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ABSTRACT

An implementable master algorithm for solving optimal DCTT problems

is presented. This master algorithm decomposes the original non-

differentiable optimization problem into a sequence of ordinary nonlinear

programming problems. The master algorithm generates sequences with

accumulation points that are feasible and satisfy a new optimality

condition which is shown to be stronger than the one previously used

for these problems.
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1. Introduction

Quite commonly, the engineering designer has to take into account

the fact that the parameter values of the actual system, structure, or

device, will be different from the nominal values in the design. In

control system design, this discrepancy is largely due to identification

errors; in steel structures and in electronic circuit design it is due

to production tolerances. Recently, optimization algorithms have

been proposed [1,2,14] which enable the designer to ensure satisfaction

of specifications not only by the nominal design but also by all

possible system or device realizations within a prescribed tolerance

range. When using such algorithms, one can make the tolerance range a

design parameter and maximize it while minimizing some other cost

function of the other parameters by constructing an aggregate cost by

means of weighted combinations. It has been known for some time that

the requirement of 100% yield, i.e., that all realizations within

tolerance range satisfy specifications, may result in very tight toler

ances or very high precision of identification requirements [3,4], To

overcome this difficulty, it has become common to tune a control system

or to trim, by laser beam, electronic devices after manufacture [5,6,7,8,9]

Empirically, it has been found that tuning and trimming permits the

relaxation of the error or tolerance range to acceptable levels and

hence results in considerably Increased yield. Quite recently, two

t
conceptual algorithms have been proposed for solving design problems

with tolerances and tuning or trimming [3,10], In the electronics

literature such problems are referred to as design centering, tolerancing

t
We say that an algorithm is conceptual if it contains infinite operations
which cannot be easily approximated. We say that an algorithm is
implementable if specific truncation rules are given for all such infinite
operations.
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and trimming problems (DCTT).

Typically, a specification on the nominal value of the design

parameter x^ir takes the form

^(x) < 0, (1)

with f :R -+TEL continuously differentiable. When identification

ne m
errors, or tolerances, e€]R , ranging over a compact set ECjr , need

to be taken into account, the constraint (1) becomes modified to

max <J> (x,e) < 0. (2)
e€E

n -

with <J>X:IRnxIR e-*-IR . Finally, assuming that tuning or trimming
n
•j

will be performed by means of a parameter x£ IR , ranging over a
n

compact set TCir , after the process picks an e, we modify (2) to

^E T(x) « max min max ? (x,e,x) _< 0 (3)
' e^ tSt k^K

since x must work for all the specifications k€=K, with K=» {1,2,... ,m}.

For a more detailed exposition of the design centering, tolerancing and

trimming problem formulation as an optimization problem, the reader is

referred to [3,4].

Although Lipschitz continuous [3], the function ty CO is, in
E,T

general, not differentiable; in fact, it may even fail to have directional

derivatives. In [3] we find a conceptual algorithm for optimization

problems with constraints of the form (3), based on the concept of general

ized gradients [11,12,13]. The algorithm in [3] consists of two parts:

a master outer approximations algorithm, which replaces the set E in

(3) with a discrete subsets E.Ce (as in [14]), and an inner, non-

differentiable optimization subalgorithm which solves the resulting

simpler problems. It is shown that the solutions of the simpler
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problems converge to a solution of the original problem. The inner,

nondifferentiable optimization subalgorithm in [3] has two serious

drawbacks. The first, common to many nondifferentiable optimization

algorithms, is that it utilizes a very expensive bisection procedure

to get adequate approximations to required bundles of subgradients (see,

for example, [18,15,16]). The second, because of a requirement of semi-

smoothness [13], is that it is applicable only to the case where there

is only one constraint function X> (i.e., K = {k}).

In this paper we present a new, implementable algorithm for solving

optimization problems with constraints of the form (3). Just as the

algorithm in [3,14], it makes use of outer approximations to the

feasible set to decompose the original problem into an infinite sequence

of simpler problems, by replacing the set E with discrete subsets E..

However, because of the use of certain transformations, the resulting

simpler problems are ordinary, differentiable, constrained optimization

problems, solvable by a large number of existing, efficient algorithms.

