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Abstract

Sensitivity analysis is the study of how functions, algorithms, or solutions to
problems change in response to perturbations or modifications in the problem
input or problem structure. The importance of sensitivity analysis is primarily
due to the common occurrence of fong sequences of problem instances, each
instance differing from the others by small or structured modifications of the

problem data.

This dissertation focuses on sensitivity analysis for problems arising in com-
binatorial optimization. We begin with a discussion of how perturbed problems
arise, and why sensitivity analysis is important, and then review the major ques-

tions and previous results in sensitivity analysis for combinatorial problems.

The original results are in four sets: The first results concern matroid prob-
lems where the data is successively modified in a very structured way, allowing a
strong characterization of the resulting solutions, and fast algorithms for reop-
timization after a data modification. The second result is a fast algorithm to
solve the linear parametric programming problem for many combinatorial prob- .
lems. The key feature of the algorithm is that its running time is polynomial in
the size of the output, and hence a large improvement over the parametric sim-
plex method. The third set of results are bounds for certain counting problems
in parametric programming. The parametric minimum spanning tree, and
parametric shortest path problems are examined in detail, and the results are
applied to show certain limitations in the generalized Lagrange multiplier

method. The fourth set of results are simple constructions which solve the ne¢-



work flow synihesis problem in a way that allows very rapid solutions to several
sensitivity analysis questions. The constructions also have several other desir-

able properties. The dissertation concludes with a few suggestions for further

research, listing a few promising open problems.
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Chapter I: INTRODUCTION TO SENSITIVITY ANALYSIS

FOR COMBINATORIAL OPTIMIZATION

Sensitivity analysis is the study of how functions, algorithms, or solutions to
problems change in response to perturbations or modifications in the problem
input or problem structure. The importance of sensitivity analysis is primarily
due to occurrences of long sequences of problem instances, each instance

differing from the others by small or structured modifications of the problem

data.

The importance of sensitivity analysis is well recognized in numerical com-
puting, but has been given very little attention in combinatorial computing. This
dissertation focuses on sensitivity analysis for problems arising in combinatorial

optimization. The structure of the dissertation is the following:

In chapter I, the introduction, we begin with a discussion of how perturbed
problems arise, and why sensitivity analysis is important. We then categorize
some common forms of sensitivity analysis, and some general research
approaches. Finally we survey previous results and methods in the area of sen-

sitivity analysis for combinatorial optimization.

Chapter Il begins the original work of the dissertation. We examine prob-
lems which arise when many successive matroid optimization problems are
solved, each problem instance differing from the others in a highly structured

way, allowing strong results and fast optimization methods.



3.1.
3.2.
3.3.
3.4.
4.
4.1.
4.2.
4.3.
4.4.
4.5.
5.
5.1
5.2
8.3
5.4
6.

-
-
-t

CHAPTER III: Algorithms for Parametric Programming .38
Method I .....cccceueaae coose ceese eeee 38
Method II .... caces ceeee 40
Megiddo based methods .....ccccecneecnnaae cenee 42
Applications to program module distribution .....cccccecee..:81
CHAPTER IV: Counting Breakpoints ....c.cccccecesccccecccescansss 58
A special case aeane ceseacanes .58

The parametric spanning tree problem.....cccccacaceecccce...59

Lowering the upper bound. cenee seseseecess 86

The shortest path problem...cccccececesnicccccnceancccanecsececenes 83

-Discovery of efficient 50lutionS...cccccececcccncscnccccececccceaes 87

CHAPTER V: Multi - Terminal Network Flow Synthesis....92
Introduction ......... eeaee cesee cecenceeec 92

Problem set up and main result ...cccccccececcnccccccccacennces. 83
Algorithms and constructions...... S : 7.3
The number of edges........ csase csene cseceesesa 100
CHAPTER VI: Problems for Future Research......c.ccceece... 104

References.. e cenen casenesees 108




Chapter III presents algorithms for determining all optimal solutions to
problems in which the problem data is given as linear functions of a variable A.
The parametric programming problem is to find all the optimal solutions as a
function of A. The main result of the chapter is a method which solves the
parametric programming problem on-line in polynomial time per solution, for
many combinatorial problems. This is an improvement over previous methods,
and leads to polynomial solutions of other optimization problems. One example,

a problem in program module distribution, is included in chapter III.

Chapter IV discusses the number of solutions possible in various parametric
programming problems. The main results are upper bounds for the parametric
minimum spanning tree and shortest path problems. We use these results to
show the limitations of the generalized Lagrange muitiplier method for certain
problems. We also detail some unsuccessful efforts at improving the bounds for

the parametric minimum spanning tree problem.

Chapter V presents a new solution to the Network Synthesis Problem. The
solution allows very rapid answers to certain sensitivity analysis questions, and

has several other desirable properties.

Chapter VI mentions some open questions and promising areas for future

research.

1.1 WHY SENSITIVITY ANALYSIS?

The naive view of the way that algorithms for combinatorial optimization
are used is that each call on the algorithm presents a problem instance which is
unrelated to past or future calls on the algorithm. Further, the data presented
to the algorithm is viewed as correct and complete, and the algorithm is viewed

as returning optimal solutions which are usable without further interaction.

In practice however, it is common that combinatorial algorithms are com-



ponents of larger systems, and are often used to solve long sequences of closely
related problem instances, each instance differing from the others by small or
structured modifications of the problem data. Tools for sensitivity analysis are
useful to deal with such sequences of repeated modifications and reoptimiza-

tions.

In the next pages we survey several reasons for long sequences of succes-
sive modifications and reoptimizations. The first three arise from naturally

occurring applications, and the others from mathematical programming.

1.1.1 Naturally occurring problem sequences

1. Inexact data or model: In practice, problem data is often not known exactly,
and optimization models rarely capture all the problem constraints and rela-
tionships. Results based on a single optimization therefore can't be completely
trusted. Instead, the optimization problem is repeatedly solved with different
choices of data, or different choices of the model. The optimization algorithm is
used to search for robust solutions, or to give a picture of the sensitivity of the |
solution to different data or model assumptions. In many applications, the use
of an optimization algorithm for optimization is secondary to its use in con-
tingency planning.

A recent advertisement [SCI] by IBM highlights the use of optimization algo-
rithms for sensitivity analysis. The application is the design of large tractors,
using computers to model the performance of different design proposals. The
advertisement ends with the following quote: "While these computer programs
can't be expected to describe the physical product with absolute precision, ...
they are good at reflecting change, showing clearly the sensitivity of important
performance parameters to variations in the design".

2. Changing data .or model: Even if the model and data are exact, in many

applications they are subject to change; the problem may itself be dynamic and



changing. Consider, for example, routing in computer networks. Message
routes must be repeatedly determined because the congestion in the network
changes, or certain nodes or links fail, or additional capacity is added. The
dynamic nature of many applications requires repeated reoptimization after
changes in the problem description.

3. Conflicting objectives: In many applications there is more than one objective
fun_ction, and often these different objectives conflict. There may be no "optimal
solution”, but rather many solutions which are "good” with respect to all the
objectives. Repeated calls on the optimizétion algorithm are used to find good
solutions, or to reflect the sensitivity of the solutions to different weightings or

orderings of the objective functions.

1.1.2 Problem sequences in mathematical programming

4. Heuristics for NP - hard problems: Most of the combinatorial optimization
problems of greatest interest are NP - hard, and therefore no efficient exact
solution methods for them are known, and none are likely. In practice these
problems are often tackled by embedding fast algorithms for related problems
in the inner loop of a larger program. The fast algorithms are called repeatedly
with successively modified data. Four common heuristic methods are of this
type:

a. Interactive optimization: Most problems in network design are NP - hard,
while many useful problems in network analysis are polynomial. Then one
heuristic for such design problems is to successively propose a design, analyze it
using fast algorithms, propose a modification to the design, and so on until an
acceptable design is arrived at. The modifications are done by a human, and the
repeated analysis is done by fast computer programs.

b. Hill climbing: Hill climbing also involves sx;ccessive solution proposals,

analyses, and modifications. In contrast to interactive optimization, however,



the process is completely program controlled. Given a proposed solution, the
inner loop analyzes its cost or feasibility and finds a change which improves the
value of the objective function or removes some violated condition. Hill climbing
methods can be quite involved, as in Shen Lin's [SHE] 3-opting for the travelling
salesman problem.

c. Branch and bound: Branch and bound is a commonly proposed method for
NP - hard problems. Bounds are successively obtained by calling a fast algo-
rithm for a relaxed version of the NP - hard problem. Often each call presents a
problem instance which differs from the preceding instance by only a small
modification of the data. For example in the travelling salesman problem, the
bounding problem is often a derivative of bipartite or general matching, or is a
close relative of the minimum spanning tree problem. In the matching case, the
successive problems differ by the insertion or deletion of a few edges, or by the
modification of a few edge weights. In the spanning tree case, the problems
differ by the modification of edge weights, or by the imposition of dégree con-
straints on nodes in the tree.

d. Lagrangian relaxation:

In this method, a hard problem is tackled by solving a sequence of easy
problems which result from the relaxation of certain constraints. Terms are
added to the objective function to reflect violations of any of the constraints,
and each term i is multiplied by a variable )\i. A sequence of such problems is
solved, each with different values of Ai, in an attempt to home in on a solution to

the original hard problem [SHA].

The abstract from a recent paper "Optimal Set Partitioning, Matchings and
Lagrangian Duality” [NEM] illustrates this perfectly: "We formulate the set parti-
tioning problem as a matching problem with simple side constraints. As a result

we obtain a Lagrangian relaxation of the set partitioning problem in which the
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primal problem is a matching problem. To solve the Lagrangian dual we must
solve a sequence of matching problems each with different edge weights... sue-
cessive matching problems differ in only two edge-weights. This enables us to
use sensitivily analysis to modify one optimal matching to obtain the next
one."

5. Decomposition: In this method, large mathematical programming problems
are decomposed into several smaller subproblems, and each is solved
separately. Generally, these separate solutions don't immediately combine to
solve the larger problem, but the subproblems can be successively modified and
resolved in ways that lead to a solution for the larger problem.

8. Problems that reduce to parametric programming: A large class of integer
programming problems can be reduced in non-trivial ways to parametric pro-
gramming problems. More will be said on this in the section on minimum ratio

optimization.

1.2 GENERAL RESEARCH APPROACHES

With the perspective that long sequences of closely related problem
instances are common, what kinds of results can be obtained to improve sensi-
tivity analysis methods, to speed up successive computations, and to better
understand such sequences of problems? We list a few research approaches,
noting the ones included in this thesis. Several of these approaches will be

further illustrated in section 1.3 on previous results.

1. Factoring and preprocessing

One approach is to identify a part of the problem that remains constant
over the sequence of problem instances. By preprocessing the constant part, it
may be possible to speed up the sequence of computations. When the successive

computations must be done on-line, or in little space, any improvement due to



preprocessing can be extremely valuable. Chapter Il gives a preprocessing

method for a class of problems that arise in matroid optimization.

2. Interval optimization

Combinatorial optimization methods are usually developed to solve prob-
lems for a single data point. However, it is often possible to develop equally fast
methods that solve the problem for a given data point, and il'; addition return
intervals of data such that the solution remains optimal for any data point in the
interval. Chapter V presents such an algorithm for the network synthesis prob-

lem.

3. Successively improving complexity

It is often possible to develop methods that use part of the work of one com-
putation to speed up the computations that follow it. The key problems are how
to recognize what can be used, and how to balance storage against recomputa-
tion. In chapter IIl we present a method for parametric programming in which
each computation uses as much information as possible from the preceding

computations.

4. Structural results

A very important research approach is to establish results relating the
structure of the data of a problem to the structure of the solutions, i.e. charac-
terize the form of the solutions given the form of the data. Such characteriza-
tions can be extremely valuable in identifying what kinds of data changes affect
the optimal solutions, and in what way, and hence can speed up recomputation
after data changes, or indicate that no recomputation is necessary. The
matroid and the network flow synthesis results of chapters Il and V are each

partly structural.



5. Transparent algorithms

For purposes of sensitivity analysis, it is desirable to have algorithms look
like fransparent boxes rather than black boxes. We v}ant a clear view of what
the algorithm does to the input in producing its output. The output can then be
written in terms of the input, and certain sensitivity analysis questions can be
answered very eflficiently. In chapter V we present a transparent algorithm for
the network fow synthesis problem which permits extremely fast re-
optimization after certain modifications, whereas the previous published algo-

rithms require recomputation.

6. Complexity and counting results

Complexity results address the question of how much one must pay for sen-
sitivity analysis. The thrust of five approaches above has been to solve a prob-
lem and, at little extra expense, get information which will speed up the solution
of other related problems. Limitations exist on how much information is attain-
able without major increase in cost, and results in thiS area should be possible.

More will be said on this in the next section.

Counting results answer the question "From a class of distinet inputs for a
function or algorithm, how many distinct outputs are possible?” Counting results
are useful if enumeration of all distinct outputs is desired, and can establish the
complexity of certain optimization algorithms that involve enumeration.
Chapter IV is devoted to counting questions where the input is generated by a

parameter A.

1.3 PREVIOUS RESULTS

In this section we survey previous papers and textbook methods for sensi-
tivity analysis for combinatorial optimization. The last four methods, parametric

linear programming, the Eisner - Severance technique, the fractional linear



programming method, and Meggido’s method, will be needed in the sequel, and

are given in greater detail.

1.3.1 Incremental Computing

Several papers have addressed the problem of updating the solution to a
combinatorial optimization problem after some local modification of the prob-
lem description. For graph problems, a local modification is the insertion or
deletion of new nodes or edges, or the modification of edge costs. In geometric
computing, a local modification is the insertion or deletion of new points in some

space.

Chin and Houck [CHI] and Spira and Pan [SPI] present O(n) algorithms to
update the minimum spanning tree after the addition of one new node and edges
incident with it. Even and Shiloach [EVE] give an algorithm for the on-line
maintenance of the connected components of a graph as edges are successively
deleted. The complexity for q deletions is O(q+ne) where n is the number of
nodes and e the number of edges in the initial graph. A paper by Webber [WEB]
gives an O(nz) method to update an optimal matching after the modification of
one edge weight, and this method is used in [NEM]. A paper by Goto and Vincen-
telli [GOT] gives an updating method for the shortest path problem. A recent
thesis by Cheston [CHE] examines the advantages of updating methods verses
recomputation from scratch after a local modification. For the problems exam-
ined in that thesis, recomputation was faster than naive updating methods.
However, there may be more clever ways to do updating, and so the question

remains open.

In the area of geometric computing, there has been recent work in dynami-
cally maintaining information about geometrical figures, as parts of the figure
are modified. For example, the convex hull of a set of points is maintained as

points are added or deleted. Work in this area has been reported by [VAN1],
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[VANZ], [VAN3], and [BEN].

1.3.2 All for one results

Suppose T is the minimum spanning tree of a weighted graph G, and e is an
edge of G in T. The e deletion problem Pe is: Given T, determine the minimum
spanning tree of G - {e]. The all deletion problem Pa is: Given T, solve problem

Py (n - 1) times, once for each edge e in T.

If problem P, can be solved in time q, then problem P, can be solved
naively in time (n-1)q. By a more clever approach, problem Pa can be solved as
quickly as problem Pe' Le. in time O(nz). Such results are called "all for one”

results, and have been obtained for minimum spanning tree and shortest path

problems [SHI],[CHI],[CHE].

1.3.3 Efficient solutions in bi-criteria optimization

If P is a problem with two objective functions, then a solution x is called
efficient if there is no other solution y which is better than x in both criteria. If
the two criteria conflict or are incomparable, then all efficient solutions are
often desired. Much work has been done in this area for certain optimization
problems, but very little in combinatorial optimization. One paper [VW] exam-
ines the problem of two conflicting objectives in a simple scheduling problem.
The paper presents a pseudo-polynomial algorithm for this problem, but an
O(nz) algorithm is easily obtained. Thuente [THU] looks at the bi-criteria prob-

lem for shortest paths.

1.3.4 Unrestricted parametric programming

One very general form of parametric programming is to let the problem
costs be completely variable, and then to solve the problem as a function of the

variable costs. This is generally an intractable task, due simply to the size of
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the output, but in restricted forms it can be useful. Somers [SOM] and Walters
[WAL] have done work in this area. Somers examines network flow problems, but
the ideas extend to other problems as well [MU]. We illustrate her approach

with the s to t shortest path problem.

Let M(;) be the shortest path from s to t when edge i has cost 6; 2 0, and
all other edges have known fixed costs. Then M(6;) = MIN[ M(0) + 65 M(=) ].
When M(0) + 6; < M(=), M(0) + 6; is the minimum cost of all paths which go

through edge i, and M(=) is the minimum cost of all paths which don't.

This approach generalizes naturally to more than one variable edge cost.
Let d; and 5j be the variable edge costs of two edges i and j, and let M[éi.dj] be
the cost of the shortest s to t path when edge i is set to 6-1 and edge j is set to dj.

Then M[Gi.dj] = MIN[ M(0,0) + g; + 6j. M(0,=) + 6 M(=,0) + Gj. M(=,=) ].

