

Copyright © 1980, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ANALYSIS OF DISTRIBUTED DATA BASE PROCESSING STRATEGIES

by

Robert Epstein

Memorandum No. UCB/ERL M80/25

14 April 1980

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Research sponsored by the Air Force Office of Scientific Research under
Grant 78-3596 and the Army Research Office under Contract DAAG29-79-C-0182.

ANALYSIS OF DISTRIBUTED DATA BASE PROCESSING STRATEGIES

by

Robert Epstein

BRITTON-LEE, INC.

ALBANY, CA.

and

Michael Stonebraker

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

UNIVERSITY OF CALIFORNIA

BERKELEY, CA.

ABSTRACT

In this paper we report on query processing experiments that

were performed in one distributed data base environment. In

this environment we compared the strategy produced by a col

lection of algorithms on the basis of number of bytes moved.

Among other conclusions we found that limited search algo

rithms do not perform very well compared to algorithms which

exhaust all possible processing plans.

- 1 -

I INTRODUCTION

There have been a large number of strategies proposed for

processing high level language data base commands. For cen

tralized data bases these include [BLAS76, GRIF79, STON76,

WONG76, YOUS783. Moreover, there have recently been

attempts to extend such algorithms to handle distributed

data bases [BERN79, EPST78, GOOD79, HEVN78a, HEVN78b,

WONG773.

All the above algorithms attempt to decompose a query, Q,

into a collection of subqueries, Q1,...,Qn in such a way

that the summation of the costs of the individual subqueries

is minimized. In general, the collection of subqueries is

at least partially ordered in the sense that Qi uses the

result of query Qj for some j < i. As a result the cost of

query Qi depends on the size of the result produced by query

Qj. We now do an example to illustrate this issue.

Consider the three relations

SUPPLIER(S#, SNAME, SLOCATION)

PARTS(P#, PNAME, PSIZE)

SUPPLY(S#, P#, QUANTITY)

with the obvious interpretation, each on a different site in

a distributed data base. Consider the query to find the

names of suppliers who supply bolts, which is expressed in

QUEL [HELD751 as follows:

- 2 -

RANGE OF S IS SUPPLIER

RANGE OF P IS PARTS

RANGE OF Y IS SUPPLY

RETRIEVE (S.SNAME) WHERE
S.S// = Y.S# AND

Y.P# = P.P# AND

P.PNAME = "bolts"

Clearly, we can restrict PARTS to a temporary relation TEMPI

containing only the part numbers for those parts named bolts

and pay no transmission cost at all. As a result we are

left with the query:

RANGE OF P IS TEMPI

RANGE OF S IS SUPPLIER

RANGE OF Y IS SUPPLY

RETRIEVE (S.SNAME) WHERE
S.S# = Y..S# AND

Y.P# = P.P#

To process this resulting query, one possible tactic would

be to move TEMPI and SUPPLY to the site where SUPPLIER

exists and process the above query at that site.

Alternately, we could perform the query:

RANGE OF P IS TEMPI

RANGE OF Y IS SUPPLY

RETRIEVE INTO TEMP2(Y.S#) WHERE

Y.P# = P.P#

by moving TEMPI to the site of SUPPLY. Subsequently, we can

execute

RANGE OF T2 IS.TEMP2

RANGE OF S IS SUPPLIER

RETRIEVE (S.SNAME) WHERE
S.S# = T2.S//

by moving TEMP2 to the site where SUPPLIER exists. This

second approach seems a sure winner, at least in bytes

moved, because TEMP2 is guaranteed to be smaller than

- 3 -

SUPPLY.

However, there are other possible ways to decompose the

query. For example, we could process the query

RANGE OF S IS SUPPLIER
RANGE OF Y IS SUPPLY

RETRIEVE INTO TEMP3(S.SNAME, Y.P#) WHERE
S.S# = Y.S#

by moving either SUPPLIER OR SUPPLY. Thereafter, we could

process

RANGE OF T IS TEMPI

RANGE OF T3 IS TEMP3
RETRIEVE (T3.SNAME) WHERE

T3.P# = T.P#

by moving either TEMPI or TEMP3. It is unlikely (but possi

ble) that this option will be attractive. In general, the

choice of the best strategy depends crucially on the sizes

of the intermediate relations {TEMPI, TEMP2, TEMP3K

We can now categorize query processing algorithms along the

following four dimensions.