Thus, as a consequence of these simple, but not immediately bbvious

transformations, all the computational difficulties caused by the need

for a nondifferentiable optimization subalgorithm in [3] have been

removed. Truncation rules are given for all the major infinite

operations in the new algorithm, making it implementable and hence

easily programmable. Finally, it is shown in the Appendix that the

optimality conditions, on which the present algorithm is based, are

sharper than the ones used in [3].

It is our hope that this new algorithm will become a valuable

tool in the arsenal of the engineering designer.
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2. Problem Decomposition via Outer Approximations to the Feasible Set

The most general form of an optimization problem arising in

engineering design, that we shall consider in this paper, is as follows

P :min {f°(x)[f^x) <0, ±€i;
8 x

max <j>J (x,o)J) £ 0, j.£J;

max min max C (x,e,x) <. 0} (4)
e6e x€t k^K

where I,J,K are sets of integers (e.g.,K=* {1,2,... ,m})

f°:3Rn-»'IR1, fi:IRn^IR1, i€l, (J>j :IRnx IR M j^ je J, and
k n nX, :IRnxIR ex 1R T^IR1 k^K, are all continuously differentiable. In

this context, x is the nominal design vector; the or are tolerances,

errors, or variables, such as frequency,or time, or temperature, which

must be considered over a continum of values; e is an error or

tolerance to be overcome by tuning, and x is the tuning parameter. We

shall assume that the sets sir, E and T are compact and specified by

differentiable inequalities, which we shall introduce, as needed, later.

There is no essential loss of generality, as far as the exposition

of our method is concerned, in assuming that I and J contain only one

index each, i.e., in considering only one constraint of each kind.

On the other hand, there is a considerable simplification in notation

when the indices i and j are eliminated. We shall therefore restrict

ourselves to the simpler problem

P: min {f (x)|f(x)_<0, max <Kx,u>) ± 0,
x (o^(2

max min max £ (x,e,x)£0} (5)
e€E x€T k^K
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1 n 1where f:IRn-*IR , <J>:IRnxiR a>-*iR , are continuously differentiable,
noj n n

ft Cir f and EC jr and TC jr are compact and the remaining

quantities are as in P .

Now, let ft.Cft and E.Ce be discrete sets and consider the problem

• r 0 ,Pi:min{f (x)|f(x) <_ 0, max <Kx,u>) <. 0,
x aj€j?i

lr

max min max £ (x,e,x) <_ 0} . (6)
e6Ei xGT k€R

We shall show that unlike the problem P, P. is an ordinary nonlinear

programming problem. Thus, suppose that

o± = V.ealj.e.y, e± = U^Elte^}, (6a)

with J., L. finite sets of integers and let

<j>j(x) -•♦(x,m ), jSj± (6b)

? (x,x) =c*(x,6£,T)f £€L±> k^K . (6c)

Now suppose that

T - {x|gS(x) <_ 0, s€s} (6d)

A s ax 1
with S = {1,2,...,a}, g :IR -*R continuously differentiable, and

consider the problem

P.: min {fQ(x)|f(x) <_ 0; ^ (x) <0, jSj •

C (x,t£)< 0, k€K, £€l±; gS(x£) £ 0,

s€s, Jl€L.} (6e)
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Proposition 1: x solves P if and only if {x;x ,£€l.} solves P , for

some t.St, £Gl .

JProof: => Suppose x solves P , Then <J>J (x) <_ 0 for j£J and there exist

x €t, £Sl such that max max ^(x.t.) <0, i.e., {x,xn ,A ei,.} are
1A a€=L;LkeK i

feasible for P^. Now suppose that that this triplet is not optimal for

Pi. Then there exist {x;x£,Jl SL.} feasible for P ,and such that

f(x) <f (x). Now, xsatisfies f(x) £0, $ (x) £0, jEJ± and

k -
max min max z, (x,e,x)
e€Ei t€t k^K

k£ -
= max min max 5 (x,x)
AEL± x<=T k<=K

kJl ,"* •• v£ max max r, (x,x0) £ 0 (6d)
1&L± k^K *

i.e., xis feasible for P±. But then f(x) <f°(x) contradicts the
optimality of x.

*= Now suppose that {xjx^JtSL } solves P;. Then, because of

(6d), x is feasible for P , Suppose that x is not optimal for P .

Then there exists an x and corresponding x.,ASl such that x is feasible

for P., fu(x)<fu(x) and max min max e (x,x) =
2,€Li xST k^K

max max ? (x,x ) £ 0, so that {x;t.,JISL.} is feasible also for P..
Z^l. k<=K z * 1 i

1

But this contradicts the optimality of x and we are done.

