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DEFINITION

Sweeping automaton (sa): a 2dfa which can halt or
change the direction of its head motion only at the ends of
the input tape.

PROBLEM SET UP AND MAIN RESULT.

This note is a refinement of a work of M.Sipser [1].
His main result is:

(*) For all n there is a language Bn which is accepted by
an .n-state lnfa but not by any sa with less than 2 -1
states.

i.e". lnfa are. exponentially more succinct than sa. We
add the following contribution:

(**) 2dfa are are exponentially more succinct than sa.

The following lemma is fundamental in our proof.
LEMMA: Let L be a language on a finite alphabet X such that

1) If w belongs to L then all substrings of w belong to L.

2) In L there is at least one word x such that for all
words u and v in L uxv belongs to L.
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3) There exists a string d over such that

i) d has length 2

ii) d does not belong to L

iii) after the removal of any of its non empty sub
strings d. belongs to L.

Then L cannot be accepted by an sa with less than 2 -1
states.

PROOF: The proof can be carried out by following, step
by step, the demonstration given in [1] that Bn cannot be
accepted by an sa with less than 2^-1 states. In fact pro
perties (1),(2) and (3) hold for Bn and they are the only
features of Bn involved in that proof.

In order to prove (**) we define the language An. Say
that a bipartite graph is of type 1 if no two edges meet at
a right node and of type 2 if it is a complete bipartite
graph. the alphabet Xav of An consists of all bipartite
graphs satisfying these two properties:

i) The graphs have n left nodes and n right nodes
ii). The graphs are either of type 1 or of type 2. A

sequence of such symbols constitutes a string by identifying
right and left nodes of adjacent bipartite graphs.

A string s on In i

o-

o

•o

o

some members of X.

a string over X[.

s a word of An iff '

a) there is a path leading from a leftmost node of s to a
rightmost one.

Definition: a chain of a string s is a maximal
string of s consisting of symbols of type 1..

sub-

Say a chain is good iff there is a path from one of its
leftmost nodes to one of its rightmost nodes. Then s

February 12, 1980



- 3 -

belongs to An iff

b) all chains of s are good.

Note that a chain is circuit free and thus (b) can be
checked using depth first search by a 2dfa with Ofn2")
states. We summarize these observations in the following
theorem 1.

THEOREM 1: An is accepted by an 0(n2)-state 2dfa.

THEOREM 2: An.cannot be accepted by an sa with less than 2
-1 states.

PROOF: We show that An satisfies the conditions of the

lemma. Let w belong to An and s be a substring of w. As
there is a path from a left most node of w to a rightmost
one, such a path must also connect a leftmost node of s with
a rightmost node of s. Thus property (1) holds for An. The
word consisting of a single complete bipartite graph is a
valid x for property (2). Let's now construct d-^ (a valid d
for An): write down 2/)v columns of n nodes numbered 1 through
n (top-down). Order the subsets of In={l,...,n} first by
cardinality and then lexicographically. In the ith column
from the left, mark the nodes that correspond- to the ith
subset of In. For i=l to 2°l'-l, connect the 1st marked node
of column i with the 1st marked node of column i+1, 2nd with
2nd and so on; let last marked node connect to all remaining
marked nodes (at most one) of column i+1. For unmarked
nodes, connect the last of them in column i with all
unmarked nodes of column i+1. d for n=3 looks as follows

° y8
v .®

d^ has length 2 .' In d^, no path runs from a leftmost node
to a rightmost one but the removal of any non empty sub
string will create'one. Thus 6a^ has. all the properties
required in (3) ; this completes the proof.
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