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Abstract

It has been known for some time that many control system design

requirements can be expressed as differentiate inequalities. More

recently, it has been shown that important structural properties such as

robustness and low noise sensitivity can be expressed as nondifferentiable

inequalities involving the singular values of a system or return

difference transfer function matrix. This paper presents an optimization

algorithm which permits all these constraints to be considered.

^Research supported by the National Science Foundation Grant ECS-79-13148.



1. Introduction

The fact that multivariable control system design can be carried out

by using constrained optimization algorithms has been known for some

time, see e.g. [Pla, P21, P5, Zl, G2, G3, Ml, M2], Until recently, the

constraints used were in the form of differentiate inequalities. It is

now becoming clear that a number of fundamental design requirements can

be expressed as inequalities involving the singular values of appropriate

transfer function matrices, such as the complex valued compensator-pi ant

transfer function matrix G(x,u>), with x denoting the design parameter

[LI, L2, Dl, D2, D2a, SI]. These inequalities are usually frequency M

dependent and have to be satisfied over a range of frequencies. Specifically,

the requirement that the closed loop system remains stable in the face of

additive or multiplicative perturbations of G(x,u)) is expressed in terms

of singular value inequalities in [L2, D2, SI], In [SI] we find that to

ensure that a high order system is stable when modeled by a low order

system via singular perturbations, it is sufficient to satisfy certain

singular value inequalities. Low sensitivity to additive noise and

parameter perturbations is expressed as singular value inequalities in

[D2a].

From an otpimization point of view these singular value inequalities

pose two serious problems. The first is due to the fact that neither

singular values nor their squares are differentiate, while the second

one is due to the fact that when some singular values of a matrix become

close to being equal, it becomes extremely difficult to compute the

corresponding singular vectors with any precision. At the present time

there are no published optimization algorithms which are directly applicable

to control system design in the presence of frequency singular value

inequalities. In this paper we present an optimization algorithm capable



of solving such problems. The algorithm makes use of outer approximations

for problem decomposition [G2] and of some concepts of nondifferentiable

optimization described in [CI, C2, M3, L3, P6, P3], Computational results

for sample problems such as those reported in [Dl], appear to be quite

encouraging.

2. The problem and its decomposition

In the context of optimization, the problem of describing a linear

multivariable control system presents itself as follows. We assume that

the structure of the compensators has been determined on the basis of

theory such as in [Dl, D2, M4], and what remains to do is to compute a

compensator parameter vector x€ ]Rn which minimizes a differentiate

cost function f(x) subject to constraints of three kinds:

(a) gj(x) <0, j=l,2,..,,mg (2.1)

with gJ : Rn -»• R' continuously differentiate,
»

(b) max /(x,v) <0, k =l,2,...,m. (2,2)

with <j>k : Rn x R1 •*• 1R continuously differentiate and Nc R compact,

and

(c) 0<^(u) <o^(x,u>) <u^(aj) <uA <«» Vi =l,2,.,,,m
n = 1,2,,..,L

Voj e Q (2.3)

where for i5? 1,2,...,m, o\(x,w) is a singular value of an mxm complex

valued transfer function matrix G^(x,aj), JlA(a>), u^w) are continuous

functions from R -»- K and & is a frequency interval . In (b) v may be

either time or frequency (see [P5, G3, P4a, P4b], As stated, the design



problem is quite complex and hence the presentation of the algorithm

for the full problem is quite cumbersome. Fortunately, there is no great

loss of generality in presenting our algorithm first in terms of the

highly simplified problem

P:min{f(x)| A(u>) < a'Cx.w) < u(oj), i= l,2,,..,m, w € Q} (2.4)

where the a^XjU)) are the singular values of a single mxm transfer

function matrix and G(x,w) and Q c ]R is compact. At the end of

Section 3 we shall indicate how the algorithm is to be extended for the

full problem.

Our algorithm consists of two parts:

(i) a master outer approximations algorithm which decomposes P into

an infinite sequence of problems

Pk :min{f(x)|A((o) <q^Xjoj) <u(w), i=l,2,,.,,m,

u)€ flk} k=1,2,.,. (2.5)

with Q. C Q a finite set, and

(ii) a special nondifferentiable optimization algorithm for solving

the problems Pk. We shall present the algorithm for solving Pk in the

next section, while the outer approximations algorithm will be presented

in section 4.

We shall need the following assumption and result which follows from

it.

Assumption 2.1: There exists an open set Xc Rn such that the transfer

function matrices G (-,u>): X -*• C1"50" are componentwise analytic,

X> "" I,to,...,la.



We shall assume that l{u) <» for all w e a. Since at points

x6 Xc at which GJx.to) is not analytic G.(x,u>) must have at least one

infinite element, it will have at least one infinite singular value.