Next, let X:IRnxiR e^iR be defined by

A k
X(x,e) = min max £ (x,e,x) (7)

x€T k€K

It was shown in [3] that X(«,') is Lipschitz continuous. Since

-6-



ft. C a and E Ce,

and

{x|max <J>(x,o)) £ 0} C{x|max <l>(x,a)) £0} (8)
toGft ajGft.

{x|max X(x,e) £ 0}C{x|maX x(x,e) £ 0}. (9)
e€E eSE.

l

Consequently, the feasible set in (6) contains the feasible set in (5),

and therefore, if x solves P and x. solves P., we must have

f (X±) £ f (X) (10)

Now suppose that we construct an infinite sequence of problems P., with

solutions x± such that x.-*x as i~*» and x is feasible for P, i.e.,

x€F = {x|f(x) £ 0, max <j>(x,ai) £ 0,
U)£ft

max X(x,e) £ 0}. (11)
e€E

Then,* by continuity of f and (10)

f°(x) £ f°(x) (12)

and hence x is optimal for P. Thus, since we can solve problems of the

form P., the solution of problem P can be assured by constructing dis

crete sets ft., E. such that any accumulation point, x, of a solution

sequence '{x±} satisfies x€F. In [14] we find two specific schemes for

achieving this result. We shall now summarize the most relevant results

from [14].

00 CO

Proposition 1; Let \6 \ and {§ \ be a positive, monotonically
L XJi=0 \ 1Ji=»0

decreasing sequences, with S -*0, S.-^O as !-•«». Let EqCe and ftQCft

be discrete sets. For i = 0,1,2,... let x.^m11, ft.Cft and E Ce be

defined recursively as follows: let x be given and let x be such that
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f(x±) £ <5±, (13a)

max <J>(x.,u>) £ 6., (13b)

max X(x.,e) £ 6 • (13c)
eeEi 1 x

Let to., e be such that

<J)(xi,a)i) =» max $(*.£><*>); (14a)
a)€=ft.

X(xi,e±) = max x(x±,e) (14b)
e^E.

and let

"i+1 ° fiiU{a)i} *•* ♦(*1»»1) >6±

- ft otherwise,

Ei+1 =EiU{ei} if x^i»ei> >Si

- E. otherwise.

Then any accumulation point x of {x.K - is in F.
. i i»0

Proof: Suppose that x -• x, with IC{1,2,3,...}. Then, since f(-) is

continuous and S.-^O,

f(x) £ 0 (16)

Next, since the functions

ipQ(x) = max Kx,a>) (17a)
u)€ft

and

-8-
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*_ „(x) o max X(x,e) (17b)
E,T

e€E

I *are both continuous, ^(x±) -+ ^(x) and if>E t(x±) -*;f>E t(x). For the

sake of contradiction, suppose that ty^i*) >0. Then, since x -• x and

6^0, there exists an iQei such that ^o^xi^ >5± for a11 iSl» * —*•()

and hence for any ± >± > ± in I,

0± 3{M±|l€i, i0£i£i1> (18)

Because of (13b), we then have

<Kx± ,<»±) £ <5± for all iSl, iQ £ i£ i (19)

and therefore, in particular, lim <Kx. ,co ) £ 0 as i >i -*-», i ,i 6i,
Ta 2 il 2 1 2 1'

But, because ft is compact and x. -+ x,

|<Kx. ,oj ) - <J>(x. ,o) )|-»-0 (20)
12 Xl Xl 11

as i2>i1->•«», i2,i €i. Because of (19) and (20) we now obtain that

*0(x) =* lim <|>(x. ,o), ) < 0 (21)

and we have a contradiction. In exactly the same way it can be shown

that <J>_ „(x) £ 0 and hence the proof is complete. «

The simplest way of incorporating the construction of the ft., E.,

described in Proposition 2,into a master algorithm for solving P is

as follows (cf. [14]).

Master Algorithm 1

00

Parameters: {8,}.., 6.> 0, 6 ->0 as i +« ,

Data: ftQCft, EqCe, discrete sets.
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Step 0: Set i = 0.

Step 1: Solve P± for ix±;?l9lGL±}.

SteP 2: Compute ^(x±), ^E T(x±) and corresponding u> Sft and e.^E,

satisfying (14a,b) for x. = x..