1) What information is used to estimate the sizes of inter

mediate relations?

2) What technique is used to perform the estimation?

3) Are all possible query processing plans evaluated or only

a subset?

4) Is plan evaluation done at run time or prior to run time?

- 4 -

We now discuss each dimension in turn.

1) Information available to estimate sizes of intermediate

results

Query processing algorithms assume certain information is

available for estimating the size of intermediate results.

For example, INGRES assumes that only the cardinalities of

the relations in question are known [WONG76, STON76].

Alternatively, [GRIF79, GOOD79] assume this information and

also the number of unique values in each field. Lastly,

[HEVN78a, HEVN78b] require all this information plus the

proportion of any relation that will participate in a join

with any other relation.

There is a continuum of possible information from none at

all to perfect information, i.e. the knowledge of the exact

size of any intermediate relation that might be constructed.

2) Estimating technique

Based on some amount of information each algorithm must then

estimate the size of any intermediate temporary relation.

For example, the algorithm in [WONG76] suggests using a

"worst case" estimate. Hence, the result size of any join

is estimated to be the size of the cross product of the two

participating relations. In particular, if R1 with N1
.j

tuples is joined to R2 with N2 tuples, then the size of the

result is 'estimated to be N1*N2 tuples. Alternately,

- 5 -

[GRIF79] suggests an estimating technique of "worst

case/10". For example, the above join would be estimated at

N1*N2/10 tuples.

3) Limited versus exhaustive search

Many algorithms (e.g. [WONG78, GRIF79, GOOD79]) attempt to

limit the number of choices examined. A popular tactic is

to evaluate the possible processing steps which can be taken

next and choose the best one without concern for the ulti

mate consequences of the action taken.

These algorithms never select plans which result from apply

ing locally expensive tactics. As such, they will not find

a global optimum solution unless the global optimum has the

property that each step is the locally most advantageous

thing to do.

Alternately, one can perform an exhaustive search through

all possible plans to find the best one.

4) Static versus dynamic decision making

The algorithms in [GRIF79] suggest that a complete query

processing plan be constructed in advance (in fact, at com

pile time). Because the actual result sizes are not avail

able until run time, each decision is based on estimates of

result sizes. Consequently, estimation errors will be pro

pagated to subsequent decision steps. Alternately, one can

do dynamic decision making. Here, a step is not performed

- 6 -

until the result of the previous step is completed. Exact

information from the previous step can be used in selecting

the next step.

Each of these dimensions appears to be very important. The

amount of assumed information is significant because a data

base system must keep reasonably accurate estimates for

needed statistics. Obviously, the cost of doing so

increases with the complexity and number of such statistics.

To the extent that such statistics allow better strategies

they are clearly valuable.

The estimating technique is significant because it is cru

cial for static decision making where incorrect estimates

propagate through the remainder of the selection of a query

processing plan. Even for dynamic decision making, poor

estimates may result in an inferior strategy being adopted.

Many algorithms suggest limited search to avoid paying the

CPU overhead of examining all possible query processing pos

sibilities. The general feeling is that one obtains a

"good" strategy anyway. Consequently, the extra cost of

examining all possible plans is not offset by the savings

inherent in a significantly better strategy.

Lastly, generating a query processing strategy at compile

time has the obvious benefit of saving run time overhead.

Again the question arises "Is the penalty for possibly inac

curate estimates persisting throughout the selection of the

- 7 -

plan small enough to justify the savings in overhead?"

In this paper we present experiments concerned with these

questions. Hence, in Section 2 we indicate the environment

chosen and the experiments performed. Then in Section 3 we

give the results of our experiments and interpret some of

the rather startling results. Lastly, Section 4 contains

our conclusions.

II THE EXPERIMENTAL TECHNIQUE

We are interested in exploring query processing in a distri

buted environment and have suggested a collection of algo

rithms in [EPST78]. In order to present and interpret our

results we must briefly review these algorithms. The

environment assumed is a distributed data base system where

each site contains a subset of the tuples in each relation,

i.e. a fragment [ROTH77]. The placement of tuples is con

trolled by a distribution criteria which specifies the way a

relation is partitioned among the sites.

