

Copyright © 1980, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DYNAMIC RE-MATERIALIZATION: PROCESSING DISTRIBUTED

QUERIES USING REDUNDANT DATA

by

Eugene Wong

Memorandum No. UCB/ERL M80/26

3 November 1980

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

DYNAMIC RE-MATERIALIZATION: PROCESSING

DISTRIBUTED QUERIES USING REDUNDANT DATA

Eugene Wong

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

ABSTRACT

In this paper an approach to processing distributed queries that makes
explicit use of redundant data is proposed. The basic idea is to focus on the
dynamics of materialization, defined as the collection of data and partial re
sults available for processing at any given time, as query processing proceeds
In this framework the role of data redundancy in maximizing parallelism and
minimizing data movement is clarified. What results is not only the discovery
of new algorithms but an improved framework for their evaluation.

Research sponsored by the Honeywell Corporation under a grant from the Corporate
Computer Science Center, by the Army Research Office under Grant DAAG29-78-G-0186,
and by the Air Force Office of Scientific Research under Grant 78-3596.

I. Introduction

In this paper we propose a new formulation for the problem of processing
queries in a distributed database system. By such a system we mean a collection
of autonomous processors, communicating via a general communication medium, and
accessing separate and possibly overlapping fragments of a database. The user's
view of data is to be an integrated whole, both fragmentation and redundancy
being invisible. Geographical dispersion, though sometimes present, is not an
essential ingredient of such a system, and the range of systems so encompassed
includes not only the classical geographically distributed databases but also
configurations that are in effect database machines. The problem of distributed
execution of queries is common to all these systems.

In the query processing algorithm designed for the SDD-1 distributed data
base management system [WONG 77], an irredundant subset of the database is used
during the execution of any single query. No effort was made to exploit the
possible existence of multiple copies either to maximize parallel operations or
to minimize data moves. A related and somewhat hidden characteristic inherent
in the SDD-1 algorithm is that parallel processing is opportunistic rather than
deliberate.

These characteristics were recognized in [EPST 78] where the emphasis fell
heavily on maximizing parallelism. The algorithm proposed there, and implemented
for the distributed version of INGRES, achieves a high degree parallelism by
partitioning one relation among the processing sites and replicating all other
needed relations at every site. We shall call this the F-R (fragment and repli
cate) algorithm. For a query referencing many relations, the degree of data
replication and the resulting communication cost to achieve this replication
may be prohibitive. Thus, the F-R algorithm is best applied to pieces of a
many-variable query, one at a time, each with only two or three variables. Ex
perience of using the F-R algorithm in the distributed version of INGRES
[EPST 80] indicates that the procedure of splitting a query before applying the
F-R algorithm is not an easy one to optimize.

It is time then, to seek a new formulation of the problem of distributed
query processing that puts the issue of redundancy and parallelism into better
focus. One such formulation was suggested by some recent work on database
partitioning in a distributed system [WONG 80].

II. Partioning a Database

Let V denote the database as viewed by a user. Let M. denote the data re
siding at processing site i. We assume that DM. = V and call M = {M..} a

materialization of V. Suppose that the database designer is free to choose M.
How should he choose?

Among the major issues to be resolved is that of redundancy. Intuitively,
the cost of redundancy is paid on updates and benefit accrued on retreval. What
we need is a conceptual framework to make this precise. Let Q denote a collec
tion of queries on a database V. We shall say that a materialization M of V is
self-sufficient (relative to Q) if for every q in Q and for every i there exists
a local query q. on M. such that

Result (q,P) = U Result (q.,M.)
i 1 1

Self-sufficiency means that no inter-communication is necessary to process q.
The only data movement needed is a final one to collect the results.

For two materializations M and M' denote M > M* if M* 3M.' for every i.
A locally sufficient M is said to be minimally redundant if there exists no
M'< M (other than M itself) that is locally sufficient. Minimum redundancy
means that data reduction at local sites cannot preserve local sufficiency.

Suppose we assume that it always takes longer to process a query when there
are more data. Then, in terms of both retrieval and update, it is better to have
minimal redundancy than not. Thus, minimally redundant materializations repre
sent a desirable class of partitions for the database.

III. Query Processing by Dynamic Re-Materialization

In terms of the concepts that we have introduced for database partitioning,
query processing can be viewed as a dynamic process of changing materializations.