Step__3: a) If *Q(x±) >§±, set 0±+1 «{u±} Uq Else setfii+1 -0.

b) If ^e^C^) >$±, set Ei+1 ={si}UEf Else set E1+1 »E±.

Step_4: If «a(x±) £ 0 and ^ T(x±) £ 0, stop; else proceed.

Step 5: Set i » i+1 and go to Step 1. n

The following result is obvious in view of Proposition 2:

Theorem 1: If Master Algorithm 1 stops in Step 4, then x- is optimal

for P. If Master Algorithm 1 constructs an infinite sequence {x.},

then any accumulation point x of {x.} is optimal for P. n

Master Algorithm 1 has the disadvantage that the sets ft. and E.

grow without bound. To see this, suppose that t|/Q(x.) £ 6 and

i|/_ _(x.) < 6.. Then the algorithm simply increases the index i to i+1,
£i, 1 1 ~ X

sets x.+- = x and continues doing so until 6. declines enough for

either 'J'oOO >$.f0r*E T^i^>5i t0 take Place* In t1*! we find awav of
circumventing this undesirable phenomenon. Let {<5..} be a sequence

such that 6=0, 6 >0 for i>j and let ^j.-**., as i"*00. (e.g.,

<5. = 10 max {0, l/(i+j)-l/(l+i)}) and suppose that we include w in E

and e. in E. for all i > j+1 such that t|»rt(x.) > 6. - ., or^ J(x.) > 5. . .,
3 i — » J i-l»3 ^s1 3 i~J-»3

respectively. Now, suppose that i|> (x.) £ 6.. Then w. would not be

included in ft.,- in Master" Algorithm 1, but under the new scheme,

a), would be included in ft.+1, if ifutei) >^ and» furthermore, it would

be retained for a certain number of iterations in ft., i = 3+1,j+2,...,

until <fi (x.) £ <S. , . took place. It would then be dropped, never to
ft 3 i—J.,j
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be used again. As a result, we get a scheme which tends to keep the

cardinality of the ft. and E. small. To make the cardinality of the ft.

A

and E. as small as possible, the elements of the sequence {<5.} should

be large and decay to zero as slowly as possible. To formalize this

discussion we summarize it in the form of

Master Algorithm 2 [14]

00

Parameters: {5..}. . n such that
ij i>3=0

a) S± * 0 for all i£ j, and 6 >0 otherwise.

b) S-h/'S . as i •*• oo.

c) <5 .+ 0 as 1 -»• ».
3 J

Data: ftQCft, E CE, discrete sets.

Step 0: Set i = 0.

Step 1: Solve P for (x , x , ... x ).
1 1 it±

Step 2: Compute ^(x^, 'I'-. T(x.) and corresponding u> €ft, e,€E

satisfying (14a,b) for x. = x..

A

Step 3: Include oj in ft - for all 0£ j £ i such that ^fi(x.) >6 ,

and include e. in E. -, for all 0 £ j £ i such that tj>_, -.(x.) > 6...
3 2.TX fi,l j 13

Step 4: If *Q(i±) ±0and ^E T(x±) £0stop. Else proceed.

Step 5: Set i = i+1 and go to Step 1. n

Since &± £<S for all i _> j, the following theorem is a trivial

consequence of Theorem 1.

Theorem 2: If Master Algorithm 2 stops in Step 4, then x. is optimal

for P. If Master Algorithm 2 constructs an infinite sequence {x.}, then

any accumulation point x of {x.} is optimal for P, n
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So far we have assumed that we can solve the problems P. exactly

and also evaluate the functions xp (•) and ty„ _(•) exactly. In the next

section we shall consider what happens when one solves the problems P.

only to the extent of finding approximate stationary points and when

one evaluates the functions <J>q(*) and ^E T(*) approximately, as will be

the case in practice. We shall then summarize our findings in the form

of an implementable algorithm.

3. The Implementable Algorithm

First we shall discuss the evaluation of the functions 4»0(*) and
da

t/>E T(«), defined in (17a,b). We shall assume that

ft « {u>|hj(o>) £ o, ienj (22)
n -

with h3:IR U-+,]R, continuously differentiable and H a finite set of

integers. We then see that

*0(x) =max{<J>(x,o))|h:i(w) <0, jSU } (23)

is defined by an ordinary nonlinear programming problem, the difficulty

of which depends entirely on the nature of the functions $(x,») and

h (•). In engineering design situations, the constraints br(oj) £ 0,

j^H ,tend to be very simple and (23) is not too difficult to solve,

at least approximately.