If there are k edges with variable costs, then the shortest path expression is
the minimum of 2¥ sub-expressions. This method is then essentially enumera-
tion over all way to include or exclude the k edges in the path selection. For

computing purposes, this method is very unsatisfactory unless k is very small.

1.3.5 Complexity and bad examples

Several results in the complexity of sensitivity analysis have been reported.
A paper by Spira and Pan [SPI] addresses the complexity of incremental com-
puting for minimum spanning tree problems. Jerislow [JER] shows an NP - com-
pleteness result for a parametric optimization problem. Murty [MU2] gives an
example showing that the parametric linear programming problem can have an
exponential number of optimal solutions. This resuit is implicit in the earlier
work of Zadeh [ZAD] in which he gives exponential examples for the network sim-
plex and other minimum cost flow methods. By parameterizing the lower bound

of one edge in his example, an exponential parametric programming example is
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obtained. Rosenthal [ROS1] [ROS2] examines sensitivity analysis in problems
related to matrix multiplication, and obtains optimal algorithms for a certain
model of complexity. Johnson [JOE] gives a clever reduction showing that the
problem of finding the k-th cheapest spanning tree of a weighted graph is NP -

complete.

1.3.6 Parametric Linear Programming

Let A be an m X n matrix, ¢ an n length vector, and b an m length vector.
The linear programming problem is then to find an n length real vector x to
t

minimize ¢“x such that Ax<b,x20.

Associated with each decision variable x; are two costs S(i) and T(i). Then

the function P(A) is defined as:

Given a value for the variable A, P() = the minimum value of

Zi:S(i):c,- + AZ‘}T(i)zi

such that Ax < b, x2 0.

The parametric linear programming problem is to determine P(A) as a func-
tion of A. Note that P(A) is a piecewise linear convex function of A. Points of

discontinuity of P(\) are called breakpoints.

The Parametric Simplex Method

The textbook method for determining P(A) is the Parametric Simplex
Method [MU]. Let basis B be an m x m full rank submatrix of A. Let A.i denote
the i*P column of A, and if column i is in B then the variable %; is called a basic
variable. Let SB and TB be m length vectors containing the Sand T f:osts of the
basic variables, and let B! be the inverse matrix of B. Then the cost, as a func-

tion of A, of variable i with respect to basis B, denoted C(i,B,A) is

S(i) - SpB~'A.( + N[T(i) - TpB~'A.4]
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Suppose basis B is proved optimal by the simplex method for the value of A
equal to A’. We want to determine the maximum value of A 2 A’ for which B is
optimal. The parametric simplex method determines this by successively solv-
ing the following problem: What is the maximum value of A 2 A’ for which the
simplex method proves the optimality of B? i.e. What is the largest value of A 2 A’

such that C(i,B,A) 2 0 for all i?
The parametric simplex method determines P(A) for A 2 0 as follows:

1. Set A’ = 0 and compute P(0). Let B be the optimal basis. Then C(i,B,0) 2 0

for all i.

2. Find A* the smallest value of A > A’ such that C(i,B,A*) 2 0 for all i, and
C(i.B.A* + ¢) for some i and all € > 0. If no such A* exists, then B is optimal
for all values of A between A' and =. In that case, output B and = and stop.
Else if i is a va‘riable such that C(i,B,A* + &) < O for all £ > 0, then a new
basis B* is created by pivoting in variable i. Note that C(j,B,A) = 0 for any A

if j is a basic variable in B, and so the above variable i must be non-basic.

3. Qutput B and A*; Set B to B*and A’ to A* and go to 2.

Problems with the Parametric Simplex Method

The major problem with this method is that pivots in step 2 do not neces-
sarily determine breakpoints of P(A). In fact in most applications, very few of
the pivots determine breakpoints,and so we can't relate the amount of work

(number of pivots) of the algorithm to the number of breakpoints.

The problem is due to primal degeneracy, and the fact that for a given value
of A, a primal optimal solution may not be dual feasible. Therefore, the
parametric simplex method may make many degenerate pivots before making a
non-degenerate pivot corresponding to a real breakpoint of P(A). To make this

point clear, consider the parametric s to t shortest path problem is a graph G.
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One formulation of this problem as a linear program is as a minimum-cost flow
problem where s has a supply of one unit, t has a demand of one unit, and all
other nodes have no supply or demand. This is a highly degenerate problem
since the optimal basis will be a tree of shortest paths from s to all other nodes
in G, and the flow on most edges of the tree will be zero. As A varies, the basis
will change whenever a path from s to any other node is no longer shortest, even
though the shortest path to t is unaffected. Hence we do not have a polynomial
bound on the number of pivots needed by the parametric simplex method to find

one breakpoint in the s to t shortest path problem.

If the linear programming problem is totally non-degenerate, then every
pivot of the parametric simplex method will yield a different primal solution.
However, the method still suffers from a second form of degeneracy. Even if
every pivot is non-degenerate, the method may do many pivots for one break-
point because there may be many different solutions which are all optimal at

only one point (see figure 1.1).

P(X)

A

Figure 1.1:
There is no mechanism in the parametric simplex method to keep it from dis-

covering multiple solutions at a given value of A.

In the case of multi-dimensional parametric programming, the degeneracy

problem becomes even more severe. In an m - parameter problem, a primal
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solution is optimal in a convex region C of m - dimensional space. However, each
basis may be proven optimal by the simplex method for only some sub-region of
C. Then, in order to find C, the subregions corresponding to the same primal
solution must be pieced together. The thesis of Walters [WAL], and the paper of

Haneveld, Meer and Peters [HAN] are primarily concerned with this problem.

In chapter Il we will present parametric methods for many combinatorial

problems which completely avoid the problems of degeneracy.

1.3.7 The Eisner and Severance Technique

Let P be an unparametrized problem, and let X be the set of all feasible
solutions to P. Associated with every decision variable i are two costs S(i) and

T(i). Define for each x € X,

S(z)azs (i)z; and T(z)EZ:T(i)zi

The function P()) is the following: For a given value of A, P(A\) = minimum value

of S(x) + AT(x) taken over all x € X.

The parametric problem P(X,A) is the problem of determining P(A) as a
function of A. Note that P()) is a piecewise linear convex function of A. Points of

discontinuity of P(\) are called breakpoints.

The following method determines P(A) for any problem P(X,A), assuming
P(\) has a finite number of breakpoints. Further, if P(A) contains k breakpoints
between the minimum (Amin) and maximum (Amax) ranges of A, then the
method needs to evaluate P(\) at most 2k times. We call the method the Eisner
- Severance (ES) method because a version of it can be found in [ES]. However,
similar versions can be found in [NAU), [GEO], and it is not clear where the
method originated. The method presented here differs from the above versions

in the use of a stack which allows a clean proof of correctness and timing.
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Suppose basis B is proved optimal by the simplex method for the value of A
equal to A'. We want to determine the maximum value of A 2 A’ for which B is
optimal. .The parametric simplex method determines this by successively solv-
ing the following problem: What is the maximum value of A 2 X' for which the
simplex method proves the optimality of B? i.e. What is the largest value of A 2 A’

such that C(i,B,A) 2 O for all i?

The parametric simplex method determines P{A) for A 2 0 as follows:

1. Set A’ = 0 and compute P(0). Let B be the optimal basis. Then C(i,B,0) 2 0

for all i.

2. Find A* the smallest value of A > A' such that C(i,B,A*) 2 0 for .all i, and
C(i,B,A* + ¢) for some i and all £ > 0. If no such A* exists, then B is optimal
for all values of A between A' and <. In that case, output B and = and stop.
Else if i is a va“riable such that C(1i,B.A* + ¢) < 0 for all £ > 0, then a new
basis B* is created by pivoting in variable i. Note that; C(j.B,A) = 0 for any A

if j is a basic variable in B, and so the above variable i must be non-basic.

3.  Qutput Band A% Set BtoB*and A' to A* and go to 2.

Problems with the Parametric Simplex Method

The major problem with this method is that pivots in step 2 do not neces-
sarily determine breakpoints of P(A). In fact in most applications, very few of
the pivots determine breakpoints,and so we can't relate the amount of work

(number of pivots) of the algorithm to the number of breakpoints.

The problem is due to primal degeneracy, and the fact that for a given value
of A, a primal optimal solution may not be dual feasible. Therefore, the
parametric simplex method may make many degenerate pivots before making a

non-degenerate pivot corresponding o a real breakpoint of P(A). To make this

point clear, consider the pararnetfic s to t shoriest path problem is a graph G.
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solution is optimal in a convex region C of m - dimensional space. However, each
basis may be proven optimal by the simplex method for only some sub-region of
C. Then, in order to find C, the subregions corresponding to the same primal
solution must be pieced together. The thesis of Walters [WAL], and the paper of

Eaneveld, Meer and Peters [HAN] are pri.mérily concerned with this problem.

In chapter Il we will present parametric methods for many combinatorial

problems which.completely avoid the problems of degeneracy.

1.3.7 The Eisner and Severance Technique

Let P be an unparametrized problem, and let X be the set of all feasible
solutions to P. Associated with every decision variable i are two costs S(i) and

T(i). Define for each x € X,

S(::)EZS(‘E.)::‘- and T(z')EZT(i)z.;

The function P()\) is the following: For a given value of A, P(A\) = minimum value

of S(x) + AT(x) taken over all x € X.

The parametric problem P(X,A) is the problem of determining P(A) as a
function of A. Note that P()\) is a piecewise linear convex function of A. Points of

discontinuity of P(A) are called breakpoints.

The following method determines P(A) for any problem P(X,A), a;summg .'
P(A) has a finite number of breakpoints. 'Further. if P(A) contains k breakpoints
between the minimum (Amin) and maximum (Amax) ranges of A, then the
method needs to evaluate P(A) at most 2k times. We call the method the Eisner
- Severance (ES) method because a versicn of it can be found in [ES]. However,
similar versions can be found in [NAU], [GEO], and it is not clear where the
metbo.d originated. The method presented here differs from the above versions

in the use of a stack which allows a clean proof of correctness and timing.
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The Eisner and Severance Technique

Evaluate P(Amin). Let L = {S(L), T(L)} denote the S and T costs of the

optimal solution at Amin. Output Amin and L.

Evaluate P(Amax). Let R = {S(R), T(R)] denote the S and T costs of the

optimal solution at Amax. Set 7‘R to Amax.

Set A* to be the intersection point of the solutions L and R. ie. S(L) +

A*T(L) = S(R) + A*T(R).
IfA*= AR go to 4bi.

Evaluate P(A*) and let C = {S(C), T(C)} denote the cost of the optimal solu-

tion at A*,

If L is not optimal at A*, then stack R and Ag on stack SK. One element of
SK then consists of the triple (S(R), T(R).AR). Set R to C; set A to A* and go

to step 3a.

If L is optimal at A* then
Output L and A%,
SetLto R

If SK is empty, then output L and Amax and stop. Else pop SK; set R and AR

to the popped values; go to step 3.

Theorem 1.1: The ES method correctly discovers the function P(A), and

does not evaluate P(A) at more than 2k points, where k is the number of break-

points of P(A) between Amin and Amax.

Proof: First we prove that the ES method works correctly. Note that at any

point in the computation, )‘R’ the known optimality point of the current R, is to

the left of all values of A which are stacked on SK. Further, R is not optimal at

any of the stacked values of \. Hence until step 4b is executed for the first time,

the algorithm is generating distinct solutions which lie on P(A). The number of
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breakpoints, hence solutions on P(A), is finite and so the algorithm must eventu-
ally execute step 4b. At that point, the output L is optimal for a range of A

beginning on the left with Amin, and ending on the right with A*.

After 4biii is executed, either all of P(A\) has been identified, or the state of
the computation is identical to a state occurring if Amin had been set initially to
A*. In the latter case, the correctness of the algorithm follows from the above

argument for the original Amin.

Now we examine the number of evaluations of P(A) needed by the ES
method. Suppose the test in step 3a is never true. Then we claim that every
evaluation §f P(A*) i'n step 3 leads either to the identification of a previously
unidentified breakpoint, or to the generation of a solution which is optimal along
a line segment Ls of P(A), such that no previously generated solution is optimal
in the interior of Ls. It then follows that no more than 2k evaluations of P(A) are

required.

To see the first part of the claim, note that the algorithm never evaluates
P()\) twice at the same value of A. Hence if step 4b follows step 3, a previously

unidentified breakpoint is recognized.

To see the second part of the claim, recall that C, generated in step 3, is
optimal at A*. No solution which is stacked on SK is optimal at A*, and neither is
any solution which has been unstacked. Therefore, C is the first generated solu-
tion which is optimal at A*. Now the test of step 3a is never true by assumption,
and so A* must be in the interior of some line segment Ls of P(A), and no previ-
ously generated solution is optimal in the interior of Ls‘ Hence under the
assumption that the test in step 3a is never true, at most 2k evaluations of P(\)

are needed to determine all of P(A).

If the test at step 3a is ever true, then not every evaluation of P(\) leads

directly to the identification of a breakpoint or a line segment on P(A), and the
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above argument does not hold. Instead, when A* = )‘R in step 3a, }‘R is recog-
nized as a breakpoint even though P(AR) may have been evaluated much earlier.
The cost of recognizing the breakpoint AR is still, however, one evaluation of
P()\), since step 3a does not involve an additional evaluation of P(A). Note that A\*
= )\R in step 3a only when the earlier evaluation of P(?\R) produced a solution

optimal only at Ap (see figure 1.2).

P(A)

Advantages and Defects of the ES ;zlethod

The main feature of the ES method is that it determines P(A) for any prob-
lem P(X,A) with a linear parametric cost function, and further, it evaluates P()\)
at most twice per breakpoint, totally avoiding the problems of degeneracy in the
parametric simplex method. If the evaluation of P(A) can be done in polynomial
time, then P(A) can be determined in time which is polynomial in the number of
breakpoints. However, the ES method often cannot be used to find successive
breakpoints on - line in polynomial time. Although the brea'kpoints are output in
left to right order (due to the use of stack SK), the work to find the‘ﬁrst break-
point may be on the order of the work needed to find them all. Further, it is
often useful to locate the first breakpoint greater than some value of A, and the

ES method cannot solve this problem efficiently. An additional defect of the
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method is that it does not generalize nicely to multi- parametric problems

where two or more parameters are varied.

In chapter 3 we discuss parametric programming methods which can be
used on line, can determine the next breakpoint greater than a given A, and do
generalize to more than one parameter. In contrast to the ES method, however,

they do not work for all problems with linear parametric cost functions.

1.3.8 Minimum Ratio Optimization

Given an instance of problem P containing n decision variables, let solution
X be an n-length vector, and let X be the set of all solutions to problem P.

For every decision variable i, associate two cost variables S(i) > 0 and T(i) <

0, and recall that for solution x
S(z) = Zi:S(i)zi and T(z)= ZT(i)z‘-
1

where X; is the ith component of vector x.

Problem R(X): The Minimum Ratio Optimization problem for X, denoted
R(X) is to find x € X such that the ratio S(x)/T(x) is minimized over all feasible
solutions in X. Let z denote the optimal ratio. The function P(A) is defined as

before i.e.

Given a fixed value of A, P(A) is the minimum of S(x) + AT(x) over all x € X.
Recall that P(A) is a piecewise linear convex function of A. Note that T(i) < 0

implies that P(A) is a decreasing function of A.

We describe two solution methods for problem R. Both rely on successive
computations of P()A) for varying values of A. The idea is that for a given value of
A,

z = Aif and only if P(A) =0

z > A if and only if P(A) > 0
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z< Aifand only if P(A) < 0

Hence, to solve R(X), it is sufficient to find the value of A such that P(\) = 0.
Many papers [MEG] [PIC1] [CHA1] [CEA2] [ORL] have exploited this, reducing
specially structured integer programming problems to the minimum ratio prob-
lem for some underlying problem P. Picard [PIC2], with other authors, in partic-
ular have found numerous integer programming problems that can be solved
this way, where P is a network flow model called provisioning. Picard's tech-
niques give polynomial algorithms for many integer programming problems,
however many of Picard's results can be accelerated by a judicious use of binary

search.

We now review two known methods to locate A such that P(A) = 0, and sug-

gest some improvements to the second method.

1.3.9 Fractional Linear Programming

The following method to solve R(X) is used when X is the set of feasible solu-

tions of a general linear programming problem, but can be used for other prob-

lems as well.

1. Compute P(0) and let x be the resulting optimal solution with costs S(x) and
T(x). Set A*to S(x)/T(x).

2. Compute P(A*) and let x be the resulf.ing optimal solution with costs S(x)
and T(x).

3. SetA’to S(x)/T(x). A’ is now the value of A such that S(x) + AT(x) = 0.

4. If N’ < A* then set A* to A’ and go to step 2. If A’ = A* then stop. P(A*) =0,

* = z, and x is the solution to R(X).
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Figure 1.3 shows an example of the fractional linear programming method.

P(Y

Four optimizations used to locate z.
Figure 1.3 |
Fact: The fractional linear programming method finds A such that P(A)=0
with at most k+1 evaluations of P(\), where k is the number of breakpoints of

P(\). The point is that until z is reached, A' decreases each time step 2 is exe-

cuted.