Because of this, once our algorithm is started with an xQ e X, the entire

sequence it will construct will remain in X. The following result can

be deduced from analytic function theory:

Proposition 2.1: Suppose that assumption 2.1 holds and that for some

Jl e {1,2,...,L}, x€ Xand u> € fls GA(x,a>) has multiple singular values.

Let the singular values of G«(x,u)) be a (x,co) >a (x,a>) > ... ^o^U.a))

and let MC {l,2,...,m} be the largest set such that ^(x,^) = o^U.uO

for all i,j e M. Then, given any vector we Rn, there exists a X >0

such that for any i,j € M, either

^(x+Xh,^) = aT(x+Xh,a)) VX e [0,X] (2.6)

or

a^x+Xh.u)) f a^x+Xh.u) VX € (0,X] (2.7)

We now proceed to develop an algorithm for solving the P^.

2. An Algorithm for Solving Pk

To obtain a further simplification in exposition, we shall assume

temporarily that Qk in (2.5) contains only one point. In this case <u

can be dropped as an argument in the functions in Pk and Pk becomes

Pk :min{f(x)|& <o1(x) <u, i=l,2,...,m} (3.1)

where the ^(x) are the singular values of a complex valued mxm transfer
i 12

function matrix G(x). We recall that y (x) A [a (x)] , i = l,2,3,...,m

are the eigenvalues of the matrix

Q(x) A G(x)*G(x) (3.2)



For the sake of convenience, we shall adopt the convention that

y](x) >y2(x) > ... ym(x) (3.2a)

The quantities y1(x) are more convenient to work with than the cr^x) and

hence we transform Pk into the equivalent form

Pk:min{f(x)|*2 <y^x) <u2, i€m } (3.3)

where m A {l,2,...,m}.

It was shown in [P2] that the yV) are locally Lipschitz continuous

functions which are different!*able at all x such that y^x) f yJ(x) for

some iM€ m. When y^x) =yJ(x) i f jthe y^-) fail to be

different!* able, but, as was shown in [P. 3], they are semi-smooth [M.3],

i.e., they belong to the most benign class of nondifferentiable functions.

Because of these facts, Pk must be treated in the context of nondifferentiable

optimization. First, let

$u(x) Amax{y1(x)-u2, ie m> (3.4a)
let

^(x) Amax{A2V(x), iem} (3.4b)

let

if>(x) Amax {%M ^(x)} (3,5a)

and let

i|>(x)+ i max{0,ij;(x)} (3.5b)

It is well known [p.3] that if x is optimal for Pk then, if ij>(x) <0

Vf(x) = 0 and if i|>(x) = 0, then

0 €co{Vf(x) U3ij,(x)} (3.6)



where co denotes the convex hull and 3iHx) is the generalized gradient

[C.l] of <K-) at x.

Given any x e Rn, e >0, we define, with n^ A{0,1,...,m},

ku(x,e) Amin{k e mQlyWy^U) >e> (3.7a)

and

k£(x,e) Amax{k e m^y^M-y^x) >e} (3.7b)

Let U be any complex mxb (x,e) matrix such that UUu = I and UQ(x)U

=diag(y (x), y (x),...,y ^x'e'(x)) and let U0 be any complex mx(m-k0(x,e)+l)
* * k-(x,e)

matrix such that U-U. = I and u\,Q(x)u\, = diag(y jn,...,y'"(x)). For

any x e X and e ^ 0, we now define

V*(x) Aco{vSCn|v1 = <z»U*^ixiuj z>, 1=1,2 n;z€Cu
3x

.ni.i

IzO = 1}

V*(x) Aco{v€=l"|v' =<z,u*Mx1UaZ>
oX

(3.8a)

n-kJxneJ+l
i = l,2,..,,n; ze I * • , flzB = 1} (3.8b)

Note that the same z must be used in computing every component of v in

(3.8a) or (3.8b). Also note that when Uu of U^ are not unique, the

definitions (3.8a,b) do not depend on the specific choice for Uu, U^,

We can now establish a characterization for 3\j;(x).

Proposition 3.1: Suppose that Assumption 2.1 holds. Then

iM
a*(x) =<-v°(x)

if i|>u(x) >*A(x)

if ^(x) >^u(x)

cd{v^(x)U-V°(x)} if ^(x) »Yu(x) (3.9)

The proof of this result is given in Appendix A. We now proceed to



extract from the optimality condition (3.6) a method for computing a descent

direction for P.. This direction has to be a descent direction for iK#)

when x is not feasible and a feasible descent direction for f(*) when x

is feasible. The resulting algorithm will be in the family of phase I-

phase II methods with e-smearing (see [P.4]), We begin by developing an

e-approximation for 3i|>(x), with e>0. For any xe Rn and e^ 0, we

defi ne

r.