Next, we consider if>_ _(x). First, we note that

tJ> (x) » max {min max 5 (x,e,x)}
e£E x<=T k€K

- max {e [min max C (x,e,x) - e >_ 0 , e S E}
(e°,e) x6T kGK

(24)

If we substitute a discrete set T.Cx for T in (24), we get a larger

feasible set and hence (24) can be evaluated by a straightforward modification
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of Master Algorithm 2, such as the one to be presented shortly. The

use of this subalgorithm requires the development of the following

details. Suppose that

E«{e|pj(e) £ 0, jSiO (25)

ne t
with p3:IR -•IR all continuously differentiable and H a finite set of

integers, and that T± =*{x €T|j€g }, with G a finite set of integers.

Then the discretized problem which the outer approximations subalgorithm

1, below requires to be solved at each iteration is

max {e°|min max X, (x,e,x) -e° > 0; p^ (e) < 0, j^H }
(e°,e) xeT±kSK "" e

max

(e
ax {e |max C (x,e,x0) - e > 0,A C G.; p^ (e) < 0, j^H }
0,e) kSK & - i - e

max max *{e |v-e _> 0; £ (x,e,xff) - v£ 0, Ae G ;pJ(e) £ 0,
kSt (e0,e) * 1

j.efc:} (26)
e

which is seen to be a set of ordinary nonlinear programming problems. How

ever, since one has to solve a number of such problems to get a reasonable

approximation to ty- „(x), it is clear that the computation of approxima

tions to r\> (x) will be the most time consuming operation at each

iteration of our outer approximations algorithm for solving P. For the

sake of clarity, it seems preferable to state the subalgorithm for

computing ^_ _(x) in conceptual form.

Subalgorithm 1: Evaluates \J> „(x).
E,T

Parameters: {6..} as in Master Algorithm 2.

Data: x^IR11, TqCt, adiscrete set.
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Step 0: Set i = 0.

Step 1: Solve (26) for (e^,e±).

Step 2: Compute X(x,e ) and x. by solving

X(x,e.) = min max C (x,e ,x)
1 x€T k^K i

=min {x°|sk(x,e,,x) - x° < 0, k^K, gS(x) < 0, s€s} (27)
(xOx) i -

>

Step 3: Include x in Ti+. for all 0£ j£ i such that e. -x(x,e )>6±..

Step 4: If (X(x,e.)-e.) >_0, stop; else proceed.

Step 5: Set i = i+1 and go to Step 1. n

Since Subalgorithm 1 is merely a transcription of the Master

Algorithm 2 to the solution of problem (24), the following result is a

direct eonsequence of Theorem 2.

Theorem 3: If Subalgorithm 1 stops in Step 4, then ^_ _(x) = max £ (x,e.,x.)
^E;T oo k€K ± 1

If Subalgorithm 1 constructs an infinite sequence {(e.,x )} n, then any

accumulation point (e,x) of this sequence satisfies

ip (x) = max C (x,e,x). h
E,T k€K

Next we turn towards constructing an implementation for Master

Algorithm 2 which will, by the same token, yield an implementation for

Subalgorithm 1. For this purpose we must establish appropriate optimality

A A

conditions for P and the subproblems P.. Returning to problem P in (6e),

it is clear that it can be rewritten in the following more convenient

form:

A 0 i
P.: min {f (x)|f(x) £0; 4>(x,oj) < 0, u>£ft.;(x,yEi) *
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Ck(x,e,x ) £ 0, k^K, eGE. gS(xJ £ 0,
sSs, e€E±}, (28)

where

yE. " ^eleeV • (28a)

Next, we define

i|>n (x) » max 4>(x,oj),
i oiSft.

A k^ (x,y ) = max £ (x,e,x ), (28b)
Ei Ei e6Ei e

k€K

A s*T -. (y„ ) = max g (t ), (28c)
T'Ei Ei e€E± e

s€s

and finally we define

*P (x,yE )=nzxW'fto*^ (x), *E (x,yE ), *T E (y£ )>.

