a Figure 2 shows the working of algorithm B on the same requirements graph R

* as in figure 1. Note that the network created by the algorithm is always planar.

We now show the correctness of algorithm B. Given R, let G* be the network

produced by algorithm B, and let f* be the flow function of G*.

-4

Lemma 3.1: f*(i,j) = Min[u(i),u(j)] for all node pairs i,j.

Proof: Let i,j be two arbitrary nodes, and u(i) > u(j). Consider the path P. .

from i to j along the edges (k,k+l) for k = i through j-1. The edge with least capa

city on P^. is Q-l,j), with capacity u(j)/2. Therefore, a flow of u(j)/2 is possible
along the P. . path.

Now consider P^ , the path with edges (k,k+l) for k = 1 through i - 1. The
edge with least capacity on Pu is (i-l,i), with capacity u(i)/2 £, u(j)/2. G* is
undirected, and so a flow of u(j)/2 from node i to node 1 is possible along the
reverse of path P1...

To complete the proof, we claim that a flow of u(j)/2 between nodes 1 and j is
achievable without using any edge of PT . , the union of P- . and P. .. The proof is by

backward induction on the index j. For j = n, the claim is true, since the edge (l.n)
has capacity u(n)/2. Suppose the claim is true for j = k+1 < n, and consider node

k. Let F(k+1) be the flow of u(k+l)/2 from 1 to k+1 which avoids edges of P. , ,.,.
53 l.K+1

By definition, F(k+1) doesn't use edges (k+l,k) or (k,k-l), and so F(k+1) also
doesn't use edge (l,k). Edge (l,k) has capacity u(k)/2 - u(k+l)/2, and edge (k+l,k)
has capacity u(k+l)/2, for a total capacity of u(k)/2. Then to send u(k)/2 from 1to
k avoiding Plj£l send u(k+l)/2 from k+1 to k along edge (k+l.k), and send the rest
along edge (l^k). The flow of u(k+l)/2 to node k+1 is sent via F(k+1), and the proof
is complete.

Theorem 3.1: G* is uniformly optimal for R.

Proof: By the lemma, G* is clearly feasible for R. To show optimality, note that
the total capacity of the edges incident to any node i is u(i), which is the minimum

capacity possible in any feasible network. Now suppose there is an optimal network

Gwith flow function f, such that f(i,j) > f*(i,j), for some node pair uj. Then f(i,j) >
Min[u(i),u(j)], and if u(i) > u(j), node j must be incident in Gto edges with total
capacity exceeding u(j). Therefore, Gcan't be optimal, and G* is uniformly optimal.

-5-

4. COMPARING THE ALGORITHMS

Algorithm A takes time of order Min[e ioglogn, n] in step l) to compute a max

imum spanning tree of R. Decomposition and synthesis in steps 2) and 3) can take

0(n2> time.

Algorithm B requires time 0(e) to find the u(i) in step 1), O(nlogn) to sort in

step 2), and 0(n) time to construct G* in step 3).

For a dense graph R, the running times of the two algorithms are comparable,

but algorithm 3 still improves algorithm A in the constants of proportionality, and

in the simplicity of the data structures needed. Finding the maximum weight edge

incident with each node is simpler than finding a maximum weight spanning tree,

which must also include all such edges; sorting is simpler than decomposition,

which must also find successive minimums; and the synthesis step of algorithm B is

clearly simpler to implement than the synthesis step of A.

Algorithm B is faster and simpler than algorithm A primarily because it avoids

constructing or decomposing a maximum spanning tree, and because it produces a

uniformly optimal network without revising the original requirements. Thus the use

of the maximum spanning tree is undesirable, as well as unnecessary. In fact, it is

the maximum spanning tree T which causes algorithm A to produce networks which

are generally non - uniformly optimal: If the path between nodes i and j in T con

tains an edge of weight less than Min[u(i),u(j)], then f(i,j) will be less than f*(i,j) in
the resulting network. To guarantee uniform optimality, step 0) is added to force

out such low weight edges. Algorithm B shows that the spanning tree can be
avoided, and with it the need to revise the requirements.

5. AVERAGE NODE DEGREE AND DISTRIBUTION

We now consider algorithm A modified to find a uniformly optimal network, i.e.
with step 0) included. We consider the average node degree, or number of edges,
and show that algorithm B produces networks which have as few edges as the net

works produced by algorithm A We then show that algorithm B can be modified so

that no node in the network created has degree greater than four.

Given R, let G' and G* be the uniformly optimal networks produced by algo
rithms A and B. We examine first the number of edges in G*.

-6-

For each node i, let u{i) be defined as before, and call u(i) the weight of node i.

Step 3b) of algorithm B produces the edge (l,i) if and only if u(i) > u(i+l), and so

produces t edges in total, where t is the number of distinct node weights. Step 3a)

produces n - 1 edges, and so G* contains no more than n - 1 + t edges. However,

u(l) = u(2), so the edge (1.2) is counted twice if u(2) > u(3)» hence:

Lemma 5.1: G* contains n - 1 + t edges if u(2) = u(3), and n - 2 + t edges if

u(2) > u(3), where t is the number of distinct node weights.

Now let R' be the requirements graph modified by step 0) of algorithm A, and

let T* be any maximum spanning tree of R'. To establish the number of edges in G'

we first examine the structure of T\

Lemma 5.2: Let x be any edge in T\ If x has weight w , then the removal of x

from T' creates two connected components, at most one of which contains an edge

of weight greater than w .

Proof: The lemma is trivially true if one of the endpoints of x is a leaf of T\ so

suppose this is not the case. Let G and G be the two components of T - x, with

edge y of weight w > w in G , and edge z of weight w > w in G . By the definition

of R', w = u(i) for some node i in G , and w = u(j) for some node j in G . Then R'

contains the edge (i,j) across the G„, G_ cut, and (i,j) has weight greater than w ,
y z *t

hence T can't be a maximum weight spanning tree of R\

Theorem 5.1: G' contains at least as many edges as G*.