The advantage of this method is that it works for general linear program-
ming problems, and if k is small, it works quickly. The disadvantage is that for
problems with a large number of breakpoints, many computations of P(A) may
be needed. If k is exponential, then the above bound on the number of evalua-

tions of P(A) cannot yield polynomial bounds on the cost of solving R(X).
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1.3.10 Megiddo Method

We now describe a method due to N. Megiddo [Meg] that solves R(X) for a
large class of combinatorial problems. Megiddo does not characterize which
problems are solvable by this method, but they are easy to recognize. One
sufficient condition is the existence of an algorithm for the non-ratio problem P
using only the following arithmetic operations: additions and subtractions, and

multiplications between one program variable and one constant. Many combina-

torial algorithms are of this type.

Let P be the non-ratio problem associated with R(X), and let A be an algo-
rithm that solves P. | Assume that the arithmetic in A consists only of additions
and subtractions, and multiplications between one program variable and one
constant. If we know z, the value of A such that P(A) = 0, then x, the solution of
R(X), can be found by using A to compute P(z). The Megiddo method takes the
opposite approach. It tries to force A to behave as if z is known, and hence to
discover x, even though z is not known until the end of the algorithm. Before

giving a formal description of the method we give an intuitive description.

Consider algorithm A written as a binary decision tree T. We want to dis-
cover the path Q through T that A would take when computing P(z), but we don't
know z. The method executes algorithm A symbolicly, carrying along linear
forms for the values of the variables. The values can be represented by linear
forms since they began as linear forms, and the permitted arithmetic does not
change this. When A reaches a branch point in T, it isn’t clear which way to
branch since z isn’'t known. What is needed is an oracle to tell the algorithm
which way A would branch when computing P(z). Suppose the test in the branch
is a comparison between two program variables, say g and h, and let g(A) and
h(A) be the linear forms representing the values of g and h at the branch point.

The oracle must tell the algorithm whether g(z) is greater, less or equal to h(z).
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However, this can be determined as follows: Let A* be such that g(A*) = h(A*),
and compute P(A*). If P(A*) = 0, then z is A*. If P(A*) > 0, then the relationship
of g(z) to h(z) is the unique relationship of g(A) to h(A) on the left of A*. If P(A*)
> 0, then the relationship of g(z) to h(z) is the unique relationship of g(A) to h{(A)

on the right of A*. Hence the proper branch can be made without the explicit

knowledge of z.

Formal Description

In order to describe the workings of the Megiddo method we need to
describe the structure of algorithm A, and the program variables of A. We
assume that algorithm A consists of four types of statements: 1/0 statements,
assignment statements, arithmetic statements, and branch on compare state-
ments. The I/0 statements read in or out the value of a program variable.
Assignment statements change the value of one program variable. Arithmetic
statements are of the form "g « hO k", where Ois either +, - or x. In the case of
multiply, at most one of h or k is a program variable, the other being a constant.
Branch statements are of the form: "if g rel h then branch 1 else branch 2",
where ""rel"” is one of >,<,=,5, or 2. We define straight line code as a sequence of

statements not containing any branch statements.

Now we look at the program variables of A. Let V be the set of program vari-
ables of A, and let R € V be the set of variables whose value is ever read in from
the problem data. For example, in the shortest path problem, R is the set of
program variables representing the costs of the edges in the problem. Let R* <
V be the set of program variables whose value is effected by some va}riable in R.
That is, R* is formed as follows: R is in R*. If vis a program variable on the left-
hand side of an assignment or arithmetic statement whose right-hand side con-
tains a variable in R* then v is put into R*. R* contains no variables not

identified in this way. For example, in the Dykstra algorithm, the node labels
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are in R* since each node label is set equal to the sum of an edge length plus
another node label. In most combinatorial algorithms, V - R* is the set of deci-
sion variables which define the solution x. In the Dykstra algorithm, V - R* = x,
where x =1 if edge i is in the shortest path tree, and X; = 0 if not. We will

assume that in A, no variable in R* is ever assigned the value of a variable in V -

R*, and that no arithmetic operations involve variables in V - R*.

Preliminaries for M(A)

For each program variable g € R*, create two program variables Sg and Tg'
and define g(A) = Sg- + }\Tg, the linear form representing the value of program
variable g as a function of A. Create a single program variable g for every g € V -

R*. "Simulale straight line code of A" means that a portion of A containing

straight line code is to be simulated as follows:

1. For each input statement "read g", execute the two statements "read Sg,
read Tg". For each output statement "write g”, execute "write Sg' write Tg"
if g € R*, and execute "write g" if g isin V- R*

2. For each assignment statement "g « h'" execute "g « h" if g,h € V - R*, and
execute "Sg « Sy 'I'g

and h is a constant.

« Ty," if g.h € R* and execute "Sg « h, Tg «0"ifg €R*

3. For each arithmetic statement "g « h O k" execute "Sg « 5,08, 'I'g «T,0

'I‘k" if g,h,k € R* If g,h € R* and k is a constant, then execute ""g « h + k" as

"Sg « Sh + k", and execute "g « h x k" as "Sg « Sh x k, 'I'g « Th X k',
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Algorithm M(A)
Input: Costs for each variable i given as pairs S(i), T(i).

Output: z and x. xis the optimal solution at point z.

Denote interval I as [L,R]. Set L to 0 and R to =. Note that z € 1. Set pc to
1.

Simulate the straight line code of A starting at point pe until a branch

statement is reached. If the end of A is reached, go to step 6.

At a branch statement, two linear forms, g(A) and h(A), representing the
values of two program variables g and h, are compared. Solve for A*, the
unique value of A such that g(A*) = h(A*). If A* € ], go to step 4. IFA* & ],
then either g(A) > h(A) or g{A) < h(A) for all A € 1. This determines whether
g(z) is greater or less than h(z) at this branch, and hence determines the
correct branch that algorithm A would make in computing P(z). Branch to
the appropriate code in A; set pc to the start of that code, and go to step 2.
If A* € I, then for A € 1, g(A) > h(A) on one side of A* and g(\) < h(A) on the
other. To determine the correct branching of A at this branch statement
(i.e. which branch A would take in computing P(z)), compute P(A*) in a
separate running of algorithm A. For clarity, assume that P(A*) is com-
puted using A’, a copy of algorithm A. Then there are three cases:

If P(A*) = 0 then A* = z. Terminate the algorithm.

If P(A*) > 0 then z > A*. Set L to A*, and determine the correct branch for A
at this branch statement. Branch to the appropriate code in A; set pc to

the start of that code, and return to step 2.

If P(A\*) < 0 then z < A*. Set R to A* and determine the correct branching of
A. Branch to the appropriate code in A; set pc to the start of that code, and

go to step 2.
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5. Let y € X be the solution computed by the actions of A above, and let [L,R]
be the final endpoints of 1. Then y is the optimal solution for R(X), and z =

S(y)/T(y). Set x to y and output x and z.

Complexity of M(A)

The complexity of M(A) is at most the square of the complexity of A; If A
contains d branch statements, then the complexity of M(A) is bounded by dC(A),
where C(A) is the complexity of A. Hence, if A is polynomially bounded, then
M(A) is also polynomially bounded.

Megiddo suggests two techniques for reducing the running time of M(A) on
typical combinatorial problems. The first technique is useful when actions at a
branch statement do not affect the future execution of A until well after that

branch. For example, consider the statements:
"if g > h then branch 1 else branch 2".
branch l: g« 5-h

branch 2: g « 50 + h
If g is not used again until much later, the determination of the proper assign-
ment can be delayed. In this way, values of A* and questions "is z greater, less
or equal to A*' can be buffered and resolved by binary search over the buffered
values. This reduces the number of runs of algorithm A’, and hence the running
time of M(A). For example, the complexity of the minimum ratio cycle problem

is reduced from O(ns) to 0(n4log n) in this way.

Megiddo’s second improvement is for problems such as minimum spanning
tree problems, in which the A algorithm involves no arithmetic. The details of

this improvement can be found in [Meg].
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Refinements

We describe two refinements of M(A) which do not improve the order of
magnitude of the complexity, but which are cheap to implement and will likely
speed up M(A) in practice.

1. Let x be the optimal solution associated with P(A*) computed in step 4. In
step 4iii, R can be set to S(x)/T(x) < A*. See figure 1.4. This accelerates the
shrinking of L, and may reduce the number of executions of A’. This seems

particularly true when used together with the binary search improvement

above.

P())

Figure 1.4

2. It is generally unnecessary to run all of A’ when P(A*) is computed in step 4.
A' needs only be run forward from the point in A' corresponding to the
branch statement at pc where P(A*) must be determined (see figure 1.5).
To prove this, note that the actions of A taken in M(A) are consistent with

the a~tions of A’ in the computation of P(\*), until pc is reached. Therefors,
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these computations need not be repeated. To get the values of program

variables for A’ at pc, compute g(A*) at pc for all program variables g in A.

Essentially, when A reaches a branch statement, the correct action can be
determined by plugging in A* and completing the computation of A with the
resulting constant data. This is cheap to implement, and is certainly an

improvement in practice.

A A

Pl ==~ =

Figure 1.5
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Chapter II: MATROID OPTIMIZATION WITH THE

INTERLEAVING OF TWO ORDERED SETS

Introduction

In this chapter we examine a problem with special structure allowing very
strong results. We consider problems which arise when many successive
matroid optimization (minimum cost i:ase) problems must be solved, each prob-
lem differing from the others in a structured manner. We present theorems
characterizing the structure of the successive optimal solutions, and a prepro-
cessing method allowing very rapid solutions to the successive optimization

problems.

Given a matroid M with element set E partitioned into two sets R and W, con-
sider the set of all orderings of E which preserve the internal orders of R and W
respectively. Associated with each such ordering is a minimum weight base of
M. In this chapter we study the class of all minimum weight bases associated
with the above set of orderings. We characterize the structure of this class of
bases, and present an algorithm which yields a representation of them. We
relate these results to the problem of repeatedly finding a minimum weight base
of M, where the element weights are successively drawn from a restricted class
of possible weights. We further use the algorithm to efficiently solve the follow-
ing parametric problem: For M a matroid with E = R U W, and a weight defined
for each element in E, find for all feasible q, the minimum weight base of M con-

taining exactly g elements of R.
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Basic definitions for matroids and graphs can be found in Lawler [LAW]. The
reader unfamiliar with matroids, but comfortable with graphs can follow the
chapter by specializing the results to the minimum spanning tree problem, sub-
stituting graphs for matroids. edges for elements, spanning trees for bases, and

cycles for circuits.

2.1 Problem Definitions

Let M = (E,I) be a matroid with element set E of size n, partitioned into two
ordered sets R (red) = (R, Ré w Rg) and W (white) = (Wl' Wo o Wt). wheret=n-
s. A weighting of E, denoted C(E), is defined as a map from the reals onto E. For
an element E, of E, C(E;) is called the weight of E,. The interleavings of E,
denoted I(R,W), consist of all weightings such that C(Rl) < C(Rz) <..< C(Rs) and
C(Wl) < C(Wz) <.. < C(Wt). The order of the weights of the red elements is
preserved by I(R,W), as is the order of the weights of the white elements, but the

two sets may be ordered together by any interleaving of R and W.

Given C(E), the weight of a base B of M is defined as the sum of the weights
of the elements of B, and the minimum weight base is the base with minimum
weight over all bases of M. For every interleaving in I{R,W) there is an associated
minimum weight base, and we define B(R,W) as the set of all bases such that
each is the associated minimum weight base for some interleaving. That is, for
every B in B(R,W) there is an interleaving C(E) in I(R,W) for which B is the
minimum weight base. The following theorem characterizes the structure of the

set B(R,W).

2.2 Pairing Theorem

Theorem 2.1 Given the ordered sets R and W; the elements of set E can be

partitioned into the following three classes:
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i.  elements which appear in no base in B(R,W)
ii. elements which appear in every base in B(R,W)

iii. an equal number of red and white elements mated one - one into red white
pairs (Ri‘ Wj) such that for any base B in B(R,W), R; is in B if and only if Wj is
not. Further, R, is in B whenever C(Ri) < C(Wj): V¥, is in B whenever C(R.l) >
C(Wj).

Hence for any interleaving, the associated minimum weight base contains

all elements from class ii, and exactly one element from each pair in class iii.

Proof of the Pairing Theorem

The proof of theorem 2.1 is in three parts; recognizing the three classes;
proving equal cardinality of the red and white elements of class iii; and pairing
the class iii elements into red - white pairs so that for any base B in B(R,W)
exactly one element of each pair is in B. The following fact will be needed

throughout.

Fact: Given an weighting C(E) of the elements E in M, an element e is in the
minimum weight base of M, if and only if e is not the maximum weight element

of any circuit in M.

Lemma 1: Classes i and ii can be recognized by two minimum weight base

computations.

Proof of Lemma 1: Consider the interleaving C'(E) in which every red ele-
ment has less weight than every white element, and let B' be the associated
minimum weight base. For such weights, the above fact implies that any red
element R.1 not included in B’ is the maximum weight element of some circuit S
containing only red elements. The interleavings preserve the order of the
weights of the red elements, hence Ri will be the maximum weight element of S

for any interleaving, and will be in no base in B(R,W). Conversely, no red element
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in B’ is in class i, and therefore the red elements of class i are exactly those red
elements omitted from B'. Further, any white element Wj in B’ will be in every
base of B(R,W). Since Wj is not the maximum weight element of any circuit when
all red elements weigh less than all white elements, there is no interleaving in
which Wj is the maximum element of some circuit of M. Conversely all white ele-
ments of class ii are in B’, and therefore the white elements in B' are the white

elements of class ii.

In a similar way, the white elements of class i and the red elements of class
ii are recognized by considering all red weights greater than all white weights,

and the associated minimum weight base B*'. s
Class iii is defined as the set of elements of E not in classes i or ii.
Lemma 2: Class iii contains an equal number of red and white elements.

Proof of Lemma 2: Let B' and B' be as in Lemma 1. The reds omitted from
B’ are exactly the red set of class i, hence B’ contains all the red elements of
classes ii and iii. Further, the white elements in B' are exactly the whites of
class ii, and so B’ consists of the red and white elements of class ii, and the red

elements of class iii.

Similarly, B'' consists of the red and white elements of class ii, and the
white elements of class iii. B’ and B'" have equal cardinality, and so class iii con-

tains an equal number of red and white elements. s

Pairing Algorithm

Let k be the number of elements of each color in class iii. We now give an
algorithm which finds k red - white pairs of class iii elements, such that at most
one element from each pair is present in any base in B(R,W). Let B’ be as in

Lemma 1, and assume WLOG that the white elements of class iii are Wl. W2 ' Wk.

Set B0 equal to B' and repeat the following for j = 1 through k:
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a) Add Wj to Bj-l , creating the unique circuit Cj'

b) Find the red element R, of largest index among the red elements of Cj' We

will show below that such a red element exists, and is in class iii.

c¢) Pair R-1 with Wj' Remove Ri from the result of step a), yielding the base Bj’

Figure 2.1 gives an example of the algorithm and the resulting pairing for a
graphic matroid, where the minimum weight base problem is the minimum

spanning tree problem.

i Ko
AN
G has one class ii Bo

2dqe, and four class
il edages,
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W

and R; pair 841

Figure 2.1
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Lemma 3: The pairing algorithm pairs the elements in class iii, and for any
base B in B(R,W) at most one element from each pair is in B. In fact, for B asso-
ciated with the interleaving C(E), only the least weight element of each pair can

appear in B.

Proof of Lemma 3: Consider Wj and the circuit Cj resulting from adding Wj
to Bj-l in step a). By construction, Wj is the white element of maximum index in
Cj. and hence for any interleaving, the maximum weight white element in Cj' Cj
must contain at least one red element, or else Wj would be the maximum weight
element in Cj for all interleavings, and would be in class i. Let R, be the red ele-

ment paired to W, in step c) of the algorithm. For any interleaving, Ri is the

J
maximum weight red element in Cj. and hence for some interleaving, the max-
imum weight element in Cj' Therefore, Ri can't be in class ii, and must be in

class iil.

The above shows that for any interleaving C(E), the maximum weight ele-
ment of circuit Cj is either R; or Wj. Therefore, for any B in B(R,W), at most one
of those elements can be in B. In fact, for interleaving C(E) and associated base

B, only the minimum weight element of the pair can be in B. =

To complete the proof of the pairing theorem, note that every base B in
B(R,W) contains exactly k class iii elements. Since there are k class iii pairs,
and at most one element from each is in B, exactly one element from each pair

is in B. This completes the proof of the pairing theorem.

Improved Algorithm

In the above presentation, classes i and ii were recognized in two passes
through E, and the class iii elements were paired in a different algorithm. These
tasks were done separately for clarity, but can be done together in one pass

through E. Let Bo be the empty set, and apply the pairing algorithm using all
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elements E in the order R’l' .RS . Wl. .Wt. Any element completing a mono-
chromatic circuit is rejected and placed in class i. Any white element complet-
ing a bi - chromatic circuit is paired with the red element of maximum index in
the circuit, and the red element is deleted. Finally, any white element not com-
pleting a circuit is placed in class i, as is any red element which remains in the
base after all the white elements have been examined. Viewed this wav, the
pairing algorithm is seen as an extension of the Greedy algorithm [Law] for the

minimum weight base of a matroid.