Proposition 3: Let E = {z.€E\fL€l, } and let

8 (x,y_ ) » min max{ <Vf°(x) ,h>;
VEi Ei Ihl^l

l^l.il

(28d)

f(x) +<7f(x),h>; <J)(x,o)) +<Vx<J>(x,a)),h>,

<*en±; Ck(x,e£,T£) +<VxCk(x,e£,xJl),h>

+ <Vk(x,e£.,x£),V &6Li;

gS(V +<7xgS(V'V» sGS» ieL±}
- fe (x,y ) * (28e)

Pi Ei
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If (x,y_ ) is optimal for P. then 9n _ (x,y_ ) = 0.
Ei ± VEi Ei

Proof: 9 _ (x,y_ ) = 0 is the Topkis-Veinott necessary optimalityfti,Ei E±

condition which was shown in [17] to be equivalent to the F. John

optimality condition. o

To extend this optimality condition to problem P, we proceed as
n

follows. For every e^E, let x be some vector in IR T. Then we see

that P is equivalent to the following problem

P: min {f (x)|f(x) £ 0; <{>(x,a>) £ 0 Vu>€ft;
(x,yE)

C (x,e,x£) £ 0, V k€R, V eSE;

gS(x )£ 0, for s€s, V e€e} (29)

with

XE -«y_ = {xJe^E}. (29a)

The equivalence between P and P is in the sense x solves P "*==*> (x,y„)
E

A

solves P. Next, let i|>£(x,yE) be defined as in (28d), with E replacing E,

and let

eo -(x,y ) = min max {< Vf (x),h>;
"'E E BhO.<l

f(x) +<Vf(x),h>; <{)(x,to) +<7 (j>(x,oj) ,h>,w€ft ;

Ck(x,e,x ) +<Vck(x,e,x ),h> +<Vek(x,e,xJ ,n >, keK,e <=E;

gS(x£) +<VTgS(x£),Tie >, sSS,

e€E}- ^(x,yE), (29b)
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Theorem 3: Suppose that (x,y ) is optimal for P'(29), then 9 (x,y ) = 0.
ft, E E

Proof: By construction, 9fl>E(x,yE) £ 0 for any (x,y ), and since

(x,yE) are feasible for P, ipj(x,yE) = 0. To obtain a contradiction,

suppose that 9^ £(x,yE) » -6 <0. Then there exists a vector h, with

Hhtl <1, such that

<Vf°(x),h> £-6 (30)

and hence there exists a X > 0 such that

f°(x+Xn) - f°(x) £ -X3/2 (31)

for all XS(0,X ]. Next, we have

f(x) +<7f(x),h>£- 6 (32)

and hence, for A€[0,1],

f(x) + X<Vf(x),h> £ - X6 + (l-X)f(x)£-xS, (33)

since f(x) £ 0. Consequently, there exists a X1S(0,XQ] such that

f(x+Xh) £ 0,for all XSfO^]. (34)

Similarly,

<Kx,u>) + <V <Kx,a>),n> £ - « (35)

implies that for X€[0,1], since <l>(x,a)) £ 0 for all ui€ft,

<j>(x,u>) + X<7 4>(x,oj),h> £ - X6 + (l-X)<J>(x,ai)

£ - X6, (36)

and hence, since ft is compact, there exists a X_€(0,X-] such that
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.A ^

max <Kx+Ah,w) - max <|>(x,u>) + X< V <|>(x,u>),h>
aj£ft u)€ft

C+ X\ <(Vx<j>(x+sXh,w) - V<j>(x,a>)),h> ds

£ - X[5+max \ Dv <j>(x+sXh) - V«J>(x,(u)0ds]£o£ft '"

£ 0, for all X6 [0,X2], (37)

Next, there exist n > with On fl < 1, such that
e e °° —

Ck(x,e,x )+<V ck(x,e,x^),h> +< VCk(J,e,? ),; ) £-6, (38)
EXE X £ £ ^~

and hence for \6[0,1] ,

Ck(x,s,x ) +X{<V/(x,e,t),h) +

<V Ck(x,e,x ),n >} < - X5 + (1-X)£k(x,e,x )
x e e — £

£ - X6, for all k€K, and e€E, (39)

lr a a
because C (x,e,x ) £ 0 for all k^K and e€e. Hence, since E and T are

A A

compact and h,n£ are bounded, we conclude, as in (37), that there exists

a X3 e (0,X2] such that

If A A

max min max ? (x + Xh,£,x) £
e£E x^T k€K

max max £k(x +Xh,e,x +Xn ) £ 0, for all X^ [0,XJ, (40)
e^e k€K e e s

Finally,

A A

A A

(x ) + <7ga(x ),n >£ - 5, for all e^E and s^S, (41)
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and hence for X £ [0,1]