V^(x) if 4»u(x) >^(x) +e

V^x) A< -V*(x) if ^(x) >i(/u(x) +e
co{V„(x)U-V?(x)} otherwise (3,10)

It will be shown in the Appendix that Ve(-) is compact and upper

semi continuous in the sense of Berge [B2]. Next, for any compact set

S C Rn, we define the real valued function Nr(S) by

Nr(S) A m1h{DhB|h e S} (3.11)

and then

h^U) ANr(v*(x)) (3.12a)

{Nr(co(Vf(x),Ve(x)) if iKx) > -e

7f(x) otherwise (3,12b)

We will see shortly that, for esufficiently small -h^ e(x) *s a
descent direction for ib(') and that -h~ (x) is the analog of the feasible

T,e

descent direction found in methods of feasible directions [P.4]. To

obtain a phase I-phase II method we need a mechanism for crossing over

from h. to h. as we go from the infeasible to the feasible region
ip,e t ,e

for Pk. The reader familiar with the results in [P4] and in section 4.3

of [P.7] will find that we are following closely the general ideas used



in phase I-phase II methods for different!* able optimization. Let y > 1

we define

-Y#(x)+
r(x)Ae + (3.13)

and

rr(x)hfje(x) +(l-r(xj)h^ .g(x) if *(x) >-e
he(x) =<

1hf,e(x) =VfM otherwise (3.14)

note that when ip(x). = 0, i.e. x is feasible, r(x) = 1 and h(x) = h* (x),
e t ,e

while when t/i(x). is very large, r(x) = 0 and li (x) ~ h. (x). Next, for

any xe Rn, e > 0, we define

8e(x) A-max{Br(x)hf>e(x)H2, fl(l-r(x))h^e{x)l2} (3.15)

Finally, with e e (0,1) and

EA{0,l,e,62,.... } (3.16)

For any x6 Rn, we define

e(x) =max{e e E|6£(x) <-e}+ (3.17)

With this, we can now define

h(x) Ah£(x)(x) (3.18a)

6(x) A9e(x)(x) (3,18b)

For the algorithm to be of any use we will need the foil owing common!yoccuring

For computational efficiency it is often desirable to use a test of the
form 0_(x) < -<$.emth5 > 0. The value of 6 has no effect on the analysis.



Assumption 3.1: For every xe X such that ty(x) > 0, h, Q(x) / 0. h

We now turn to the properties of the functions 0£(') 9(0 and £(•)•

These will be proved in Appendix B.

Proposition 3.2: a) For any xe X, 0<£< £* =• 9£(x) < 6£i(x).

b) For any e > 0, 6 (•) is upper semicontinuous on X.

c) If x solves Pk, then e(x) =0 and 5(x) =0.

d) If x is such that 9(x) < 0, then there exist p > 0 and e > 0 such that

9£(x) < -£ for all (x,£) e B(x,p) x [0,e]. (3.19)
n

Corollary 3.1: If x is such that 9(x) < 0 then there exists a

p > 0 such that

e(x) > 3e(x) for all x € B(x,p) (3.20)

n

For the sake of clarity of exposition, we shall state our algorithm in

three forms: first in conceptual, and hence simplest form, for the

special case of problem Pk (3.3), then in an implementable form for the

special case of problem P. (3.3), and finally in implementable for the

most general form for the problem Pk- Our first form is conceptual

because it assumes that we can compute h. £(x) and h^. £(x) exactly in

finite time.

Conceptual Algorithm 3.1

Data: xQ e Rn.
Parameters: a,B,Ti e (0,1), b » 1.

Step 0: Set i = 0.

Step 1: Compute h(x..) using the given value of 3 in (3.16). Stop if

h(xi) = 0.



1/

Step 2: Compute the largest step size s^ »n e £0,MJ, with kan integer

(negative values are allowed), such that if ty(x^) >0

iKx-SfhUj))-^.) <-sictDh(xi)H2 (3,21a)
If tJ>(x.j) < 0

fU^-h^))-^) <-s.aBhfx^ll2 (3,21b)
and

♦(xj-Sjhfy)) <0 (3.21c)

Step 3: Set x1+1 = x.. -s.h^.), set i= i+1 and go to step I, «

Lemma 3.1: Suppose that x. € is such that h(x-) f 0, then s.., as

constructed in Step 2 of Algorithm 3.1, s.. > 0, i.e., the algorithm is

well defined.

Proof: Suppose the Lemma is false. Then there exists an x^ € X such that

h(x.) f 0 for which the appropriate test cannot be satisfied with a

finite s.. =rik in Step 2of Algorithm 3.1. Suppose at first that ipfx^)
< -e(x.j), then we clearly get acontradiction because f(«) is differentiable

on the basis of the usual arguments for methods of feasible directions.