2.3 The Matroid Selection Problem

Let M be a matroid with element set E partitioned into sets R and W, with
real valued weights C(E) assigned tc E. The matroid selection problem is to find,
for all feasible q, the minimum weight base B of M, subject to the constraint that
B contain exactly q elements from R. This problem is efficiently solved using the

pairing theorem and algorithm.

To solve the selection problem, we modify the weights of R by adding the
variable A to the weights of all elements in R. Then any base containing r ele-
ments from R, has modified weight equal to its original weight plus rx\. There-
fore, for fixed A, if the resulting minimum modified weight base B has r elements
of R, then B solves the selection problem for q = r. Varying A from -« to += pro-
duces a sequence of minimum modified weight bases corresponding to the solu-
tions of the selection problem, witt; q varying from its largest possible value to

its smallest possible value.

Adding A to the weights of R preserves the order of the R set weights, while
the weights and order of the W set remains constant. Hence as A varies the
order of the weights of E defines a class of interleavings of R and W. Then if Ri
and Wj are paired elements of class iii, and B is the minimum weight base associ-

ated with a given value of A, the pairing theorem states the R-1 is in B if and only
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if C(Ri) + A< C(Wj). The selection problem can be efficiently solved as follows:
a) Given R, W and C(E) find classes i, ii and the pairings of class iii.

b) For each (Ri' Wj) pair of class iii, compute )‘ij = C(Wj) - C(Ri). and sort the

Aij values.

c) Suppose the number of R elements of class ii is p. Then the minimum
weight base with exactly q elements from R consists of the class ii elements,
the red elements of the q - p pairs with smallest }‘i' values, and the white

]
elements of the remaining pairs.

d) The minimum value for q is p, and the maximum value is p + k, and ¢)

implies that any value of q between p and s + k is feasible.

It is possible to improve the efficiency of this method in the context of par-
ticular matroids. For example, Gabow and Tarjan [GT] have improved the speed
of the pairing algorithm for graphic matroids, and have presented other

methods to solve the selection problem for other specific matroids.

2.4 Successive Modification

Many computing applications involve the repeated computation of a given
function, where the values of the function variables are successively modified, or
are drawn from some class of possible values. For such applications, it is desir-
able to devise methods to "preprocess"” the data in order to speed up the suc-

cessive computations.

Consider the situation in which the successive modification consists of
choosing different interleavings in a minimum weight base problem. A typical
special case of this model is the situation in which the weights of some elements
are held constant, while the remaining weights are given by an order preserving

function of some parameter. The pairing algorithm can be used to preprocess
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the elements so that when actual interleaving is specified, the minimum weight
base can be computed at the cost of at most m comparisons, where m is the size
of the base. The complexity of the pairing algorithm will vary for different
matroids, and depends on the difficulty of finding circuits. However, once the
pairing is completed, the minimum weight base problem reduces to a simple
problem of comparisons, regardless of the matroid. This is a substantial algo-
rithmic improvement for many matroids where finding circuits is expensive.
Further, the pairing gives a compact representation of all the bases in B(R,W),
which is useful for zomputer applications where the bases must be easily stored

and retrieved.
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Chapter IIl: ALGORITHMS FOR PARAMETRIC

PROGRAMMING

In chapter I we discussed two methods (the parametric simplex and the Eis-
ner - Severance method) for parametric programming. In this chapter we .
examine three additional methods to solve the parametric programming prob-
lem for combinatorial problems. We first discuss two general methods that work
for some combinatorial problems, and then discuss a method which solves the
parametric programming problem on-line in polynomial time per breakpoint for

many combinatorial problems.

Let P be an unparametrized problem, and let X be the set of all feasible
solutions to P. Associated with every decision variable i are two costs S(i) and

T(i). Define for solution x,

S{z)=YS(@{)z and T(z)= Y,T{{i)z;
3 1
The function P(A) is the following: For a given value of A, P(A) = minimum value

of S(x) + AT(x) taken over all x € X.

The parametric problem P(X,A) is the problem of determining P(A) as a
function of A. Note that P(A) is a piecewise linear convex function of A. Points of

discontinuity in P(A) are called a breakpoints.

3.1 Method I

Let x be an optimal solution to a parameterized problem P at Al We can

find Az. the largest value of A such that x is still optimal, as follows: characterize
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the set of all possible changes in x that could occur at )\2. and search over this
set to find the correct change. We illustrate the idea on the directed shortest
path problem from s to all other nodes in a graph G. Let x be a shortest path
tree at AL, Then at A® the new optimal tree will differ from x by the addition of
one edge directed into a node j, and the deletion of one edge directed into j. A2

can then be found as follows:

1. For each node i, let D(i,A) be the cost, as a function of A, from s to i in x.

2. For each edge e = (ij) € x, let S(e,A) = D(i,A) + D(e,A), where D(e,A) is the
cost of edge e as a function of A. Let J\e be the value of A such that S(e,A) =

D(j.A). Compute A for all edges e € x.

3. A% = Min Ao Let a=(ij) € x be the edge such that A% = Ay andlet b € x be
the unique edge in x directed into node j. Then xz, the next optimal tree, is

found by removing edge b from x and adding edge a.

Implementation

This method can be used to find successive breakpoints on-line in left to
right order. The key implementation issue is the work required to update the
D(i,A) and S(i,A) values after a change in the tree, and the work required to find
the minimum S(e,A) value. If the distance to node b is changed, then D(i,A)
changes for every node in the subtree rooted at b, and S(e,A) changes for every
edge e into or out of that subtree. A naive implementation of the updating
requires O(nz) time per breakpoint. In the case of strictly positive edge costs,
this is the same as the Eisner-Severance method, but for negative costs it is an

improvement.

It is not always possible to characterize the type of change that occurs at
each breakpoint, and not always easy to carry out the updating. For example, in

the s - t shortest path problem (in contrast to the all node problem above) it is
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not clear what form the path change takes. The problems with method I for the s
- t version are like the problems of degeneracy in the parametric simplex
method. It is interesting to note that the parametric simplex algorithm is the
same as method 1 for the all nodes shortest path problem. In general this is
true for all non-degenerate linear programming problems, but method I works
also for problems which are not linear programming problems. For example,
this method could be used to find breakpoints for parametric sorting problems,
or scheaduling problems where only local changes occur to the optimal

scheadule at the breakpoints.

3.2 Method II

A second general parametric programming method is to focus on the
change in behavior of the optimizing algorithm instead of the change in the solu-
tion. This is a weaker method than method I, but can sometimes be used when
method 1 is unworkable. We will illustrate this method with the parametric

minimum spanning tree problem.

Let A be a minimum spanning tree algorithm, and suppose tree T is optimal
for the value of A equal to A'. The branching action of A while computing T
implies a set of inequalities in A which hold at A’. Then if A* is a value of A for
which the inequalities hold, T will be optimal for A* also. For example, suppose
that a branch in A depends on the comparison of P(i,A) and P(j,A), the
parametric costs of edges i and j respectively. Then the branch action taken for
A equal to A’ implies say that P(i,A) > P(j,A). The method to find the next break-
point is to first locate the smallest value of A such that one of the inequalities is
violated. Computation is then backed up to the associated branch point, certain
inequalities are removed, A is rerun forward from that branch point, and addi-
tional new inequalities are implied. By repeating this operation, the desired

breakpoint is eventually discovered.
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Implementation of this method is very simple. For inequality i, let A be the
minimum value of A > A’ such that inequality i is violated. When branch point i is
encountered in the execution of 4, A; is computed and stacked on SK along with
a pointer to the smallest A value among J\i and the values already on SK. When )\-1
is stacked it is compared to the A value pointed to by the top of the stack, and
its pointer is then set to the smallest of the two values. Hence, the top of the

stack always points to the smallest A value in the stack. Figure 3.1 shows a

)

)
>

Figure 3.1

snapshot of SK.

When algorithm A is backed up to the branch point j associated with )\j. the
minimum A in SK, the portion of SK above Aj is deleted, A is set greater than Aj,
and A'is run forward from branch point j.

The problem with this method is that a change in the behavior of the algo-
rithm does not alway imply a change in the optimal solution. If A is the greedy
algorithm, then the behavior of the algorithm changes whenever the order of the
edge costs change, but this does not always correspond to a change in the
minimum spanning tree. Further, there may be many minimum spanning trees
for a given value of A, and there is no mechanism in this method to avoid gen-

erating them all.
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It is interesting to note that in the case of the s to all nodes shortest path
problem, methods [, II, and the parametric simplex method are essentially the

same. This is not true in general.

3.3 Megiddo Based Methods

In this section we show how to determine successive contiguous breakpoints
in polynomial time per breakpoint for a large class of combinatorial problems.
The method is based on the key idea of the Megiddo technique for rational
optimization discussed in section 1.3.10.

1

Given parametric problem P(X,A), let x* be a feasible solution of cost S(xl)

+ XI'(xl) which is optimal for a non-zero length interval of A beginning at Al Let

2

A% > al be the first breakpoint larger than Al. i.e. the right endpoint of the

interval of optimality of x! in this case.

1

Lemma: Given x! and Al above, >\2 is the solution to the following problem:

P’:  Minimize A
such that for some x€ X,
S(x1) + AT(x1) = S(x) + AT(x)
S(xl) < S(x)
Proof: Consider figure 3.2. A2 is the first point to the right of al where the

cost of another x € X, x # x1 intersects the cost of x. By the optimality of x! at
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AL, S(x) > S(xl) and the lemma is proved. s

P(N

b1 i

» A
Figure 3.2

Hence, by successively solving P', a few contiguous breakpoints can be

determined, or P(A) can be determined for an entire range of A.

Solving P’

For many combinatorial problems, P' can be solved by a method similar to
the Megiddo technique for rational optimization (section 1.3.10). Given the
parametric problem P(X,A), let A be a suitable algorithm which solves P(A*) for
A* a fixed value of A. By "suitable" we mean one which works for the Megiddo
method of section 1.3.10. For a coniplete introduction to the notation and termi-

nology refer to section 1.3.10. P’ is solved as follows:
Algorithm PM(A)

Input: Breakpoint Al and solution x! optimal at Al and some A > Al

2 and s2. p2 2

Output: Program variables p is a value of A, generally >\2, and s

is a solution that is optimal at pz. generally x°.
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Denote interval I as [L,R]. Set L to Al and R to =. Set N toAl. Set pe to 1.
Note that A% € 1 - {N}. Let g(A) be a linear form representing the value of

program variable g as a function of A.

Simulate the straight line code of A, starting at point pe, until a branch

statement is reached. If the end of A is reached, then go to step 6.

At a branch statement, two linear forms representing the values of two pro-
gram variables, say g and h, are compared. Let g(A) and h(A) be linear
forms representing the value of program variables g and h as a function of
A. Solve for A*, the unique value of A such that g(A*) = h(A*).

If A* € 1-{Nj] go tostep 5. If A* ¢ I - {N] then either g{A) > h(A) or g(A) < h(}A)
for all A € 1- {Nj}. This determines whether g()\z) is greater than or less than
h(?\z). and hence the correct branching of A is also determined (i.e. what
branch A would take on computing P(?\z)). Branch to the appropriate code

in A; set pc to the start of that code, and return to step 2.

If A* € 1- {N}, then for all A € I - {N}, g(A) > h(\) on one side of A*, and g{\) <
h(A) on the other. To determine the proper branching of A at this branch
statement, compute P(A*) in a separate running of algorithm A’ (as in sec-
tion 1.3.10, A’ is a copy of A). Let x be the resulting optimal solution to
P(A*). Then there are three cases:

If S(x) + A*T(x) = S(x1) + A*T(x!) and S(x) > S(x!) then set L and N to A*,
and go to step 4.

If S(x) + AT(x) = S(x!) + A*T(x!) and S(x) = S(x!) then A% 2 A*. Set interval
I to [A%R], and determine the correct branching for A. Branch to the

appropriate code in A and set pc to the start of that code. Return to step 2.

See figure 3.3.
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Siii. If S(x) + A*T(x) < S(xl) + J\'T(xl) then A% < A* and R, the right endpoint of I,
should be reduced. Set the value of R to r such that S(x) + rT(x) = S(xl) +
rT(xl). and determine the correct branching for A; branch to the appropri-
ate code in A, set pe {o the start of that code, and return to step 2. Note

that r < A*. See figure 3.3.

8. Lety € X be the solution computed by the action of algorithm A above, and
let [L,R] be the final endpoints of interval 1. If S(y) > S(xl) then set pro-
gram variable p2 to L. If S(y) = S(xl) then set 1:»2 toR. IfR =A% < =, then

2

set program variable s” to x, else to y. Terminate the algorithm.

PO

by

X *in A

case i

|
Z
:
Y

In case Siii X'jn case §ii

Figure 3.3

Theorem 3.1: Algorithm PM(A) solves problem P’; The value of p2 equals 7\2,

2

and the value of s> is x ., a solution optimal at }\2 and some A > }‘2.

Proof: Let [L.R] be the final endpoints of I, and y be as in step 8. ThenL <

A% < R. and y is optimal for all values of A in [L,R].
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To see the first claim, note that the left point of I began at Al, where x! is
optimal, and moved left only to values of A where x! was discoved to be optimal.
Hence x! is optimal at L. Conversely, if R < =, then PM(A) discovered a solution

better than x! for A> R, and so LS A2 S R. IfR = w then A® s R trivially.

To prove that y is optimal for [L,R], we claim that the actions of algorithm A
which produced the solution y are correct actions for any value of A from L to R.
Essentially, PM(A) provides a proof that y is optimal for all values in [L,R]. This
is very clear if step 5i is never executed. If step 5i is executed, then the actions
taken by A are consistent with the actions of A in computing P()\2 + ¢) for J\z + &
< }\3, the next breakpoint to the right of AZ. Hence y is optimal for all values of

A between L and R.

Now both x! and y are optimal at L. If S(xl) = S(y) then x! is also optimal
atR, and \° =R. If S(y) > S(xl) then A% must be at L. In either case, p2 is set to
A%, S(y) < S(x!) is not possible, for it implies that L = Al = R, and that x! is
optimal only at 7\1. contradicting the assumption that x! is optimal for some

value of A greater than al. Hence p2 is set to AZ as claimed.

2

Now consider s°. Recall that s® is set either to x (x is set in step 4), or to y.

If R = = then y is optimal for all values of A from )\1 to ». If R < = then either R
=22 orR> A% = L. In the first case, s® is set to x, which is optimal at )‘2 and

2

also at some A > A%, In the second case, s“ is set to y, which is optimal at both L

and R> L. Hence s2 is optimal at A% and some A > }‘2. .

Degeneracy

1

We now examine the case of degeneracy. Suppose that x* is optimal only

for A & }\1.
Claim: If x! is degenerate (optimal only for A S AI) then PM(A) ends with p2

set to AL, and with sZ an optimal solution for Al and some A > AL
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Proof: Suppose that PM(A) is executed with x! degenerate. Let R and L be
the final endpoints of I in step 6. Note that statements 5i and 5ii are never exe-
cuted, and hence L equals Al. Note also that y is optimal for all Ain [L.R]. IfR =
L then PM(A) sets pz to 7\1. and s? to x, both correct actions. If R > L then x1
isn't optimal at R and S(y) > S(xl). Hence PM(A) sets pz to )\1, and s to y. again

correct actions. »

Hence PM(A) discovers that x1 is degenerate, and finds a solution 52 optimal
at al and some A > Al The next breakpoint, ?\2. can then be determined by

2 1

rerunning PM(A) using s in the place of x".

These observations support the claim that P(A) can be determined at a cost
of at most two applications of PM(A) for the first breakpoint, and one per break-

point thereafter.

A Refinement

In the case where more than one breakpoint must be determined, the above
method of successive calls to PM(A) can be improved. The idea is to remember
information about P(A) discovered while locating one breakpoint, for use in
locating successive breakpoints. The conclusion is that, in practice, not all of

PM(A) needs to be executed for every breakpoint.

Suppose that breakpoint A% has been located along with solution x° which is

optimal at }\2 and some A > }\2' Let 32 be as in step 5, hence 32 = x2.

While locating A%, PM(A) called P(A*) for perhaps several A* > A%. These
calls determined feasible solutions and hence determined an upper bound U on
P(A), for A > )\2. That is, U is the lower cost envelope of the solutions for which
step 5iii is executed. Let U(L) be the leftmost line segment of U excluding sz,

and let x be the solution associated with U(L). Let R, be the intersection point
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of the cost functions of xz and x. See figure 3.4,

PN

Figure 3.4

Note that every solution x of step 5iii is in U, for each such x is an optimal
solution of P(A*) for some A*. Note also that U is built up at its left end, for the
values of A* used in step 5iii are strictly decreasing. Therefore, keeping track of
additions to U is a simple matter, implementable by stacking the line segments

of U as they are found. We will later exploit this.

Lemma: When locating A3 (the first breakpoint to the right of ?\2) R can be
initialized to Rx' More importantly the computation to locate ?\3 need not begin
at the start of PM(A), but can start after the point in PM(A) where line segment
U(L) is generated.