A A

g (x£) + X<Vg&(x£),Tie> £ - X6, for all e€E, s€s (42)

Since T is compact, we conclude that there exist a X,£(0,X3] such that

max g (x +Xn ) < 0,for alixe[0,*,], (43)
e_ £ £ — H-

_ E

We thus have shown that{(x +X.h), (t +X,n ,££E)}is feasible for P and

results in a lower cost, which contradicts the optimality of x. Hence

the theorem must be true. n

We now establish an important relationship between the stationary

points for the problems P. and those of problem P.

Theorem 4: Let ft±Cft, E^e, i» 0,1,2,..., be infinite sequences

of discrete subsets and let x. GjRnt y « {T |T €e.}, i = 0,1,2,...
1 lit, £ ,1 £, 1 1

be such that

fa (x ,y ) -• 0 as i -»• «, (44a)
Pi i Ei

W^'V "° as ^^
il i

(44b)

and x.->-x as i^«, with

max {f(x),^(x),i|;EjT(x)} £ 0. (44c)

Then there exists a y_ =» {x Ie^E} such that
E £'

^(x,y£) = 0 (44d)

and

eft,E(^'V =°' <44e>
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Proof: For every e^E and i = 0,1,2,,,,, let

x Sarg min max ? (x.,£,x),
8,1 T€T k€K i

Ve^E^E^. (45)

(the definition of y. is not necessarily unique). Then, because

^_ _(•) is continuous, and because i{;_ _(x) < 0, we have
*•»••• E,l —

V

lim min max C (x ,£,x) £ 0,* £ SE, (46)
i->-oo t€t k€K 1

and hence Cwith. E replacing E in C28b))

4 ,,_ Jc,lim $ (x ,y ) a lim max c (x.,e,x .)
iH-oo Eii ±^ e€E i e,ii-*» efcE

k€K

k,

i

= lim max {max r, (x ,e,x ),
i^-oo eSE^E/ e»

k€K

max C (x.,£,x .)} < 0. (47)
£eE± i e>i ""
k^K

00

For every e€E, {: .}. - is contained in a compact set and hence
£,i i=0

has at least one accumulation point x . Let
£

yE *{t£|e€e}, (48)
00

with x an accumulation point of {x .}. n. Then, because of (47).£ r £,i i=0 N '/»

V*'*E} 1 0 (49)
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and hence, because of (44c), we see that (44d) holds.

Next, by construction of y.,

+ ^(xi,y±), (50)

Since 9^ z(x±*J±) < 0 for all i, and since 9^ £ (x±,yE )"*0,

^ (\>yE )"»"0 and ^j(xi,yi)->-0 as i+« ,it now follows that (44e) is

true, which completes the proof. °

We can now state our implementable algorithm.

Master Algorithm 3

00 °°

Parameters: {a.}. rt such that a^^O as i-*-00, and {6..}. . n such that
i i=0 i ij i,j=0

a) 6.. - 0 for all i < j, and 6.. > 0 otherwise.
±3 — ij

b) 6 .S §± as i-»»«> .

c) 6,^0 as j -*•• .

Data: ftQcft, E.Ce discrete sets.

Step 1: Apply iterations of a nonlinear programming algorithm to P

until an (x±>yE ) pair is computed satisfying
i

-a±i\9*±<*±'\>' (51a)

*P (xi,7E }- V (51b)

Step 2: Apply iterations of a nonlinear programming algorithm to (23)

and iterations of Subalgorithm 1 to (24) to obtain an w Sft and an
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4.

e.^E, with the property that

'*n*xi* " +(2Ci»M1)l''*'0 asi"* °°» (51c>
l.^T(xi)-X(xi,£i)| -*0 as i+«>, (51d)

Step 3: Include to in ft for all 0 £ j £ i such that <Kx.,m.) > $..»

and include £ in E±+1 for all 0£ j£ i such that X(x.,e )>5 .

Step 4: Set i = i+1 and go to Step 1. n

Since we want 6 to decay very slowly, a good choice for 6 .

seems to be <5 =Mmax {0, krj= ^TTT >• with M» 1and L> 10
ij d+j)1/L (l+i)1/L

say.