Hence, suppose that ^(x^) >_ -e^). Then, if ^(x^) < 0, we must have

either

f(x,-nkh(x.) -f(xj 9
—! ^ — >-alh(x_.)^ for k=0,1,2,... (3.22a)

nK
or

^(x.-nkh(x4))-ij;(x.) o
1 -1 _l->^[lh(x,)B2 for k=0,1,2,... (3.22b)

n

or both. Since ij>(x.j)+ =0, h(x..) =hf e(x.)(x.j) and hence, from the

strict separation property of hf e(x \(x^) »

<Vf(x|),h(xi)> >0 (3.23)



It therefore follows that (3,22a) cannot take place (e,f. analysis of

Armijo mehtods sec. 2.1 in [P.7]). Hence we only need to consider (3.22b).

By the mean value theorem of Lebourg [L.3],

*(xrnkh(x1)) -*(X1) =-iMUf),^) (3.24)

where £k e3^(x.-XTikh(xi)) for some Xe[0,1]. Hence from (3.22b) and
(3.24)

<h(x1)^k><aflh(xi)D2 (3.25)

without loss of generality, we may assume that £. •*• £ as k •»• ». Since
e(x,)K • e(x.)

3ip(-) is u.s.c, we must have £c 3ip(xi) cv 1(x^ cco{Vf(x1-),7 '(x^}

Now, taking limits in (2.25), we get that

<h(xi), I) <a!Hh(xi)l2 (3.26)

which contradicts the fact that

h(xi° shfte(x.)(x1) =Nr(co{vf'xil've0(il <xi>}> •
Hence (3.22b) cannot hold either.

Now suppose that iMx-j) > 0. We will again show that (3.22b) cannot

occur. By definition,

<^,e(xi)(xl)»5> >\,e(x.)(xi>82 K£̂ W <3-27a>
and

<hf,e(xi)(xl)'5> >•hf,«(^)<*1>*2 VS €V* ** (x,) (3.27b)
Hence, by convexity of fl«H, we must have

<h(Xi),C> >flhtx^D2 VSe/ 1(x.) (3.27c)



Hence (3.26) cannot hold and we get again a contradiction.

U/~k- ^Lemma 3.2: Let x e R" and let k ,k, e m be such that y u(x) f y^ '(x)

and y ^(x) f y (x). Then there exists a p > 0 such that for all

x € §(x,p) the set valued
As

vNx) Aco{v ecV =<z,U* %&• U„z>,
3x

ku
i = 1,2,...,n; zee u, DzB = 1} (3.28a)

-kA, x n, i * 3Q(xi}V*(x) Aco{v e C^v1 =<z,U —J- Unz>,
8x

/>

k +1
i =1,2,...,n; z € C l , Izl =1} (3.28b)

it *

defined, with U„, U„ any matrices such that UU,, = I,U0U0 = I
U y^X/ u u x» x>

k k

U*Q(x)Uu =d1ag(y1(x)i...,y u(x)),AQU)^ =diag(y £(x),...,ym(x)).
Furthermore, the maps V u(») and $ (•) are continuous on B(x,p), in the

sense of Berge [B.2], i.e., they are both u.s.c. and l.s.c. n

The proof of this result will be given in Appendix.

We now state our main result.

Theorem 3.1: If x is an accumulation point of a sequence {x-} generated

by the Conceptual Algorithm, then 9(x) = 0 and ij;(x) <_ 0.

Proof: For the sake of contradiction, suppose that x is an accumulation

point and 9(x) < 0. Then, by Proposition 3.2d) there exist p > 0 and

e > 0 such that e(x^) > £ for all x* CB(x,p). Now, suppose that

k A
K c {0,1,2,...} is much that x. -*• x. We consider three cases:

a) Suppose that ^(x^) >0 for all ie K, By construction this implies

that i/>(x.) >0 for all i>0 and that ^(x^) is monotonically decreasing.

Since x^ -• xand t|>(•) is continuous, it now follows that iKx.j) ^*Mx).



Next, since kM and k0 € m, a finite set, there exists an infinite subset
u x* ~~

K' cKsuch that ku(x'1t (x^) =Ku and k^(xi, (x^) »k^ for all ie K',.
Since 9(x) < 0, there exists an e >0 and an i'q such that e(x^) >.