Proof: Suppose U(L) is generated at time t in the search for )\2. and let Rt
be the right end of I at time t. By construction, x is optimal for some A < Rt'
However, x° is better than x to the left of Rx' hence Rt 2 Rx‘ The right end of I

moves only to the left, hence in the search for }\2' the right end of I is to the
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right of R, until time t. Note also that A2 S R__

Now suppose that x° is used to locate As. and that PM(A) starts at its begin-
ning, with L = A% and R = . Since AS s R,. and the right end of I is to the right
of Rx until time t, the action of A in locating A3 will be identical to the action of A
in locating A%, until the point where U(L) is generated. When U(L) is generated
in the former case, R is set to Rx' while in the latter case R is set to the intersec-
tion of U(L) and x!, which is to the left of R.. Hence after U(L) is generated, the

two executions of A may differ, but until that point, they are the same and need

not be duplicated. =

We have shown that when A® has been located, PM(A) should be returned to
the state it was in just after U(L) was generated, except that R should be set to
Rx’ In general, we define Ul to be the upper bound of P(A) for A > Al at the point
when Al and associated x' are discovered. Ui(L) is defined as the leftmost line
segment of Ut excluding x. Then to find xi+1, R is set to the intersection of xi

and Ui(L), and PM(A) is reset to its state when Ui(L) was generated.

The mechanics of retrieving Ui(L) and proper program state are very sim-
ple. Whenever step 5iii. is executed, the solution x is pushed onto a stack SK
along with the associated program state. When breakpoint Alis located in step 8,
Ui(L) and associated program state are either on the top of SK or one location
below the top. If Al < R then d! = y, and U(L) is on the top of SK. If Al = R then

d! = x! = x which is on the top of SK, hence Ui(L) is on the next location in SK.

Complexity and Advantages of PM(A)

If algorithm A is polynomial, then PM(A) is also, since the complexity of
PM(A) is at most the square of the complexity of A. Again, tricks such as those
discussed in 1.3.10 can reduce the complexity of PM(A) and speed it up in prac-

tice.
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In summary, we have proved:

Theorem 3.2: Given a suitable algorithm A for the unparameterized prob-
lem P, the function P(A) can be determined at a cost of at most two applications
of PM(A) for the initial breakpoint, and one application of PM(A) per breakpoint
thereafter. If A is polynomially bounded, then the cost per breakpoint to deter-

mine P(A) is also polynomially bounded.

The advantages of the PM(A) algorithm are the following: First, unlike the
Eisner - Severance method, it finds breakpoints successively from left to right.
Therefore, for many combinatorial problems, it can be used to find just one
breakpoint in polynomial time, or to find several breakpoints on-line in polyno-
mial time. Further, PM(A) is easily generalized to higher dimensional problems,
unlike the Eisner-Severance method. Second, unlike the parametric simplex
method which suffers from two types of degeneracy, PM(A) finds at most two
optimal solutions per breakpoint, and exactly one optimal solution per line seg-
ment between successive breakpoints. Further, PM(A) works for problems that
are not linear programming problems, and can provide polynomial bounds,

whereas the parametric simplex method is not polynomially bounded.

The s to t Shortest Path Problem

With algorithm PM(A) we can now solve the single source - single destination
parametric shortest path problem on-line in polyixomial time per breakpoint.
The time needed per breakpoint by the PM(A) algorithm is O(nalogn). Recall
that this on-line polynomial bound could not be obtained with either the

parametric simplex or the Eisner - Severance methods.

Minimum Cost Flow

If the optimal solution is known for one given value of A, then often P(A) can

be determined in polynomial timz per breakpoint even without a suitable
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polynomial time algorithm A for the unparameterized problem P. The key is
that the problem P’ of determining the next breakpoint can often be expressed
as a specially structured subproblem for which a suitable A algorithm exists.
For example, no suitable polynomial time algorithm is known for the minimum
cost flow problem [LAW]. However, if the optimal flow F is known for a value AL in
the parametric minimum cost flow problem, then the breakpoint A% 2 Al can be

found as follows:
1. Given F, construct the augmentation network FA

2. AR is the smallest value of A 2 Al such that there exists a negative cost
cycle in F‘A

2

3. A% can be found by M(A) of section 1.3.10 since the basic algorithm A is now

any suitable polynomial time algorithm (such as Floyd's method) to find the
smallest cycle in F‘A )\2 is the value of A where the smallest cycle has cost
0.

3.4 An Application to Program Module Distribution

We use algorithm PM(A) to solve a problem in two dimensional parametric
programming introduced by H. Stone [STO]. The unparameterized problem is as

follows:

In a distributed computing system, n modules of a program must be distri-
buted between two processors, say l:’1 and PE' For each module i, a cost of Ril is
incurred if i is run on Pl' and a cost of Ri2 is incurred if i is run on P,. In addi-
tion, for each pair of modules (i,j), a communication cost Cij is incurred if
modules i and j are not allocated to the same processor. The objective is to dis-

tribute the program modules to minimize the total cost of running the program.

The above problem can be modelled and solved as a maximum flow -

minimum cut problem in an s-t network G. Let node s represent P1 and node t
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represent Pz. and let each node i represent module i. Each node i is adjacent to
s with an edge of capacity Ri?' and adjacent to t with an edge of capacity Ril'
Every node pair (i,j) is connected by an edge of capacity Cij‘ Then the minimum
s-t cut in the network defines the optimal distribution of modules to processors.
The nodes on the s side of the cut are assigned to processor 1, and the others

are assigned to processor 2. See figure 3.5.

Figure 3.5

Stone [STO] discusses F(a), a one parameter version of this problem in
which the costs Ril are multiplied by a common parameter a, representing the
congestion on Pl' As « increases the congestion and running times on P1
increase, the minimum cut changes and more modules are placed on P2. Stone
shows that as a varies from 0 to =, at most n minimum cuts are generated.

These cuts are found by the Eisner-Severance technique of 1.3.7.

Two Parameter Problem F(a,g)

The two parameter problem, F(a,8), models variable congestion on both

processors. The problem F(a,f) is to multiply R‘il by a, and multiply Riz by an
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independent parameter 8, solving the minimum cut problem as a function of «
and B over a bounded range of the a, B space. That is, partition the a, g space
(amin fas X hax 2nd Brnin B Bmax) into regions such that in each region a
single s-t cut is minimum. Note that the number of regions must be finite, since

the number of s-t cuts in G is finite.

We present an algorithm to solve F(a,8) which is polynomial in the number
of vertices and edges, and hence the number of regions, in the plane decomposi-

tion. We first present several definitions and facts.

Definition: Let K, be an s-t cut in G, and let R(Ki) be the set of (a.8) pairs

for which Ki is the minimum cut in G.
Fact: R(Ki) is a convex polygon.

Fact: For two distinct s-t cuts K; and Kj. if R(Ki) N R(Kj) # ¢, then either
R(Ki) = R(Kj) or R(Ki) n R(Kj) is an entire face (possibly a vertex) of both R(Ki)

and R(Kj). Hence the solution of F(a,8) is unique.

Finding R(k;)
To find R(ki) we will need to solve the following problem:

D(Ki.p,L): Given cut K, and a point p in (a,8) space for which K is a
minimum cut, and given a half line L starting at p, determine the line segment

LS contained in L where Ki is the minimum cut.
Lemma: D(Ki.p,L) can be solved in time O(nslog n).

Proof: First, for each module i, express the cost of R, along L as an affine
function of variable A, Si + ATi. where Si is the cost of module i at p, and Ti = Ril'
Express the cost of R;p along L as §; + AT;, where T;5 = (slope of L)xR,5. Essen-
tially, express § in terms of a, and then normalize to make p the origin. Now

D(Ki,p,L) is equivalent to finding the extreme value (maximum or minimum

depending on the direction of L) of A for which K; is the minimum cut. The point
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P is defined by A = 0, hence finding the maximum value of A > 0 where Ki is
minimum is the problem of finding the first breakpoint along L for A > 0. This
can be solved by PM(A). The problem of finding the first breakpoint for A < 0 can
be solved by a modification of PM(A) to handle the negative direction. The A
algorithm for PM(A) is any 0(n3) maximum flow algorithm, and hence D(Ki.p.L)
can be solved in O(ns) time. This can be reduced to O(nslog n) using the binary

search idea of section 1.3.10 with the Three Indians’ fiow algorithm. »

We assume that R(Ki) has an interior point, and describe an algorithm
AR(Ki) to find R(Ki) given a point p where K; is minimum, and given a half-line L
starting at p and intersecting some interior point of R(ki). If p is in the interior
of R(Ki) then any half-line starting at p will intersect the interior of R(Ki). In the
solution of F(a,B), p will generaly not be an interior point, but the direction from

p through the interior of R(Ki) will be known.

AR(K;): Algorithm to locate R( K;)

1. Choose an half line L starting at p and intersecting the interior of R(Ki).

Parameterize L using A, and assume that L is such that A > 0.

2. Solve D(Ki.p.L) producing LS = [0,7\1 > 0], and Kj' the minimum cut for A >
al. Kj is determined by PM(A) in the search for al. The capacities of K-1 and
Kj are both expressed as linear functions of a and g, and so the line Lij of
equal capacity is determined by equating the capacities and simplifying.

3. R(Ki) n R(Kj) is contained in Lij' and can be determined by solving
D(Ki,}\l,L"') where L* is first the half line starting at Al and running along I..ij
in one direction, and then L* is the half line in the other direction. In this
way, a face of of the polygon R(Ki) is located. Note that if Al is an end point
of R(Ki) N R(Kj), or it Al = R.(Ki) n R(Kj). then PM(A) will recognize this by

detecting degeneracy.
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4. Pick a direction and a half line L starting at p and intersecting the interior
of R(Ki) so that L does not intersect any of the located faces of R(Ki). If no
such direction exists, then all faces of R(Ki) have been located, and the

algorithm halts. Else go to 2.

Step 4 can be implemented as follows: Consider a unit circle O around p,
and the two half lines extending from p to the endpoints of a face of R(Ki). See
figure 3.8. The intersection points of O and these half lines are easily computed
and kept in sorted order in a set of linked lists. Two points are linked together if
they are associated with the endpoints of a face in R(Ki). so that at a general
step each linked list represents a sequence of adjacent faces that have been
located so far. Then to find a halif line L in step 4, find a direction so that L inter-
sects O between the endpoint of one linked list and the starting point of the next

one. When all the points form one circular list, R(Ki) is fully determined.

Note that the time needed to find R(Ki) is at most O(nslog n)(number of ver-

tices and edges of R(K;)).

reP =4 P pg-T—-D

Figure 3.6

Solving F(a,8)

The method to solve F(a,B) is to successively locate regions R(Ki) for

different i, without rediscovering any regions, until the a, 8 space is covered.
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The regions are located in a roughly left to right manner, so that at any point in
the computation the located regions establish a right-most frontier F consisting

of a contiguous sequence of adjacent faces. See figure 3.7.

To extend a partial covering, pick a point p on F, and let Ki be the
minimum cut at p which is optimal on the uncovered (right) side of F. Then
locate R(K;). By the facts stated earlier, R(Ki) will intersect F along a contiguous
sequence of F, hence the new frontier is F @ K(Ri). The frontier is easily main-

tained as a linked list of faces (points and edges).

Figure 3.7

Refinements

We describe two refinements which may speed the solution of F(a,g) in prac-

tice.

1. When extending a partial covering, it may not be necessary to discover all of
R(Ki). since part of it has already been discovered. To eliminate the
rediscovery of F n R(Ki) walk along F in both directions from p, locating the

farthest points where K; is optimal. This is very cheap since the costs of the
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edges in F are known, and KL is optimal for a contiguous range of F.

Whenever L has either negative, infinite or zero slope, D(Ki,p,L) can be
solved in time 0(n4') instead of O(nslogn). When L has infinite slope, a is
held constant while § changes along 1. When L has zero slope, a changes
and g is held constant. When L has negative slope, a and g are changing in
different directions along L, i.e. one is increasing while the other decreases.
Stone [STO] proved that for the first two cases, there are only n breakpoints
along L. Close examination of that proof shows that this holds also for L
with negative slope. In these cases, D(Ki,p.L) can be solved with n maximum
flow computations by the fractional linear programming method of section

1.3.10. The time to solve D(Ki.p.L) is then 0(n4).

When L has positive slope, o and g increase or decrease together along L,

and Stone’s proof does not imply only n breakpoints along L. PM(A) must then

be used to solve D(Ki.p.L). The actual number of breakpoints along L of positive

slope is, however, an open question.
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Chapter IV: COUNTING BREAKPOINTS FOR PARAMETRIC

PROGRAMMING PROBLEMS

In this chapter we examine the number of breakpoints possible for several
parametric programming problems and cost models. We look first at a res-
tricted parametric cost function for integer programming problems, and then
look at linear parametric cost functions for minimum spanning tree, matroid,
and shortest path problems. Finally we mention some implications of the count-
ing results for the generalized Lagrange muitiplier method, and the problem of

finding eflicient solutions in bi-criterion problems.

4.1 A Special Case

We first examine a special class of parametric cost functions P(i) = S(i) +
AT(i), where either T(i) = 0 or T(i) = 1, for every decision variable i. That is, the

cost of each variable is either held constant or increased additively by A.

For P an integer programming problem, let X be the set of all feasible solu-
tions to P, and let K be the maximum sum of all decision variables in any solu-

tion x € X. That is

For example, for an n node graph, K = n - 1 for the minimum spanning tree
problem, and K = n(n - 1)/2 for the problem of shortest paths from a single node
s to all other nodes. In the former problem, X; = 1if and only if edge i is in the

minimum spanning tree, and in the latter problem x; = d if and only if d shortest
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paths from s pass though edge i.

Theorem 4.1: Let P(X,A) be a parametric integer programming problem and
let K and the parametric costs P(i) be as above. Then the number of breakpoints

of P(A) is at most K.
Proof: For a given solution x € X, the slope of the parametric cost of x is
2T(i)x¢ s Zi:z, <K
1
since T(i) = 0 or 1. P(A) is piecewise linear and convex, and since all variables

are integer valued, the slopes of the line segments of P(A) must decrease by

integral amounts. Therefore, P(A) can have at most K breakpoints. =

For example, the two node s to t path problem can have at most n - 1 break-
points, and the s to all node shortest path problem can have at most n(n - 1)/2

breakpoints.

4.2 The Parametric Spanning Tree Problem

Let G = (N,E) be an undirected graph with n nodes and e edges, and costs
S(i) and T(i) associated with each edge i in E. The cost of each edge i is given as
S(i) + AT(i), a linear function of the variable A. Let X be the set of all spanning

trees in G, and recall that for a tree T € X
S(T)=25(i)z; and T(T) = 3T()zy
i 1
where x; = 1 if element i is in tree T and 0 if not. As before, the function P(A) is

defined as:

For a given value of A

P(A\) = 111451.8(7') + AT(T).

Recall that P(A) is piecewise linear and convex, and that points of discontinuity

are called breakpoints.
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Theorem 4.2: For a graph with n nodes and e edges, the number of break-

points of P(A) is bounded from above by 2eMin[vn , Ve - n ]

To begin the proof of the theorem, assume for any two edges i and j, that
T(i) = T(j) implies i = j, and that the edges are numbered from 1 to e so that i < j
implies T(i) < T(j). For T a spanning tree containing edge j and omitting edge i
define an i:j edge exchange as the entry of edge i into T, and the deletion of edge

jfrom T. The distance of such an i:j edge exchange is defined as j - i.
The following facts will be needed to prove the theorem.

1. Given a graph with constant edge costs, the minimum spanning tree is
determined by the order of the edge costs alone [LAW]. Therefore in the
parametric problem, the breakpoints can only occur at values of A where

two edge cost functions intersect. This implies an upper bound of O(ez).

2. We may assume without loss of generality that the parametric cost func-
tions are in general position, i.e. that no three cost functions of edges in G

intersect at the same value of A.

Proof of fact 2: Let L be a cost line which intersects two other cost lines at
the same value of A. Define 6 to be the minimum distance from L to the inter-
section of any two lines, not including L. Shifting L by ¢ < § guarantees that L
intersects only one line at a time. Further, shifting L by such an £ produces cost
orderings which contain all the original cost orderings and possibly some new

ones. Hence shifting L by ¢ only increases the number of breakpoints of P(A). »

3. Let T and T' be two adjacent minimum spanning trees such that T is
minimum for a range of A up to A* and T' is minimum for a range of A
beginning at A* . Then T and T’ differ in exactly one i:j edge exchange,
which is of positive distance, i.e. i enters and j exits, and T(i) < T(j).

