Copyright © 1980, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

MODULARIZATION OF LARGE COMPUTING SYSTEMS

by
Sin~Kin Edwin Law

Memorandum No. UCB/ERL M80/27

20 June 1980

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

| 4

B)

Modularization of Large Computing Systers

Sin-Kin Fdwin Law

Computer Science Division
Department of Electrical Engineering and Computer SCiences
University of California, Berkeley
Berkeley, California 94720

1. INTRODUCTION

¥ith the growing complexity' of very large scale integrated -circuits
approaching a2 million devices on a single chip by mid-1980’s, some computer
aided design tools will be necessary to lessen design time. This project proposes
a set of modules from which the central processing unit of a large computer can
be assembled. The set of modules is parametrizable so that they are suitable for
silicon compilation. Two large computers, the S-1 [WiB0], developed at the
Lawrence Livermore Laboratory, and the VAX 11/780 [BeMu78], manufactured

by Digital Equipment Corporation, were analyzed.

2. APPROACH

Both top-down and bottom-up approaches were used to analyze the SA-lyand
the VAX. The S-1 was designed with the help of SCALD [McWi78a] [McWi78b]
(Structured Computer Aided Logic Design).l The SCALD language allows the pro-
cessor to be designed in a hierarchically structured manner. Top down analysis
of the S-1 is very easy and the result of the analysis is presented in section 3.
Bottom up gpproach has b'een equally eaéy because the output of SCALD
‘includes useful statistics about the bot'ftom level. These statistics are given in
section 4. Ana.ljrsis of the VAX has been much more difficult. I have gone through
several documents including the CPU technicél description [DEC78], the

TB/CACHE/SBI technical description [ﬁEC'?Ba], and the blueprints of the VAX

CPU boards. Top down analysis has to be done by following through the block
diagrams level by level down to the prints. The results are presented in section
5. The bottém—uﬁ approach is even more difficult. All the bottom level statistics
are gathered by going through the VAX prints page by page. These are described

in section 8.

“ .

f

3. TOP DOWN ANALYSIS OF 5-1

3.1. SCALD

.SCALD is a software package that was developed to design the S-1 Unipro-
cessor. SCALD is hierarchical in nature. Starting from a very high level descrip-
tion of the S-1, each higher level module gets expanded by calling lower level
modules until th.e.component levei is reached. SCALD consists of several pieces
of software including a graphics editor [He72], a macro expander, and a router.
The graphics editor allows drawings to be input which is then expanded by‘the
macro expander. The output of the router is the physical layout of‘the various

integrated circuits packages.

3.2. S-1 Architecture

S-1 is a pipelined processor consisting of 5721 ECL 10000 series integrated
circuits. Instruction preparation, operand preparation, and instruction execu-
tion are pipelined and each stage is controlled by a separate microsequencer.
The S-1 has two caches: one for instruction. and one for data. It is a 36-bit

machine with 2% virtual address space.

The processor consists of five main sections: the Instruction Box, the Execu-
tion Box, the Clock Generator, the Front End Interface, and a Dummy Box. This

is in fact the highest level macro in SCALD. This macro is shown in figure 1.

anarmen

X RESULT DATA C83<0:38>

INSTRUCTION BOX

Figure1 - S-1 CPU Macro

EXECUTION BOX
XOPACSO{________ XOP AC50<0:38> OP A C50
3 RESULT DATA C83 X RESULT DATA C83
XoPBeso|l X OPBCso<g:e> IxoPBcso
I BE
TIMING GENERATOR FRONT END DUMMY
INTERFACE
TG FBE D

&)

-
“

£

3.2.1. Instruction Box

The instruction box fnacro is shown in figure 2. The instruction box controls
the fetching of instruction and operands, the intera;ction with ’c;he créss bar
switch to read and write mein memory into and from the cache, and all 1/0
operations. It has two four-way set associative caches, one for instruction and
one for data; a least recently used replacement algorithm is used.AIt has three

256 words by 36-bit register files. One is the index register file and the other two

- are in the Data Cache and Regisﬁer File Macro.

The Instruction Address Arit.hﬁzetiq. Instruction Address Translation,
Instruction Cache, and Insti'uci';ion Buffer and Decode macros all have to do with
prefetching instructions. The Index Register File, Data Address Arithmetic, Data
Address Translation, and Data Cache -and Register File macros are for the
preparation of operands. Memory interface reads and writes to main mel"norf
through the cross bar switch. The data paths to main memory supports single

error correction and double error detection.

.
TBow CanTRel i
x j
‘ INSTR INSTR, INSTR
AvoR vauW ww MAP CACHE
Ayt : A W ————-de " e
A ~—{tHAP & BArs - FA D .:c_ .
‘ =™ InsTR
b PAA AR g L&“_‘,’L‘L__.,—, Gupeer
% " e
g 3 . i 'l% PEcooE
) ‘.bu;:&x REG A ADR DATA Map DATA CACHE Avp Te
e o DATA Aop e o CREGRE g .
] 1w paTR "DG;T“ ﬂat‘l’ﬂ M?Q. PR D Pﬁ D
Tse. Pty A D Wy o CR e
b X PA ™ BOoX
B W PATA ‘ WDATA W DATA
g SwiTey
,g: tHTERFACK,
. W) DATA FRoH
gd . HEM
N PARAMETER ST
& }7 na X of 4 cSslyi3(>
:e tot73 totio X of 8 CS8<¥:36>
— ' A ResuLT DAIA €63 (wa36>
OolX SEL c42 L '
’ 37 6% Eveo
T W61 L /3.4 % | PARITY TRER
T 8 suttch DA QBE _ A u:’:"ﬁ €50}
Reswiy LNs-¥) toies OPERAND
REGISTER
™4 8 X of B (5o

200
K]
°

of

i

3.2.2. Execution Box

The execution box macro is shown in figure 3. The execution box performs
variable 'p'recision arithmetic and logical operations. It consists of the EBOX
Register File, EBOX Arithmetic Logic Unit, Exponent Box and EBGCX Control mac-
ros. The operands prepared by the instruction box is passed to the execution
box and stored in the EBOX Register File. It is a dual port register file so that
either two reads or two writes can be done in each rxiicrocycle. It can also do

shifting, sign-extension and can deliver zero operands.

3.2.3; Timing Generator

It generates an eight-phase clock used in the processor. It consists of an
eight bit circular shift register which is initialized to the sequence 01111111. and

it just circulates the zero.

3.2.4. Front End Interface

It allows the front end processor to control the S-1 processor. The operator

at the console can start and stop the pfbcesspr. Internal states of the processor

can also te read ou: for clagactics purposes.

3.2.5. Dummy

It has drivers and receivers for all signais that go outside the S-1 processor
to help the design system. The logic in this macro is never built. It is just given

to allow the design system to check the SCALD runs.

s
PR |
Viva 133y X sin |y a.ma_

A T.N\« TNl

SepLT3p Inngad

¢9§:0) 597 VLT Pimsad ¥

¥
g

<95:9) 390 YLYq nmsay X

()$i0y 987 9 49X
(9£:2398 V¥ d° X

REIEL RN

N 197 133N U X5y JUS

Hg¥) Mug v
aaq L1g 3¢
LIy
93y
9 2%
8 9
[}
v oy ¥ Soy vV %
. .Q ¢ q m-.:nw _m &O..!'lllr.ll
<9ty MY g e o
say. Ay
Xag3, 'S E
a3 g s
2
a
9 Y T1YLRED
a3 Xegy
dranedsy

Execution Box of S-1

Figure 3

4.3. Macrosin S-1

There are a total of 258 macros definitions in S-1. These macros are
expanded, starting from a top-level macro and continuing downward until no
inacro remains which has a definition (i.e. all remain‘ing macros are available
devices). The following is a list of macros that have been called at least twice by

a higher level macro and consist of non-homogeneous integrated circuits.

Macros Called by # Calls # Chips
~ 37B x 256W IBOX Register Index Register File, Data 3 144
Cache and Register File .
Value Saver Data Address Arithmetic 2 28
Address Map Instructio:.n map, Data Map 2 314-
Map Cache Module Address map 4 112
Instruction Cache Module Instruction éache | 4 308
Cache and Register File Data Cache and Register File 2 30
Control
Data Cache Module Data Cache and Register File 4 312
Cache LRU Control Instruction Cache, Data Cache 2 82
20 bit Decode RAM . Instruction Decode 2 146
Register Lock Instruction Buffer and 4 12
Lecode, IRX Registers, P
Sequencer
Operand Descriptor Decode P Sequencer 2 28
38 bit Translate EBOX Register File 2 44
3 bit Merge 36 bit MUX Merger : 4 48
Total _ 1586
Table 1

These 13 macros represent 1586 'mtegrated. circuits which is only 287 of the
S-1 CPU. This means that only about a quarter of the machine can be assembled
given these 13 high level modules. Each call to these modules is identical. The
only parameters are the connections within the caller macro. We should also

notice that 5 out of the 13 macros are associated with caches and cache control.

-10-

4. BOTTOM UP ANALYSIS OF 5-1

The S-1 Mark I Uniprocessor was built with a total of 5721 ECL 10K series
integrated circuits. 50 different parts were used. The following table is based on
the output of SCALD. The first and second column give the part number and the
part name. The third column gives the the number of that particular integrated
circuits being used in the S-1 CPU. The fourth column gives the number of
transistors per chip. The data in column 4 is gathered primarily by counting the
number of transistors shown in the schematic of the Fairchild ECL Data Book
[Fa77]. For LSI ;:hips like the RAM’s, an estimation was made. I made the
assumption that there are four transistors per RAM cell. For comparison pur-
- pose, I count only the decoding logic associated with the cells. Transistors asso-
ciated with the sense amplifiers and read/write logic are not included in my
transistor.count in column 4. The fifth column gives the total number of transis-
tors for that particular part used in the S-1. This is obtained by multiplying

column 3 and column 4. o . .

