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ABSTRACT

A state space model of an interconnected power system having both

generator and load nodes is proposed. The resulting system of equations

is interpreted as the degenerate limit of a singularly perturbed system.

The model is used to devise a condition for the (local) asymptotic

stability of an equilibrium. This condition decomposes in an intuitive

way for subsystems interconnected via a backbone network. The model

is used to formulate the problem of steering the power system from a

post-disturbance alert state to a secure state, and a solution to the

steering problem is also proposed.
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1. Introduction

We consider an interconnected power system in which there are both

load and generator buses. A standard mathematical formulation of this

system leads to a set of differential equations governing the generator

frequencies and angles, and a set of nonlinear algebraic equations

corresponding to the load buses. The presence of these algebraic

equations makes analysis awkward. We propose to convert these into

differential equations by supposing that the load depends upon frequency.

The original system is then interpreted as the "degenerate" limit of

the system with frequency-dependent loads as this dependency goes to zero.

To permit such an interpretation we insist upon consistency in the sense

of Hoppensteadt's work [1] on singularly perturbed systems. Section 2

is devoted to the development of the model.

We use such a model in two ways. First we derive a condition

characterizing the (local) asymptotic stability of an equilibrium state.

Perhaps surprisingly, this condition turns out to be the same as has

been obtained [9] when there are no load buses. In some cases, several

power subsystems are interconnected through a "backbone" transmission

network. In such a case the stability condition for the overall system

decomposes into a stability of the subsystems and of the backbone

network. This decomposition has a very natural interpretation. Stability

is discussed in Section 3.

Next we formalize three kinds of disturbances: line-switching,

generator dropping and load change. We assume that the disturbance

moves the state of the system from the secure to the alert region. We

formulate the resulting control problem as one of finding a control

which steers the system from the alert state to a (new) secure state
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while obeying the rated power flow capacities of the transmission lines.

We assume that the control variables which can be manipulated, within

certain limits, are the mechanical power inputs at various generating

stations. We propose a solution to this steering control problem. While

the solution is to a certain extent constructive it is as yet far from

being implementable. This discussion occupies Section 4. Some concluding

remarks are collected in Section 5.

2. Stability of interconnected power systems

2.1 Model of an interconnected power system

We consider a power system consisting of g generators and 2, load

nodes. Each generator is connected to a generator bus and each load

node to a load bus. The buses are connected to each other by trans

mission lines. (See Figure 1).

Synchronous generators

The departure from synchronism of the ith generator is governed

by the classical swing equation,

M.u. + D.w. = Pm - Pf j
11 * * i i ,i = l,..,g (2.1)

6± = 2ira)i , i - l,..,g (2.2)

where

Mi^Di^ = moment °f inertia (damping constant),

(u^ =» departure of generator frequency from synchronous frequency w

<5i - generator rotor angle (also assumed to equal generator bus

angle) measured relative to a synchronously rotating

reference,

m

P^ = exogenously specified mechanical input power minus power
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loss due to damping (tu D.) minus electrical power

demanded at the generator bus,

P| =electrical power output (determined by (2.3) below).

Decoupled load flow

The power flow in the network is modeled by non-linear load flow

equations (described below), in which the determination of real power

and phase angles is decoupled from the determination of reactive power

and voltage magnitudes. In standard terminology this is summarized by

saying we assume all buses are PV buses. Such an assumption is valid

when transmission lines have a high ratio of reactance to resistance

which we assume next.

Lossless transmission lines

All transmission lines are purely reactive.

Let 8, i = 1,. .,£,, be the phase angle of the ith load bus (measured

relative to the same synchronously rotating reference as the 5.). Let

P^^ be the exogenously specified electrical power demanded there. By

convention Pi <0while p| >0. Let Y?| be the admittance (susceptance)

of the transmission line connecting the ith generator and jth generator

buses. Yf. and Y.. are similarly defined. Of course, if two buses

are not directly connected by a transmission line the corresponding Y

is zero. With this notation the load flow equations are

Pf =ff (6,9) =^ Yg Sin (6. -5j) +gig Sin (6. -ek), 1-1....g
(2.3)

p* -fi*(s,e) =nf± sm (e, -6.) +̂ yJ* sin (e± -ek), ±=i....t.
(2.4)

Here and throughout 6, 8, P, etc. denote vectors with components
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6 ,8 ,pf etc. Notice that because Yf? = Y88, Y?f£ = Y*8 etc.
1 J- x ij ji ik ki

spf + sa£ =o

Equations (2.1) - (2.4) constitute the model. We now give a pre

liminary interpretation of the model. Observe that since the vector Pm

of mechanical power inputs and the vector P of electrical power loads

are exogenously specified, and since P8 is given by (2.3), there remain

2g + I "unknowns", namely u>, 6, 8, and 2g + I equations, namely (2.1),

(2.2) and (2.4). Next, o> and 6, being governed by differential equations,

cannot change instantaneously, so the correct interpretation should be

that (2.4) must be "solved" to obtain 8 in terms of 6 and use this solution

to get a system of 2g differential equations involving only u and 6.

Unfortunately for a given 6 (and P ) equation (2.4) may yield no solution

for 8 or it may yield several solutions. Therefore it is clear that if

we wish to interpret (2.1) - (2.4) as a model of a dynamical system, so

that we can analyze its stability and controllability properties etc.,

then we must be careful in specifying the underlying state space. We

do this next.

State space of the power system

The preceding discussion suggests the following definition for the

state space X of the power system,

X=R8 xM= {u> <ER8} x{(6,8) € Rg+£|fA(6,8) =P* and Dflf*(6,8)
8

nonsingular} (2.5)
% 3f^

where DQf (6,8) » -^- (6,8). Thus we permit a) to be arbitrary but restrict

6,8 such that (i) they satisfy (2.4) and (ii) we can solve (2.4) for 8

"smoothly" in terms of 6. Note that M depends upon the prespecified power

demands P and the admittances Y. If it is non-empty then M is a smooth,
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in fact analytic, manifold of dimension g. It is not connected and

contains several "sheets" corresponding to the several solutions of (2.4)

(see Figure 2). X is then a manifold of dimension 2g. It is possible

to reduce this dimension to 2g - 1: observe in (2.3), (2.4) that the

functions fe, f depend only upon the differences of the phase angles so

that we could take one of the generator angles, say 6 , as reference,
S

define the remaining angles as deviations from 6 , then eliminate the gth
g

differential equation from (2.2) and adjust the others accordingly. Since

nothing significant is gained by this reduction we prefer not to do so.