Further, A* is the point of intersection of the i and j cost functions.
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Proof of Fact 3: By facts 1 and 2, A* must be the intersection point of the
cost functions of two edges of G, say i and j. By fact 2, the relative cost orders of
all pairs of the edges, except (i,j), are unchanged at A*. Then every edge in T -
{i.j} will be in T* since each is guaranteed to be the minimum cost edge in some
cut set in the range A* + ¢, for small enough £ > 0. Further, no edge not in T U
fi,j} will be in T', since each such edge is guaranteed to be the maximum cost
edge in some cycle of G in the range A* + ¢, for small enough £ > 0. These are
necessary and sufficient conditions for containment or exclusion from T' (see
[LAW]). By assumption T# T" hence T® T' = {i.j}. Sayj€ T,thenj€ T'.i ¢ T, and

i€ T. Since P(A) is convex, T(T") < T(T), and hence T(i) < T(j), andi < j. »

Proof of Theorem 4.2: Increasing A from -= to +« induces a sequence of
minimum spanning trees and, by fact 3, a sequence of edge exchanges, each of
positive distance. There are n - 1 edges in each tree, and e edges in G, so the
sum of the distances of all the exchanges cannot exceed (n - 1)(e - n + 1). To
see this, consider a zero - one vector V of length e, containing exactly n - 1 ones.
The position of the ones in V indicates the edges in a minimum spanning tree; as
A increases, the ones move monotonically from the right end of V to the left. At
most (n - 1)(e - n + 1) moves can be made before all the ones are stacked at the

left of V.

To sharpen the O(ne) bound above, recall from fact 3 that each breakpoint
A* is associated with one i:j edge exchange, and A* is the poiﬁt of intersection of
the i, j cost functions. Therefore, no given edge exchange can occur more than
once. For the vector V, this implies that a move of an indicator one between two
given positions can occur at most once. Then to bound the number of edge
exchanges, we establish a bound on the number of moves of ones in V by solving
the following problem G1: What is the maximum number of moves of the n - 1

ones in V, each move from a higher index position in V to a lower index position,
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and no move repeated, such that the total distance of the moves does not
exceed (n- 1)(e -n + 1)?

To maximize the number of right to left moves of ones in V, without exceed-
ing the distance limit, and repeating no move, the optimal strategy is to make
all the possible moves of smallest distance. That is, make all the possible moves
of distance one, all the possible moves of distance 2 etc. until the total distance
of (n - 1)(e - n + 1) is exceeded. There are at most e moves of any distance q,
and so the total distance traversed by all the possible moves of distance q is at
most eq. Then the maximum number of moves is bounded by exm, where m is

the first integer such that
m
e, g2(n=-1)e-n+1).
g=1

Now m < m’ where m’ is the first integer such that

Therefore, m < v2n, and so the number of edge exchanges, and breakpoints is

bounded by ev2n.

To establish an upper bound of ev2(e—n), note that in V there are e - n + 1
zeros which move from left to right as the ones move from right to left. This

proves the theorem. »

Matroids and Selection Problems

Note that in theorem 4.2 very few properties of the minimum spanning tree
problem are used. In particular, the above bound uses only the facts that suc-
cessive minimum spanning trees differ by one edge exchange of positive dis-
tance, and that no given edge exchange can occur twice. These properties also

hold for the parametric version of any matroid optimization (minimum cost
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base) problem.

Corollary: Let M be a matroid with e elements, rank r(M) and dual rank
r(Md). Then for any choice of costs S(i), T(i) for each element i in M, the max-

imum number of breakpoints of the parametric minimum cost base problem is

bounded by exMin[ Vr (), \/'r(Md) 1

Theorem 4.2 can also be used for selection problems which are not matroid
problems. For example, consider an ordered list of e elements and the problem
of selecting the n < 2e objects in positions 2k - 1, for k = 1 through n. If the cost

of each object is given by a linear parametric function of A, then over the entire

range of A there are at most exMin[ vV, Ve —n ] different selections possible.

Lower Bound

We now establish a lower bound on the number of breakpoints for the

parametric minimum spanning tree problem.

Theorem 4.3: There exist graphs with e edges and cost assignments S(i),

T(i) for each edge i, such that P(A) has asymptotically 2e breakpoints.

Proof: Let C0 be a cycle on n nodes, and let the cost functions of the edges

of C0 be such that each edge is the maximum cost edge in CO for some value of A
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(see figure 4.1).

Cost

Figure 4.1: Costs of edges in cycle C0
Then for any fixed A, the minimum spanning tree of CO consists of all the edges
except the maximum cost edge in CO' and so for the full range of A, there are n
minimum spanning tree of Co. Let C1 be another cycle on the same n nodes,
and edge disjoint from Co. The costs of 01 are like those of Co: every edge of
Clis the maximum cost of the Cl edges, for some A. However, the cost functions
of edges in 01 are given lower slopes and larger intercepts than the edges in CO'
so that any edge in C1 costs more than any edge in Co until the value of A
corresponding to the last minimum spanning tree of CO' Figure 4.2 shows the

intersections of the Co costs with the C1 costs; the interseclions of the costs
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inside the cycles (shown in figure 4.1) are represented by two circles.

Cost

™~ " e e e e - - -

>%
>

Figure 4.2

Let G = CO V] C1 and let A’ be the first value of A where the costs of an edge
from CO and an edge from C1 intersect, and let A* be the last value of A where
costs of edges from C0 and C1 intersect. By the choice of edge costs, there are
n different minimum spanning trees of G for A between 0 and A’, and these trees
consist entirely of edges from CO‘ There are also n different minimum spanning
trees of G for A between A* and =, each consisting entirely of edges from Cl‘
For the range of A strictly between A’ and A* there are at least n - 2 different
minimum spanning trees of G, each consisting partly of edges from C0 and
partly of edges from Cl. To see this, note that the minimum spanning trees

before A’ and after A* are edge disjoint, and that as A increases the trees change
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by one edge exchange at a time. Hence for the graph G consisting of the cycle

Co and Cl' there are 3n - 2 minimum spanning trees.

We can continue in this way, adding additional edge disjoint cycles C2,...,CK
such that the spanning trees of cycle Ci become the minimum spanning trees of
G only after all the spanning trees of Ci— 1 have been minimum. If K cycles have
been added, then there are Kn + (K - 1){(n - 2) minimum spanning trees on Xn
edges. For a graph on n nodes there are up to (n - 1)/2 edge disjoint spanning

cycles. By increasing n, the number of breakpoints is asymptotically 2e. =

4.3 Lowering the upper bound

In this section we discuss some efforts to lower the upper bound given in
theorem 4.2. That is, eflorts to lower the O( evn ) bound on the number of
breakpoints in the parametric minimum spanning tree problem. We first dis-
cuss some additional constraints and conditions that were not used in the proof
of theorem 4.2, and then show that even with these additional constraints we
can't obtain an upper bound which is linear in e, the number of edges of the

graph.

Additional Constraints

Recall that the O( evn ) bound was established by considering the motion
of n - 1 ones in the vector V, subject only to the constraint that the moves are
right to left and no move is ever made twice. These constraints were abstracted
from the minimum spanning tree problem, but there are additional such con-
straints which were omitted. By including more constraints, we hope that a
smaller upper bound can be obtained. Unfortunately, no such better bounds

have yet been obtained. In this section we detail our efforts in this direction.

One seemingly powerful constraint not used for the above bound is on the

order that the moves in V may be made. Consider edges i < j < k and the three
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possible edge exchanges i:j, j:k, and i:k. In any sequence of spanning trees
involving all three exchanges, the order of the exchanges must be such that ik
occurs between the other two exchanges. To see this, recall that the ik
exchanges occurs at the intersection of the i,k cost functions, and figure 4.3
shows that this intersection is always between the intersections of i,j and j,k.

Then in V, the move sequence of k to jand j to i, followed later by a move of k to

i, should be forbidden.

Figure 4.3

We can generalize this observation to get more constraints on the order of
the edge exchanges. Let i < j < k be three edges in G, and consider the three
edge exchanges i:j, ik, j:k. What conditions on the S and T costs of the i, jand k
edges determine the order in which the edge exchanges can occur? Let )‘ij and
)\.jk be the intersection points of the cost functions of the j.k edges, and the i,j

edges. Then

Ay = sgiz—sm
17 T(j) - T(@)

Ay = S(1) = S(k)
® = T(k)y-T({)
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Lemma: )\jk < }‘ij if and only if

T(k) = T() . T(G)=T()
Sk)-SG) <SG -S@)

To see the consequences of the lemma, we plot the S, T costs of the i, j, and
k edges on a plot P1 with the S costs on the horizontal axis, and the T costs on
the vertical axis. We know that point k is to the upper left of the point j, which is
to the upper left of point i. That is, if i < j < k and jk, i:j are both edge
exchanges, then S(i) > S(j) > S(k) and T(i) < T(j) < T(k). What the lemma then
says is that the j:k edge exchange occurs before the i:j edge exchange if and
only if on plot P1, the slope of the line connecting the k,j points is less than the
slope of the line connecting the j,i points (see figure 4.4) i.e that on plot P1, the
point j lies'below the line between the k and i points. Conversely, the i:j edge

exchange occurs before the j:k edge exchange if and only if j lies above the k to i

line (see figure 4.4).

P,

P,
Iey
k T~
p)
3 X
i

Figure 4.4

Now consider a sequence of successive edge exchanges j:k, i:j, hii, g:h etc.

where g <h <i<j<k. Then, in the S,T plot P1, the edge exchanges in the above
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order correspond to a piecewise linear concave decreasing curve through the k
to g points (see figure 4.5). We call such a sequence of edge exchanges, and the
corresponding curve, a frajectory. Define the length of a trajectory as the
nuimber of edge exchanges, or the number of distinct line segments on the asso-
ciated concave curve. Two trajectories are disjoint if they contain no common

edge exchange, i.e. no common line in the associated curve.

Figure 4.5

Lemma: Let G be an n node graph with edge cost parameterized by A, and
let EX be the set of all edge exchanges which occur as A varies from Amin to

Amax. Then EX can be decomposed into n-1 or fewer trajectories.

Proof: Let T be the minimum spanning tree of G at Amin, and let every
edge in T be marked with a special symbol, say O. In each of the successive edge
exchanges, the mark O is transferred from the exiting edge to the entering
edge. If we follow the motion of a single mark O, then the ordered set of edges
that it marks defines a trajectory of edge exchanges. There are only n-1 marks,
hence EX can be decomposed into n-1 or fewer trajectories. The trajectories are

disjoint because no edge exchange occurs twice. »

Hence, in the plot P1 of the edge costs, the edges exchanges determine n -
1 disjoint piecewise linear concave decreasing curves through points in P1.
Further, if two trajectories, A and B, pass through the same point i in the plot,

then the order of the entering and exiting slopes of the two trajectories are
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related. If the slope of A entering i is more negative than the slope of B entering
i, then the exiting slope of A is also more negative than the exiting slope of B
(see figure 4.8). This models the fact that every tree of G has exactly n- 1 edges

and hence no edge has more than one mark at the same time.

Figure 4.6

We can now bound the number of breakpoints in the parametric minimum
spanning tree problem by solving the following problem G2:

Problem G2:

Cver ail possible placements of e points on the plane, what is the maximum
total length D of n - 1 line disjoint piecewise linear concave decreasing
curves passing through points on the plane, such that when two curves pass
through the same point, the order of their entering slopes is the same as

the order of their exiting slopes?

This problem can be viewed as a two dimensional version of problem G1
which led to the O(evn ) bound. If each point in P1 is projected onto the x axis,
then each concave curve in P1 describes a sequence of left to right moves
between points on the x axis. These moves can be interpreted as moves of indi-
cators in the vector V in problem G1. Thus problem G1 is a relaxation of prob-
lem G2. Unfortunately, we have no better bound for this problem than O(evn )
obtained before the inclusion of the timing constraints. In fact, we will show in

the next section that no bound which is linear in e is possible for this problem.
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We first state some limited results which follow from looking at G2.

1. If the e points are placed in the plane so that they can be decomposed into

k disjoint convex curves, then D is bounded by (n-1){(2k-1).

This follows because every trajectory is concave, and hence can intersect a
convex curve at most twice. We can apply this to the lower bound construction
G of theorem 4.3. Recall that G consists of K edge disjoint cycles on n nodes,
and that a lower bound of Kn + (K-1)(n-2) - 1 = (n-1)(2K-1) breakpoints was
achieved. The costs of the edges in each cycle form a convex curve in the S,T
plot P1, and so the points representing the edge costs of G can be decomposed
into X disjoint convex curves. This says that the analysis of the lower bound is
tight, and further that no matter how the costs of edges from different cycles
are related, if the relative cost assignments inside each cycle are not changed,

no larger lower bound is possible.

2. Two special cases of 1 are of interest. If the e poinis lie on one convex
curve, then D is at most n - 1. If the e points lie on one concave curve, then

Disat moste-n + 1.

3. Any two trajectories, A and B, share at most one half of all the points on
either A or B. To prove this, suppose that i, j, and k are three contiguous
points on trajectory A. If trajectory B also passes through points i and j,
then it must pass through a point m between i and j, and it cannot pass
through k (see figure 4.7). Hence out of every three contiguous points on A,
B can pass through at most two, and for every three contiguous points on B,

A can pass through at most two. It follows then that A and B share at most
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one half of all the points on either A or B.

g \\A
)
8 ) e
Ak
Figure 4.7

We had hoped that observations such as the ones above would lead to
tighter upper bounds for the number of breakpoints, but no such bounds were

found. In the next section we show that D cannot be bounded by any function

linear in e.

Lower bounds for problem G2

In this section we give a lower bound construction for problem G2. showing
that D cannot be upper bounded by any function linear in e. We first express
problem G2 differently by representing each of the e points as straight lines on a
plot P2 with A on the horizontal axis, and cost on the vertical axis. For example,

if point i = (5,3) in plot P1, then i is plotted as a straight line with y intercept of
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5 and slope 3 in plot P2 (see figure 4.8).

Figure 4.8
In plot P2 we place a vertical line E so that all the e{e - 1)/2 intersections of the

e lines occur to the left of E. Then in plot P2, a trajectory from plot Pl is a
piecewise linear convex curve starting at the y axis and ending at E, running

along line segments of plot P2 and turning only at intersection points of the e

lines (see figure 4.9 ).

A E

Figure 4.9: Trajectory runs along lines 1,3 and 4.
Two trajectories are disjoint if they do not both occupy any common line seg-

ment, and the length of a trajectory is the number of turns it makes.

In these terms, problem G2 is restated as follows:
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Problem G2’:

Over all possible placements of e straight lines on the plane, what is the
maximum total length D of n - 1 disjoint piecewise linear convex curves
starting at the y axis and ending at E, running along the line segments and
turning only at intersections of the lines?

We will give a construction in which D can be made as large as cxe for any c,
but first we note the following:
1. If in P1 the e points lie on one convex curve, then in P2 every one of the e
lines lies on the upper envelope of all the lines, and if the e points lie on one con-
cave curve in P1, then in P2 every one of the e lines lies on the lower envelope of

all the lines (see figure 4.10). In the first case, D £ n - 1, and in the latter case D

Se-n+ 1.

upper @nhvelope lower envelope

Figure 4.10
2. Given a fixed placement of the e lines, problem G2 can be solved algorithmi-
cally in polynomial time. This is a digression that is useful for running simula-

tions of problem G2, and may lead to other ways to establish bounds on D.

The optimal set of n - 1 disjoint convex curves can be found in time O(es) by
solving an assignment problem on O(ez) nodes. We first express the problem as
a maximum profit flow problem on a capacitated network G = (N,A). N contains

nodes s and t and one node each for the O(ez) line segments between
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intersections of the e lines. The edge set A contains 2e + e(e - 1)/2 directed
edges, each with capacity 1 and profit either 1 or 0. There are e directed edges
from node s to the e nodes representing the line segments on the extreme left of
each line in P2, and e edges directed into t from the e nodes representing the
right ends of each line in P2. These edges each have capacity 1 and profit 0.
Now consider an intersection of two lines in P2, and the four incident line seg-
ments. G contains one node for each of these four line segments (see figure

4.11), and these nodes are connected in G as in figure 4.12.

N3

N2 Ny

N
Figure 4.11

Figure 4.12

All capacities on these edges are 1, and the profits are written on the edges.
Essentially, a profit of 1 is obtained for a convex turn, a profit of 0 for continuing

straight, and concave turns are not permitted.

The maximum profit flow of quantity n - 1 from s to t determines the

optimal n - 1 convex curves through the lines in P2. This maximum profit flow
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can also be written as an assignment problem, yielding an O(es) algorithm.

Lower bound constructions

We now give a construction for D = 2e, and then generalize this to cxe for

any c. These constructions are due to Tim Winkler.

For any k, the construction Ck consists of e = 4k - 1 + 2k° lines, and

achieves D = 4k°. Then D is asymptotically 2e as k goes to infinity. Ck contains

2k lines forming a kxk rotated grid (see figure 4.13).

Figure 4.13: k=3

To this grid, 2k - 1 lines are added so that a triangle is formed below every inter-
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section point of the 2k lines forming the grid (see figure 4.14).

Figure 4.14: k= 2
Now for each of the k2 triangles, two "feeder” lines are added as shown in figure
4.15. The left feeder line has positive slope, and intersects the line AC just below
point A. The right feeder line has negative slope, and intersects the line BC just

below point B.

TR

< Peeder lipes—

Figure 4.15: Feeder lines added to triangle TR.
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Figure 4.16 shows a global picture of this construction for k = 2, but with

many of the lines truncated for clarity.