Let q be a'single query. Let M: ' denote the data at i available and selected

for processing q at any stage t of processing. m'*' =(M:*'} will be called the
materialization at t. Any algorithm for distributed query processing can be

represented as a sequence of states: (q- '.m'*'), t=0,1,2,...,N. The terminal
state (q^ ^,M^ ') is required to be locally sufficient and to satisfy the con
dition

UResult (q(N),M,(N)) =Result (Q,Um|°>)
i n 1 i 1

In other words, from the terminal state only local processing and gathering up
of results are needed to complete processing. Transition between two successive

states (q^ ',M^ ') and (q^ ',M^ ') occurs as a result of data movement and/
or local processing. A transition will be called a redistribution if only data

movement is involved, and a local derivation if: (a) (q* ',M* ') is derived

from (q^y*)) by local processing, (b) M^t+1^ <M^, and (c) Result
(q<t+1>,M(t+1)) =Result (qW.HW).

For any terminal state (q^ %M^ ') a measure of the parallelism that it
affords is given by

T(q(N)»M^N)) =max (time to process q(N) on M^N))
i 1 1

The cost to reach (q^ ',M^ ') can be expressed as

C({qt,Mt}) =CQ(N) + I TtUqlt'V9rfM)). (q(t),M(t))

where CQ(N) is the cost of ^synchronization between transitions and T, is the
cost of making the t— transition.

If a compatible scale for t and C is known, the problem can then be stated
as one of optimal control. Even though the optimization problem is unlikely to
be solved in any general sense, it provides a framework that allows algorithms
proposed on heuristic grounds to be evaluated.

IV- Strategies Based on an Initially Feasible Solution

Let q =qbe the query to be processed and M^ the data initially
available for processing q. We say (q,M) is an initially feasible solution if
it is a"locally sufficient redistribution" of (qW,M(0'), i.e., Mis locally
sufficient and derivable from M(0) by moving data. The cost of using such a
strategy consists of several components, of which we assume the following to be
dominant: 3

(a) C(M(0\m) =cost of moves

(b) T(q,M) = cost of terminal parallel processing

We shall say a strategy is of the IFS type if it consists of the following steps:

(1) One seeks a(q(1),M(1^) that is a"local derivation" of (q(0),M(0)).
(2) If no such local derivation can be found, one seeks an initially

feasible solution (q,M).

(3) One seeks to improve (q,M) by replacing the one-transition strategy
(q,M)-• (q,M) by a "short" sequence of transitions. Perform the
first transition (q,M(0)) +(q(1),M(1)) in the sequence.

(4) Iterate, with (q(1),M(1)) replacing (q(0)'M(0).
Both the SDD-1 and F-R algorithms are variations of IFS algorithms. In

the SDD-1 case, the initially feasible solution (q,M) is restricted to be not
merely locally sufficient but single-site sufficient. That is, there exists a
site j such that q can be processed entirely on M,-. The choice for M in the
F-R algorithm is to replicate every relation but one, which is obviously locally
sufficient, not only for a given q but for all q. It seems clear that to
qualify for selection as the initial choice as a feasible solution, (q,M) should
be at least "non-inferior" with respect to the pair of costs (C(M^,M), x(q,M)).
That is, there exists no initially feasible solution that is equal or better in
both (c,x) and strictly better in at least one. Neither the SDD-1 nor the F-R
algorithm guarantees this in general. Indeed, the choice is often poor in
these cases.

Example 4.1 Consider a conceptual schema given by:

person (socsec, name, state-of-res)

corp (cid, cname, state-of-inc)

emp (socsec, cid, position, salary)

Suppose that there are two sites with their local schemas given by the follow
ing view definition statements:

range of p is person

range of c is corp

range of e is emp

define person 1 (p.all) where (p. state-of-res = "NY")

define corp 1 (call) where (p.state-of-inc = "NY")

define emp l(e.all) where (e.salary £25000)

define person 2 (p.all) where (p.state-of-res f "NY")

define corp 2 (call) where (c.state-of-inc f "NY")

define emp 2 (e.all) where (e.salary > 25000)

Now consider a query

retrieve (p.name) where (p.socsec = e.socsec)

and (c.cid = e.cid)

and (cname = "IBM")

We begin with the materialization.