4.1. Part List of S-1

Tvoe , '~ Name Quantity Tr/Chip Total #£Tr
MB7042 RAM258x1 301 1568 471968
10018 Counter 22 243 5348
10101 Quad OR/NOR . A : 443 28 12404
10104A Quad 2-input AND 39 25 975
10104B Quad 2-input AND 13 25 325
10105A Triple 2-3-2 input OR/NOR 197 21 4137
10105B Triple 2-3-2 input OR/NOR " 76 21 1596
10107 Triple Exclusive OR/NOR - . 13 3 468
10109A Dual 4-5 input OR/NOR ’ 51 19 969
10109B Dual 4-5 input OR/NOR 83 19 1577
10110 Dual 3-input/ 3-output OR 295 18 5310
10111 Dual 3-input/ 3-output NOR. 144 18 2592
10113 Quad Exclusive OR 168 72 11952
10115. Quad Line Receiver 49 20 980
10117 Dual 2-Wide OR-AND/ OR-AND-INVERT a2 27 864
10118 Dual 2-Wide 3-input OR-AND 1 24 24
10119 4-Wide 4-3-3-3 input OR-AND 2 25 50

10120 4-Wide OR-AND/ OR-AND-INVERT ' 22 28 616

-11 -

10130 Dual D Latch
10131 Dual D Flip-Flop
10132 Dual MUX w/Latch (Common Reset)
10134 Dual MUX w/Latch (Separate Select)
10138 Universal Binary Counter ’
10141 4-bit Shift Register
101454 64-bit RAM (16 x 4)°
10153 Quad Latch (Negative Clock)
10158 Quad 2-input MUX (Non-inverting Output)
10159 Quad 2-input MUX (Inverting Output)
10180 12-bit Parity Generator/ Checker
10161 Binary to 1-8 Line Decoder (Low)
10162 Binary to 1-8 Line Decoder (High)
10183 Error Detection/ Correction Circuit
10164 8-line MUX
10185 Priority Encoder
10170 g + 2 bit Parity Generator/ Checker
10171 Dual 4-line Decoder (Low)
10173 Quad 2-input MUX w/Latch
10174 Dual 4-to-1 MUX
10175 Quint Latch
10176 Hex D Flip-Flop
10178 Carry Look Ahead
10180 Dual 2-bit Adder/ Subtractor
10181 4-bit Arithmetic Logic Unit
10188 Hex D Flip-Flop w/Common Reset
10195 Hex Inverter/ Buffer
10197 Hex AND
10211 Higb Speed Dual 3-input 3-output NOR
10231 High Speed Dual D Flip-Flop
10405 128 x 1 RAM
2110-1 1024 x 1 RAM

Total

Table 2

4.2. . Functional Blocks of S-1

37
80

83

o o

179

115
25

82 -

12
10

508
12
21

298
332
95
420
11
21
138

12
43

-2

12

1176

B g

5721

32
32
78
82

308
212
524

96
68
68

100
53
53

132
78

205
83
70

108
51
88

122
73
71

382

107
24
38

18
118
796

1184
1920
4914

410
1848
9328

93798

288
7820
1700
8200

636

530
2112

38608
2460
1323

560

32184

16932
8360

51240

803
1491
52718
963
288
1548
128
236
9552

4344 5108544

5984773

The 50 different IC's can be classified into 19 different functional blocks.

- ————

Function Chip Quantity % S-1 Total#Tr 7%5-1
10104A 39 975
10104B 13 325
10197 . 43 1548

OR

Exclusive OR

Taverter

OR-AND/GR-AND-INVERT

Line Receivers

-

Flip-Flop (Register)

Lateh

10101

10105A
101058
10109A

.10109B

10110
10111
10211

10107
10113

101985

10117
10118
10119
10120

v o

10115

10131
10178
10188
10231

10130
10153

10175

-12-

95 1.66 2848 0.05
443 12404 .
197 4137
76 1596
51 969
83 1577
295 5310
144 2592
7 128
1296 . 22.85 28711 0.48
13 . 468
168 11952
179 3.13 12420 0.21
12 0.21 .288 0.005
32- 864
1 24
2 50
22 618
57 1.00 1554 0.03
49 0.88 980 0.02
80 1920
420 51240
9 963
2 238
491 8.58 54359 0.91
37 1184
3 . 288
95 8380

ta

i T

-13-

135 2.38 9832 0.18
Decoder ~
10181 12 638
10162 10 530
10171 8 580
30 0.52 1726 0.03
« Multiplexer
: 10132 63 4914
10134 5 410
10158 115 v ~ 7820
10159 25 1700
10164 508 ‘ 38608
10173 298 32184
10174 332 16932
1346 23.53 102588 1.71
" Adder
10180 21 0.37 1491 0.02
Carry Look-ahead
10179 - 11 0.19 . 803 0.01
Parity Generator
10160 ‘ 82 8200
10170 21 12223
103 - 1.80 9523 0.18
Error Detection/Correction
' 10183 6 0.10 2112 - 0.04
" Priority Encoder L
. 10165 12 0.21 2460 0.04
. Shift Register :
> . 10141 44 0.77 9328 0.18
Counter :
10018 22 5348
10136 8 1848

- a— — - a—

28 0.49 7194 0.12

- 14 -

Arithmetic Logic Unit

10181 138 2.41 52716 0.88
Register File/RAM

10145A 179 93798

MB7042 301 1354500

10405 12 4800

2110-1 1178 ~ 5292000

1668 29.18 5683860 . 04.97
Table 3

4.2.1. Register Files/ Memories in S-1

The random access memories in the S-1 are used in various functions. They
can be register files. They can be organized as queues or stacks. They are also

used in caches and control stores.

The S-1 contains 5 register files : an index register file, 2 user register files,
an EBOX register file, and a T register file. The T register file is used by the

microcode to calculate operand addresses. The size of the various register files

are given below :

Register files/Memories Size Chips Quantity Total #Tr
Register files :
Index 37B x 256W MB7042 37 168500
User . 37Bx256W MB7042 74 /333000
EBOX - 36B x 32W 10145A 38 18864
T ' 38B x 16W 10145A 9 4716
Total | o 156 . 523080
Memory
MB7042 190 297920
10145A 134 70218
10405 12 9552
2110-1 1178 5108544
Total o 1512 5488232

" Table 4

4.3. Ten most frequently used functional blocks by chips

Parts - number. 7% S-1
Register file/Memory 1668 29.16
Multiplexer 1348 23.53
OR/NOR 12986 22.65
Flip-Flop - 491 8.58
XOR 179 3.13
ALU : 138 2.41
Latches 135 2.36
Parity Generator 103 1.80
AND/NAND 95 1.68
AND-OR-INVERT - 87 1.00

Total : . 5508 96.28

4.4. Ten most frequently used functional blocks by transistors

Parts Transistors 7% S-1
Register files/Memory 5683860 94.97
Multiplexer 102568 1.71
Flip-Flop 54359 0.91
ALU 52718 0.88
OR/NOR ' 28711 0.48
X0R : 12420 0.21
Latch 9832 ©0.16
Parity Generator 9523 0.18
Shift Register ‘ ' 9328 0.18
Counter : - 7194 0.12

Total - 5970511 99.76

-18-

4.5. Ten least frequently used functional blocks by chips

Parts number % S-1
Error Detection/Correction 8 0.10
Carry Lookahead Generator 11 0.19
Inverters 12 0.21
Priority Encoder 12 0.21 .
Full Adder 21 0.37
Counter 28 0.48
Decoder 30 0.52
Shift Register 44 0.77
Driver/Receiver/Transceiver 49 0.88
AND-OR-INVERT 57 1.00
Total 270 4.72

4.68. Ten least frequently used functional blocks by transistors -

Function Transistors % S-1
Inverter 288 0.005
Carry Lookahead Generator 803 0.01
Driver/Receiver/Transceiver 980 . 0.01
Full Adder 1491 0.02
ANT-OR-INVERT 1554 0.n3
Decoder 1728 0.03
Error Detection/Correction 2112 0.04
Priority Encoder 2480 - 0.04
AND/NAND 2848 0.05
Counter 7194 0.12

Total . 21458 0.35

.V

-4

-17 -

5. TOP DOWN ANALYSIS OF VAX 11/780

The VAX 11/780 Central Processing Unit has a total integrated circuits
. count of 2492. The floating point accelerator is an optional unit and is not

included in the statistics. The block diagram of the CPU in shown in figurs 4.

To make the comparison between the S-1 and the VAX more meaningful, I
made a similar system partitioning for the VAX as that for the S-1. Therefore
'the VAX CPU consist of the Insfruction Box, the Execution Box, the Clock Gen-

erator, and the Front End Interface.

$ s8]

NdD XVA

oo,

TRANSLATION PA BUS Sel
—
BUFFER | L
REQUEST LEVELS
_ VBUS DATA s8l
CACHE CONTROL
! H ! i
b .
>
.
' CSBUS
L || L] i
MD BUS -
| 01t | | | | |
FLOATING DATA INSTRUCTION ROM RAM THAPS AND
POINT GRD DTS e{ BUFFER AND CONTROL CONTROL INTERRUPTS
ACCELERATOR DECODE STORE STORE ARUITRATOR
! J i ! tf |8 !
uPC
vus ,
. 1D BUS
SBI - SYNCHAONOUS BACKPLANE INTERCONNECT { HRIIBL
X . CLOCK ; . JOIAGNOSTIC -
VA - VIRTUAL ADDRESS LINES crock A——Ilciocx contnow | consore’ JsioNats | micro
PA BUS - PHYSICAL ADDRESS BUS OUTPUT GENERATOR INTENFACE ' SEQUENCER
MD UUS - MEMORY DATA BUS : : "
10 BUS - INTERNAL DATA BUS
‘ Q BUS
CSUUS- CONTROL STORE BUS -
'VOUS - VISIBILITY BUS LocaL
US - VISIDILITY 8 o 11CP TERMINAL ELOMPY
UPC - MICROPROGRAM COUNTER AND 8K CYRATI AXV- 11 Lomey
o o MEMORY "1 aenors 7
GRG- GENERAL REGISTER DAVA = renminaL

\

-QI-

-19-

5.1. Instruction Box

Refering to figure 4, the Instruction Box consists of six modules:

Instruction Buffer and Decode - It handles instruction prefetch and instruc-

tion decoding.

Translation Buffer - It contains a cache of page table entries which is used

to convert virtual address to physical address.

Data Cache - It is two-way set associative using random replacement algo-

rithm.

Synchronous Backplane Interconnect (SBI) Control - It handles all main

memdry reads and writes and all I/ O operations.