K ^k ^
al^ i > in* i € K1. Consequently, since x. -»-x, the sets V (x) <
k k K1 k k
V £(x) are well defined and, by Lemma 3.2 $ u(x,) + V u(x), V ^(x.)
K' A c(x,) A, e(xj A 1
-• V^x). Hence, since Vjj 1(x^ =V"(x^ and 7^ 1(x^ =V^x.)

all i e K', and r(-) is continuous, it follows that if K" c K is any infinite
e(x.) Ic e(x.) Ic

subset such that V 1(x.) =9 u(x.), or 7 1(xj =V jl(x.)> or
/\ • • •

e(x.) k r K"
V *(x^ =co{7 u(x.) u<r}(Xl) for all i€K", then h^.) - h, with

h- r(x)fif +(l-r(x))h^ (3.29)
e(x..)

where, for v = lim 7 (x.),
ier 1

h^ =Nr(7j (3.30a)
and

fif =Nr(co{7f(x),7j: (3.30b)
x.) k k

Now, if 7 1 (x1) »co{7 "(x^ U7 ^(x^} for all i e K", then, clearly,
by continuity,

3ip(x) cvw (3,31)

e(x.) Jc
If 7 1 (x^ =7 u(x.j) for all i e K", then we must have that ^(xj)
- ^(Xj) > e(x.j) for all i € K", Since by Corollary 3.1, there exists
an s >0 such that efxj) >s for all i > K", and ipu, fy are continuous,

^„(x) - i|>0(x) > e and again (3.31) holds. A similar argument holds
U *» AK

eOO ^k,
when7 J (x^) =-7 (x^). Finally, since 9(x) <0, it follows from Corollary
(3.1) that OfiD f 0.

e for

and

for



It now follows from (3.30a,b) and (3.31) that

<h,S>>Bfifl2 V5€ty(x) (3.32)

Now, by construction,

*(xi+1) "<K*i) l-as^hlx-ja2 Vi (3.33)
K

Since h(x..) -»• fi, there exists an iQ such that

*(x1+l) -H^) <-as.Bh(xi)B*l-ots1ihll2/2 Vi eK« i>iQ (3.34)
K'

and hence, since iKx..) \i ij/(x) we must have that si -*• 0. By construction

of s., we must have

*(xre"ls1h(x1))-ip(x1) xn2
2 •1 , 1 — >-allh(x.)lr (3.35)

3 si

And hence by the mean value theorem of Lebourg [L.3]

-U^h^.)) >-aOhU^D2 Vi€ K' i>iQ (3.36)

where £. e 3^(x1-X3s.h(xi)) with Xe [0,1]. It now follows from the u.s.c.

of 3iKO that {£-L«/i must have convergent subsequences such that if

51 •* |, with K" CK', then £€3i|>(x). Hence (3.36) yields, in the

limit that

<|,fi> <aflh(x)B2 (3.37)

which contradicts (3.32), Hence ^(xj) >0 for all i is not possible,

b) Suppose that -efxj) <♦(xj) <0 for all i> iQ. Then r^) =0for

all i > 0. By construction in Step 2 of the conceptual Algorithm, we

must have that f(xi+1) <f(x..) Vi >iQ and hence, by continuity of f(-)
we must have that f(x^) N» f(x). For the same reasons as in a) we must



have that h{x.) •»• n for some K" c k, and

As. /\

h =hf = Nr(co{7f(x),7oo}) (3.38)

where 3\|>(x) C yw. Consequently, we must have that

<h, 7f(x)> > Ilfifl2 (3.39a)

<h,€>>!hfl2 VC € 34»(x) (3.39b)
Since QhD >0 and since BhfxjJO > llhll/2 for all i e r, i >iQ, for some

i0 e K" and f(xj) \i f(x), it follows from the fact that

f(x1+1)-f(x.) 2
3, l~<-asiHh(x.)0Z

< s^fifl2^ VieK' i>i0 (3.40)
K"

that s. + as i + «>. By construction of s., we must have for all i£ K"

either

f(x4-B"1s4h(xJ)-f(x4) o
—1 \ * ^ >-aah(x,)tt2 (3.41a)

3 s.

or ij;(x.-3" s.h(x.j)) >0 so that, since ^(x^) <0,

ip(x,.-3~ s.h(x..))-Tj;(x_.) «i iv," ^ 2,aBh(x )B2 (3.41b)
3"'si

K"
or both. Taking limits in (3.41a,b) as i -»-«>, we must have either

<7f(x),h> <aBhB2 (3,42a)

or

<£;fi> <allfifl2 (3.42b)



for some t in 3iJ>(x) (c.f. case a)). Either way we get a contradiction of

(3.41) and hence b) cannot take place.

c) Suppose that <Kx..) <-efx^ <-e Vi e K. Then clearly, iKx.j) <0

for all i> iQ, where iQ is smallest integer in Kand hence, by continuity

of f(-) and construction in step 2, f(x^) ^ f(x) (with monotonicity for

i> in). Now, for all i€ K, h(^) =7f(x1) and 7f(x) f 0. Clearly,

there exists an s>0 such that iKx-j-shU-j)) <0 for all ie K. Hence,

(as in the case of the ordinary Armijo gradient method) there exists a

6 > 0 such that

f(xi+lK(xiO <-6 <0 Vi eK (3.43)

But this contradicts the convergence of {f(xi)} and thus c) cannot take

place. This exhausts all possibilities. The fact that i|>(x) < ° follows

from Assumption 3.1 and thus we are done. H

We are now ready to state our implementable algorithm.