A point (a) ,6°,8°) eX is an equilibrium if oi° = 0, and Pm - P8 =
m g o o
P -f (6,8)=0. Evidently, in the absence of any disturbances, the

system stays forever at an equilibrium.

2.2 Model as degenerate limit of a singularly perturbed system

We wish to study the Lyapunov or local stability of an equilibrium.

To carry out this study it is inconvenient to use directly the state

space X introduced above. It is more suitable to augment the state

space to all of R^ = {(w,6,8)| weR8, 6eR8, 8eR1} and to augment

the system dynamics appropriately so that (2.1) - (2.4) can be regarded

as the degenerate form of a singularly perturbed system. As we will see

this is not only mathematically convenient but it is also physically

meaningful.

The key idea is to recognize that the load at the ith load bus

is not the constant load P as hypothesized previously but it is dependent

on frequency, that is to say the 'true1 load at the ith bus is

*i " * 9± (2.6)

where e > 0 is a small parameter. Recall that 8. is the deviation from

the synchronous frequency of the frequency at the ith load bus. Hence
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if 8.^ < 0, i.e. there is a drop in frequency, then the true load

'Pi + e®i' dr°Ps below the nominal load |p |, whereas if 8. > 0, then

the true load rises above the nominal load. Such a load-frequency

characteristic is in conformity with empirical observation, although

a more accurate representation may require a nonlinear characteristic.

However for small magnitudes of 8 the linear characterization (2.6)

should be adequate. With this assumption the system dynamics are

governed by (2.1), (2.2), (2.3) and (2.7) replacing (2.4):

Pi "e8i =fi <6'8> > i=l,..,A. (2.7)
We call the system described by (2.1) - (2.3), (2.7) the perturbed

system. Its state space is R ^" . The system described by (2.1) -

(2.4) is called the degenerate system. These terms are borrowed from the

theory of singularly perturbed systems (see [1]). To justify their use

we must show that for e > 0 the degenerate system does approximate

the perturbed system. This is not generally the case unless the system

is in the neighborhood of a stable equilibrium point, as we now

demonstrate.

Observe that the set of equilibrium points of the perturbed

and degenerate systems are the same. Consider one such equilibrium

(u) = 0, 6 , 8 ). The equations of the perturbed system, linearized

around this equilibrium, are

MA<L + DAu> = -D6fg(60,e0)A6 -DQf8(6° ,8° )A8, (2.8)
A6 » 2ttAoj, (2.9)

eA8 = -D6fV0,8°)A6 - Def£(60,80)A8, (2.10)
where M, D are diagonal matrices with entries M., D. respectively,
ooo

Aw = u>-to,A6 = 6-6,A8 = 8-8.

Similarly the equations (2.1) - (2.4) of the degenerate system,
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linearized around the same equilibrium, are

MAS +DAfi =-D6f8(6°,8°)A6 -Def8(60,8°)A8, (2.11)
A6 = 2ttAco, (2.12)

0=-D6fil(60,80)AW -DQfJl(60,e0)Ae. (2.13)
Theorem 2.1 Suppose that

Def£(60,e°) >0 (2.14)
A=D6f8(5°,e°) -D6f8(6°,8°) [DQf£(6°,e°)]"1 Dfif£(60,e°) >0, (2.15)

and furthermore that the matrix A has exactly one zero eigenvalue with

corresponding eigenvector 1, the vector in R8 all of whose components

are unity. Let (coe(t) ,6£(t) ,8e(t)) be a solution of the perturbed

system with initial condition to(0), 6(0), 8(0). If |w(0)-u)°| +

|6(0)-6°j + |e(0)-8°| = R is sufficiently small then, as e-H)+,
£ £ £

(co (t),6 (t),8 (t)) converges to a solution of the degenerate system,

uniformly on [T,«) for T > 0.

Proof. See Appendix I n

Comment; Recall that f6, f depend only upon differences between the

various bus angles, that is for all real a

f8(60+al8,80+alA) = f8(6°,8°),

fJl(50+al8,80+alil) =fV,9°).

Differentiating at 6°, 8° gives

D6f8l8 +Dgf8!* =0, D^l8 +DQfV «0, (2.16)
from which

{D6f8 -D0f8[DefJl]~1 D6f£} l8 =0.
Thus the matrix in (2.15) always has a zero eigenvalue with eigenvector l8.
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Theorem 2.1 says that the description of the interconnected power

system as given by the degenerate equations is consistent with its

description given by the perturbed equations in the neighborhood of

certain equilibria. These equilibria are stable as shown later. It

is possible to show consistency in the neighborhood of unstable

equilibria provided however that the initial state of the perturbed

system lies on the stable manifold of these equilibria (see [2]).

However such a generalization does not seem to us to make sense in

the power system context.

Conditions (2.14), (2.15) can be combined. Let f(6,8)
O 0

= (f6(6,8),f (6,8)) and let Df be its Jacobian. It is a matrix of

dimension g + I,

Proportion 2.1 The hypothesis of Theorem 2.1 holds if and only if

J = Df(6°,8°) > 0

and further J has exactly one zero eigenvalue (corresponding to l8+£).

Proof. See Appendix I n

2.3 Asymptotic stability

Definition 2.1 An equilibrium (<o° = 0,6°,8°) of the degenerate

system is asymptotically stable if there is e°>0 such that

(i) for all 0<e<£°, and for all Aw, A6, A8 sufficiently small, the

solution of the perturbed system corresponding to the initial

condition (o> +Aw,6 +A6,8°+A8) converges asymptotically to the one

dimensional subspace {(0,6°+al8,8°+alA) |a € R}, and (ii) as £-*)+,

these solutions converge to a solution of the degenerate system

uniformly on [T,») for all T>0.
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Theorem 2.2 An equilibrium (o,° = 0,6°,8°) of the degenerate

system is asymptotically stable if J = Df(6°,80) > 0 and furthermore

this matrix has exactly one zero eigenvalue.