Traps Interrupts Arbitrator - The VAX has 32 interrupt priority level. Excep-
tion handling has the highest priority.

Microsequencer, the PROM Control Store and the Writable Control Store -
They coordinate all activities within the CPU.

5.2. Execution Box

The Execution Bor i5 shcwn in figure 5. The Execution Bex is divided into

four independent sections and each section can operate in parallel with the

other three sections:

1.

Address section - It is responsible for calculating operand addresses and

updating the program counter.

Arithmetic section - It contains the arithmetic logic unit and thfee 16 by 32

bit register files.

Data section - It holds the operands and performs shifting, byte alignment
and unpacking floating point data types.

r-—n_-.—..-—-—- oneme Gsem emwve

- VAIAX 31:10

ExXP _EXPONENT SECTION i
—_"]" | v meme e e T VA 08:02 r———e—eTO AUITHMETIC SCCTION
NABS j ,vAx MODE —eb = VAMX 156:00
noM l [BUS Cs (34:32)
aUS €5 115.13) |7 vamx vamx \ j[CorCk]
| | {
| | rc
15 €5 119.18) BUS CS 29:26] TBUF ADDRESS nuUs ¢S 134:321
[Cotiiex - LINTERFACE J ~GREK
C— Cauay Sw— L Bt
: | R <o | ApoORESE SECTION
: SUF VAL P laus cs 134:32 / "c";;_\Y_
AUS CS 124) 0us CS {29:26] BUS €S [17:16) Curek"] f i l
.l state] | X EETE : .
E'__/L— | L/ PCMX / PCARD
BUS CS 23 T N
[[_s‘_:__}o——-L_t_,;g_é__ij 1 § AuS CS 134:32)
= PC 03:00
ARITHMETIC SECTION - . - - - BUS CS {251 8US CS [95:92] NMX
DUS CS 163:581 DUS CS (87:65) m.lu Cuvak }+{ va | [via{ uinc] v
~ — — — — — __#1 4244
KMX N UEHF _;a— zeno 2 '5 DATA SECTION ~ -
DEL) | TO/FROM ‘ L]
T BUS CS {69:66] gc:‘" FLOATING | ﬁi;o AL MD
[MASK UALU FOINT 1
RO ‘ ACCELERATOR
‘ DFMX
BUS CS (84:82) M'u—\ oS CS 181:60] A
UoMxX 8 _——_ A \' [uamx . DECIMAL BUS CS [57:55) MEMORY
1] - BUS CS {77] CONSTANT usi D NIDBLE SWAP DATA.
/ amx \ / amx) URMX BUS CS [54:61) BUS ¢S [91:88]
. sc L i : v L uox | — UDK
FLOATING POINT OPERANDS _J . |
1SD, EALU EXP, DREG) pC DMX :
L
SHIFT
BUS CS [29:261 HUS CS 141351 RAMK IMaTn
| 1x INTERNAL
I [_uwsc_) {__usro | I —1_ 0 | TERNAL
| DATA
‘RLos LATCH C A o °
PCSV STACK) :{gc“ o (LL g’cn A -1 pGEN
16x9 REGISTER| LlREGISTER] Lo NEGISTER ekl [
PC SET C SET B SET A I BUS
? =y T nc) {RB) {nA) '
. % g3 RAADDRESS, 10 X 32 {16 x32_ 16X 32 :
O £ KMX03:00, 1 I
£ & avosuneir SCRATCH PAD REGISTEN SETS
‘ g. (9]) r.an
m .
Q 3
N

o
[

-21-

4. Exponent section - It contains an exponent ALU to process the exponent
value of floating point numbers. It is performed in parallel with the fraction

processing performed in the Arithmetic and Data sections.

5.3. Clock Generator

VAX has three clocks: the processor clock, the time of year clock and the
interval time clock. The processor clock provides a 200 ns cycle with four 50 ns
time states per cycle. There is also control logic for start, stop, and single step-

ping the processor.

5.4. Console Interface -

The Console Interface allows the operator to control the processor. It allows
bootstrapping, initialization and software update. It can access the CPU's major

buses and key control points.

-22.

6. BOTTOM UP ANALYSIS OF VAX

The VAX 11/780 CPU uses 90 different integrated circuits. Total chip count
is 2492. Column 1 and 2 are the Part numbers and the Part names. Column 3 is
the number of that particulér chip used in the machine. The data in column 3 is
gathered by adding up the part list for each printed circuit board of the CPU.
This part list is supélied with the VAX blueprints. Column 4 gives the number of
‘transistors per chip. This is obtained by counting the transistors shown in the
schematics of the TTL Data Book [TI78], the VAX System Maintenance Guide
[DEC78b], the Fairchild ECL Data Book [Fa77], and the National Linear Data Book
[Na78]. Like the analysis of the S-1 in section 4, I estimated the number of

transistors for PROM's and RAM’s by assuming one transistor per PROM cell and

four transistors per RAM cell. Again only the decoding logic is counted for com-

parison purposes. Column five is obtained by multiplying column 3 and 4.

B8.1. Part List of VAX

Part # "~ Part Name Quantity Tr/Chip Total #tr
74300 Quad 2-input NAND 83 16 1328
74302 Quad 2-input NOR 21 24 504
74303 Quad 2-input NAND (o.c.) 3 12 36
74504 Hex Inverter 147 24 - 3528
74305 Hex Inverter (o.c.) 4 18 72
74508 Quad 2-input AND : 47 24 1178
74510 Triple 3-input NAND _ 50 .12 600
74S11 Triple 3-input AND 37 18 666
74514 Hex Schmitt-trigger Inverter 1 80 30
74320 Dual 4-input NAND 29 8 232
741821 Dual 4-input AND o ' 1 12 12
743822 Dual 4~input NAND (o.c.) . ‘ 7 8 42
74LS27 Triple 3-input NOR - s 18 ' 18
74332 Quad 2-input OR 8 32 192
74337 Quad 2-input NAND Buffer 27 20 540
74340 Dual 4-input NAND Buffer 6 10 60
74551 Dual 2-wide 2-input A-O-I 38 12 432

. 74564 4-2-3-2 input A-0-1 . . 122 12 1464
74565 4-2-3-2 input A-0-I (o.c.) 8 10 80
74574 Dual D Flip-Flop 41 32 1312

74385 4-bit Magnitude Comparator 11 178 1958

74588
745112
74123
7418132
745133
745138
745139
745140
74148

745151

745153
743157
745158
74C180
74C161
7415185
74173
745174
748175
745181
745182
745194
745240
745241
745251
745253
7435257
745258
74.,823¢
7415273
745280
745283
7415298
7435373
745374
74LS377
75451
75452
10101
10104
10105
10107
10121
10124
10125
10131
10174

-23-

Quad 2-input XOR

Dual J-K Flip-Flop

Dual Monostable -

Quad 2-input NAND Schmitt-trigger
13-input NAND '

3-to-8 Decoder

Dual 2-to-4 Decoder

Duak 4-input NAND Line Driver
8-to-3 Priority Encoder

1-of-8 MUX

Dual 4-to-1 MUX

Quad 2-to-1 MUX

Quad 2-to-1 MUX (inverted)
Synchronous 4-bit Decade Counter
Synchronous 4-bit Binary Counter
Parallel Load 8-bit Shift Register
4-bit Register (tri-state)

Hex D Flip-Flop

Quad D Flip-Flop

Arithmetic Logic Unit

Carry Look-ahead Generator
4-bit bidirectional Shift Register
Octal Tri-state Inverting Buffer
Octal Tri-state Buffer

8-to-1 MUX (tri-state)

Dual 4~to-1 MUX (tri-state)

Quad 2-ti-1 MUX (tri-state)

Quad 2-to-1 MUX (inverted tri-state)
3-bLit Addressable Latch

Octal D Flip-Flop

9-bit Parity Generator/Checker
4-bit Binary Full Adder

Quad 2-input MUX with Storage
Octal D Latch

Octal D Flip-Flop

Octal D Flip-Flop

Dual Peripheral Driver

Dual NAND Peripheral Driver
Quad 2-input OR/NOR

Quad AND '

Triple 2-3-2 OR/NOR

Triple Exclusive OR/NOR

- 4-wide 3-input 0-A/0-A-]

Quad TTL to ECL Translator
Quad ECL to TTL Translator
Dual D Flip-Flop
Dual 4-to-1 MUX

' 30

18

.23

11
12
110
154
91
41

-

74
35
58
13

103

[9) B W = =3
N WO oNO0Oo

3

R, RA N0 WO =

>
= O N

80

30
20

- 66

72
12
92

52

64

168
156
264
156
122
84
310
50
156
60
60
52

BRERG

160 -

144
164
148
192
192
164
10
14
28
28
21
32
23
48
38
30
84

400
1320.
180
20
108
1518
432
132
1104
5720
9856
4004
1804
168

1248

19536
156
4270

4704

4030
- 250
18068
3600
600
884 -
768

17186

132
310
1760
8208
1476
1184
5952
192
o84
30
- 14
140
58
84
32
23
192
1596
270
84

10176
102186
25810
26810
85568
8540

8641

8646 -
933518
DCoo3
DCO004
DC005
‘DC101
DC1i02
LM 339

8209
93420A

s v a—

-24 -

Hex D Flip-Flop

High Speed Triple Line Receiver
4 bit Shift Register

Quad Bus Transceiver

B4-bit Register file (tri-state)
Quad Bus Receiver

Quad Bus Transceiver
Transceiver '
Synchronus Binary Up Counter
Interrupt

Protocol

4 Bit Transceiver

SBI Arbitration Chip

8-input Comparator

Quad analog voltage comparator
PROM 1K x 4

PROM 2568 x 8

PROM 258 x 4

PROM 64x8

PROM 32x 8

RAM 64 x 9

RAM 1Kx 1

Total

Table 5

69 .