Proof: Let w., > w2 > ... > w, be the t distinct node weights of R, i.e. the t dis

tinct values of u(i) for i= 1 through n. From the definition of R\ the only edge

weights in T* are w. through w., and all edges incident with any node i in T' have

weight less than or equal to u(i). Further, since T' is a maximum spanning tree,

every node i is incident in T' with at least one edge of weight u(i). It follows then

from Lemma 5.2, that for any k ^ t, the deletion from T' of all edges of weight w^ or

less leaves one connected subtree containing all nodes with node weights greater

than w, , and no nodes with weight w, or less.

4

4

We now examine the edges generated by the synthesis step 3), ignoring the

capacities assigned. We claim that G' is the superposition of t cycles, C^ through

Ct. Cu connects all the n nodes of T\ and for k <t, C^ contains all nodes ofweight
w, or more, and no nodes of weight w.+, or less. To see this, recall that the

decomposition step 2) of algorithm A generates a sequence of subtrees of T\ by

beginning with T itself, and successively deleting all edges of weight w^ down to w^.

Step 3) creates a cycle through the nodes of every new subtree generated in this

way, and the claim follows from the structure of these subtrees, which was esta

blished above.

We can now count the number of edges of G\ For k from 1 through k, let N^ be

the number of nodes of weight w, . For k ^ 2, cycle C^ contains all nodes of weight

w. , and at least one node of greater weight. Therefore, at least N^ + 1 edges of C^

are incident with some node of weight w,. None of these N. + 1 edges can appear in

any other cycle C-, for j < k, and so the cycles Cp through Ct must contain at least

(n - N^) +(t - 1) distinct edges. Cycle C. contains N., edges, and so G* contains at

least n - 1 + t edges if N^ > 2, and n - 2 + t edges if N< = 2, and the theorem is pro

ven.

Corollary: G' contains the same number of edges as G* if and only if the nodes

ofweight wk form a single subpath in C^, for all k from 1 to t.

Note that without step 0), lemma 5.2 does not hold, and algorithm A may pro

duce a non-uniformly optimal network G with fewer edges than G*. For example see

G and G* of figures 1 and 2. Note also that there are uniformly optimal networks

with fewer edges than G*. See figure 3. Such networks are, of course, not produced
s

by either algorithm A or B, and it is an open question whether there exist fast algo

rithms to minimize the number of edges in a uniformly optimal network.

-a-

Distribution of node degrees

Algorithm Bcreates a network G* in which node 1has high degree: t or t - 1.
For many purposes, this is very undesirable. However, algorithm Bcan be modified
to produce, with equal speed, a planar, uniformly optimal network which has as few
edges as G*, and in which no node has degree greater than four. In general, the
number of nodes of degree four equals the number of indices ksuch that Nk =1, so
if Nk > 1for all k, no node will have degree greater than three.

Instead of presenting the modifications formally, we show in figure 4 such a
network with eight nodes, four distinct node weights, and two nodes of each node
weight. The nodes are labeled with their weights, D> C> B> A.

This example is easily extended to the general case. If there are more than
two nodes of a given weight other than D, say B, insert the new nodes into either of
the B to Cedges, creating new edges of capacity B/2. For more than two Dnodes,
split the edge between the vtwo Dnodes into two parallel edges, one with capacity
D/2, and the other with capacity (D - C)/2. Insert the new Dnodes into the edge of
capacity D/2. If there is only one node of a given weight, say Bagain, then merge
either one of the Bnodes with the unique Cnode that it is incident with, creating a
Cnode of degree four. Figure 5 shows the network of figure 4 with unique node
weights for all nodes except D. Extending the example for more distinct node
weights is immediate.

- 9 -

Acknowledgment

Many thanks to David Lichtenstsin for his helpful comments.

," References

[1] E.L Lawler, Combinatorial Optimization: Networks and Matroids,

Holt, Rinehart and Winston, New York (1976)

[2] L.R. Ford andD.R. Fulkerson, Flows in Networks, Princeton

University Press, Princeton, New Jersey, (1962)

[3] H. Frank and I. Frisch, Communication, Transportation and

Flow Networks, Addison - Wesley, Reading Mass. (1972)

[4] T.C. Hu, Integer Programming and Network Flows, Addison -

Wesley, Reading Mass. (1969)

[5] R.E. Gomory and T.C. Hu. "Multi - Terminal Network Flows",

. SIAM Journal on Applied Mathematics, 9 (1961) 551-570.

[6] R.T. Chien, "Synthesis of a Communication Net", I.B.M. Journal,

July 1960.

[7] R.T. Wong,"A Survey of Network Design Problems", Operations

Research Center working paper OR 080-78, August 1978,

Massachusetts Institute of Technology.

«

* , [8] M. Garey and D. Johnson, Computers and Intractability:
•*

A Guide to the Theory of NP - Completeness, W.H. Freeman

and Co. (1979)

T

T = +
+

p e.Co f» posi+)on <r? T

z^

2.*$"

<r r ©

© w ©

Syh-rheSXS

Figure 1.

(r

i. - -'4
- i J

m -/o uM =i*-u&)-s Qft)::* u(r)-^

Note that G in figure 1 is not uniformly optimal

For example, f(l,4) » 5, but f*(l,4) - 8

Figure 2.

no)=r nw=f uw-s- WW .iw^

(!) *•* © ^ a,*5' @

Equivalent network with one less edge.

Figure 3.

®r^©

® A/t ®
Figure 4

D-'A,

Figure 5.

	Copyright notice 1979
	ERL-79-76