Implementable Algorithm 3.2.

Data: xQ € Rn

Parameters: a,3»n € (0,1), b » 1,

Step 0: set i = 0.

Step 1: Use a proximity algorithm, such as the one in Appendix C, to

compute h-.., h.and s^ eE (approximations to nfe(x.)(xi)» hf,s(x.)^xi^
and e(x..)) such that

<VC>-SV2 V^€ v£l(xi) (3,44a)
<hf1,?>>Bhfia2 V^ €00(7^x^,7 ^x^} (3.44b)



S.S.M2 -V2 <"V."2 i,h*.e1<x1>|2 (3'44C)

ahf,£.(xi)[|2 "V2 -^ -Qhf,e.(xi)fl2 (3>44d)

e.i^) (3.44e)

and set

hi -r(Xl)hff1 +(l-rtx^)^, (3.45)

Step 2: Compute the largest step size si =nk €[0,M], with kan integer,
such that

If *(x.) > 0

^(xrs.h.) -ip(x.) <-s.aflhJ2 (3.46a)

If H^) <0,

fU-s^) -f(Xi) <-s^flhJ2 (3.46b)

and

i|;(x1-s1hi) <0. (3.46c)

Step 3: Set xi+1 = x^s-h.., set i= i+1 and go to step 1. n

Theorem 3.2: a) Suppose that xi €Xis such that h(x.j) f 0 (i,e, 9(x1)

< 0) then s- as constructed in step 2 of Algorithm 3.2 satisfies s.. > 0,

i.e., the algorithm is well defined, b) If x is an accumulation point

of a sequence {x..} constructed by Algorithm 3.2, then 9(x) = 0 and

ifi(x) < 0. H

We omit a proof of this theorem since its proof is entirely analogous

to the proofs of Lemma 3.1 and Theorem 3.1.



To complete this section, we shall state the conceptual and

implementable algorithms for the simplest general case of problem Pk

(2.1)-(2.3), characterized by a single matrix G(x,a)), i.e., one Q(x,u)),

and a single function <j>(x,v), viz:

Pn :min{f(x)|g1(x) < 0, jej; <f>(x,v) <0 Vv € W,
"k

a(w)2 <y1 (x,w) <u(to)2 Vw €Qk>

where Q.CQ is finite. As in [G.3], we must make the following

Assumption 3: For every x e X, the set W(x) c hi of local maximizers

of <j>(x,-) is finite. n

Next, we define

i|;(x,u>) Amax{yi(x,(i))-u(co)2, )l(a))2-y1(x,a))} (3.47)

C(x) A max <|>(x,v) (3.48)

and

$(x) A max{gJ,j e J; tJj(x,w), a> € ft|<; s(x)} (3.49)

Next, for any x e X, e > 0, we define

0e(x) A{j eJ|gj(x) >y(x) -£} (3.50)

\ e(x) A{(D SS2k|t|;(x,to) >¥(x) -£} (3,51)

We(x) A{v €N(x)|<|>(x,v) >Y(x) -e} (3.52)

We now add the argument w to 7e(x) defined in (3.10) so that it

becomes 7e(x,u)) and, finally, we define



7* (x,u>) =co{7g..,j eJe(x); 7<J>(x,v), veWe(x);

7e(x,a>), mE^^x) } (3.53)

Next, we define (c.f. (3.12))

^$e(x) £Nr(7* (x,a))) (3.54)

hfjE.(x) ANrtVffxl/p (x,u>)) (3.54b)

and, with r(x) defined as in (3.13), but with ¥(x) replacing ip(x), we

define h£(x), 9£(x), e(x), h(x) and 9(x) as in (3.14)-(3.18). The

conceptual algorithm for Pfi is the same as algorithm 3.1 except that
i\

¥(x) replaces ip(x). To obtain an implementable algorithm, if we assume

a high level of precision in the computation of the set W (x), we

ei £i
simply substitute 7'(x.) for 7 '(x.) and V(x,.) for Mx,-). If we wishKk 1 1 1 1

to use adaptive precision calculations in defining W (x), then the

implementable algorithm statement becomes more cumbersome. The specific

manner in which this can be done is stated in [G.3].

We now turn to the task of decomposing the problem P into a

sequence Pk.