For example the SUPPLY relation might be distributed as:

SUPPLY where P// < 500 AT site_1

SUPPLY where P# >= 500 AT site_2

Beginning with the query

RANGE OF R1 is REL 1

- 8 -

RANGE OF Rn is REL_n

RETRIEVE TL(R1,...,Rn) WHERE Q(R1,...,Rn)

one first runs an algorithm "choose piece". This algorithm

chooses a subset of the variables R1,...,Rn, say R1,...,Rk,

and then breaks the query into two pieces. The first piece

is directly executed, while the second is presented to the

algorithm to be possibly split further.

The two pieces are respectively:

1) RANGE OF R1 is REL_1

i (1)
RANGE OF Rk is REL_k

RETRIEVE INTO TEMP TL•(R1,...,Rk) WHERE Q'(R1,...,Rk)

2) RANGE OF T IS TEMP
RANGE OF Rk+1 IS REL K+1

(2)

RANGE OF Rn IS REL_n

RETRIEVE TL''(T,Rk+1,...,Rn) WHERE Qf*(T,Rk+1,...,Rn)

Here, TL' consists of those fields which are actually in the

ta ^.et list of the query as well as those which appear in

Qtf. Moreover, Q' consists of those terms in Q which

involve only variables R1,...,Rk. TL'' contains those

fields desired as output while Q1' contains all clauses of Q

not in Q1 and has tuple variables changed to reflect the

presence of TEMP.

The previous section contained two examples of "choose

- 9 -

piece" at work splitting a query on (SUPPLIER, SUPPLY,

TEMPI). The first split was into the pair {(TEMPI, SUPPLY)

and (TEMP2, SUPPLIER)} while the second was into {(SUPPLIER,

SUPPLY) and (TEMP3, TEMPI)}.

The first piece of the query is executed by choosing one of

the relations, Rp and the number of processing sites, L.

Then, all tuples in relations designated by R1,...,Rk except

Rp are moved in such a way that they are present at all L

processing sites. The relation Rp is left fragmented among

the L sites. Consequently, each of the L sites can run the

query (1) above to produce a TEMP at its site. The compo

site of all L TEMP relations is the desired result.

To illustrate the above processing, suppose SUPPLY is split

between sites 1 and 2 as noted above while PARTS is at site

3 and SUPPLIER at site 4. The example query is to find the

names of bolt suppliers as in Section 1. As noted earlier

we can restrict PARTS to the relation TEMPI at site 3 and

pay no data movement. Thereafter, we might choose to pro

cess the portion of the query involving TEMPI and SUPPLY,

i.e.

RANGE OF P IS TEMPI

RANGE OF Y IS SUPPLY

RETRIEVE INTO TEMP2(Y.S#) WHERE
Y.P# = P.P#

If we choose L = 2 and Rp = SUPPLY, then we must move TEMPI

from site 3 to sites 1 and 2. Then, we can run the above

query at these sites each of which will produce a fragment

- 10 -

of the result, TEMP2.

A complete set of tactics for "choose piece", Rp and L is

given in [EPST80].

The above algorithm is oriented toward the possibility that

L>1. One environment in which a distributed data base sys

tem will run is that of several machines connected over a

local network which allows efficient broadcasting [ROWE79D.

In such an environment one usually wishes to choose L > 1

[EPST80]. Moreover, the algorithm makes no use of "semi-

join" tactics [BERN793. Such tactics may be very attractive

in some environments.

To study this algorithm under several alternate scenarios,

we coded a simulation program to calculate the cost of vari

ous possible plans. This program used the following assump

tions:

1) The cost function to be minimized is the number of bytes

of data moved. Although it is argued in [EPST78] that this

is not always the sole parameter of interest, it is an

important one which is easily measured.

2) T istributed environment is a collection of nodes,con

nected by a "contention net" network [METC76, ROWE79].

Hence, the cost to send data to all sites is equal to the

cost to send it to any site. Such an assumption closely

models the ETHERNET, COCANET or other local network. The

- 11 -

purpose of this assumption is to limit the number of parame

ters in the study. It is shown in [EPST80] that except in

very unusual circumstances: (1) L > 1 and (2) the amount of

data moved is independent of the initial distribution of

fragments and independent of the number of processing sites

(L above). Hence, these parameters will not appear in the

simulation.

3) Only retrieval commands are considered. In INGRES

[STON76, WONG76] all updates are turned into retrievals fol

lowed by lower level processing. The slight extensions

required in a distributed environment are given in [EPST80].