76
55
12

19
46

= P

14

116

Y

12

213

2492

90
38
84
84
304
16
36
320
132
184
196
148
400
356
30
4440
2592
1568
664
340
2456
4344

90

38
5796
6384
16720
192
36
6080
6072
184
196
592
400
356
30
31080
300672
3136
- 664
. 340
29472
925272

———————

1459979

6.2. Functional Blocks of VAX

The 80 different IC’s can be classified into 24 different functional blocks :

Function
AND/NAND

OR/NCR

Exclusive-Ck

. Inverter

Buffer

-25-

Chip

743500
74303
74508
74310
74S11
74520
74LS21
74522
743133
10104

743502
74LS27
74S32
10101
10105

74586
10107

74337

74540

- 745240

74S241

83
3
47
50
37
29
1
7
18
2

277

21

> O

11.11

37

1.49

147

0.24

151

_7

60
10

6.08

103

4.13

Quantity 7% VAX Total #Tr

1328
38
1128
600
666
232
12
42
108
56

- 4208

504
18
192
140
84

938
400
32

432

3528

72.

3600

540
60
3600
600

4800

7% VAX

0.29

0.06

0.03

0.25

0.33

Schmitt Trigger

" OR-AND-INVERT

Driver/Receiver/Transceiver

Monostable

TTL-ECL/ECL-TTL Translator

Flip-Flop

-26-

74S14
74L5132

74551
74564
74565
10121

745140 -
75451
75452
10216
26S10.
86840
8641
8646
DCO05

74123

10124
10125

74574
743112
74173
7435174
743175
T4LS273
743374
74LS377
10131

0.08

[

76
12

19

6.70

128

42

5.14

0.24

48

1.85

30
20

50

432
1464
80
23

1999

132
30
14
38

6384

192

36
6080
592

13498

180

192
15986

1788

1312
1320
156
4270
4704
1760
192
- 984
270

0.14

0.92

0.01

Latch

Decoder

Multiplexer

Addar

Carry Look-ahead

Comparator

Parity Generator/Checker

Priority Encoder

Shift Register

-27-

10178

743373

7435138
745139
7415259

-y s

74S151
745153
745157
7435158
743251
743253
745257
745258
7415298
10174

- -

745283

745182

74585
DC102

743280

74148

1 90
191 7.87 15058
31 1.24 5952
23 1518
6 432
5 310
34 1.36 2280
110 - 5720
154 9856
91 4004
41 1804
17 884
16 768
39 1716
3 132
8 1184
1 84
480 19.28 26152

9 0.38 1476
5 0.20 250
11 1958
14 4984
25 1.00 8942
57 2.29 8208
12 0.48 1104

1.03

0.41

0.15

1.79

0.10

0.02

0.48

0.56

0.08

Counter

Arithmetic Ligic Unit

Register File/Memory

Qthers

-28-

7551865
745194
25510

74C160
74C161
93516

745181

85568

8209

93425A
PROM 1Kx 4
PROM 256 x 8
PROM 256 x 4
PROM 64 x 8

PROM 32x8 .

@ e s w0 o s

LM339
DCO03
DCO04
DC101

Table 6

6.2.1. Register files and Memories in VAX

74 19536
103 16068
69 5796
2486 9.87 41400 2.84
1 168
8 1248
486 6072
55 2.21 7488 0.51
13 0.52 4030 0.28
55 16720
12 29472
213 925272
7 31080
116 300872
2 3138
1 664
1 340
407 16.33 1307356 89.55
1 30
1 184
1 186
1 400
4 0.16 - 810 0.086.

The register files/memory category is further subdivided into register files,

programmable read only memory, and random access memory. The VAX has

only 3 register files of size 16 words by 32 bits. All three are in the Data Path

secfion. Two of them contains duplicate copies of the general purpose register '

file which is 18 words by 32 bits. The third one is for holding temporary storage

-29-

for addresses or operands generated by executing the microcode.

R;gister file/Memory Size Chips Quantity Total # Tr

Register file

General purpose 36B x 16W 855868 24 7298

Memory

RAM | 85568 31 9424
8209 12 - 29472
93425A 213 925272

258 964168
PROM 127 335892

~ Table 7

-30 -

6.3. Ten most frequently used functional blocks by chips

Function chips 7% VAX
Multiplexer 480 19.28
Register files/Memory 407 16.33°
AND/NAND 277 1111
Shift Register 246 9.87
Flip-Flop _ 191 7.67
AND-OR-INVERT 187 8.70
Inverter - 151 6.08
Driver/Receiver/Transceiver 128 5.14
Buffer 103 4.13
Parity Generator 57 2.29
Total 2207 88.56

8.4. Ten most frequently used functional blocks by transistors

Function Transistors % VAX
Register files/Memory 1307356 89.55
Shift register 41400 2.84
Multiplexer ' 26152 1.79
“lip-Flop : 15058 1.03
Driver/Receiver/Transceiver 13498 0.92
Parity Generator 8208 0.56
Counter 7488 0.51
Comparator 6942 0.48
Latch 5952 0.41

Buffer 4800 0.33

Total - 1436854 98.42

-31 -

6.5. Ten least frequently used functional blocks by chips

Function Chips 7% VAX
Schmitt Trigger 2 0.08
Carry Lookahead Generator 5 0.20
Exclusive-OR 6 0.24
Monostable 6 0.24
Full Adder 9 0.36
Priority Encoder 12 0.48
Arithmetic Logic Unit 13 0.52
Comparator 25 1.00
Latch ' 31 1.24
Decoder 34 1.38
Total 143 5.72

6.6. Ten least freguently used functional blocks by transistors

Function - Transistors 7% VAX
Schmitt Trigger ' 50 0.003
Monostable 180 0.01
Carry Lookahead Generator 250 0.02
Exclusive-OR - 432 0.03 -
OR/NOR 938 0.08
Priority Encoder 1104 0.08 -
Full Adder 1478 0.10
TTL-ECL/ECL-TTL Translator 1788 0.12
AND-OR-INVERT 1999 0.14

Decoder. 2260 0.15

- ——— ————————

Total 10477 0.71

-32-

7. PROPOSAL OF THE SET OF MODULES

Based on the analysis of the S-1 and the VAX, this section proposes a set of

modules. The rationale of the choice of modules are :

1. The modules identiﬁed should be general and independent of the particular

architecture used in the two machines analyzed.

2. The modules should be parameterizable so that they can be used in

different parts of a new design.

3. The modules should represent some of the primitives that are useful in

implementing computers.

4. The modules provided would be used in an interactive environment by the

designer of a new computer.

7.1. High Level Modules

Using the top down approach, five modules are identified : Set associative
cache, Arithmetic logic unit, Microsequencer, Shifter, and Programmable logic

array. These five modules are described in the sections following.

7.1.1. Set Assoeciative Cache

Both machines use set asso_ciative caches very extensively. The S-1 has two
separate caches for instruction and data. Each one is 4-way set associative with
a line size of four words. It holds the most recently referenced 4K words. I’he S-1
also has two separate translation buffers. One of them translate virtual instruc-
tion addresses to physical instruction addresses. The other one translates data
addresses. Each translation buffer uses a 4-way set associative cache that holds
the most recently referenced 64 page translations. The line size of the transla-

tion buffer caches is one word.

The VAX has only one data cache. It is 2-way set associative with a line size
of one word and has a capacity of 2K words. VAX also uses a cache in the transla-

tion buffer. It is two way set associative with a line size of one word. Half of the

_33-

84 locations are reserved for system page table entries, and the other half are -
for process page table entries. System page table entries are not affected during

a context switch.

- The proposed set associative cache module is shown in figure 8. A descrip-
tion of the modules and the parameters is shown below. It should be noted that

the parameters begins with a "C".
Parameters:
C1 Number of address bits
C2 Data word size (bits)
C3 Total capacity of cache (words)
C4 Set size of the cache
C5 Line size of the cache
C8 Number of parity bits for each data word
C? 0dd or Even parity
Since it is C4-way set associative, it has C4 memory banks and each

memory bank holds —(C’,ii- words. This makes the low address register logzg—i.

The high address register is then C l—logag. The two address registers latch

the physical address referenced in the current instruction.

-34 -

Jyenap
Yy

¥orpyaay

Ny Inoy PNHo d
. / o T
Xaw e TTW
/ J—...on_..ur :
. N LR
N
N.l\(l/ . N N dwe)
N3auy
- g — -—
?—..sc&
5% .PSOR 58 .—soa
- S
¥y vayp
P ‘e g
P 3 . v‘.
o Wv(@
h.:oﬁ

"By Yagy Mo

) Ayvy

cmd

.-.:oA

O3Y ¥y

Cache Module

Figure 8

-35-

During a cache read, the parity generator will generate C6 bits of C7 parity,
where C7 is either odd or even. The parity bits are concatenated with the output
" of the high address register and compared with the output of the tag memory
indz2xed by the low address register. If they are equal, it is a hit. Otherwise, it is
a miss. The output of the tag memory is checked for parity. The low address
register also indexes the data memory and C4 words are read out. The hit lines

are used to select one out of C4 words in case of a cache hit.

During a write, depending on the cache strategy used, the data may or may
not be written to the cache. If a ‘write-not-allocate strategy is used, only main
memory is updated. Otherwise logic ektemal to this module has to decide which
cache location should be thrown out in case of a miss. If it is a hit, the appropri-

ate hit line should enable the corresponding bank of data memory.

This module can be further parameterized by making the address registers
and the parity generator and checker optional. Also, depending on the technol-
ogy used for implementation, the output data multiplexer can be a s1rnp1e OR

gate if the output of the memory is effectively open-circuited when it is not

selected.

in crler to make this moecule general, severzl f2atures usuzlly associalad
with caches are not considered. Logic for replacement in case of a cache miss is
not implemented within the module since replacement algorithi’n is primarily
architecture dependent. Also protection mechanism and logic for dealing with
valid bit or dirty bii'. is not provided. It makes this module independent of the

cache strategy.

7.1.2. Arithmetic Logic Unit

In the S-1, the arithmetic logic unit has been used in several different sec-
tions of the machine. It is used in the Data Address Arithmetic maecro, the
instruction decode macro, EBOX ALU macro, Exponent box macro, and the EBCX

sequencer macro. All the arithmetic logic units used in these macros have input

-36-

mulliplexers at either one or both inputs to the ALU. Also, one of the inputs to

the multiplexers is usually either a register holding the operands or a register

file.

The VAX uses three ALU's. One in the arithmetic section of the Data Path,
cne in the expdnent section of the Dat;a Path and one in the Condition Code
Exception. Both ALU's in the Data Path have multiplexers at both inputs. The one
in the arithmetic section has three 18 word register files, two go to the B multi-

plexer and one goes to the A multiplexer.