4. A Master Outer Approximations Algorithm

Again, for the sake of clarity, we shall consider the design problem

in its simplest form P (2.4), since this form contains all the relevant

difficulty and information as far as decomposition by means of outer

approximations is concerned. Since we are no longer working at a single

frequency w and single fixed subset ftfc c ft, we shall introduce the

quantities w, ft. in all of our relevant notation. Thus, P becomes

P0 :min{f(x)|£2(u)) <y^x.w) <u(w)2 Vi 6m, id €fi} (4.1)
ft

Pk becomes
2 „,Pfi : min{f(x)|A(a)r <y^x.w) <u(air Vi e m, oj e ftfc} (4.2)

IX

for any w c n9 we define

i ? ? i
i|>(x,o)) A max{y (x,w) - u(u>) , A(oi) - y (x,a>), i em} (4.3)

and, for any u) € ft and e^ 0, we define 7e(x,u)) as in (3.10), for the

given value w. Next, for any ft' C ft, we define

•tjL.U) A max iMx,a)) (4.4)

and for any ft'c ft and e j> 0, we define

ftg(x) A (a) e q1 |^(x,o)) ><pn,(x)+ -e} (4.5)

where iLi(x). A max{ij7-,(x),0}. Next, we define
-Hi t = ~m

7*,(x) = co{ u 7e(x,o))} (4.6)
0 u£fte(x)

We are now ready to define the optimality functions for problems PQ|.

For any x e X and e ^ 0, we define

Wx'e) •N^,(x)} (4.7)



and

hfj.n.(x,e)A Nr co{7f(x),7*,(x)}) (4.8)
we then define

Bfll|e(x)A -maxfll^x)hf^,(x,£)Il2, «(1-rQ, (x)h^^, (x,e)B 2> (4.9)

where rfil(x) Ae " and j^i(x)+ Amax{0,^,(x)}. It should be

clear from the analysis in Section 3 that if x is optimal for P^u then

9_, q(x) = 0. As before, we define

£Q,(x) Amax{£€£|9fil £(x) <-e} (4.10)

and

Vx^e^.^W (4.1D

We are now ready to state an outer approximations algorithm for

decomposing P^ (see [G.]])

Outer Approximations Algorithm (4.1)

Data:

(i) ftQ c ft a finite set.

Cii) Asequence {eki)+ such that
a) e_._. = 0 for all j and e. . > 0 for all j > k.

b) £. .$ e. as k •* ».

c) £. ^ 0 as j -•«>.
j

(iii) 3€(0,1).

Step 0: Set k = 0.

Step 1: Solve P„ to the extent of finding an xk such that
tv

\(\) <Bk (4.12)
f
A typical sequence with the required properties is defined by

M "i°<t)1/10 -^)1/10>-



"^(x"k)l-3k (4.13)

Step 2: Compute an a)k ^ ft. such that

3h(xk) = <!>(xk,a)k) (4.14)

Step 3: Set

ftk+1 =i\} U" (a), eftk|(f>(x~.,ai..) >£kj} (4.15)

Set k = k+1 and go to Step 1. n

Since the £.. increase as k increases, a particular co. will be

retained for a certain number of iterations and then, quite likely,

dropped, never to be used again. Thus, the cardinality of ftk need not

grow indefinitely, indeed, it can usually be kept quite low, particularly

if the computation is carried out interactively. The reader should refer

to [G.2] for a detailed discussion of outer approximations methods.

Theorem 4.1. If x is an accumulation point of a sequence {xV} constructed

by Algorithm 4.1, then Jq(x) <0 and IL(x) = 0, i.e. x is feasible and

stationary for P~. n

To prove this theorem we need a number of preliminary results. We

define

ft (x) A {u)eft|ij,(x,a>) > -e} (4.16)

7 (x) A co{ UL 7e(x,u))} (4.17)
= CO€ft (x)

and we define

h^x) ANr(7£(x)) (4.17a)



h. (x) A Nr(co{7f(x),7 (x)}) (4.17b)
T ,E E

and, finally, we define

9n,j£(x) A-max{llr^,(x)hfje(x)02, U(1-rQl(x))h^^(x)H2} (4.18)

We note that if ^(x) <0, then 9^ (x) =\M for e=eQ(x). Also we

note that because ft^(x) c ft (x), we have 9"^i(x) <_ 9^, £(x) <_ 0 for all

x e X, e = e„i(x) and for all ft' C ft.