Proof. See Appendix I H

Theorem 2.2 justifies the use of the degenerate system as an

approximation to the perturbed system in a neighborhood of a stable

equilibrium. For a fixed £ > 0, the stability of the augmented system

has been analyzed in [3]. Note that the stability condition is the

same as that which has been obtained for a network where there are

only generator nodes.

3. Hierarchial stability

Interconnected power systems usually consist of several networks

each operated by different utilities coupled via tie lines. Thus we

may visualize a power network N as consisting of'subnetworks
1 k
N ,..,N interconnected by a "backbone" network N° . N° is

obtained from N by coalescing the nodes within each of the subnetworks

(see Figure 3). We suppose that each of the N* has its own control

center (area controller) while a central controller is provided for

the backbone network N . Thus control is shared by two levels. It is

desirable that the central controller have only limited information

about the subnetworks and each area controller have only limited

information about other subnetworks.

With these considerations in mind we derive the stability

condition obtained earlier,in terms of conditions on the subnetworks

t1 k o
flr,..,N and the backbone network N . In section 3.1 we consider the

simple case where each N is connected to other subnetworks through

a single bus. In section 3.2 we consider arbitrary interconnections.
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3*1 A special class of interconnected systems

The ith subnetwork consists of g generator buses and Z± load

buses with state variables u)1, 61, 81. There is aprivileged bus,

called the boundary bus at node b1 say, such that N1 is connected to

the other NJ only through b1. In this case N° consists precisely of
1 kthe nodes b ,..,b and the transmission lines interconnecting them

(see Figure 4). Let g= Zg1, £= E*1, let u> = (u1,..,«k)€ R8

6- (6 ,..,6 )S R8and 8=(81,.^8k) €R*bethe state variables for the
interconnected network Nwith (w1,*1^1) the variables for N1.

Finally let <u°,£e°) be the variables corresponding to the backbone
network N°.

We denote by f, respectively f1, the power flow functions for

N, respectively N1, i=0,l,..,k. Let (u° =0,6°, 8°) S R28+A be
an equilibrium of N, and let (*io -0^±o^±o) be the corresponding
values for the network N1, i=0,l,..,k.

Theorem 3.1 The following statements are equivalent,

(i) J=Df(6°,80) *0and the matrix has exactly one zero eigenvalue.
(ii) For each i=0,.,k, J* =Dfi(6lo,8io) *0 and the matrix has
exactly one zero eigenvalue.

Pr°of * See Appendix II
n

It is easy to understand why the stability of the network N is

equivalent to the stability of the subnetworks N1,..,^ and the backbone

network N°. Consider astable equilibrium of N. Since each subnetwork
N\ i>1, is connected to the rest only through asingle bus, therefore
if we take the angle at that bus to be areference, then N1 will be

essentially "decoupled" from the rest of the network so that its

equilibrium must be stable. As far as the backbone network is concerned,
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each N may be replaced by its single boundary bus with a load equal to

the amount of electrical power flowing into N1 (through its boundary

bus) at equilibrium, so that N° must be stable as well.

3.2 Arbitrary interconnected systems

Generally the subnetwork N is connected to the rest through

several boundary buses. Let b ,j=1,..,^ be those boundary buses.

As before let f be the flow function for N and f1 the flow function for

N , i = l,..,k. (Note that a flow function for N° is not defined if

for some i, n > 1). Let (u>° = 0,6°, 8°) be an equilibrium of N and let

(a) =0,6 ,8 ) be the corresponding equilibria for N1, i = l,..,k.

Theorem 3.2. Suppose conditions (i), (ii) and (iii) hold,

(i) For each i=l,..,k, Dfi(6io,8io) >0and the matrix has exactly
one zero eigenvalue.

(ii) For each i « l,..,k there exists a distinguished boundary bus

D G ft^.'^b^i} such that if N° is the reduced backbone network

obtained from N by deleting all transmission lines of N° except those

which connect the distinguished buses b1, 1 <_i <_k, and if f° in

the (now well-defined) flow function for S° then D£°(600,800) >0

and the matrix has exactly one zero eigenvalue. (The vector 6°°,

8 consist of the components of 6°,8° corresponding to N°).

(iii) The angle difference |6^± -©bk| across the transmission lines

in N° that are deleted is strictly less than j .
Proof. See Appendix II n

The arguments used in Section 3.1 may be used to obtain stability

conditions for other than the special class considered there. For

example consider the two interconnected subnetworks one of which has

a single boundary bus and the other has several (see Figure 5a). It

is easy to show that the interconnected network is stable if and only

if the networks N., and N2 of Figure 5b are stable.
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4. Steering of power system in alert state

Disturbances in the power system may drive it from a normal or

secure operating state to an insecure or alert state. A more extensive

description of the alert region is given in [4,5]. Here we merely

note that when the system is in the alert region, active control measures

must be undertaken to steer the system to a secure state, because

otherwise there is a danger of system breakdown. In this section we use

the model introduced above to formulate and analyze a particular steering

control strategy.

We suppose that initially the system is in a secure state and that

some disturbance has caused it to move to an alert state. Three kinds

of disturbances are considered: line switching, generator dropping, and

load change. The steering problem for line switching is discussed in

detail in sections 4.1 and 4.2, and the two remaining cases are briefly

treated in section 4.3.

4.1. Line switching

The switching (i.e. opening or re-closing) at time t=*0 of a line

connecting buses i and j is represented, in our model, by a change in the
i

admittance from Y to Y... Now if either i or j is a load bus then the

algebraic relations (2.4) change and so the manifold defined by (2.5)

changes from M to say M1. We assume that prior to the disturbance the

system is at a stable equilibrium (u)°,60,8°) with w° = 0 and (6°,8°) € M.