This module is shown in figure 7.

IJ\I l
.{y
>
j/

QP A

REGISTER

OP B

Figure 7 - Arithmetic Logic Unit Module

-37-

Parameters:
Al Data path width (bits)
| A2 Size of input multiplefzer A
A3 éize of input multiplexer B
A4 Size of register file (words)
A5 Single port or dual poft register file

Both A2 and A3 can be zero, meaning that input multiplexer A or B or both
is non-existent. If A4 is zero, no register file is needed. If A4 is one, there will be
only one register. If A5 is one, the i‘egister file is on1y> associated with MUX A. If
A5 is two, the register file is only associated with MUX B. If A5 is three, two
separate register files are associated with MUX A and B. If A5 is four, there is

one dﬁal port register file.

7.1.3. Shifter

A shifter made out of multiplexers is a rather popular part in both
machines analyzed. It is used to align data on certain word boundaries. It is used
to do multiplication and division when used together with the ALU. It can also be

used to perform the shift instructions in the instruction set.
Parameters:

S1 Data path width (bits)

S2 An array which specifies the number pf bits that can be right shifted.

S3 An array which specifies the number of bits that can be left shifted.

An example of a shifter module is the EBOX shifter in the S-1. It can shift
right 1 to 16 bits and shift left O to 47 bits. S1 is 72 bits. S2 is an array of 72 ele-
ments. The first 16 elements have values 1,2,3,....,18. The rest of the elérnents is
empty. S3 is an array of 72 elements. The first 48 elements have values
0,1,2,...,47. The.rest. of the elements is empty. This shifter module is shown in
figure 8. ' o

ACo:35> /P BCot16>/¢: B 11-35 NZ/H_;LEFT O

[<]

| Sed

A(lszzs)/Pz'8<o:3n/1>:_§33-35';42/n 5 LEET 1b
. lelTh
AGa:353/p : BLo338)/C: 41w preer 32ty - C
DRAGIH 1 2 Aoi3s> /P BSo2 ;KiGur 16 s s)
L5

g aan

anpo]N Iajyigs e jo aIdmexg[

SanNT Li3-1Co:5> /

CoMMENT
SHIFT RIGAT | To 16/SHIFT LEFT © To ¢]

SeNT = 11 xX ¥X + SHIFT AiGar 16- XX3X CU To 16)
SCNT = YY ¥x XX CYY ~11) + SHIFT LEFT YYxxxx (e To ¥7)

TLI81Co:532/M

$S10:4e) /M : 81 4i-53 NEM; LEFT &

[
$01K4:940 /M 2 S8 ¢$-53uEMzLat-ri, 428
o L1} L SSa<otl1d /M !
SSICO: 492/ _: 131 wI-ssugmsizm 8 f, ' e
200123832/ sbeppualy o BN
$92€0:31>/M = §52 38-41 N2/ ;LEFT =
$82€1:38> /M 3352 39-%¢4 WZIM sLEEY | 338
' o T<o:38>/P
$82<2:39>/H 882 Uo-%| N2/M ; LEFT 2 N
M3
SS2< 344> /1 ;Lerr 3 3.8 ENJ

N\

\r—

T
* N ~

-39 -

7.1.4. Microsequencer

7.1.4.1. S-1 Microsequencer

The S-1 has four separate microsequencers to do extensive pipelining. The
Instruction Box contains three sequencers: the 1 Sequencer, the P Sequencer,

and the F Sequencer.

7.1.4.1.1. I Sequencer

The I Sequencer is a powerful micro-programmed controller. It can branch
anywhere in its control store. It can make micro-subroutine calls which can be
nested up to 16 levels deep. It can aI:SO performs microinterrupts by stacking
the return address. It does all complex operand address calculation, cont;'ols
the caches and translation buffers, controls main memory transfers and execute
complex instructions. The control store is indexed by a binary counter which
can either count up or load from a multiplexer. The output of the counter goes
to a register called the microprogram counter. The microprogram counter is.
connected to the input of a micr6 stack. The stack is actually a 18 word random
2ccess memory indexed b7 a 4 bit up/4cwr crinter. A pustk will inerement the
counter and data is written into the RAM. A pop will decrement the counter and .
data is read. The output of the control store goes to a register and is parity

checked. Size of the control store is 1K by 224 bits.

7.1.4.1.2. P Sequencer

The P Sequencer controls the reading and writing of register direct
operands. For non-register-direct operands, it starts up the I Sequencer. This is
a much simpler microsequencer. It does not use a counter to address the con-
trol store. Instead, it always branch to the next address field of the current

micro word. It does not have a micro-stack. Control store size is 1K by 84 bits.

-40 -

7.1.4.1.3. F Sequencer

The F Sequencer controls the fetching of instruction and the execution of
execute instructions. It branches on whether the instruction length is 1, 2, or 3
words, and whether the instruction wants to be followed by the next sequential
instruction, or branch. Addressing the control store is similar to the I
Sequencer. It also uses a counter which increment or load. The output of the
control store is parity checked. It does not have a microprogram counter nor a

micro-stack. Control store size is 256 by 24 bits.

7.1.4.1.4. EBOX Sequencer

The EBOX Segquencer has similar features as the I Sequencer. It uses a
counter and a multiplexer to determine the next address. It has a micro pro-
gram counter and a micro-stack. The capacity of the control store is 4K by 198

bits.

7.1.4.2. VAX Microsequencer

It has a multiplexer to select one of the many sources of the next address
ol (ke cortrcl store. However, it does not heave a couster 7't get its next addrecs
from the next address field of the current control word. It does have a micro
program counter which is called the UPCSV REG. It also has a 16 level deep

micro stack.

The VAX has two control stores: the PROM control store and the Writable
contol store. The PROM control store is 4K by 99 bits where three of the 99 bits
are parity bits. The output of the control store is parity checked. The writable
control has similar structure but the size is only 1K by 99 bits.

-41 -
7.1.4.3. The Microsequencer module

After analyzing the 5 different microsequencers, the following microse-

quencer module is proposed. It is shown in figure 9.

To
ConNTROL
Storze
BINARY ’ AbdR
—] MUX | Din uPC Dout
T COUNTER
/ LD N
Din
UP/DOWN
: Adr p STACK
P COUNTER .
u/d Dout

Figure 9 - Microsequencer Module

—42-
Parameters:
M1 Size of multiplexer
M2 Size of binary counter (bits)
M3 Size of micro-stack (words)
M4~ Number of bits of each micro-word
M5 Number of parity bits for each micro-word

An input multiplexer will select a source for the next address of the control
store. The output of the multiplexer will go to the pafallel input of a binary up
counter. The size of this counter will be specified. The size of the control store is
then 22 words. This counter will be controlled by the current microword. If the
next sequential microword is desired, the counter will simply be enabled so that
it will count up with the incoming clock pulse. If a branch is desired, the counter
will load from the output of the multiplexer. A microprogram counter ﬁll be
provided to store the address of the current microword. The micro-stack will be
optional depending on the needs of the designer using this module. The micro-

stack pointer is an up/down counter with size logaM 3 bits.

The control store will be governed primarily by two parameters: the
number of words and the size of each word. All the address decoding and buffers

will be provided. Another parameter will be the number of parity bits.

i

-43 -

7.1.5. Programmable Logic Array

As the machine complexity grows, it becomes clear that the PLA is a better
solution for implementing random logic. Recently, Data General announced their
hizhest performance minicomputer, the MV/8300 [AlHo80]. They claimed that
10% of the ‘CPU,components is implemented by PLA. In places where propagation
delay is not critical, PLA becomes a very attractive alternative for random logic.
In VLSI, PLA has a more regular structure and less chip area than conventional
random logic. It also makes the debugging stage much easier. Small errors in
the logic equations could be corrected with a least amount of changes in the lay-

out.

The parameters are the logic equations to be implemented by the pro-

grammeable logic array.

7.2. Low Level Modules

Using the bottom up approach, 12 modules are identified. There are 19 low
level modules in S-1 and 24 in the VAX. I grouped the simple logic gates under a
category for both machines. These logic gates include AND, NAND, OR, NOR, XOR.
iaverter, buS.r, aad AND-OR-IMVERT. I also greupes thz stcrage el:raents, ths
flip-flops and the latches under the same category. Since parity generator is a
kind of error detection, it is grouped with error detection / correction circuits
under the same category. Arithmetic elements like the adder, the carry looka-
head and the ALU are grouped under arithmetic logic unit. Finally, the Schmitt
trigger, monostables, and logic family translators are discarded because they

represent a very insignificant percentage of the machine.

1. Logic gate

2. Driver »
3. Flip-Flop/ Latch
4. Decoder

S. Multiplexer

6. Comparator

- 44 -

7. Error Detection and Correction
Priority Encoder
Shift Register

10. Counter

11. Arithmetic Logic Unit

12. Register file/ Memory

7.2.1. Logic Gate Module |

Logic gates including AND, NAND, OR, NOR, exclusive OR, inverter, and AND-
OR-INVERT will be used in speed critical regions or implementing very simple

logic equations where a PLA is not justified. It will also be used as buffers.
Parameters :

G1 Type

G2 Number of inputs

G3 Data Path Width (bits)

7.2.2. Driver Module

The module will be used only for interfacing the VLSI computer with the ot
side world. It will not be as significant on the chip level as it is on the board .

level.

7.2.3. Flip-Flop/ Latch Module

Parameters : -) ‘
F1 Type - | D-type, JK-type, T-type or D-latch
F2 Data Path Width (bits)

A register can be made from this module by specifying F1 to be D-type and
F2 to be the length of the register.

-45-

7.2.4. Decoder/Demultiplexer Module
Parameters:

Del Type - Decoderor Demultiplexer

De2 Number of inputs |

De3 Inverting or Non-inverting outputs

A decoder tree can be assembled by specifying Del. The second i:arameter,

DeZ2, is provided to minimize extra logic. The number of select lines is logzDe 2.

7.2.5. Multiplexer Module
Parameters:

Mul Number of inputs

Mu2 Inverting or Non-inverting output

Mu3 Data Path Width

A multiplexer tree can be assembled by specifying Mul. The number of
select lines is logoMwu 1. A vector of multiplexers can be assembled by specifying

Mu3.