MJ '=(person 1, corp 1, emp 1)
M« = (person 2, corp 2, emp 2)

Processing the clauses that involve only local operations, we get

MJ1} =(PI, CI, El)
M^ =(P2, C2, E2)

where

Pk= person k projected on (socsec, name)

Ck= corp k restricted to (name = "IBM") and projected on (cid)

Ek= emp k projected on (socsec, cid)

Now assume the following statistics for these relations

relation #tuples tuple width in bytes

PI 1000 29 (9,20)

P2 1000 29 (9,20)

CI 1 5

C2 0 5

El 1000 14

E2 1000 14

CI (cid) E2 100 14

CI (cid) El 1000 14

The initial feasible solution in the SDD-1 algorithm would consist of site
1 as the final processing site and

M = {move P2 and E2 to site 1}

which entails moving 43 K bytes of data. On the other hand the F-R algorithm
would yield a materialization

M1 = (PI, CI, El, E2)
M2 = (P2, CI, El, E2)

with

M-j = {move E2 to site 1}
M2 = {move CI and El to site 2}

>(2)which in this example corresponds to the Mv ' that minimizes communication cost
C(M) and entails moving 28 K bytes of data. M2 can be reduced by joining CI to
El and moving the join instead of El (1405 bytes). M, can be reduced by moving
CI to site 2, joining CI with E2, and moving the join! The resulting sequence
of materialization would appear as follows, where t*zdenotes join:

,0) -M

M
(2) „

{(PI, CI, El), (P2, E2)}

{(PI, CI, El), (P2, CI, E2)}

M(3) ={(PI, El twCl), (P2, E2 j*C1)}
M(4) ={(PI, El i*Cl, E2 t*Cl), (P2, ElxaCl, E2ixjC1)}

and M^ ' is now locally sufficient. The total amount of data moved is 2805 bytes,
and no more processing is involved than either the F-R or the SDD-1 algorithm.
For our example, the strategy that we have found is just about the best possible
over a wide range of relative costs for communication and local processing.

V. Repeated-Join Strategies

The database-partition problem suggests the following class of query proc
essing strategies: Consider a relational database V = {R,, R«, ..., R } where

Rk are relations. We shall say a query q is admissible if it is a finite
repetition of "restriction", "projection" and "join" on the relations in V,
We shall say an admissible q is elementary if it involves at most one join.
Now, suppose that for any V we know how to find a "good" materialization M(P)
that is locally sufficient for all elementary queries. Then, we can construct
a query processing algorithm as follows: Construct a sequence

*.p«»,i,(i> pW

q(0>.q(,\ qW
such that q^ '= q, and for each t q^ ' is an elementary query on V^' and
p(t+l) c {V{t)9 Result(q(t),p(t))}. Since for each V^ we know how to find a
materialization M(fr ') that is locally sufficient for all elementary queries,

M(tr ') is a fortiori locally sufficient for q^ \ The repeated-join algorithm
consists of repeating for each t the following steps.

(a) Execute q^ on M^))

(b) To obtain fl(t+1), add Result(q(t\p(t)) to V^ and eliminate the
relations no longer needed in processing q.

(c) Construct M(t/t+1))

How good this algorithm is depends on :

(1) Whether we can construct M(t?^ ') as claimed, and

(2) the cost in resynchronization and data movement in making the tran

sition M(P(t)) -M(fl(t+1)).

Our preliminary study suggests that the efficacy of this class of algorithms
is enhanced if we augment the semantics of the relational model and use the
semantics to restrict the class of admissible queries.

Roughly speaking, the semantic augmentation that we undertake corresponds
to distinguishing between entities and relationships [CHEN 76, WONG 79], but
we shall define the semantics strictly in terms of the constructs of the re
lational model.

First, we classify the sets that serve as domains of the relations in the
database into identifier and value. D is an identifier domain if and only if
there is a unique relation EQ such that the elements of D are in one-to-one
correspondence with the tuples of EQ. We shall say D is the kejv_ of EQ.

Every relation must have at least one identifier domain. A relation will
be called an e-relation (entity) if it has a key, and an r-relation
(relationship) otherwise.

Example 5.1

person (* socsec, name, state-of-res)

corp (* cid, cname, state-of-inc)

emp (socsec, cid, position, salary)

where underscore indicates an identifier domain and * indicates a key. Clearly,
"person and "corp" are e-relations and "emp" is an r-relation.

Now suppose that we limit the admissible data manipulation operations to
the following:

(a) Restriction - boolean condition on values

(b) Projection

(c) Join - on an identifier domain D

(d) Closure

Note that admissible joins are limited. For example, the join

person (state-of-res = state-of-inc) corp

would be an inadmissible operation, but the following operation is admissible:

socsec cid

(person («*) emp (**») corp) [state-of-res = state-of-inc]

Lett* denote the semijoin operator defined in [BERN 79]. That is, A& B

is the projection on A of the join AtxiB. The following proposition gives a
condition for local sufficiency in terms of the semijoin.

Proposition 5.1 Let V be a collection of relations. Let M be a materialization
of V such that to each e-relation E corresponds a unique E(k) in M. such that

E = UE(k)
k

Then, M is locally sufficient for all elementary queries if for every R £ V
and every identifier domain D in R

(5.1) Rk EQ(k) € closure (Mfc) for every k.