Immediately after switching, at t = 0+, the generator frequencies and

angles cannot change from their pre-fault values, that is we must have

(w(0+),6(0+)) = (u) ,6 ). Hence the only viable interpretation of the

degenerate system model is that the load bus angles change instantaneously

to a new value 6(0+) $ 6° such that (6°,8(0+)) 6M' i.e. satisfies (2.4).
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Our first problem is to determine this value 8(0+). Once this has

been determined the post-fault behavior of the degenerate model will be
t

governed by the same equations (2.1)-(2.4) (with Y replaced by Y ),

but with new initial conditions (u)(0+) ,6(0+) ,8(0+)) = ((0°,6O,8(0+)).

We face two difficulties in finding the correct value of 8(0+) such

that (6 ,8(0+)) ^M'. In the first place there may exist no such value

in which case no further discussion can be conducted within the terms

of the degenerate model. So, to proceed further, we need to assume the

existence of 8* such that (6°,8') € M'. The second difficulty stems from

the fact that there may be several such 8'; which of these should we

choose as the "correct" value of 8(0+)? We propose the following answer

to this question. Observe that for any £ > 0, the post-fault trajectory,

of the perturbed system (6 (t),8 (t)), t > 0, is uniquely determined,
£ £

since (6 (0+),8 (0+)) = (6°,8°). So we propose to define the initial

value (6(0+),8(0+)) for the post-fault degenerate system as the following

limit, provided it exists:

(6(0+),8(0+)) = lim lim (6 (t),8 (t)).
t-*0+ £-K)+ e e

It is easy to see that

6(0+) = lim lim 6 (t) = 6°
t-KH- e-K)+ e

as expected; whereas, if the limit below exists then

8(0+) = lim lim 8 (t) = lim 8 (t), t > 0, (4.1)
t-K)+ e-H)+ e e-K)+ e

where 8 (t), t _> 0, is the trajectory of the "boundary layer" system

given by (2.7) with 6 fixed at 6°, i.e.,

£8 (t) = P* - f'A(60,8 ), 8 (0) = 8° (4.2)
£ £ £

-14-



(f is the post-fault load flow function.) From (4.2) we see that

the trajectories corresponding to different £ are related by a change

of time scale,

9£ (t) " ®e te2t/el)> t >° (A.3)

and so it follows from (4.1) that

8(0+) = lim 8 (t), (4.4)
t-*» e

provided this limit exists in which case, by (4.3) it is independent

of £> 0. We now investigate when such a limit exists. Rewrite (4.2) as

eee(t) =-vv(6°,ee(t)), ee(o) =e°, (4.5)

where VV(6 ,8) denotes the gradient with respect to 8 of the "potential"

function V given by the path integral

V(6°,8) = - [p*-f V0^)]^
0 (4.6)

=-IVi -I(ZY fcos(8.-6°) + I Yi^cos(8i-8k)} +K,
i i j k^i

using (2.4). Here K is some constant and the primes denote post-fault

values. Thus the trajectory 8£(t) follows a path of steepest descent

of the potential V starting at 8°. Therefore, if this trajectory

converges at all it must converge to a point 8* such that VV^0^1)

=P-f (6°,8') =0 i.e. (6°,e!) € m'. (Recall that we have already

assumed the existence of 8» with (6°,8T)Ql!.) Suppose that 8 (t) does

converge to 8f so that VV(60,e*) = 0. Then 81 is either a local

minimum of V, and then DQf l(6°9B') >0, or 8' is apoint of inflexion of
V. In the latter case, even though 8 (t), starting at 8°, converges to

-15-



8', the slightest change from the initial condition 8° can lead to

trajectories which will not converge to 81. (In other words, the

equilibrium point 8* of (4.5) is a saddle.) Such a delicate dependence

on initial conditions is exhibited by (4.5) but it seems to us

unreasonable to suppose that this fragile behavior accurately reflects

the "real" system. We shall assume instead that there exists a 81

with (6 ,8f) G M* and Df (6°,8') > 0 so that 6' is an asymptotically

stable equilibrium of (4.5) and 8° belongs to the attractor of 8'. To

guarantee this stability we restrict our attention to a subset of the

state space called the principal polytope.

The principal polytope is the convex open set C of Br given by

C={(6,8)116.-8.1 <f if YfSo, 16^6.1 <f if Y88 >0, |e±-8. | <f

if y" > 0}.
ij

Evidently C depends upon Y. Before returning to the main discussion we

present two properties of the principal polytope.

Lemma 4.1. If (6,8) € M H c, then D.fJl(6,e) > 0. In particular, if

MPc is nonempty, then it is a smooth g dimensional submanifold of Br .

Proof. See Appendix III. n

Let C, C denote the pre- and post-fault principal polytopes.

(Observe from (4.7) that if the fault consists of the opening of one of

the lines then C C c'.)

Lemma 4.2. Suppose there exists 8* such that (6°,8') ^M' He'. Then

such 8T is unique. Thus M1 He1 is a connected manifold.

Proof. See Appendix III. n
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We return to the main discussion. We make

Assumption A. The pre-fault equilibrium values (6°,8°) G M n c is such

that there exists 81, necessarily unique, such that (6°,8') 6m' He*.

11 oBy Lemma 4.1 DQf (6 ,8') > 0 and so 8* is an asymptotically stable

equilibrium of the differential equation (4.5), hence the solution of

(4.5) satisfies

lim 8 (t) = 8'
£

t"*»

provided 8£(0) = 8 belongs to the attractor of 8'. This leads to

Assumption B. 8 belongs to the attractor of 8*.

Under these assumptions the limit in (4.1) is 8(0+) = 81. This

justifies the following choice for the post-fault initial condition for

the degenerate system model.

Definition 4.1. Suppose the pre-fault equilibrium (a)°,6°,80) satisfies

Assumptions A, B. Then the post-fault state is defined as

(a)(0+),6(0+),8(0+)) = (a)0,6°,8').

Thus at the instant of the disturbance the various bus angles of

the degenerate system model jump from (6°,8°) G M H c to (6°,8') EM' He'

(see Figure 6). The new initial state (a)0,6°,8') will not generally be

an equilibrium for the post-fault system. Let (ui (t) ,6 (t) ,8 (t)) be the

trajectory issuing from the new initial state. Three qualitatively

different behaviors are possible.