7.2.6. Comparator Module
Parameters:
Col Type - Equality or Magnitude Comparator

Co2 Data Path Width (bits)

7.2.7. Error Detection and Correction Module

Parity generator/checker and Hamming code generator/corrector can be

assembled using this module.

Parameters :

-48 -

E1 Type - parity (single error detection) or

hamming code (single error correction, double error detection)

E2 Data word size (bits)

. The S-1 uses the MC 10183 (a Motorola part) for generating the modified
Hamming single-error-correction, double-error-detection (SEC-DED) code used
in the IBM 370/145 memory. An example of this module for data word. size of 64

bits is shown in the appendix.

When writing into memory, the check bit generator generates check bits
which are stored with the data bits. To generate these check bits, one error
detection-correction chip and one parity generator- checker are used for each

bit. The detail of connections depends on the data word size.

During the memory read operation the fetched check bits previously gen-
erated are exclusive-ORed with newly generated check bits to generate the syn-
drome bits. The syndrome bit decoder would determine if there is any error. If
single error is detected, the decoder would generate a "fix" word which has a "1"
in the position of the error bit and zero otherwise. That bit is ."ﬁxed" by
exclusive-ORing with the incoming data word. Multiple errors are also detected

by the dzcoder.

7.2.8. Priority Encoder Module
Parameter :
P1 Number of priority levels

The number of outputs is logzP 1.

7.2.9. Shift Register Module

Parameter:

-47 -

SR1 Data Path Width (bits) An N bit shift register can be assembled by specifying
SR1.

7.2.10. Counter Module
Parameter:
Ct1 Synchronous or Asynchronous
Ct2 Type - Binary count, decade count or divide by N count
Ct3 If Ct2 is divide by N count, Ct3 is used to specify N.
Ct4 Up-down count capability - up-down couﬁt or up count only
Ct5 .Preset capability
Ct6 Data Path Width (bits)

A great variety of counters can be assembled from this counter module.

7.2.11. Aritbmetic Logic Unit

Parameters
al Type - Full adder or arithmetic logic unit
a2 Type of carry propagation - carry-save, carry propagate or carry look- .
ahead.

a3 Data Path Width (bits)

7.2.12. Register File/ Memory module

Both the VAX and the S-1 are memory intensive.designs as revealed by the
statistics provided in table 6 and table 7. The obvicus parameters for this
module is number of bits per word and total number of words. For lé\rge
memories such as the control store, all address decoding should be provided by
the module. Also, in order to improve reliability, some kind of error detection

scheme such as parity generating and checking should also be provided.

Parameters :

-48 -~

Register file or memory size (words)

Word size (bits)

- Brror detection scheme

Number of parity bits

0dd or even parity

Parity or Hamming code

-49 -

8. EVALUATION OF THE SET OF MODULES

8.1. Evaluation of the high level modules

Using the high level modules proposed in ths previous section, 827 of the

S-1 and 87% of the VAX can be built. The two tables given below provide useful

statistics about how important each module is. A part list for each module used

in both machines is given in Appendix B.

Module
Cache
Arithmetic Logic Unit
Shifter

Microsequencer and Control Store

Programmable Logic Array

Total

Module
Cache
Arithmetic Logic Unit
Shifter

Microsequencer and Control Store

Programmable Logic Array

Total

#chips 7% S-1

#chips 7% VAX

760 13.28. 193 7.74
545 9.53 113 4.53
141 2.46 106 4.25
801 14.00 274 11.00
1480 25.52 832 25.38
3707 84.79 1318 52.88
Table 8
#transistors % S-1 Ztransistors
1834094 27.30 5348986
171200 2.86 24432
7191 0.12 7924
3045816 50.89 897540
33401 0.58 10745
4891502 81.73 1275337

Table 9

-50-

8.2. Evaluation of Low Level Modules

The relative importance of each low level module is revealed by the statis-
tics in table 10 and 11. Examining table 11 reveals that memory is the single
most important ingredient in modern computer design. Multiplexer comes
second. The high percentage of shift registers used in the VAX is due to the shift-
iné of internal states of the processor t;o the front console for diagnotics pur-
poses. The S-1 uses multiplexers to access the internal states of the processor
from the front console. Also, the various VAX data types require alignmenﬁ of

data which involves shifting.

Both machines uses a lot of flip-flops and registers. Random logic gates

comes fourth in both machines, if the shift registers in the VAX are discarded.

If we look at table 10, again discarding the shift registers in the VAX, the
same four categories are the most important building blocks of the two comput-
ers. The comparators for the S-1 are built from exclusive-OR gates therefore

leaving a zero chip count in that category.

-51 -

8.3. Comparison of VAX and S-1 by chips

- Comparison is done by grouping the functional blocks identified in section
4.2 for the S-1 and section 6.2 for the VAX into the various low level modules. The
ccmparisca is done in terms of chip counts. Top five most frequently used

modules are given in column 4 and 7.

S-1 VAX
Module chips % S-1 Rank chips % VAX Rank
Logic Gate 1639 28.65 2 741 29.74 1
Driver 49 - 0.86 . - 128 5.14 .
Flip-Flop/Latch 628 10.94 4 222 8.91 5
Decoder 30 0.52 34 1.36
Multiplexer 13468 2353 3 480 19.28 2
Comparator: 0 0 : 25. 1.00
Error Detection/Correction 109 1.90 57 2.29
Pricrity Encoder 12 0.21 12 0.48
Shift Register 44 0.77 246 9.87 4
Counter 28 0.49 556 2.21 .
ALU 170 2.97 5] 27 1.08
Register File/Memory 1668 29.16 1 407 1833 3
Total 5721 100.00 2434 97.87
Table 1C

This does not represent 100 7% of VAX because some of the low level modules of)
VAX have been discarded. (see section 7.2)

8.3.1. Register file/Memory Category

Since the register file/memory category represent a significant portion of
both machines, it is subdivided into register files, programmable read only

memory, and random access memory.

Parts chips % VAX chips 7% S-1
Register files 24 0.98 158 2.73
PROM 127 5.1 0 0
RAM - 256 10.27 1512 26.43

Total 407 16.33 1888 29.16

-52-

8.4. Comparison of VAX and S-1 by transistors

Comparison is done in terms of the number of transistors in each module

and the percentage by transistors of that module being used in both machines.

Module
Logic Gate
Driver
Flip-Flop/Latch
Decoder
Multiplexer
Comparator
Error Detection/Correction
Priority Encoder
Shift Register
Counter .
ALU .
Register File/Memory

Total

8.4.1. Register file/Memory Category

S-1
Tr % S-1 Rank Tr
1 45821 0.77 5 15977
980 0.02 13498
64191 1.07 3 21010
1728 0.03 2260
102568 1.71 2 26152
0 0 8942 -

11635 0.19 8208
2460 0.04 1104
9328 0.186 41400
7194 0.12 7488
55010 0.22 4 5756
5883880 94.97 1 1307356
5984773 100.00 1457151

Table 11

VAX

]

% VAX Rank

1.09
0.92
1.44
0.15
1.78
0.48
0.56
0.08
2.84
0.61
0.39
89.55

5

4

. 99.80

Again, the register file/memory category is subdivided into register files,

PROM’s and RAM’s.

Parts Transistors
Register files 14784
PROM 335892
RAM ' 956680
Total 1307356

% VAX
1.01

23.0

65.53

89.54

Transistors
523080
0
5160780

5683860

% S-1
8.74

86.23

D

94.97

a

-53-

9. CONCLUSION

Analysis of the two machines shows that compuf..ers have not been built in a
very structured or regular manner. The S-1, hierarchical as it appears, has only
14 higher level macros that ha;re been calied more than once by higher still
macros. Future VLS] computers must employ a more regular design to over-
come the increasing complexity and lack of design tools [PaSe]. The modules
identified suggest the importance of this design direction. The Microsequencer
and the PLA are the first steps towards regular designs. Computer designers
have already noticed memory intensive designs as the viable approach to com-
plex computing system realization. However, memory intensive design
appréaches should not be abused in VLSI computer design. Chip area is still pre-
cious. Some systems of logic equations could be minimized with very little effort,

which makes PLA realization more attractive than ROM realization.

By studying the two computers, two sets of rnodules have been identified.
The set of low level modules will represent virtually 100 7% of both ﬁachines. The
set of high level modules is provided to lessen the design time by assembling fre-
quently used structures in modern computer architecture like the cache
modu'e and the microsequenc2r module. The iZentification qf thesz moinrle« is
the first step towards developing the tools that will cope with the expanding .
potential of VLSI.

-54 -

10. . REFERENCES

[AlHo80]

[BeMu78]
[DEC78a]
[DEC78b]
[DEC79]
[Fa77]
[He72]

[McWi78a]

[McWi78b]
[Mo78]

[Na78]

Alsing, C.J., Holberger, K.D., Holland, C.J., Rasala, E.J., and Wallach,
S.J., "Minicomputer Fills Mainframe’s Shoes", Electronics, May 22,

1980, p. 130.

Bell, C.J., Mudge, J.C.,and McNamara, J.E.,"Computer Engineering",
Digital Equipment Corporation, pp. 409-428.

VAX 11/780 TB/CACHE/SBI Control Technical Description, Digital
Equipment Corporation,Document No. EK-MM780-TD. |

VAX 11/780 System Maintenance Guide, Digital Equipment Corpora-
tion, Document No. EK-11780-PG-001.

VAX 11/780 Central ?rocessing Unit Technical Description, Digital

Equipment Corporation, Document No. EXK-KA780-TD.

"ECL Data Book”, Fairchild Camera and Instrument Corporation,

Mountain View, California.

Helliwell, D., "The Stanford University Drawing System", Stanford
Artificial Intelligence Laboratory, Palo Alto, California, 1972.

McVWilliams, T.M.,and Widdoes, L.C.. "SCALD: Structured Computer-

Aided Logic Design"”, Proc. Ann. Design Automation Conf., 15th, Las o

Vegas, 1978 (IEEE, ACM, New York, 1978}, p.271.

McWilliams, T.M.,and Widdoes, L.C., "The SCALD Physical Design Sub-
system”, Proc. Ann. Design Automation Conf., 15th, Las Vegas, 1978.