Figure 4.16

Four turns are achievable for each of the k° triangles by choosing for each
triangle a convex curve as shown in figure 4.17. Hencee = 4k - 1 + 2k2. and D =

4k2 = 2e, and kg curves are used.

Figure 4.17
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Generalization

We now generalize this construction to achieve D = (cxe)/2 for any given c.
The construction, denoted cc.k' again begins with a kxk grid, and will again con-
tain 2k® feeder lines, one pair for each of the grid points. However, instead of
one line passing below every grid point, a fan of ¢ lines will pass below each grid
point. A fan is defined as a configuration of lines such that each one lies on the
lower envelope of the lines (see figure 4.18). We will show below how to construct
all the k° fans using only (2k+ 1)c2 lines. We will also show that ¢ + 2 turns are
achievable from every fan plus two feeder lines. Then e = 2k + 2k2 + (2k+ 1)02.

and D is at least (¢ + 2)k2. As k goes to infinity, D = (exe)/2.

& feeder lineg —_

Figure 4.18

Construction Cc k

We start Cc k With a kxk non-rotated grid (we will rotate later) of k horizon-

tal and k vertical lines with distance exactly one between every neighboring pair
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of vertical or horizontal lines. We next add a set L of lines to the grid so that
exactly ¢ distinct new lines pass through each of the kz grid points. Further,
each line in set L must have a slope equal to 1/d, where d is an integer from 1 to
c. Then one line each of the c different slopes hits every point in the grid. Let

G, | denote the construction to this point.
Lemma: L contains at most (2k+1)c2 lines.

Proof: Consider a (k+c)x(k+c) grid of vertical and horizontal lines with
each neighboring pair at distance one. Now consider the upper right- hand kxk

sub-grid, and add the set L to create Gc K On the upper sub-grid.

If the lines in L are extended so that they pass through the entire
(k+c)x{k+c) grid, then each line will hit some point outside of the upper sub-
grid. This is because each line in set L has one a slope equal to 1/d for d an
integer from 1 to c, and the distance between two neighboring grid lines is one

(see figure 4.19).

Figure 4.19: k = 3, ¢ = 3. Three lines are shown.
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There are (2k + 1)c points outside the upper sub-grid, and each can be hit by at

most c distinct lines of L, hence L contains at most (2k + 1)c? lines. s

We now shift the lines of L to create a fan below each of the grid points in
Gc.k' For clarity, this is done in two steps. First, translate all the lines of L
down and to the right, so that each intersection of c lines of L moves 1/(c+1)
unit down and 1/(c+1) unit to the right. Figure 4.20 shows such a translation
from grid point A, for ¢ = 3. Note that with a translation of 1/(c+1), all the lines

of the fan intersect the interior of the grid line segments AC and AB.

A /// 4

7

Figure 4.20
Now consider a single set of c lines that intersect at one point. By successively

increasing the y - intercepts of the lines of slope 1/3 through 1/c, a fan can be
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created as shown in figure 4.21.

A

]\

W\

Figure 4.21

In creating a single fan, the y - intercepts of two lines of different slopes
were changed differently. If all the lines in L of the same slope are translated by

the same amount, then kz fans will be simultaneously created.

After the creation of the fans, the entire construction is rotated, 2k2 feeder
lines are added, and K2 convex curves are chosen, one for each fan, so that D =
(c + 2)k2. This construction shows that the constraints represented in problem
G2 are not sufficient to establish a linear bound on the number of breakpoints in
the parametric minimum spanning tree problem. Linear bounds are then only
possible if we incorporate additional constraints such as those arising from the

cycle cut-set structure of graphs.

Optimizing €,

The construction G, | can be optimized to improve the lower bound to D =

el-25. To do this, set ¢ = V& in Gc K It can be shown that this is the optimal

value for ¢ in Gc,k'
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4.4 The Shortest Path Problem

Given a graph G and two distinguished nodes s and t, let P be the shortest
path problem between nodes s and t, and let P(X.,A) be the associated
parametric problem. That is, associated with e:ach edge i in G are two numbers
S(i) and T(i) and the cost of edge i is then S(i) + AT(i), a linear function of the
variable A. For a given constant A*, P(A*) is the cost of the shortest path from s
to t with A set to A*. P(A) is then a piecewise linear convex function of A, and
points of discontinuity are called breakpoints. We will show that the number of
breakpoints of P(A\) cannot be exponential in the number of nodes of G. This
result is in contrast to the example of Murty [MU2] showing that for the
parametric linear programming problem, the number of breakpoints can be

exponential.

We begin with the parametric shortest path problem on a special graph

anc'

Definition: an c 1s a graph on nxc+2 nodes consisting of two distinguished
nodes s and t, and n columns of c nodes each. Edges of anc extend from s to
column 1, from column i to column i+1 (1£ i £ n), and from column n to t (see

figure 4.22).

Figure 4.22: G5x2
Theorem 4.4: For any choices of S and T costs, the number of breakpoints

of P(A) for Gp xc is bounded from above by
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cloa(@n+1) — (en + 1%(l°9c)+1

2n + 1
2

where the log is base 2.
Proof: We prove first the claim that forn = 2k - 1, k an integer, the number

of breakpoints is bounded by

2;—1_0103(""" 1) = E-g—l.(n +4 1)103‘:

The proof of the claim is by induction on k.

For k = 1, the number of breakpoints of P(A) for an cannot exceed c,

o]

since there are only c s to t paths, and each path is minimum for at most one

contiguous range of A. Fork=1 =n,

=2t 1 og(n+)
2

and the basis is established.

Now suppose the claim is true for n = 2k - 1, and consider an c for n

2K*1 . 1. We define G’ as the concatenation of two copies of Gmxe' where m =

2K 1 (see figure 4.23).

v

Gy ¢3y2

Figure 4.23: G’
The subgraph of G' consisting of all nodes from s to A is Gmxc' as is the sub-

graph consisting of all nodes from Ato t.

All paths from s to t pass through node A, and hence for any value of A, the
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shortest path frorn s to t consists of the shortest path from s to A, followed by
the shortest path from A to t. As A changes, the shortest path from s to A
changes independently of the shortest path from A to t. Therefore, the number
of breakpoints of P(A) in G’ is at most twice the number in Gmxc' By the induc-

tion hypothesis, the number of breakpoints of P(\) in G’ is at most

2 m + 1 clog(m+1)

where m = 2¥ - 1. Now consider anc for n = Zk'"1 - 1. Let M be the middle
column of an o @nd let A be any arbitrary node in column M. By the analysis of
graph G’, the number of shortest paths from s to t in an c which pass through

node A is bounded by

) m + 1 clog(m + 1)

Now, there are c nodes in column M, and hence the number of breakpoints of

P(A\) in G xc is @ most

2 M;- 1| togtm +1) = nTchogmu) = n—;—l(n + 1)loee

2k+ 1

forn= - 1, which completes the induction proof of the claim.

We can now finish the proof of the theorem for n an arbitrary integer. Let k

=flogonl. Then G xc can be embedded into G, . for m = 2K_1, so that the shor-
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test paths in G . . determine the shortest paths in G (see figure 4.24)

nxce

6'l'\ Xe T o

Figure 4.24:

Now m £ 2n and so the number of breakpoints of an ¢ 1s bounded by

(2n + 1)(n + 1)°8¢ _ (2n + 1)lac +1
2 - 2

Theorem 4.5: Let G be any arbitrary graph with n nodes and two dis-
tinguished nodes s and t. Then for any parametric edge costs, the number of

breakpoints of P(A) for G is bounded from above by

(2n + 1)lgn) +1
2

Proof: Define graph ann as follows: G contains two distinguished

nxn
nodes s and t, and n columns containing n nodes each. Node s is adjacent to
node i in column 1 of Gan if and only if s is adjacent to node i in G. Similarly,
the nodes in column n which are adjacent to node t in ann are exactly those
adjacent to t in G. Each node i in any column k is adjacent to node j # i in
column k+1, if and only if i is adjacent to j in G. The parametric costs of the

above arcs are the parametric costs of the associated ares in G. In addition,

each node i in column k is adjacent by a zero cost arc to node i in column k+1.

For any value of A, the shortest s to t path in ann defines the shortest s to
t path in G. To see this, see the discussion of the Bellman - Ford shortest path

method in [LAW]. Therefore, the breakpoints of P(A) for G,xp a@nd G are identi-
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cal. Then theorem 4.1 implies that the maximum number of breakpoints of P(A)
in G is bounded by

(2n +1)

2 (2n + 1)lsm

which grows slower than any exponential function of n. =

Note that the sub-exponential bound holds for any cost function with the
property that no path is minimum for more than one contiguous range of A.
Note also that the two theorems 4.4 and 4.5 hold for many problem other than

shortest path problems. In particular:

Corollary: Let P be any Dynamic Programming problem solvable by a for-
mulation with n stages, each with at most c stages. Then the associated

parametric function P(A) has at most 0(n'°8°) breakpoints.

Corollary: Let G be an s-t planar graph [LAW] with edge capacities given as
linear functions of Then the number of breakpoints for the parametric

maximum-flow minimum-cut problem is bounded by O(nIOgn).

4.5 Discovery of Efficient Solutions and the Generalized Lagrange Multiplier

Method

Both theorems 4.2 and 4.5 have implications for the discovery of eflicient
solutions in multi-criteria problems, and to the generalized Lagrange multiplier
method, implying a large number of duality gaps for some problems. We will
illustrate these implications on several multi- criteria problems involving costs

and distances.

Let G be an undirected graph with two distinguished nodes s and t, and with
two weights wi1 and Wi associated with every edge i. Let W be a fixed "target”

and let I’ be the set of spanning trees T of G such that

Lwipzy S W
1
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where x; = 1 if edgei € T, and %; = 0 if not. Similarly, let ® be the set of allstot

paths P in G such that

Zwiaz.; =W
2

where x,=1 if edge i € P, and X = 0 if not. Vector x is called the characteristic

vector of T or P respectively.
Then we define two problems:

Problem 1: Given G, find the spanning tree T € I with characteristic vector

x, such that ) wgz; is minimized over all trees is ®. That is, find the tree
i

minimizing the first criterion, provided that it does not exceed the threshold W

for the second criterion.

Problem 2: Find the s to t path P € & with characteristic vector %, such

that ) wisz; < W is minimized over all paths in 9.
i

Before discussing the generalized Lagrange multiplier method and its limi-
tations, we note that it is unlikely that either problems 1 or 2 can be solved

exactly by fast algorithms.
Lemma: Both problems 1 and 2 are NP - hard.

Proof: We show that the decision version of problem 1 is NP - complete.

The proof for problem 2 is identical. The decision version of problem 1 is:

Given constants W1 and W2 does there exist a spanning tree T such that

Zwu:z:i s Wl and Zwigz.; s Wg?
i i

We reduce the subset-sum problem to problem 1. Given a set N of numbers
{al....,ang and a target B, the subset sum problem is to determine if there is a
subset of N which sums exactly to B. It is reduced to problem 1 as follows: Let G

be a chain consisting of n parallel edges as in figure 4.25. The first weight on
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each edge i is W;iq» and the second is Wio Wl is set to zi:a,; - 8 and Wz is set to
Y.a; + B. Then the answer to problem 1 is yes if and only if the answer to the
1

subset sum problem is yes. «

a,,0 q‘l-;o Q;,D Qt‘o
s XK XK >
0 A 0,a1 0,a3 o, a4
Figure 4.25

The Generalized Lagrange Multiplier Method

Given that problems 1 and 2 are both NP-hard, heuristic approaches such
as the Generalized Lagrange Multiplier Method are often used to tackle such

problems. The G.L.M. method or "Penalty Function Method" for problem 1 is the

following:

1  For each edge i of G, associate the linear cost function Wit }‘wi?.'

2. Pick a value A* for A.

3. Substitute A* into all cost functions, and solve the induced minimum span-
ning tree problem P(A*). Let T be the minimum spanning tree and let WT2

= 211){22?;.
1

4. If WT2 > W then increase A* and go to 3. If W’I‘z < W then decrease A* and go
to 3. If WT2 = Wor W'I'2 is "sufficiently close” to W, or time runs out, then

terminate.

Essentially, the G.L.M. method tries to penalize or encourage the use of the

second resource in order to home in on a good solution to the two criteria span-
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ning tree problem.

Limitations of the G.L.M. method

Recall from section 1.4 the definition of an efficient solution. Tree T is
efficient if and only if no other spanning tree of G has smaller total weight for
both weight criteria 1 and 2. The set of all efficient solutions is determined by G

and its edge weights.

It is a simple fact that the solution to problem 1 is an eflicient tree, and
further, for any efficient tree T there exists a target W such t.hat T is the solution
to problem 1. 1t is also clear that step 3. of the generalized Lagrange multiplier
method finds only efficient trees. One measure of the usefulness of the G.L.M. is
the difference between the number of efficient trees in G, and the number of
efficient trees discoverable by the G.L.M. method. Any efficient tree not discov-

erable by the G.L.M. method is said to lie in a duality gap.

Theorem 4.6: For any graph G with n nodes and e edges, there are edge
weights w4 and Wio for each edge i such that every spanning tree of G is
eflicient. However, for no assignment of edge weights will the G.L.M. method dis-

cover more than O(e Vn ) efficient trees.

Proof: Given a graph G, pick edge weights w;4 arbitrarily and set wioto M-

Wi where M = ) w;,. Then all the spanning trees are efficient because their
i

weight order for the first criteria is the opposite of their order for the second

criteria.

To see that the G.L.M. method can discover at most O(eVn ) efficient points,
note that every tree T discovered in step 3. is a tree associated with a brealg—
point of P(A) for the parametric minimum spanning tree problem. That is, the
G.L.M. method discovers only trees with costs on the lower envelope of all

efficient trees. Then theorem 4.2 essentially says that there are at most



91

O(eVn) efficient trees on the lower envelope of all efficient trees (see figure

4.26). Note that in figure 4.26 points A, B and C are eflicient but aren't on the

lower envelope. =

Criterion |

Criter;on 2
Cost plot of all feasible solutions.

Figure 4.26

It is often useful to locate all the efficient points of a multi- criteria problem
P. In general this is difficult to do. One approach that is often used for the bi-
criteria problem is to find all the breakpoints of the related parametric problem
P(A), the sum of the first criterion plus A times the second criterion. Every
breakpoint of P(A) is an efficient point, but the converse is not true and theorem
4.2 says that for problem 1 the parametric method may miss most of the
efficient points.

A similar theorem for shortest paths will be stated without proof:

Theorem 4.7: For any n, there exist graphs with n nodes, and edge weights
such that all s to t paths are efficient. However, at most o(nlogn) paths are dis-

coverable by the generalized Lagrange multiplier method.
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Chapter V: SIMPLE CONSTRUCTIONS FOR MULTI -

TERMINAL NETWORK FLOW SYNTHESIS

In this chapter we discuss the multi - terminal network flow synthesis prob-
lem. We present simple constructions which permit very rapid solutions to cer-
tain sensitivity analysis questions, and which have several other desirable pro-

perties.

5.1 Introduction

The multi-terminal network flow synthesis problem is one of the few nicely
solved problems in the area of network design. It is used widely in courses and
texts [LAW],[FOR],[FRA],[HU] on network flows and combinatorial optimization,
as an example of an elegantly solved combinatorial optimization problem. The
solution used in these texts is due to Gomory and Hu [GOM], and is also cited as
an example of a non-direct application of maximum spanning trees. For exam-
ples where this problem arises, see also Chien [CHIE]. For NP - hard network

design problems see Wong [WON], or Garey and Johnson [GAR].

We present simpler algorithms, improving the Gomory-Hu method in speed,
simplicity of needed data structures, and most important, in the simplicity of
the networks constructed. The networks constructed are uniformly optimal
(defined in the next section), planar, have low node degrees, and have as few
edges as any produced by the Gomory - Hu method. Routing algorithms for the

networks are simple and can be implemented as rules applied locally at each
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3. Nonode in G* has degree greater than four.

4. G* has as few edges as any uniformly optimal network produced by the

Gomory - Hu method.
5. The structure of G* is easily expressed in terms of R.

8. Routing decisions in G* can be made locally at each node. This is a very
desirable property for communications and computer network applications,
and hierarchial data base &pplications.

Further, the algorithm shows that the use of the maximum spanning tree,
and the revising of the original requirements by the Gomory - Hu method is

unnecessary and undesirable.

5.3 Algorithms and Constructions

We first present a simple algorithm which constructs a planar uniformly
optimal network with one node of high degree, and all other nodes of degree

three of less.

Algorithm A
1) For each node i, compute u(i) = Max[r(i,k)], and define u(n+1) = 0.
2) Sort the u(i) values. Assume u(i) > u(i+1) fori= 1,n.
3) Fori= 2 through n repeat the following:
a. Create edge i,i-1 with capacity u(i)/2.

b. Create edge i,1 with capacity [u(i) - u(i+1)]/2.

provided that the capacity is non-zero.

Note that the algorithm uses only the u(i) values. All other data from R is

ignored. Figure 3.1 shows the result of algorithm A. The requirements graph R
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is not displayed, but the u(i) values from R are written below each node.