Master Algorithm 3 has properties which are quite analogous to

those of Master Algorithm 2, as we see from:

00

Theorem 5: Consider the sequence {x } constructed by Master Algorithm

3. If x± -*x as i+«» , IC{0,1,2,...}, then there exists a

7E ={xJeSe} such that *J(x,yE) =» 0and 9fl £(x,yE) =0.

Proof: Because of (51b-d) and because i|>_ (x.) < * (x^y,, ) <K (x, ,y„ ),E± i - E± i E± - P± i E±
it follows by a trivial extension of Proposition 2 that

max{f(x),^(x),i/>E(x)> £ 0 (i.e., x^F (see (11)). The theorem now

follows from (51a) and Theorem 4. n

4. Conclusion

The main contribution of this paper is to show that design center

ing, tolerancing and tuning (DCTT) problems can be treated outside of

t

This property is achieved by applying the appropriate algorithm for
progressively larger and larger number of iterations as i+ «.
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the framework of nondifferentiable optimization algorithms. As a result

a number of major obstacles to obtaining an implementable algorithm

have been overcome and the first implementable algorithm for solving

DCTT problems has been constructed. We hope that this algorithm will

have practical impact.

Finally, in the Appendix the optimality conditions used in this

paper are compared to the ones based on generalized gradients, used in

[3]. It seems that the optimality conditions in this paper are somewhat

sharper than the ones used in [3],
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APPENDIX

A COMPARISON OF OPTIMALITY CONDITIONS

In [3], problems such as (6) were treated as nondifferentiable

optimization problems. Mifflin [13] has developed a necessary condition

of optimality for such problems based on the theory of subgradients

(see [12]). Unfortunately, Mifflin's condition is not verifiable

for problems such as (6), with K={1} and hence his conditions were

somewhat relaxed in [ 3], as follows:

Theorem Al [3]: Suppose that x± is optimal for P in (6), then

f(x±) £ 0, *fl (x±) £ 0, *E T(x±) £ 0 and

0eM(x±), (Al)

where

M(x±) -Co {Vf°Cxi);6f7f(x.);

*Q V(xi'u)»w€°i(xi>;

6E Vx? (x±»e»T),

eeEi(x±,£,x), £€Ei,xeT(xi,£)} (A2)

where dfl t«E )is zero if *Q fr±)<Q C*E tCx±)<0) and is equal to one otherwise,

a±t*±) = arg max <Kx.,w) (A3)
wen±

E,.(x) = arg max x(x,,e) (A4)
e^E±

T(x ,e) »arg min CX(x ,£,x) (A5)
t€t x

n

Now, by Proposition 3, if (x±,yE ) are optimal for problem P , (6e), then

xiSF and 9q >E (xi»vE'" )" °* Since y£ is not necessarily unique, to
i' i i i
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obtain a comparison with Theorem Al we shall assume that x £y£ \
=>xe€T(xi,£) for all e^E^ Now, it is shown in Sections 1.2 and

4.4 of [17], that for x±6F,9fi ^ (x±,yE ) =0 if and only if the F. John

condition [17] is satisfied at (x±,yE ), i.e., there exist multipliers
0 s „ iw » Vf> W^tWg T, y£ >. 0, not all zero such that

and

y 7f°(x ) +ji 7f(x.) + Lj y 7 <f>(x. ,u>) +
1 f i «=«/ _ \ u> x i0)Sft(x )

£eE(Xi) e'T x i
xeT(Xi,£)

y£,XVXCl(Xi>e,T) +1>EVSS(T) =0,
V£EE(xi),x€T(xi,£) (A7)

yf£(x±) =0, (A8)

y(u<J)(xi,a)) = 0, ¥• wSft^) (A9)

y£ T?1<xi»e>T) =°> ^eeE(Xi),
VxeT(xije) (A10)

y^gS(T) « 0, V£eE(xiXVxeT(xi,e). (All)

We note that (A7) together with (All) is merely the F. John condi

tion for the problems

min £(x ,£,x), e€E(x.), (A12)
x€T 1 1

Next, (A6) sums a smaller number of vectors to zero than (Al) and hence,

together with (A8-A10), is a sharper condition of optimality then

Theorem Al. By the same token, the optimality condition 9(.x,y_) =0
E

used in this paper for P is sharper than the optimality condition for

P used in [3].
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