Proof: For R and S in V9 we can write

Rj* S=u (R &ED(k) A(S ifi ED(k))

Since projection and restriction commute with union, the proposition is proved.
s

Condition (5.1) provides a simple means for testing the local sufficiency
of a materialization M for elementary queries. Further, if M fails the test,
(5.1) provides a means for augmenting M to make it locally sufficient. As such,
(5.1) makes the repeated-join algorithm work. At each step t in the algorithm,
to construct M(p(t+1'), we only need to distribute enough of the result
(q(t),P(t)) so that

(5.2) result (q(t),P(t)) A EQ(k) e closure (Mk(PCt+1))
for every k and every D.

Example 5.2 Take the schema in example 5.1, and consider the same query as in
example 5.1. We have

V = {person, corp, emp}

socsec cid

q = person ex (emp tx (corp(name="IBM"))) [name]

Define personk and corpk as in example 4.1, but define

socsec cid
emp k = (emp tx person k) u (emp t< corp k)

Take the initial materialization to be

M^ '= {(person k, corp k, emp k), k= 1,2}

Then M^ ' is locally sufficient for all elementary queries on P.

Now, take

p^ *=q = {person, corp, emp}
(0) cid

qv ; = (emp ex (corp(name="IBM"))) [socsec]

Here, we have no need to distinguish q^0' and its result, Hence, we can write

V^ ={person, q^°h
(1) cid /nv

q = qv ' = (emp tx qvu;) [name]

As in example 4.1, assume that

corp 2 (name="IBM") = <J>

Hence, q£ ' = <j> and

qW) =q|o)
To satisfy (5.1), we can take

MJ]) =(person 1, qj0))
m|]) =(person 2, qj0))

which requires moving qj0' to site 2. Alternatively, we can take
(1) (r\\ socsec
M£" = (person 2, q]u; tx person 2)

which would entail first moving (person 2) [socsec] to site 1 and then moving
/q\ socsec

q-j «x person 2 to site 2. However, the double move would be ovbiated by
storing at each site an index for the distribution of identifiers.

For a given q, the sequence qW is by no means unique, and the optimization
problem is to choose q^n' so as to minimize cost, however cost is defined.

VI. Conclusion

In this paper we propose a new approach to distributed query processing.
This approach focuses on how the data available at each site change as processing
proceeds. We believe that issues of parallelism and redundancy are rendered
clearer by this approach. Our immediate goal is not so much to find better
algorithms, but to provide a conceptual framework in which new classes of algo
rithms can be formulated in a natural way.

REFERENCES

[BERN79] Bernstein, P.A. & Chiu, D.W., "Using Semi-joins to Solve Relational
Queries," Computer Corp. Am. Tech. Rep. CCA-01-79. To appear in JACM.

[EPST76] Epstein, R.; Stonebraker, M.; Wong, E; "Distributed Query Processing
in a Relational Data Base System", Proc 1978 ACM-SIGMOD Conference
on Management of Data, Austin, Texas, June 1978.

[EPST80] Epstein, R. & Stonebraker, M; "Analysis of Distributed Data Base
Processing Strategies," 1980. International Conference on Very
Large Data Bases, Montreal, October 1980.

[HELD75] Held, G.D., M.R. Stonebraker, & E. Wong; "INGRES-A Relational Data
Base System," Proc. NCC vol. 44, 1975.

[HEVN78] Hevner, A. & Yao, S.B., "Query Processing on a Distributed Data Base,"
Proceedings of the Third Berkeley Workshop on Distributed Data
Management and Computer Networks, LBL-7953 UC-32, Lawrence Berkeley
Laboratory, Berkeley, California, August 1978.

[W0NG77] Wong, E.; "Retrieving Dispersed Data from SDD-1; A System for Dis
tributed Databases," 1977 Berkeley Workshop on Distributed Data
Management and Computer Networks, Lawrence Berkeley Laboratory,
May 1977.

[CHEN76] Chen, P.P., "The entity-relational model - towards a unified view of
data."" Transactions on Database Systems 1,1 (Mar. 1976), pp. 9-36.

[W0NG79] Wong, E. & Katz, R.H.; "Logical Design and Schema Conversion for
Relational and DBTG Databases," International Conference on the
Entity-Relationship Approach to Systems Analysis and Design, Los
Angeles, 1980.

[W0NG80] Wong, E.: "The Design of Representation Schemas," Technical Report,
Honeywell Corporate Computer Science Center, Bloomington, MN, July
1980.

	Copyright notice 1980
	ERL-80-26