The worst outcome is that the post-fault system possesses no

equilibrium at all (at the specified loads and rated generating

capacities). In the words of [4] the situation now calls for heroic

control action. Since our model is quite inadequate for discussing such

control action we assume away this outcome by presupposing the existence
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of an equilibrium. We make

Assumption C. There exists a set of net mechanical power inputs

P = (P- ,.-,P ) and a post-fault equilibrium state (u> ,6 ,8 ) with

co1 = 0 and (61,61) GM' He'.

Observe that this assumption implies aggregate power balance,

I Pf "IPr (4 7)i=l j=l J ^•''

Using assumption C an argument almost identical to that used in the

proofs of Lemmas 4.1, 4.2 shows that (6 ,8 ) € Mf He' is unique and

Dff(6 ,8 ) ^ 0 with this matrix having exactly one zero eigenvalue. By

Theorem 2.2 the equilibrium (u> ,6 ,8 ) is asymptotically stable in the

sense of Definition 2.1.

Two possibilities remain. The favorable outcome is that the

initial state (oi ,6 ,8') is in the normal or secure region: this means

that (i) (co0^0^1) belongs to the attractor of (ui ,6 ,8 ) and (ii)

along the convergent trajectory (co(t) ,5(t) ,8(t)), the deviation of the

instantaneous frequency from synchronous frequency and the magnitudes of

instantaneous power flows over transmission lines, are both within

rated tolerances. In terms of [4] we would say that the "inequality

constraints" are respected. Clearly in this situation no active control

action is necessary.

The last possibility is that the initial state (to ,6 ,8') is in the

alert region which means that one or both of the aforementioned conditions

characterizing the normal region are absent. It is then necessary to

design a control over some interval [0,T] to be selected which steers

the state from (u)0^0^') at time 0 to (w ,5 ,8 ) at time T, without

violating the inequality constraints. In the next section we first
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present a formal description of the steering problem and then propose a

solution.

4.2. The steering problem

It is assumed that control is to be exercised by varying the (net)

mechanical power inputs P (t) at the generating stations. There is a

complex set of physical limitations imposed by the dynamics and capacities

of power generating plants (succinctly discussed in [6]) which limits the

extent to which P can be varied. We abstract from these considerations

and impose two restrictions: there is a maximum value which Pm(t) can

take and the rate of change |P (t) | must be bounded. Formally we have

Constraint A. (Admissible control constraint) Pm(t), 0 <_ t£ T, is

admissible if for each i = 1,..,g

0<Pm(t) <ir±, 0<t<T (4.8)

and if v.(t) = P?(t) satisfies
l l

0ltlT|Vi(t)l<" (*.»>
Here -n^ are prespecified generating capacity limits.

To take this constraint into account it is convenient to augment

the system state by P making v the control variable. Then the perturbed

model becomes

Mi + Du) = Pm - f'S (6,8)

6 = 2tt(o

•m (4.10)
P = v

£8 = P -f,X,(6,8)

As before, the degenerate model is obtained from (4.10) by setting e = 0.
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For convenience let x = (oj,6,Pm,8) €= R3g+A denote the state. In terms

of the discussion of Section 2, we interpret a degenerate system

trajectory as the limit as £ -»• 0+ of the perturbed system trajectory.

This is formalized as

Constraint B. (Consistency constraint) Let v(t) , 0 <_ t <_ T be a control

function. Then x(t), 0 _< t _< T is a corresponding degenerate system

trajectory if it satisfies (4.10) with £ = 0, and if, for each e > 0,

there is a perturbed system trajectory x (t) such that

lim x (t) = x(t), 0<t<T. (4.11)
£-*)+ e

Finally, we have the inequality constraints.

Constraint C. (Inequality constraint) We require that

|«±| <Q, i= l,--,g (4.12)

i»j = l."g; k,m = 1,",&. (4.13)

Here fi is the maximum permissible deviation of the instantaneous frequency

and the various C. . are the maximum permissible power flows. Let

Z * {x = (u),6,Pm,8)|x satisfies (4.8), (4.12), (4.13)}.

We say that a degenerate system trajectory x(t) , 0 <_ t <_ T, is admissible

if

x(t) GS, 0 <_ t <. T (4.14)

I F
Definition 4.2. Given two states x €= E, x €= z the steering problem

I F
SP(x ,x ) is to find an admissible control v(t), 0£t<.T and a
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corresponding admissible degenerate system trajectory x(t) such that

x(0) = x1, x(T) = xF.

In terms of this definition the steering problem following line

switching is given by

x1 = (v0,?,?™^'), xF = (U1f«1,P,Illfe1) (4.15)

where P is the pre-fault power input. Let

V = {x = (o),6,Pm,8) €= z|(5,8) <=M' He'} (4.16)

where C1 is the post-fault principal polytope. Our main result is

IF IF
Theorem 4.1. The steering problem SP(x ,x ) can be solved if x , x are

both in Z'.

Proof. See Appendix IV. n

We remark here that the spirit of the proof is constructive i.e., it does

suggest a way of finding a steering control. However much work needs to

be done before such a control can be computed and implemented in real

time.

Corollary 4.1. Under Assumptions A, B, C the steering problem following

line switching can be solved.

I F
Proof. By hypothesis x and x given by (4.15) are both in Z1. n

4.3. Generator dropping and load change

Suppose that generator 1 say is suddenly disconnected from the

network at time 0. Within our framework this situation is modelled as

follows. The state space (see (2.5)) changes instantaneously from
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g g—1
X = R x M to X = Re x MT where M1 is now a (g-1)-dimensional manifold.

The bus to which generator 1 was connected now becomes a load bus so

that the dimension of 8 is augmented by one. The angles and frequencies

of the remaining generators ok, 6±9 ± > 2, cannot change instantaneously.

The disturbance is therefore reflected in an instantaneous change in the

load bus angles &^9Q^9..,Q f whose values at t = 0+ must be determined

according to the discussion of Section 4.1. If the new initial state at

t = 0+ is in the alert region, then we are again faced with a steering

problem of the kind discussed in Section 4.2.

Suppose that at time 0 there is a sudden change in the load from

Z0 Al
P to P say. This again shifts the manifold M to Mf (see (2.5)) and

will cause an instantaneous shift in the load bus angles. The situation

is now exactly the same as described in Sections 4.1 and 4.2.