Hence, it is appropriate to investigate retrievals.

4) The commands to be processed may involve multiple rela

tions. If so, the relations are joined by an equi-join of

the form

relname__1 .domain_name = relname_2.domain_name_2

Moreover, it is assumed that the two domain names are 4

bytes wide and do not appear anywhere else in the command.

The purpose of this assumption is to simplify the bookkeep

ing concerning how wide partial answers are.

5) The cardinality of each relation involved in a command is

varied over the set of values {10 tuples, 100 tuples, 1000

tuples}. Moreover, each relation can either have fields

present in the target list or not. If a relation has fields

- 12 -

in the target list, it is assumed to contribute 10 bytes per

tuple to the answer to the query. Notice that the results

which we will document scale in the obvious way to other

relation sizes. Hence, the important point is the 100 to 1

range that is examined.

6) The actual size of any possible temporary relation that

might be constructed is available. Algorithms use this

information in various ways.

As a result of the above assumptions, the simulation program

accepts as input the following:

1) the number of relations involved

2) a graph of the way the joining terms interconnect the

relations

3) the true size of any possible join which might be per

formed

The program then is run for 6**n different combinations of

relation sizes and presence or absence of a contribution to

the target list, where n is the number of relations

involved.

This results from:

3 relation sizes per relation

2 widths of contribution to the target list per relation

- 13 -

In our simulation we concentrated on queries spanning 4

relations; hence there are 6**4 or 1296 cases to consider.

In fact, 81 of these cases have a null target list and are

uninteresting. Consequently, we are left with 1215 to pro

cess.

Our strategy was to choose benchmark queries along with data

for the sizes of all possible joins and then to run through

all 1215 test cases. For each case we computed the cost, in

bytes moved, of the query processing plan produced by 14

different algorithms. They correspond to every reasonable

combination of the following options.

-information available-

i1) perfect information

Here we assume that the algorithm has access to the actual

size of any temporary which it might wish to create and can

use this information in its cost calculations.

i2) size of relation plus a uniqueness indicator

Here we assume that the algorithm must estimate the size of

any temporary result and has at its disposal the size of the

participating relations plus one bit per field indicating

whether each row contains a unique value or not (or some

thing close). Should an algorithm wish to estimate the max

imum size of any join, it can do so as shown in Table 1.

- 14 -

.*-

Operation Estimated Result Size

R1 join R2 (both joining N1*N2 tuples
fields non unique)

R1 join R2 (joining field N1 tuples
in R1 unique)

R1 join R2 (joining field N2 tuples
in R2 unique)

R1 join R2 (both joining min(N1, N2) tuples
fields unique)

Maximum Size Estimates

Table 1

-estimating technique-

el) Any temporary result is estimated to be the maximum size
from Table 1.

e2) Any temporary result is estimated' to be the maximum size
divided by 2.

e3> Any temporary result is estimated to be the maximum size
divided by 10.

-limited versus exhaustive search-

ID Exhaustive search is performed. In particular, we
iterate over all possible ways that a piece can be chosen by
"choose piece". For each such piece we then iterate over

all possible ways the second piece can be processed. Conse

quently, exhaustive search evaluates all possible splits and

then chooses the plan with lowest estimated total cost. The

- 15 -

L"THfflTflmiil HIi'Mi" Hi huh urn ' Mini |i IIii lI'i'Mi

•i..Binrm^*J^^^^^^^^^f^^^^^^i^^^^^^^^^

best choice for Rp is always the relation with largest car

dinality. Hence, this is the one selected.

The number of plans which exhaustive search examines is:

e(1) = 1

e(2) = 2
r -i

n ; n|
e(n) = 2 ' .' * e(n-i+1)

i=2»- ^

where "n" is the number of variables in the query. For each

plan, the number of variables in the first piece, i, is

chosen and then the remaining query requires exhaustively

examining all combinations of the remaining n - i + 1 vari

ables. The number of actual choices is limited by the

user's query, i.e. by the interconnections of the variables

in the graph. All possible combination must be tried. For

example, the number of plans evaluated for a four variable

query is 29 and for a five variable query 336. Notice that

many of the choices may not have a clause in piece 1 of the

split query. As such they are degenerate and need not be

considered. Hence, the real number of possibilities exam

ined is much less than the maximum amount possible.