Technical Information Center, Motorola Inc., "MECL High Speed

Integrated Circuits", Motorola Inc., Phoenix, Arizona.

"Linear Databook”, National Semiconductor Inc., Santa Clara, Cali-

fornia.

[PaSe80]

[TI76]

"

[Wis0]

-55-

Patterson, D.A.,and Sequin, C.H., "Design Considerations for Single-
Chip Computers of the Future”, IEEE Transaction on Computers,

Vol. C-29, No. 2, February 1980, p. 108.

The Engineering Stafl of Texas Instruments Inc. Semiconductor
Group, "The TTL Data Book for Design Engineers”, 2nd Edition,

Texas Instruments Inc.

Widdoes, L.C., "The S-1 Project: Developing High-Performance Digi-
tal Computers”, IEEE Computer Society COMPCON Spring 1980

Meeting, San Francisco, California, February, 1980.

-56 -

APPENDIX A

Error Detection Correction Circuits

_ This is a copy of the data sheet of the MC101683 Error Czotection/ Correction
Circuit from the Motorola MECL Data Book[Mo78]. It gives an example of using
the MC10163 together with the MC10160 Parity Generator/Checker to do single

error correction, double error detection for ‘a 64 bit data word.

RCI0163/MC1055
RACIQ183/MC16583
73N A hout- g T)
h\d’é L i 13 i‘?vB/."!‘&.}":} @391:3
ERRCR DET=CTICON -
CORZECTION CIRCUITS .
.' . . .
The MC10163/MC10553 and the MC10193/ and double-bit error detection can ba done on
. ‘MC10593 are orror detection and correction @ word of G4-bit length. Only eight chack bits
circuits, T!:lev. aro building blocks designed for (82-87) need be added to the word. A useful
use with memory sysiams. They offer cconomy = feature of this building block is that the
in the desicn nf error detection/correction MC10193/MC10393 option _genarates the"
subsystems for main-frame and add-on memory parity of all inputs to the block. Thus, if the
systems. For example, using eight MC10163°s MC10193 is applied in 3 byt sequence,
] together with eight 12-bit parity, checkers individuat byte parity is automatically availoble.
. . (MC10160), singla-biterror c2tection/carrection - . .

MCTO1.63IMC1 0553 LOGIC DIAGRAM

MC10193/MC10593 LOGIC DIAGRAM

B1{11)7 81(11)?
52 Codé e2(10}3
—15(3)P0A 15(3)P4
B4(16)12 B84{1G6)12
B7{15)11 ., B7ISIM
.. 3t7ne3 ——3(71P3
B65(8)4 ’ 85(812 - .
BG(3)S A . B6915 -
2(6)P0g . B e Lt
B0{13)9 BO(13i2 .
83(14)10 B3(14)10
. _) .
N :
. ., -
- 14{2)P1
. .
120Gy P
T IBricoDE - . . ' .o MOYORILA CODE
POp = B1, 82, RS, BY y . ’ Lo P =01, 83,25, 07
POg = €0, B3, 8S, b6 . Ve = Pia 1(S) : . P2-02,53,86,07
1~ 01, 83, 83, 87 R Vg2 @ Pin 16(4) : 3~ 03, 8S, 8S, 07
. . P2=82,83,08,07 . . * Vgg = Pin 2(12) . ‘ P4 = BY, B2, B3, U7
. P3= B4, 89, 8BS, B7 . . PSeByte(u0,1,2.3.4,5,6.7)
Pp ~ 520 m\¥ tvp/pkg (No Loe3) . T tog = 7.5 03 tyo (to P5)
g = S.0mtyp) . ’ . . . * « 5.0 e typ (0 P =PI)

Numbers ot ends of terminals denote pin numbers for L and P pacianes.
Numbaers in parenthesis denote pin numbers for F packags. . “ .-

.

. S 3-62 | K

.

MC10163/MC10563, MC10193/MC10593

/ SWITCHING TIME WAVEFUARMS O 25°C _

Ingt 9{13) m1
Output 2(6) BS Bissd ot V py
POg (110153 \ _/_ } Even Pyrity on inputs
' {Seeizle ¢.3yram)
Output 2(6)

PS5 Byta (MC101923) \ /
4

Input 9{13) —/—___W
Outpuz 2(G) __/——_L , Oz Parizy on Inputs
POg (Mmmm (Sea 15gic disgram}
Qutput 2(6) .

Csvw (MC10193) ‘

P SUFFIX
PLASTIC PACKAGE
. CASE 649

MC10163 and
NiT10193 onldy

: et
L SUFFIX Hesett }'ﬁ!
CERAMIC PACKAGE | Plr% ﬁl

- CASE 620

F SUFFIX
/\/@ CERAMIC PACKAGE
s .CASE 650

MC10563 and
MC10593 only

)

=
L ')

. . -55°C | -30°C | +25°C | +85°C | +125°C
. Characteristic. Symbol } Min! Max| tain [Max| Min{ fdax| Min{Max|Min|Max | Unit
Power Supply Drain Current tg | —~|137) — {137} - }125] — [137} — | 137 | mAdc
Input Current . LaRH nAdc
Pins 4,6,10 . - 1375 —]350] — |220f -~ |220] - | 220
Pins 5,7,9,11,12 :) — | 450] — {425| — |265] — |2G5| — | 285 .
Switchipg Times X ns
Propagation Delay : tpd) .
MC10163/MC13563 . 1.3] 70{13}68115| 65|15} 7.1.115]| 75
MC10193/MC10593 B to P1-P4 131 7.1]13|68]15|65[15|7.1|15] 11
. BtoP5 18 9.1118|39] 201 85(20}9.2{2.0/f 10
Rise Time, Fall Time - t+,t- ns
{20% to0 80%} .
MC10163/MC10563 1.1l 4411421111 39(11]44]1.1} a5
MC10193/MC10593 1.1] 431 1.1 1421 1.1} 39(1.1{44]1.1} 46

~55°C andl +1259C test values apply to MCI10Sxx devices only.]
* MCIITICITACICSES APPLICATIONS INFORMATIO

The MC10163/MC10553 is a building block
for generating the modified Haumming single-
error-correction, double-error-detection
(SEC.DED) code ‘used In thz 13M370/145
memory. While the MC10163 can afso be used
for g=narating other patterns, it is optimized
{or generating the pattern shown in the H
matrix of Figure 1.

When writing into a memory, the MCT0163
iIs used to ganerate tha eigh: check bits
{C0-C22, CT) which ara storad with the G4
data bits (BO-B63). Thes2 chuck bits are
ganerated by taking the parity of afi data bits’
markoed with an X in the appropriate row of the
H maotrix. (CO, C1, €32, CT, are even parity;
C2, C4, C8, C17, are odd parity.) To ganerate
théese check bits with the building blocks, eight
MC10182°s and eight MC10180 parity checkers
are used. One MC10163 is connected to each

" byte of data and the outputs of these building
blocks are connected to the eight MC10160
parity checkers, one for each check bit. Figure
2 shows which connections are required f{i.e.,
CO is the cven parity of output POp of the
MC10163 on tho “zero’ byte of daty, output

: 363

POz of the “zero™ byte, #0pn of the “one’
by, -, POy of the “three byar anc cata
bit 32.) .

During the memory .read operation, the

" . fetched check bits praviously ganerated {(as
deszribed} ac2 exclusive-Ofied with newly
.genarated CO-C32 to generate syndrome bits
S0-S32. Syndrome ST is 0 special cass where
ST is the cven parity of all eight fetched check
bits and all 64 ferched data bits. For dazer-

. mining the typa and location of un error:
1. If all syndromes (SO-S32 and ST) are
- false, there iz no ecror. .

2. M ST is true and SO-S32 are false, the
CT is in error.

3. 1t ST is false2 and one or more-of SO-~S32
Is true, an uncurrectable crror has occurrad,

4. 1f ST is teue and one or more of SO-~-S32
is true, simply add the S1-S832 bits 10 gat the
binary location of tha error (S1 has weight 1,
S$2 weight 2, 84 weight 4, etc.)

Dato bits BO and B32 are special coses of
this location technique: B0 is in error it ST, SO,
and S32 are true; B32 is in crror if ST, S0, S1,
and S32 are true. | .

RC101563/MC10553, MC10193/MC10393

. ' ' - soqwan MAg - W
) . 1I0GLA0 €101 ~ N (AN 105 Sasum
. ol {VYo4 96y 864 YVYoa €Vos Bog lUng OVogeud
. o9 %4 LYosa 08y OVos S8gy SVoy YUty YVO4 -ZED
. t0pg tVYpg OFB4 9Vog €8¢ CVog4 . TV 3 TVod 0D
18909 Vo4 984 8Y04 CBoa C¥o4 8.3 Vo4 =82
ted 6cd sed v8d ted ed 1éd CCd =0 .
.. Lzd 024 . 5% v2d t2d 224 ol 024 =22
(ze)8 Ld 8td sid vid £td tid "¢ O1d=1d
(201 £9q¢ CVog 2804 2ZVog Coa tVou 0fu4 OVo4 = 0D
NOILYNINIO NY3LLVL SpL/0LE — 2.3HNSIL
-0 L] L3 X Aﬁ » n " E 2] ..m ‘l L] L] .« ¥ " E " x L L] x L ® L I § L] 1 3 n
ZED X ¢ M N X X ¥ M OX K M X K N X X X X X X W oRONKKZNLENXDNEDN *
g ¥ x x ¥ X X X N X % N R K X X X X N X ¥ N XN X ¥ R N N K S N AKE
3 ® % X ¥ x N x = LR B IR S AN B BN ¥ X % M % B oRWN . - * X N X N X n
TO y 3 n o % X N K X x ¥ x X n % N "X N Y . LN X ® R X] | I
ND x w L LI L 3 3 LI | * n L § x = L L 3 L = R L I - u % | I
[$¢ I8 2 « t ® 1] 1 4 . " L] 1] n ” t L] L] B AN LY . L] L] L 3 . " L § 1 3 L] L] L 3 L]]
(%] . " E N %Y XN R W WX N X ENRNNXXEXNRN " x LN 2 B x
M0 CI2D 19096505 ¢S D355 V5 TS 25150565 Oy Ly Or Sy pY Cr 2P 1P OV GE DL LEOCSCPE CELC 1COT GO 08 22T I CS L 1L ST6IBILINNGINCIZI IO 6 B L 9SG ¥y C 2 1 O
\ VAN /\.l.|||\/ / \ 7\ AN 7\ AN /7
M A N N V” el N/
¢ 3LAQ 9 31A0 ¢ 31A0 ¥ 3LA8 € 31A0 Z31A8] 31A8 023LA0
' T NYILLVd SUL/0LE — L 38NN)
R ~non 9, ° ! 0