5. Concluding remarks

This paper is written with two objectives in mind. First we wished

to present a model of an interconnected power system in which the

structure of the load bus subnetwork is preserved. This was done by

arguing that the algebraic constraints introduced by the static loads

could be consistently regarded as a degenerate limit (boundary layer) of

dynamic loads which depend on frequency. We suggest the utility of this

approach by producing a stability criterion which is identical to the

one obtained for an all-generator network.

Second, we wished to formulate the problem of controlling the

network following a disturbance as one of steering the system from an

alert state to a secure region. Our attempt can be viewed as a

mathematization of informal discussions of this problem. We believe such

a formalization is essential to a thorough understanding of the problem

of emergency control.
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Appendix I. Proofs of assertions in Section 2

1.1. Proof of Theorem 2.1. We apply the result of Hoppensteadt [1].

To do this it is convenient to choose as reference one of the generator

bus angles, say 6 , and define the others in terms of it. Accordingly
O

let y= (Y-t.'^Y _x) with y± =6± -6 ,and <f> = (<J>1».. Az) with
g %

<f> =8 - 6 . Also define the power flow functions h , h by
yi i g

h8(Y,<j>) = f5(6,8), h*(Y,<|>) = fA(6,8) (I.D

In the state (u,Y»<J>) the perturbed system is described by

Mi"i +Diwi =Pi "hi(Y,<J>)» i" i'**»8» (I,2)

Y. = 2tt(o).- w ), i = l,..,g-l, (1.3)
1 x g

e(J.-2™ )=pJ -tu(Y,<|>), i=1,..,*.
i g i i

The degenerate system is obtained by simply setting £ = 0 in

these equations.

In addition it is necessary to consider the so-called "boundary

layer" system. This is obtained from the perturbed system by letting

s « t/E and then setting £ = 0, giving

dw.

M± -j-~ =0 , i = l,...,g,

dY±
-j-- =0 , i = l,...,g-l,

~(J».-2Tro) = pJ - hJ(Y,*)» i= 1,...,A,
ds Ti g i i

which simplifies to

-f- <J>. = P* - h.(Y,<{>) + 2irw . i = 1,...,*, (1.4)
ds l i i g

and (o(s) = <jj, y(s) = Y where uj, y are constants.

-23-



Now let (a) =0,6 ,8 ) be an equilibrium of the original equations

(2.1)-(2.4). Let Y? = 6? - 6°, <f>? = 8? - 6°. First we show that
i l g i i g

/ o o oN
(o> ,y ,<f> ) is an asymptotically stable equilibrium of the degenerate

system. Its equations, linearized around this equilibrium, are

MAi + DAw = -D hS(Y°,<J>°)AY - D h8(Y°,<r>°)A$ ,

Ay± » 2Tr(Awi-Aa) ), i = l,..,g-l,

0=-Dyh*(Y°,<i>0)AY -D^Cy0,*0)**,

(1.5)

(1.6)

(1.7)

which may be compared with (2.11)-(2.13) . Solving for A<f> from (1.7) and

using (1.1) these equations can be rewritten more compactly as

Ay

A co

0 2ttT

-m\

where the (g-1) x gmatrix T = [I :-l8"1] with l8" G R8" the vector

all of those components are unity, and A is given by

ART =A=D6f8(6°,e0)[D6fJl(60,e0)]"1 1)^(6°,Q°) .

Suppose X is an eigenvalue of H with eigenvector (x,y). Then 2irTy = x,

-M~ A^x - M~ Dy = xy> from which it follows that

y*(X2M+XD+2wA)y = a*2 + bX2 + c=0,

•-1- -nh

ay ay

A co

= H

A co
Lb M ^- *•

say (1.8)

with a > 0, b > 0 and c _> 0. This implies Re X < 0 or X = 0. Moreover

X = 0 is an eigenvalue only if y*Ay = 0 which, by (2.15), requires y = 1 .

Then 2uTy = 2ttT1S =0, and l8 =-D~ ARx so that TD" ARx =0and so x=0

since TD A_ is nonsingular. But then y = 0 also and so X = 0 cannot be

an eigenvalue of H. Thus (1.8) is asymptotically stable and it follows

that (u) 9Y°»4»0) is an asymptotically stable solution of the degenerate

system.
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Next we study the boundary layer for (u>,Y><{>) inside a small

sphere S of radius R centered at (ui ,y ,<!> ). From (1.1) we see that

Def*<6,6) =D^h£(Y,(t») (1.9)

and so, by (2.14) and the Implicit Function Theorem, there is for R > 0

- - - - Z Z -
small, a smooth function (u>,y) H- <j> = $(io,y) such that P. - h.(Y,<rO +

2ttu> =0, i = 1,...,£ and (ui,Y,<{>) e S if and only if <{> = $(u5,y). We
g R

show now that the equilibrium (J> » $(oj,y) of (1.4) is asymptotically stable

uniformly for |u>°-u)| + |y°-y| < r for small r. The solution of (1.4)

linearized around this equilibrium is governed by

d Z - - -^•A4» = -Dh(J)(Y,*(co,Y))A(|).

From (1.9) and (2.14) it follows that if r is small enough, then

|A+(s)| 1 Ke~pS|A({>(0)|

for some K < « and p > 0. This implies that the solution <|>(s) of (1.4)

converges asymptotically to <&((H,y) uniformly for (w,Y><K0)) e SR for R

small.