12) Limited search is performed. For any query M, limited

search estimates the cost of any split into pieces M1 and M2

as:

cost(M) = cost(M1) + cost(M2)

The cost of M1 is computed as the number of bytes moved.

- 16 -

Moreover, the cost of M2 is computed AS IF M2 IS NOT SPLIT

FURTHER. The lowest cost split is the one selected.

Exhaustive search would look through all possible ways to

split M2 in order to find a minimum cost first split,

whereas limited search does not perform this "look ahead".

Therefore, the number of plans which limited search examines

is:

r -i

e(n) = 2 J i |
i=2«- x-j

For example, it only needs to examine at most 11 cases for a

four variable query and 26 for a five variable query.

-static versus dynamic decision making-

si) Static decision making is performed. Here, a complete

access plan is found prior to run time. Exhaustive search

is run once to find the best expected plan. Limited search,

on the other hand, finds a choice for M1 and the expected

size of the resulting TEMP. Then, it is run on M2 and must

select a piece to process using only its initial information

and the expected size of TEMP. The algorithm is run until a

piece is left which cannot be split.

s2) Dynamic decision making is performed. Either exhaustive

search or limited search is run to find a first piece to

process. Then, the query M1 is run and the ACTUAL SIZE of

the TEMP produced is available. Either algorithm is then

rerun on the query M2 with this extra information.

- 17 -

The actual algorithms which we tested are the following:

1) (perfect information, exhaustive)

This algorithm examines all possible ways to process the

query and has perfect information. Hence, it must neces

sarily find the optimum plan. Of course, this information

would never be available in practice; rather this answer

represents the best which could be done and is reminiscent

of the OPT algorithm for buffer management [MATT70].

2) (limited information, maximum size, exhaustive, static)

The number of bytes moved by an algorithm which enumerates

all possible plans is found. However, this algorithm ESTI

MATES the size of any TEMP relation from Table 1. Moreover,

this algorithm finds a complete access plan in advance of

running any pieces of the query so it can obtain no feedback

on the actual size of any relation that it created.

3) (limited information, maximum size/2, exhaustive, static)

This algorithm is the same as algorithm 2) except that it

estimates the size of any TEMP relation as the size from

Table 1 divided by 2.

4) (limited information, maximum size/10, exhaustive,

static)

This algorithm is the same as 3) above except it uses a fac-

- 18 -

tor of 10 instead of a factor of 2.

5) (limited information, maximum size, exhaustive, dynamic)

This algorithm behaves like 2) in many ways. It enumerates

all possible decisions to find the best processing strategy.

Moreover, it uses the same estimating procedure as that used

by algorithm 2). Then, it performs the first step of the

plan and obtains the ACTUAL size of the TEMP relation which

it created. Subsequently, it uses this additional informa

tion to create a new plan for processing piece 2.

It is true that algorithms 2) and 5) will choose the same

initial piece to process. However, 5) obtains the true size

of TEMP while 2) must use its estimate. Hence, subsequent

steps may diverge between the two cases.

6) (limited information, maximum size/2, exhaustive,

dynamic)

This is the same as 5) except estimates are set to be the

maximum size divided by 2.

7) (limited information, maximum size/10, exhaustive,

dynamic)

This is the same as 6) except a factor of 10 is used.

8) -14) (limited search)

Algorithms 1) to 7) were repeated for a search strategy

- 19 -

which used the limited search tactic mentioned above.

In the next section we present a.sampling of our results.

Ill EXPERIMENTAL RESULTS

Limited and exhaustive search will differ in the number of

cases considered only if the number of relations involved in

a query is four or more. Hence, we conside.r the following

representative four relation command:

RETRIEVE (TL)

WHERE R1.e = R2.f and

R2.g = R3.h and

R3.i = R4.j

(3)

Notice that (3) uses pairwise natural joins as the qualifi

cation. In the target list, a 10 byte field from each rela

tion can optionally be present. As noted earlier, the pres

ence of such a field is a simulation variable.

Table 2 indicates the two sets of test data which we use.

A test data B test data

R1 join R2 10 100

R2 join R3 20 200

R3 join R4 5 2

- 20 -

Number of Tuples in the Various Joins

Table 2

For example, using the A test data, if one chooses to pro

cess:

RETRIEVE INTO TEMP(R3.e) WHERE R3.f = R4.j

then TEMP will be a relation containing 5 tuples.