Figure 5.1:

Algorithm A requires time O(e) to find the u(i) in step 1), O(nlogn) to sort in
step 2), and O(n) time to construct G* in step 3). Note that the network pro-

duced is always planar.

We now show the correctness of algorithm A. Given R, let G* be the network

produced by algorithm A, and let f* be the flow function of G*.

Lemma 5.1: £*(i,j) = Min{u(i),u(j)] for all node pairs i,j.

Proof: Let i,j be two arbitrary nodes, and u(i) > u(j). Consider the path Pi.j
from i to j along the edges (k,k+1) for k = i through j-1. The edge with least
capacity on Pi,j is (j-1,j), with capacity u(j)/2. Therefore, a flow of u(j)/2 is pos-
sible along the Pi.j path.

Now consider Pl.i . the path with edges (k,k+1) for k = 1 throughi- 1. The

edge with least capacity on P, ; is (i-1i), with capacity u(i)/2 > u(j)/2. G*is
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undirected, and so a flow of u(j}/2 from node i to node 1 is possible along the

reverse of path P1 i

To complete the proof, we claim that a flow of u(j)/2 between nodes 1 and j
is achievable without using any edge of Pl.j , the union of Pl,i and Pi.j' The proof
is by backward induction on the index j. For j = n, the claim is true, since the
edge (1,n) has capacity u(n)/2. Suppose the claim is true for j = k+1 < n, and
consider node k. Let F(k+1) be the flow of u(k+1)/2 from 1 to k+1 which avoids
edges of Pl.k+ 1+ By definition, F(k+1) doesn't use edges (k+1,k) or (k,k-1), and
so F(k+1) also doesn't use edge (1,k). Edge (1,k) has capacity u(k)/2 -
u(k+1)/2, and edge (k+1,k) has capacity u(k+1)/2, for a total capacity of
u(k)/2. Then to send u(k)/2 from 1 to k avoiding P) jo send u(k+1)/2 from k+1
to k along edge (k+1,k), and send the rest along edge (1,k). The flow of u(k+1)/2

to node k+1 is sent via F(k+1), and the proof is complete. =

Theorem 5.1: G* is uniformly optimal for R.

Proof: By lemma 5.1, G* is clearly feasible for R. To show optimality, note
that the total capacity of the edges incident to any node i is u(i), which is the
minimum capacity possible in any feasible network. Now suppose there is an
optimal network G with flow function f, such that £(i,j) > £*(i,j), for some node
pair i,j. Then £(i,j) > Min[u(i),u(j)], and if u(i) > u(j), node j must be incident in G
to edges with total capacity exceeding u(j). Therefore, G can't be optimal, and

G* is uniformly optimal. »

A low degree construction A’

The network G* produced by algorithm A has the undesirable property that
node 1 has high degree. For applications involving ports into a computer, or
wires wrapped on pins, small node degrees are desired. Algorithm A can be

modified to produce, at equal speed, a planar uniformly optimal network G’ with
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the same number of edges as G*, and with the property that no node of G’ has

degree greater than four.

We will not write the modifications formally, but give a generic description
of G'. Let u(i) be defined as before, and call it the node weight of node i. Let t be
the number of distinet node weights of R. We first give a generic description of

G’ for a special case of R.

Suppose R has 2k nodes with t = k distinet node weights Wy <Wgy <. <W,
and with two nodes of each node weight. Then G’ is a ladder graph with k rungs.
The two nodes on the lowest rung are labelled w,, the next two nodes are
labelled W etc. up to the top two nodes which are labelled W) Edges between
nodes w; and w; +1 are given capacity wi/z, for i from 1 to k-1. All other edge
capacities are forced by the rule that the total incident capacity at each node i
is w;, for i from 1 to k. Figure 5.2 shows network G’ with eight nodes, four dis-
tinct node weights, and two nodes of each node weight. The circled numbers are

node weights, and the other numbers are edge capacities.

Now we show how to remove the special case assumption, modifying the
above construction G’ for the case when R has more than two nodes of a distinct
node weight, and for the case of exactly one node of a distinct node weight. If R
has more than two nodes of a given weight w; # Wy then insert the additional w;
nodes into either of the w; tow, , edgesin G', creating a new edge with capacity
w,/2 for each insertion (see figure 5.3). These additional nodes then each have
incident capacity of w;, and have the same flow functions of the first two w;
nodes. If R has more than two nodes of weight w,, then split the rung between
the two Wi nodes into two parallel edges, one with capacity wk/ 2, and the other
with capacity (wk - Wi..1)/2, and then insert the additional nodes as above into

the edge with capacity Wi If R has only one node of a given weight w;» then

merge either one of the w; nodes in G' with the unique W;4+1 node that it is
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incident with, creating a Wit1 node of degree four. Figure 5.4 shows the network

of figure 5.2 with unique node weights for all nodes except Wy
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It is easily proven that G’ is uniformly optimal, and has the same number of
edges as G* G’ is clearly planar, and no node has degree greater than four.
Further, the number of nodes of degree four equals the number of unique node
weights ( node weights assigned to only one node). Hence if every node weight is

given to at least two nodes, no node will have degree greater than three.

Routing in G’

Routing algorithms for G' are extremely simple, and can be implemented by
rules applied locally at each node. Assume that no node weight is unique, so
that no node has more than three neighbors. For flow from node i to a node j of
higher node weight, the routing rule at each node k is the following: If the flow
into k is from a node of lower weight, then send as much as possible to k's neigh-
bor of higher weight, and the rest to its neighbor of equal weight. If the flow into
k is from a node of higher weight, send as much as possible to k's neighbor of
lower weight, and the rest to it's equal weight neighbor. If the flow is from a
node of weight equal to k, send it to a different neighbor of equal weight, if any,
else to it's neighbor of higher weight. Flow from node i to a node of higher

weight has equally simple rules.

Transparency and sensitivity analysis

Note that the edge capacities of G’ are all simple functions of the node
weights in R: either a node weight divided by 2, or the difference of two node
weights divided by 2. Note also that the underlying graph of G' depends only on
the number of distinct node weights, and the number of nodes of each distinet

weight. This is the ¢{ransparency property of G'.

G' is extremely nice for purposes of sensitivity analysis; small
modifications of the requirements graph R induce simple local modifications in

G'. If the requirements are modified, but no node weight in R is changed, then G’
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remains unchanged. If node weights are changed, but the order of the node
weights is unchanged, then the capacities of G' change in a simple manner, but
the graph reamains the same. If the order of two node weights in R are inter-
changed, then their corresponding rungs are interchanged in G'. If nodes or
edges are added or deleted from R, then nodes and edges are added or deleted
from G' in a simple manner with a few local changes in G'. Further, as
modifications are made to G', the routing in G' is also updated by local

modifications.

5.4 Number of edges

We now consider the number of edges in the construction G'. We show that
there are uniformly optimal networks with fewer edges, but that none of these
networks are producible by the Gomory - Hu method. In order to prove this, we
must describe in detail the Gomory - Hu method.

The Gomory - Hu method

1) Given the requirements graph R, compute a maximum weight spanning tree

T of R.

2) Decompose T into a sum of subtrees, each having edges of equal weight. To
do this, define the decomposition of a tree Ti recursively. If w; is the smal-
lest edge weight in T-1 then Ti is decomposed into one copy of ‘I'i with weight
w; on each edge, plus the decomposition of each subtree of Ti resulting from

deleting all edges of weight w; from Ti' and subtracting w; from the weights

of all the remaining edges.

3) TFor every tree Ti in the decomposition, create a cycle Ci containing all the
nodes of Ti' Set the capacity of every edge in Ci to w-l/2. where w; is the
weight of each edge in Ti‘ Superimpose all of the cycles, merging common

edges and summing the capacities. The resulting network is optimal for R.
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The above method produces an optimal network G for R, but in general G
will not be uniformly optimal. To find a uniformly optimal network, Gomory and

Hu suggest adding the following step at the beginning of the algorithm:

0) For each node i in R, compute u(i) = Max[r(i,k)]. For every pair i,j change

r(i,j) to Min[u(i),u(j)], making R a complete graph on n nodes.

We will show that the Gomory - Hu method never produces a uniformly
optimal network with fewer edges than G’ produced by construction A'. Let R be
the requirements graph modified by step 0) of the Gomory - Hu method; let T be
any maximum spanning iree of R, and let G be the resulting uniformly optimal

network produced by the method.

Lemma 5.2: Let x be any edge in T. If x has weight W, then the removal of
X from T creates two connected components, at most one of which contains an

edge weight greater than Wy

Proof: The lemma is trivially true if one of the endpoints of x is a leaf of T,
so suppose this is not the case. Let Gy and Gz be the two components of T - x,

with edge y of weight wy > wy in Gy' and edge z of weight w,> W, in Gx’ By the

definition of R, Wy = u(i) for some node i in Gy

- G,. Then R contains the edge (i,j) across the Gy' G, cut, and (i.j) has weight

» and w, = u(j) for some node j in

greater than W hence T can’t be a maximum weight spanning tree of R. »
Theorem 5.2: G contains at least as many edges as G'.

Proof: We examine first the number of edges in G. Let Wy <wg <...<w be
the t distinct node weights of R, i.e. the t distinct values of u(i) for i = 1 through
n. Because of the modification of R in step 0), the only edge weights in T are wy
through w,, and all edges incident with any node i in T have weight less than or
equal to u(i). Further, since T is a maximum spanning tree, every node i is
incident in T with at least one edge of weight u(i). It follows then from Lemma

5.2, that for any h < t, the deletion from T of all edges of weight Wy, or less leaves
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one connected subtree containing all nodes with node weights greater than Whs

and no nodes with weight w, or less.

We now examine the edges generated by the synthesis step 3), ignoring the
capacities assigned. We claim that G is the superposition of t cycles, C4 through
Ct. 01 connects all the n nodes of T, and for h > 1, C; contains all nodes of
weight w,, or more, and no nodes of weight w; 4 or less. To see this, recall that
the decomposition step 2) of the Gomory - Hu method generates a sequernce of
subtrees of T, by beginning with T itself, and successively deleting all edges of
weight w4 to w;. Step 3) creates a cycle through the nodes of every new subtree
generated in this way, and the claim follows from the structure of these sub-

trees, which was established above.

We can now count the number of edges of G. For h from 1 through t, let Nh
be the number of nodes of weight wy. For h < t, cycle Ch contains all nodes of
weight wy, and at least one node of greater weight. Therefore, at least Nh +1
edges of Ch are incident with nodes of weight W None of these Nh + 1 edges
can appear in any other cycle Cj. for j > h, and so the cycles C1 through Ct_1
must contain at least (n-Nl) + {t-1) distinct edges. Cycle C, contains Ny
edges, and so G contains at least n- 1 + t edges if Nt >2,andn-2+t edgesif Nt

=2.

Now we show that G’ contains no more than this many edges. If t is the
number of distinct node weights in R, then G' contains t - 1 rungs between the
nodes of weight w}, # w;. G’ contains one rung between the w, nodes if there are
only two nodes of that weight, and two rungs if there are more. Note that there
can never by just one node of the largest node weight. In addition, G' contains n
- 2 edges which form the two sides of the ladder. Hence G’ containsn+ t-1, or
n + t - 2 edges depending on the number of nodes of largest node weight, and

the theorem is proved. »
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Corollary: G contains the same number of edges as G’ if and only if the

nodes of weight wy form a single subpath in Ch for allh from 1 to t.

Note that without step 0), lemma 5.2 does not hold, and the Gomory - Hu
method may produce a non - uniformly optimal network G with fewer edges than
G'. Note also that there are uniformly optimal networks with fewer edges than
G’, but such networks are, of course, not produced by either constructions A or
A', or by the Gomory - Hu method. It remains an open question whether there

exist fast algorithms to minimize the number of edges in a uniformly optimal

network.



104

Chapter VI: PROBLEMS FOR FUTURE RESEARCH

We list several promising questions and areas for additional research.

1. Reduce the upper bound on the number of breakpoints for the parametric
minimum spanning tree and shortest path problems. The O(nlc’g 7y bound for

the shortest path problem, in particular, seems ripe for improvement.

2. Generalize the Eisner and Severance parametric programming method for
multi-dimensional problems. i.e. find a method that works for multidimensional
linear parametric cost functions regardless of the underlying problem. A good
generalization must have the property that the number of optimizations is
related by a small function to the number of vertices and edges in the
parametric decomposition of the parameter space. For example, in two dimen-
sions, the parameter space decomposes into convex polygons (see section 3.4.),
and a method in which the number of optimizations is linear in the number of

edges and vertices of the polygons seems possible.

3. Determine the number of breakpoints possible for the parametric minimum
cost flow problem [LAW]. The Zadeh and Murty examples (see section 1.3.5)
force an exponential number of breakpoints for general linear programming
problems. Theorem 4.5 shows that for shortest paths the number of breakpoints
is less than exponential. Minimum cost flow is a generalization of shortest paths,
and a specialization of general linear programming. It is natural, then, to ask
how many breakpoints are possible for the minimum cost flow problem. Note

that Zadeh's example does not resolve this, since in his example the capacities,
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not the costs, are parameterized. A parametric cost problem is obtained by

taking the dual, but the dual problem is not a network flow problem.

There is another strong motivation for solving this problem: If the number
of breakpoints is polynomial, then the minimum cost flow problem can be solved
in polynomial time in the number of nodes and edges of the underlying graph (in
contrast to the polynomial time bound given by the ellipsoid or scalling
methods). This would be an important result, for the minimum cost flow problem

is probably the most natural and useful of all the standard flow models.

Let c(i) be the cost of flowing one unit along edge i, and let x; denote the

flow assigned to edge i. Then the cost of the flow is },c(i)z;. The idea of the
i

polynomial algorithm is the following:

A, Find a maximum quantity flow disregarding edge costs. This can be done in
polynomial time by a number of different methods. Let V be the maximum

flow quantity, and let x be the vector giving the values of the edge flows.

B. Find a cost vector c* such that x is a minimum cost flow of quantity V rela-

tive to c*. For example, let c*(i) = 0 if x; > 0, and c*(i) > 0 otherwise.

C. For each edge i, assign the linear parametric cost function c*(i) + A[c(i) -
c*(i)] Then x is the optimal for A = 0, and the optimal flow for A = 1 is the

minimum cost flow of the original problem.

D. For A =0 to 1, find the breakpoints and the associated minimum cost flows.

This can be done in polynomial time per breakpoint as noted in section 3.3.

Hence the question of the number of breakpoints in the minimum cost flow
problem is a natural one, yielding either an exponential example of the above
method, or an algorithm that is polynomial in the number of nodes and edges.
The first case would be in keeping with all other simplex like methods for

minimum cost flow. Note that a polynomial number of breakpoints for the
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minimum cost flow problem implies a polynomial number for the shortest path
problem. Hence reducing the O(nlog ) bound for shortest paths seems like the

correct first step for showing a polynomial bound far minimum cost flow.

4. Use NP - completeness theory to indicate that an exponential number of
breakpoints exist in cerlain parametric programming problems. Consider the
following problem P(c,d): G = (N,E) is a graph with distinguished node r and
weights c{e) and d(e) on each edge e. For a spanning tree T, p(i,r) is the unique

path in T from node i to node r. Then the distance of p(i,r) is Y d(e), end
e € p(t.r)

the totalcost for Tis )} c(e) + Y d(i,r).
T ieN

X3

P(e,d) is a problem in combining initial fixed costs with variable usage
costs. To make the model more useful, the distances are multiplied by A,
reflecting the level of traflic in the network. Then A is varied to study the sensi-

tivity of the solution to the traffic level.

One open question is how many breakpoints are possible in the function
P(A) for problem P(c,d), but a more important goal is to find a methodology for
tackling such questions. If there are an exponential number of breakpoints,
then we might be able to find a construction yielding that many breakpoints.
Such constructions are, however, generally hard to find and don't help in finding
exponenti&l constructions for other problems. Instead we would like the follow-
ing result: "P(A) has an exponential number of breakpoints, unless P = NP", We
might hope for such a result for the following reasons:

1. For arbitrary A, evaluating P(A) for P(c,d) is NP - hard, i.e. P(c,d) is NP -
hard [GAR1].

2. Evaluating P(A) for A "large" is polynomial. That is, the following problem is

polynomial: Find a tree T which minimizes ), d(i,7), and among all such
ieN
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trees, find one which minimizes the ) c(e). Further, it is easy to deter-
e€T

mine a value A* of A which is "large” enough.

Now suppose we could use the solution at P(A*) to find the solution at the
first breakpoint before A* and in general that we could move from one break-
point to the adjacent breakpoints. (We saw in chapters I and III examples of

such methods for certain problems.) Then P(A) could be determined for any

arbitrary A. This implies that for P(A) either:

1. Moving from an arbitrary breakpoint to its neighboring breakpoints is NP -
hard.

or

2. There are an exponential number of breakpoints for P(A).

or
3. P=NP.

A polynomial method to move from one breakpoint to the next would then
leave only the last two possibilities. Note that there are problems where moving
from one breakpoint to the other is easier than the problem of finding solutions

at an arbitrary A. An example is the minimum cost flow problem (see chapter

1),
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