By Hoppensteadt's result the asymptotic stability of the degenerate

system and the uniform asymptotic stability of the boundary layer system

implies that if |a)£(0)-u)°| + |yE(0)-y°| + |<f>G(0)-<|>0| is sufficiently

small, then (w£(t) ,YS(t) ,<|»e(t)) of the perturbed system (I.l)-(1.3)

converges, as £-K)+, uniformly on [T,«) for T > 0, to the solution

(to(t) ,Y(t) ,<j>(t)) of the degenerate system. The theorem follows readily.

n

1.2. Proof of Proposition 2.1. We have

J =
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evaluated at (6°,8°). Notice that if Is* is the only eigenvector of J

corresponding to the eigenvalue 0 then D.f must be nonsingular. Hence

(2.14) and (2.18) both imply DQf* is nonsingular. For any (x,y) eBr*1,
we find

-1/2 1/2 2
(x,y)»J(x,y) =xfAx +|[BQfl] Dfif£x + [DQ£l] y| ,

from which the equivalence of (2.14), (2.15) and (2.18) follows readily.
n

1-3. Proof of Theorem 2.2. Part (ii) of Definition 2.1 follows from

Theorem 2.1, and so it only remains to verify part (i). In terms of

the notation introduced in Subsection 1.1 above, this is equivalent to

finding £ > 0 such that (w ,Y°,<J>°) is an asymptotically stable

equilibrium of the perturbed system for 0 < £ < £° •

To prove this it suffices to show that for sufficiently small

£ > 0, the perturbed system linearized around (<d0,y°,<{>0) is asymptotically

stable at the origin. Now the eigenvalues of this linear system are the

same as those of the system (2.8) - (2.10) except that the latter has

one additional zero eignevalue.

Let X be an eigenvalue of (2.8) - (2.10) with eigenvector (x,y,z)

2g+il
in R . An algebraic manipulation leads to the relation

{X22ttM +XD +D6f8 -Def8[DefA -eXI]"1 DQf*} x=0 (1.10)

The matrix inverse in (1.10) exists for e small since DQf > 0.
8

The solution X(e) of (I.10) is of the form

X(.£) = Xq + 0(e),

where X satisfies
o

{X2 2ttM + XD+ D.f8 - D^iBJ1]'1 Daf*} x » 0
o o o o o o
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We have already seen that this implies X > 0. If X > O then, from
o — o

(1.11), X(e) > 0 for small £. On the other hand if X = 0 then we know
o

from (2.16) that x = l8 and

D5f8 -Defg -DftfB[D0f*]~x D.f*} Is =0.^[d/]"1 d/'

Expanding (I.10) in power of e and using this relation then shows

X = 0. The result is proved. n

Appendix II. Proof of assertions in Section 3.

II-1. Proof of Theroem 3.1. For i = l,..,k define the reduced Jacobian

matrix JR by deleting the row and column of J corresponding to the

boundary bus b ,and define JR, J by deleting from J° and J respectively

the row and column corresponding to b,. Condition (i) is then equivalent

to JR > 0 and (ii) is equivalent to J > 0 for i « 0,...,k.
1 kJR and JR»«'->JR are related as in (II.1).

bl b2

JR = (II.1)

R

Suppose JR > 0. It is immediate from (II.1) that JR >0 for i= l,...,k.

The (k-l)x(k-l) matrix J with rows and columns corresponding to the

boundary buses bi»«-^]c_1t is obtained from J in the following way. Its

off-diagonal entries corresponding to (b.,b.), i $ j is the same as the

(bi,b^)th entry of JR. Its (b^b^th diagonal entry is obtained by
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adding to the (b^b^th entry of JR all those entry of the b.th row which

correspond to buses in the ith subnetwork. With this in mind, it

follows that for 0 ^ x = (x.,... ,x,_.)

x'J x = z*J_z > 0
K. R

where z = (x^.. ,x1,x2,.. ,x2>.. .x^,.. ,^^,1,.. ,1) '. Hence JR > 0.

Conversely suppose JR > 0, i = 0,.. ,k. Let 0 ^ z = (z^a^,.. y\_v\) '

GR^1, withz. 6R8i+lfl , x. £ R. From (II.1) we can see that

k-1

ztv - l KJ\+ x?jrx +zkJRzi (II.2)

8i+*i
where y' = (z.,x.) £R , x' = (x-,..,x. .). It is easily seen from

(II.2) that J_ > 0. n
R

II.2. Proof of Theorem 3.2. We consider the simplest case where exactly

A " Ao oone line connecting b., and b« is deleted to obtain N from N . The

general case is similar but notationally awkward. J,, has the form shown

in (II.3). It is the same as in (II.1) except for the additional entries

corresponding to b_, b« .

A

bi

bl b2
X

. X
•4

b2

X . .

X

X X

JR = 4 •

X . . X

•

•

4
1 J
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Let 0 i z' = (z1,x1,...,xk_1,zk)' ^ B!

Z'JRZ =J, ^i+x*5rx+zJrz

l.bx 2,b2

"a -a

-a a

&4-&-1

1,b]

L'2,b2J

as above. Then

(II.4)

gi+£i -i iIn (II.4), y! = (z.,x.) G R , j is the Jacobian for the network N

*. A Ao
with the line connecting b.,, b2 deleted and J is the reduced Jacobian

for the network N ; finally z is the b.th component of z. and
i,b± i

a =Y cos(8^ -8a ) >0 by condition (iii). Conditions (i), (ii)
blb2 bl b2

imply that JR > 0. n

Appendix III. Proof of Lemmas 4.1, 4.2.

III.l. Proof of Lemma 4.1.

o

The entries of the matrix Df (6,6) are given by
8

M

(V )iJ"-lcij cos(er9j>' *• +*•

=* 1, ••,£ (III.l)

(III.2)

Since (6,8) E c, (4.2) implies that cosO^-e.) > 0, cos(8.-8, ) > 0.
i j l k

Therefore DQf (6,8) is diagonally dominant, hence positive definite.

•o „i,HI-2- Proof of Lemma 4.2. Suppose (6 ,8 ) G Mf HC», i = 1,2,. By

(2.5)

f1V.81) =fH(6°,82) =P*. (III.3)
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Since C1 is convex, (6°,8(u)) = (6°,ue1+(l-u)82) GC for 0 < u < 1.
By (III.2),

£De^V.eW) ^H>du -f'V.81) -f'V,82) =0
„ 98(u) 1 2 f£ o

"1ST = e " 8 and Def (<s »e<u)) > ° fey Lemma 4-1- Hence

(e^eV [ dfH(6°,8(u))(e1-e2)du >o
Jo °

if 8 ^ 8 which would contradict (III.4). So we must have nl ~2,£ „1 ^ .2 ...... _ ...... ,. .. q_ = q^

(III.4)

proving the uniqueness of 9'. n

Appendix IV. Proof of Theorem 4.1

The proof is carried out in several steps. We first prove a

result, Lemma IV. 2, which has some independent interest. Consider the

system

x = Ax + Bu + H(x,u) (IV.1)

with x € r y u Gr an(j where H is a bounded continuous function which

is Lipschitz in x. Let RT(x ) be the set of states reachable in time
I 9

T, starting at x , and using controls u £L [0,T].