These join sizes have been assumed constant regardless of

the sizes of R1,...,R4. In this way we are implicitly vary

ing the percentage of the cross product which remains in the

join between 100 percent and .0002 percent.

For both test situations we assume that the joining fields

are unique values. Consequently, maximum size estimates

were obtained from r w 4 of Table 1.

We now present some of our results for the A test data.

First, we treat the issue of limited versus exhaustive

search with perfect information by comparing algorithms 1

and 8. Both strategies will find a query processing plan

for each of the 1215 cases examined. In Figure 1 we present

100 of the 1215 points sorted in descending order of the

difference in magnitude f bytes moved between the two algo

rithms. The first 20 cases show an order of magnitude

difference between limited and exhaustive search!

Figure 2 summarizes limited versus exhaustive search in a

- 21 -

different way. Here, we plot the percentage of cases in

which limited search performs within a given factor of

exhaustive search. Note that 59 percent of the time the two

strategies yield the same algorithm and achieve the same

cost (relative performance of limited search is 0 percent

worse). However, in only 75 percent of the cases does lim

ited search come within a factor of two (relative perfor

mance 100 percent worse) of exhaustive search. Lastly, in

only 90 percent of the cases can it come within a factor of

three (relative performance 200 percent worse).

In order to intuitively understand what is happening, we

examine in detail the worst of the 1215 cases. This case

corresponds to relations R1, R3 and R4 having cardinalities

of 1000 and target list sizes of 10; and R2 having a cardi

nality of 10 and no target list. In that case, the cost to

perform the query using exhaustive search was 380 bytes.

The cost for limited search was 14,200 bytes. Exhaustive

search broke the query into three, two variable pieces.

First, R2 was joined to R3; then the result was joined to R4

and finally the second result was joined to R1 producing the

answer. On the other hand, limited search broke the query

into two pieces, R1 joined with R2 followed by the remainder

of the query as one piece.

In more detail exhaustive search creates the following algo

rithm.

- 22 -

step procedure cost in bytes moved

join R2 and R3 move R2 80

join result and R4 move result 180

join result and R1 move result 120

380

In order for limited search to find the optimal strategy, it

would have to find that R2 joined to R3 was the first piece

to process. The cost for that split would be

step procedure cost

join R2 and R3 move R2 80

join result to move result

R1 and R4 and R1 180 + 14000

14260

However, the strategy it chose was

step procedure cost

join R3 and R4 move R4 14000

join result move result
to R1 and R2 and R2 80 + 120

14200

Thus the minimum cost for a 2-3 split was to start with the

(R3, R4) piece. Notice that by doing so, limited search

does an expensive move for the first piece but leaves itself

with two inexpensive moves for the second piece. Because

limited search does not break down all possible ways to pro

cess the second piece until AFTER it chooses the first

piece, it makes an expensive error. The heart of the prob

lem is that it has an inaccurate estimate for the cost of

- 23 -

processing the second piece.

Figure 3 contains the same information as Figure 1 for algo

rithms 1, 5 and 6. Here, we are comparing the estimation

technique. Algorithm 1 requires perfect information to

operate. However, algorithm 5 makes maximum size estimates

while 6) uses maximum size/2. Notice that 1) dramatically

outperforms 5) but is only marginally better than 6).

Presumably, this is because maximum size/2 is a much more

accurate estimate of the true result size than maximum size.

On the basis of this more accurate information it should be

able to perform better.

We now turn to a comparison of static and dynamic decision

making. Figure 4 compares the performance of algorithms 5

and 12. Notice that there are cases when dynamic decision

making does significantly better than static. The overall

difference, however, is not very large.