3-64

14C10153/MC10553, MC10193/MC10593

Tha MC10193/MC10593 is a building block
for generating mocified ttomming SEC-DED

nsoxsene codas. 1t can be usad for any length data word
= - “and for 3 veriaty of codes The MC10192 is
e » X optimized for codas organized on a byie .
8 » repatitive basis and has the advantag? of auto- =
g . " maticaliy supplying whole byta parity (PS5 . ":
-] » output). White it is possibla to use a number of
":’ ¥) criteria for choosing a pattern, the paitarn of
E) YL . Figure 3 was choszn on the basis of speed and 2
B wew no» easo of error location decoda. As can be sean in L
E : : : : : x . the H matrix of Figure 3, the pattern is repeti.
; [tive by byta with the various rows genarated by
§ ®uw w o= . only fiva combinations of bit parities within the
3, : : : * " bytes. For the 64 bit data word in the example
S wxmmww of Figura 3, the eight chack bits (B34 to0 B71)}
§ “ um wu are ganerated by the odd parity of all data bits
. we ms indicated by an X in the appropriate rows. The
w g e ’ § syndromes S1 to S8 are ganeratad by including
: 2 : :: . - : - . the ferched cl'!eck bits in the soma ganarator -
= é . mw ’ that originally ganerated the check bits
< S ux mwaan . The pattarn of Figure 3 is easily genaratad
5 3 Lt ’ by using cight MC10193 devices, one for cach
2 gun = -n data byte and eight MC10150 parity checkers,
E Guw man ona for each syndrome/check bit. The connac- : }
'l: : . . Y - tions of building blocks and parity checkars aro ’
< € un- = . shown in tsbulor form in Figura 4 and in
c. Fans mxne schematic form in Figure 6.
5 g en et ' Once the syndrome bits (S1 to SB) have
g 8 aun -n been formed from fetched data (B0 to B63)
o) § : : : " : . and ferched check bits (BG4 to B71), the
S ','5 xew x - datermination of type and location of error is
s S ewn . simply done: . :
1 g - : - ::: . S 1. If all syndromas are false, there s no
4] R = i error.
1:_:! E “w www 2. it one syndromae'is true, the correspond-
= %‘ - v : : : ing check bit is in error.
=4 Cw .~ waw . 1 mare than nrpo synd-ome '3 true 9
i % . LR tha naritv «f all synd cine. . ever, « raulticle
§ - : : * : : : {uncorrectable) error has occurred.)
fe v x wa 4. f more than one syndroma is true, and -
E' ranx ww . the parity of all syndromes is odd, 2 single .
H . o ercor has occurred and is easily locatad by the
-] xw ww circuit of Figure 5. :
E x ww . Figure 5 gives the error location circuit for
: R the exampla paitern. The outputs EBO to EBS
O w wa = are a one-of-aight-high code giving the byte in
-4 mwew - . error, Outputs ECD to EC3 giva the binary .
; . . . location of the bit in error within the located ~,
o n mxw = byte. Since this location process can occur
- LI simuttaneously with the determination of error o
: - : : * : :: type described, the entire error correction))
®>x w mmw * sequenca (using a tosgling fetched doata fatch) -s
- mowomown : takes less than 20 ns. This is becousa an error ~ |
b _occurrence datactor is a simple ORing of S1 R
. - 'EESE 10 S8. Tho error locator has simultaneously
bd . wun focatad tha orror which is then corracted as
through the crror was a single (and thernfore

correctabla) crror. The parity of syndromas
then datermines if the error was indead single,
and intorrupts the CPU If the orror was an
. : " uncorractable (multiplo) error. Since uncorras-

365 : | .

MiC106163/MC10563, MC10193/MC10593

table data is unusable without speciat handiing, single erorr correction on a non-inzerrupt basis
the CPU would b2 interrupied anywray; thae with only a 20 ns inemory Systens access time
fore this autumeasic correction of any error penalty.

a5 ifitwere sing!> does not create any problemns. These techniques can, of course, be
This fast error correction technique aliz.ss extended to lorge or smaller data words,

FIGURE 4 — f12 PATTEN BUILDING BLOCK

>
L3 -
2 St= P10 P11 P12 P13 PS3 PSS PS5 B34l
r S$2= P20 P21 P22 P23 P33 PSS P57 B(6S)
S3= P30 P31 P32 P33 P54 PSG P57 BI6S)
$S4= P40 P3Y P32. PS3 P55 PSG PS? B(67)
S5~ P13 PIS P18 P17 PSO PSt P52 8(63)
S8= P24 P25 P25 P27 PS50 P51 PS3 B(69)
S7- P33 P35 P35 P37 P50 PS2 P53 BI(70)
S8= P44 P4S P43 P37 PS5t PS2 PS3 B(7V).
Where for Pyag: N = 2C30793 Outpue
. - 1 = Byt Numbdar
FIGURE 5 — M2 PATTERN CORRECTION MATRIX
S5 7., t Jo——¢80
7 s7 55 D:—- -€8t
=S o2 s eco
. g Do_” s2 €c1
: —
¥ o Do-— €23 s c2
57 : ss &co.
25, D°'— ess 85 ———-EC1 ‘Bytes 4.7
s7 £c2 ’
Sig s3g Do—eas
;2 55 .
S1 g §3 g D— €H3
o o .
S'sig 53 D—— €87
X 3
o

3-66

MC10153/MC10563, MC10193/MC10593

FIGURE 6 — SYMDROME ARND CHECK BIT GENERATOR, M2 PATTERN

»
E

_{
’i
|

|
°{

8it

NOAVDMWN~D

—{ MC10193

15 —imC10193

16

23— MC10193

24

31 —] 11C10193

32

39 —] MC10123

40 —1

47 o] MC10193

48 e

56 — MC30193

56

63 =1 PAC10193

10

3
a0
$0

1?2
22
32
&2
o2

13

33
43
$3

1a

24

s

%3

5
2.
35
3
55

q° tor Chazh Bits
=0’ for Syn3->mMes
10 "
? 12 3 — 51
S4 55
56
- | MC 10160
64 —j > ‘ -
20 21
22 23 [—s2
543 55
S? -
MC10180
885 —
30 k1]
32 33 p—eee §3
53 56
< X4
| MC10160
(-3 -—-j :
* 40 &)
&2 43 — 54
55 %6
L 527
e i »—'—"— MC10160
867 — .
14 A1) -
16 1? —— §5
50 [
< 52
&3 — . tC 10160
23 ”
26 27 _—
. ' 0 s . se
j : $3
g6 —] NC 10160
34 3s .
. 3% -7 b g7
50 52
— 53 !
o . SO 1ac10160
870 g
2 as
3 a? s S8
51 52
b MC 3015
&7 S0

3-67

-57-

APPENDIX B

Evaluation of high level modules

The following tables are obtained by going through the S-1 Ergineeing Draw-
ings, the output of SCALD, the VAX blueprinl'.s.v and the VAX CPU Technical
Description. First, I located the various modules used in both machines. Then I
compiled a part list for each occurrence of the five high level modules. Finally, I

multiply the number of a particular integrated circuits used by the number of

transistors in that chip to get the total transistor count.

High Level Modules in S-1

Module

Cache

ALU

Shifter

Part #

10101
10108
10113
10145A
10160
10170
2110-1
MB7042

10145A
10158
10159
10164
10173
10174
10176
10179
10180
10181

10174

#chips % S-1 #Tr %S-1
4 112
32 608
68 4896
184 96416
10 1000
10 630
296 1285824
156 244608
760 13.28 1634094 27.30
194 101656
2 136
19 1292
36 2738
86 7128
54 2754
4 488
11 803
21 1491
138 52718
545 9.53 171200 2.86
141 2.46 7191 0.12

Module

Microsequencer

and Control Store

PLA

Part #

10018
10105A
10138
101454
10158
10161
10164
10173
10174
101786
2110-1
MB7042

AND/NAND
OR/NOR
INVERT
AND-OR-INVERT

-58 -

 #chips % S-1 #Tr % S-1
'8 1944
2 42
P 616
24 12576
11 748
2 108
28 2128
2 216
4 204
6 732
688 2988672
24 37632
801 14.00 30456168 50.89
95 2848
1298 28711
12 288
57 1554
1480 33401 0.58

25.52

"

-3

High Level Modules in VAX.

Module

Cache

ALU

Shifter

Part # #chips % VAX #Tr % VAX
74504 2 48
743884) 103
7435257 9 3986
74S280 32 4608
748373 3 576
8209 12 29472
93425A 114 495216
DC102 12 4272
193 7.74 534698 36.62
745151 32 1664
743153 23 1472
745157 3 132
745181 | 13 4030
745182 5 250
743194 4 624
745283 9 1478
85568 24 14784
113 4.53 24432 1.87
745153 29 18586
745157 2 88
743257 8 352
25510 67 5628
108 4.25 7924 0.54

Module

Microsequencer

and Control Store

PLA

Part #

745151
745153
74S157
745175
745194
745240
745251
745253
745280
745283
85568
934254
PROM (2586 x 8)

AND/NAND
OR/NOR
INVERTER
AND-OR-INVERT

S s s @ wr ————

-60-

chips 7% VAX #Tr % VAX
3 156 -
5 320
1 44
4 338
1 156
33 1980
1 52
8 288
15 2180
2 328
4 2464
99 430058
100 259200
274 11.00 697540 47.78
277 - 4208
37 938
151 3600 .
187 1999
832 25.36 10745 0.73

A

“

-2

I

Acknowledgement
This work was supported by the Defense Advanced Research Projects
Agency (DoD), ARPA Order 3803, monitored by the Naval Electronic System Com-

mand under Contract NOCO39-~78-G-0013-0004.

	Copyright notice 1980
	ERL-80-27