Lemma IV.1 Suppose (A,B) is controllable. Then ILXx1) = Rn.

Proof. x(T) =(exp TA)xI +LT(u) +NT(u)

where LT, NT are maps from L2[0,T] to Rn satisfying

LT(u) « r[exp(T-t)A] Bu(t)dt,

NT(u) -pexp(T-t)A] H(x(t), u(t))]
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Since (A,B) is controllable the range of L is all of Rn. Since H

is bounded, so is NT> and it then follows from a result on quasi-

bounded maps due to Granas [8] that the range of L„ + N is also Rn.

The result is then immediate. n

We now find a control which steers (IV.1) from prespecified
I F
x to x in time T. Consider the following sequence of controls

ukeL2[0,T].

For k = 0, set uk = 0.
k

Suppose u has been selected. Let

x£t) =(exp tA)xI +Lt(uk) +Nt(uk), 0<t <T (IV.2)

be the corresponding trajectory. Then let

k+1 * * —1 F t l»u =LT [LTLT] [x - (exp TA)xX -NT(uR)]. (IV.3)

* n 2Here LT : R -*• L [0,T] is the adjoint of the map L_. That is

L*(x)(t) = B'texptt-OA^x,

W*£ *JotexPd-t)^ BBl[exp(T-t)AT]dt.

Now if u=LT [L^]"3* then |u(t)| l^T"1^^! ,0<.t£T, for
some constant ^ depending on A and B. Also, since H is bounded

|NT(u)| <K2T1/2. Hence

|uk+1(t)| <Kl T~1/2 {|xF -(exp T^x1! +K2T1/2}. (IV.4)

It is now possible to show following the argument of [7, Proposition V.l]

that there exists a subsequence of the u and x which converges to u

and x. From (IV.2) it follows that
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x(t) =(exp tA)xI +Lfc(u) +Nt(u) ,0£t<_ T

so that x is the trajectory corresponding to u and from (IV.3) it

follows that

x(T) =xF

so that u steers (IV.1) from x1 to xF. Also u (t) satisfies the

bound CIV.4). Finally

|xCt) -(exp tA)xX| <_ |Lt(u)| +|Nt(u)|
< K3T1/2 |u|+K2T1/2
< K^ {|xF -(exp TA)xX| +K£T1/2} +K2T1/2.

(IV.5)

Lemma IV.2 Let X be a bounded set and a > 0. There exists T < », $ > 0

such that for all x1 Sxand all xF with |xF -xX| < 8, there is a

bounded control u(t), 0 < t <_ T, which steers (IV.1) from x1 to xF

such that |x(t) -x| < a, 0 £ t£ T.

Proof. Immediate using (IV.5) a

Now consider the degenerate system model (see (4.10))

Mu + Du) « Pm - fT^6,8)

6 = 2ttu

P a V

0 = pA -f,Jl(6,8)

By Lemmas 4.1, 4.2 there is a smooth function $ : R8 -»• R such that

(6,8) S M'nc1 if and only if 8 = (j>(6), so that in this region the

model above may be rewritten as
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Mw + Deo « Pm - f'^6,<|>(6))

6 a 2™ (IV<6)

P = v

We can now prove a local version of Therorem 4.1. For a > 0 let

*a = (x a(co,5,Pm,8) 6 St J|((0,6,p^) _ (u,,6,Pm)| <a implies

(u,6,Pm, <j>(6)) G2'}

Lemma IV.3 There exists g >0 and T <« such that for every pair x1,
F T F
x in Z^ with |x - x |<gthere exists asolution to the steering

problem SP(x ,xF) on [0,T].

Pro°f The system (IV.6) is in the form (IV.1) with its linear part
* • .

give by Mw + Du> = Pm, 6= 2™, Pm = v. This linear system is

easily seen to be controllable. Also, from (2.3) we can see that

f (6,<j)(6)) is a bounded function of 6. Hence by Lemma IV.2, there

is a control function v(t), 0 <_ t <_ T which steers (IV.6) from

IF T
x to x along a trajectory x(t) satisfying |x(t) - x (t)| < a.

By the definition of E^ this implies x(t) ^E', 0 £ t <. T, so that

(4.14) is satisfied. It only remains to show that the trajectory

x(t) is admissible i.e. it satisfies constraint B. Now, x(t)

- (w(t),6(t),Pm(t),8(t)) GZ' implies (6(t),8(t)) GM^C'. An

argument along the same lines as in the proof of Lemma 4.1 shows that

Dff (6(8),8(t)) >_0 and this matrix has exactly one zero eigenvalue.

Hoppensteadt's result can now be applied in exactly the same way as

in the proof of Theorem 2.1 to prove (4.11).
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Proof of Theorem 4.1. Let x1, xF be in Z1. Then there is a >0
I F

such that x , x are in Z\ Let g > 0 and T <«be as in Lemma IV.3.

10 1 K F
We can find a sequence x =» x , x ,••, x = x in If with

ot

|x - x j < g, and control functions v which solve respectively

SPCx^xh over [0,T].

Clearly the control function

vC(k-l)T+t) =vk(t), 0 <t <T, k =1, -, K

defined on the interval [0,KT] solves SP(xI,xF).
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Figure Captions

Fig. 1. Interconnected power system.

Fig. 2. State space of degenerate system.

Fig. 3. Hierarchical decomposition of interconnected power system.

Fig. 4. Representative of the class of power networks under

investigation in section 3.1.

Fig. 5. Power system with two utilities; one of them having several

boundary buses.

Fig. 6. Two stage alert state control of power system.
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Figure 1. INTERCONNECTED POWER SYSTEM
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Figure 4. REPRESENTATIVE OF THE CLASS OF POWER NETWORKS UNDER
INVESTIGATION IN SECTION 3.1
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