To assign an overall rating to each of the 14 algorithms

mentioned previously, a single number was derived for each

one. This was done by averaging the cost for all 1215 cases

for query (3). This represents a very crude performance

measure since it assumes that each situation has an equal

probability of occuring. Table 3 shows the average perfor

mance for A and B test da

- 24 -

A test data

1 perfect information

2 maximum size, static

3 maximum size/2, static

4 maximum size/10, static

5 maximum size, dynamic

6 maximum size/2, dynamic

7 maximum size/10, dynamic

exhaustive limited

508 1086

860 1070

545 1257

536 1058

755 927

537 • 1252

531 1053

B test data

1 perfect information

2 maximum size, static

3 maximum size/2, static

4 maximum size/10, static

5 maximum size, dynamic

6 maximum size/2, dynamic

7 maximum size/10, dynamic

exhaustive limited

551 1036

1017 1210

781 1420

774 1229

995 1128

746 1403

740 1207

Average Performance in Bytes Moved

Table 3

The results indicate that exhaustive search performs

- 25 -

consistently better than limited search for both sets of

test data. Moreover, the performance of exhaustive search

is very sensitive to the estimation procedure used. A max

imum size estimate was significantly worse than either max

imum size/2 or maximum size/10. This indicates that maximum

size estimation is simply too pessimistic to use. On the

other hand, note that maximum size is a viable tactic when

limited search is employed.

Dynamic decision making tends to do somewhat better than

static decision making but the difference is around 10 per

cent. Hence, dynamic decision making is only cost effective

if it is very inexpensive.

We ran several alternate queries with similar results. In

Table 4 we show values for one of them:

RETRIEVE (R1.a, R2.b, R3.c, R4.d)
WHERE R1.e = R2.f and

R2.g = R3.h and
R3.i = R4.j and
R4.1 = R1 .m

(4)

Here, a joining term linking R4 to R1 is added to the qual

ification of query (3) and we use the A test data augmented

by:

R4 join R1 = 20 tuples

The last experiment which we report uses query (3) and the B

test data. However, we assume that the join fields are not

- 26 -

A test data

1 perfect information

2 maximum size, static

3 maximum size/2, static

4 maximum size/10, static

5 maximum size, dynamic

6 maximum size/2, dynamic

7 maximum size/10, dynamic

Average Performance in Bytes Moved

Table 4

exhaustive limited

631 1340

1259 1289

724 2128

724 1475

1185 1183

721 2128

721 1471

unique. Hence, from Table 1 maximum size estimates will be

the full cross product and very pessimistic. In addition,

we include maximum size/1000 as a tactic in place of maximum

size.

The results are shown in Table 5. Notice that maximum

size/1000 is the only estimation technique which produces a

reasonable plan.

IV CONCLUSIONS

The following conclusions hold in the environment which we

have simulated:

- 27 -

B test data

1 perfect information

2 maximum size/2, „atic

3 maximum size/10, static

4 maximum size/1000, static

5 maximum size/2, dynamic

6 maximum size/10, dynamic

7 maximum size/1000, dynamic

exhaustive limited

508 1086

3300 3549

3206 3319

876 1290

3372 3541

3307 3179

852 1240

Average Performance in Bytes Moved

Table 5

1) limited search performs poorly

There is a dramatic difference between the quality of the

plans produced by limited and exhaustive search. For four

and five relation queries the cost of exhaustive search in

CPU time is sure to be well worth it.

2) good result size estimates are crucial

Maximum size estimates are dramatically inferior to maximum

size/2 or maximum size/10, at least for exhaustive search.

Maximum size/10 (as assumed by [GRIF79]) appears to be a

generally good tactic, although there are situations where

- 28 -

it is too pessimistic.

3) dynamic decision making is beneficial

Dynamic decision making does consistently better than static

decision making; however, Because dynamic decision making

has greater run-time cost, it may not be a big winner.

- 29 -

FIGURE 1

Query cost for limited and
exhaustive search, organized
by case number for query 3.
Assumes perfect information.

60

CASE NUMBER

o O Q>
5

0

O w <
D

G
L

4
0

3
0

2
0 1
0 0

5
0

1
0

0

F
IG

U
R

E
2

R
e
l
a
t
i
v
e

p
e
r
f
o
r
m
a
n
c
e

o
f

l
i
m
i
t
e
d

s
e
a
r
c
h

c
o
m
p
a
r
e
d

w
i
t
h

e
x
h
a
u
s
t
i
v
e

s
e
a
r
c
h

f
o
r

q
u
e
r
y

3
.

A
s
s
u
m
e
s

p
e
r
f
e
c
t

i
n
f
o
r
m
a
t
i
o
n
.

T
T

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0

R
e
la

ti
v
e

P
e
rf

o
rm

a
n

c
e

4
0

0
4

5
0

—
i

5
0

0

5000

4500

4000

3500

-. 3000
in

\- •
£ ? 2500

~ 2000

1500

1000

500

T"

10

FIGURE 3

Query cost using exhaustive search and
dynamic decision making comparing limited
information using maximum size estimation,
limited information using maximum size over
2 estimation, and perfect information for
query 3.

—r-

20

Limited Information (maximum size)

~T"

30 40

Limited Information (maximum si

50

Perfect Information

60

CASE NUMBER

70

—r-

80 90 100

" 12000

O-o 10000
o c

FIGURE

Query cost for static decision
making and dynamic decision
making for query 3. Assumes
limited information with maximum

size estimation and exhaustive

search.

T 1 T

40 50 60

CASE NUMBER

REFERENCES

[BERN79] Bernstein, P.A. & Chiu, D.W., "Using Semi-joins to

solve Relational Queries", Unpublished paper, Har

vard University, 1979.

[BLAS76] Blasgen, M.W. & Eswaran, K.P., "On the Evaluation

of Queries in a Relational Data Base System", IBM

Research Report RJ1745, April, 1976.

[EPST78] Epstein, R.; Stonebraker, M.; Wong, E; "Distri

buted Query Processing in a Relational Data Base

Systems", Proc. 1978 ACM-SIGMOD Conference on

Management of Data, Austin, Texas, June 1978.

[EPST80] Epstein, R., "Query Processing in a Distributed

data base Environment," PhD Dissertation, Univer

sity of California, Berkeley, Ca.

[GOOD793 Goodman, N., et. al., "Query Processing in SDD-1:

A System for Distributed Data Bases," Technical

Report 79-06, Computer Corp. of America, Cam

bridge, Mass., October 1979.

[GRIF79] Griffiths Selinger, P. et. all., "Access Path

Selection in a Relational D « Base Management

System", IBM Research Laboratory, San Jose,

u

California, RJ2429(33240), January, 1979.

[HELD75] Held, G.D., M.R. Stonebraker, and E. Wong; "INGRES

- A Relational Data Base System," Proc. NCC vol.

44, 1975.

[HEVN78a] Hevner, A. & Yao, S.B., "Query Processing on a

Distributed Data Base", Proceedings of the Third

Berkeley Workshop on Distributed Data Management

and Computer Networks, LBL-7953 UC-32, Lawrence

Berkeley Laboratory, Berkeley, California, August

1978.

[HEVN78b] Hevner, A. & Yao, S.B., "Query Processing in a

Distributed System", Dept. of Computer Science,

Purdue University, August, 1978.

[MATT70] Mattson, R., et. al., "Evaluation Techniques for

Storage Hierarchies," IBM Systems Journal, June

1970.

[METC76] Metcalf, R. M. and D. R. Boggs,."Ethernet: Distri

buted Packet Switching for Local Computer Net

works," CACM, vol. 19, no. 7, July 1976.

[ROTH773 Rothnie, J. B. and Goodman, N., "An Overview of

the Preliminary Design of SDD-1: A System for Dis

tributed Data Bases," Proc. 2nd Berkeley Workshop

on Distributed Data Bases and Computer Networks,

Berkeley, Ca., May 1977.

[ROWE79] Rowe, L.A. & Birman, K.P., "Network Support for a

Distributed Data Base System", Proceedings of the

Fourth Berkeley Workshop on Distributed Data

Management and Computer Networks, August, 1979,

San Francisco, California.

[STON76] Stonebraker, M.R., E. Wong, P. Kreps and G.D.

Held; "Design and Implementation of INGRES," ACM

Trans. Database Systems, vol. 1, no. 3, Sept.

1976.

CWONG76] Wong, E. and K. Youssefi; "Decomposition - A Stra

tegy for Query Processing," ACM Trans. Database

Systems, vol. 1, no. 3, Sept. 1976.

[WONG773 Wong, E.; "Retrieving Dispersed Data from SDD-1:

A System for Distributed Databases," 1977 Berkeley

Workshop on Distributed Data Management and Com

puter Networks, Lawrence Berkeley Laboratory, May

1977.

[YOUS78] Youssefi, K. & Wong, E., "Query Processing in a

Relational Data Base Management System", Electron

ics Research Laboratory, UCB/ERL M78/17, Univer

sity of California, Berkeley, California, March,

.£>

	Copyright notice 1980
	ERL-80-25