It follows directly from Theorem 3 in [G.2], that if x is an

accumulation point of a sequence {xk> constructed by Algorithm 4.1, then

jL(x) < 0. Furthermore, by construction,

-6ki^kCxk)i8nk>ek(xk)<0 (4.19)

where e. = £n (x. ) -• 0 as k -* ». Hence 9n c (x. )•*0ask^». Now,
k Mi. k k k

because ^(x) <0, it follows that |rQ (xjj -I^(xk)| ^0as k-*•, and
hence (4.17) implies also that

<5ft e(xk) ->0 as k^». (4.20)

It remains to show that 9^ Q(x) = 0. Our first result is obvious:

Proposition 4.1:

a) For any x e X,

(i) ft (x) is monotone increasing in £,
£

(ii) ft (x) is closed for all s > 0 and

(iii) u ft (x) = ftn(x).
e>0 e u

(b) For any e >_ 0 ft£(-) is u.s.c. n

This leads to the following result:



Proposition 4.2:

a) For any x e X,

(i) 7e(x) is monotone increasing in e,

(11) nve(x) =7°(x).
E>0

b) For any e >^ 0, 7e(-) is u.s.c. n

The proof of this proposition is given in"Appendix 2

Lemma 4.1: If xe X is such that Dhf(x,O)0 > 0, then there exist a

p>0and an £>0such that flhf(x,£)H2 >^hf(x,0)B2 for all
(x,e) e B(x,p) x [0,e].

** A\ 0Proof: Suppose that llhf(x,0)ir >0. Then, by Proposition 4.2a CO

There exists an e > 0 such that Ilhr(x,£)ll ^ e. It now follows

from Proposition 4.2b that there exists a p > 0 such that for all

xe B(x,p) llh\r(x,£)fl >^ e/2. It now follows from Proposition 4.2a(i)

that Hhf(x,£)ll2 >Ohf(x,S)il2 >e/2 for all (x,e) eB(x,p) x[0,e].

Proof of Theorem 4.1: It follows directly from Theorem 3 in [G.2] that

x is feasible, i.e. that i|>q(x) £°- A1so' *** nas Deen shown earlier

that 9fl Cxk) -^ 0 and £k ^ 0 as k-»• co.

Now, suppose that ]u(x) < ° and tnat xk x» for Kc {a»l»2,...}.

Then there exists a kQ such that ijL (xjj £fc(xk) <0 for all k >_ kQ,
IN

k€ K, and hence, since £k •+ 0 as k-*«, there exists a k, > kQ such

that \ju (xk) < -£k for all k> k,, ke k. Therefore, for all k> k^,

ke K, 9n (x. )= {l7f(xt)B2 which leads to 7f(x) =0, by the continuity

VfCO. Thus 9^0(x) =0.

Now suppose that "^(x) =0. Then rfi(x) =1and 9^ Q(x) =-ilhf 0(x)ll2
For the sake of contradiction, suppose that 9~ Q(x) < 0. Then, from



Lemma 4.1, since £k -»• 0 as k-*•», we conclude that ther exist a k2 such

that for all k6 K, k^ k2,

Bhf>£ (7k)Q2 >Ohf>0(x)n2/2. (4.21)

Now rft(xu) *• 1 as k -^oo and hence, since h- ^ (x.) and h. (x. ) must be
u k ' k ™ k

bounded, it follows that

T™ 9o c (XJ <-TTm >h- e (x. )ll2 <- illn\ n(x)02 <0 (4.22)
k-*» "'ek K " k€K T,ek K " *^ T,u

which contradicts the fact that 9n (xj -* 0 as k -> <». Hence we are

done. n



5. CONCLUSION

To conclude, it may be worthwhile to summarize in what respect the

algorithm presented in this paper is different from a general purpose

nondifferentiable optimization algorithm. First, in general, one has

no idea whether one is approaching a point of nondifferentiability or

not. In the case of singular values, the distance between them serves as

a "distance to probable collision," i.e., to a nondifferentiable point.

Second, in general, one only has at one's disposal either generalized

gradients or approximations to smeared generalized gradients, both of

which are only U. S. C. In the case of singular values, we were able to

use sets 7 which are continuous. Thus, our algorithm exploits the

structure of the singular value problem to a considerable extent. In

addition, it avoids the difficulties caused by the fact that singular

vectors cannot be computed with any kind of precision near a multiple

singular value (only the subspace can be computed accurately). As a

result, our new algorithm should be considerably superior to earlier ones

based on general nondifferentiable optimization algorithms.



Appendix A: Proof of Proposition 3.1

We prove Proposition 3.1 by establishing a sequence of facts.

Fact 1: Consider the special case of problem Pt Cand consequently of
1 l #Proposition 3.1) where xe ]R . Let x€ IR1 . Let —£ (x) denote the right

*Pc a. dX"*"
derivative of i|> at x, and let —£ (x) denote the right derivative of

An a. <™*Aat x, let Q'Cx) =^(x).
Let U and IL be, respectively, mx k (x,0) and mx m+l-k^CxjO)

complex matrices such that

Vuu - Iku(x,0)« Vu* "Wk^x.0)' (AJ)
and

Uu*Q(x)Uu =y1(x)Iku(x,0), U*Q(x)U =VWI^(Xt0) (A.2)
Then

di\>
—x (x) a the largest eigenvalue of U *Q'(x) (A.3a)
dx+ u

and

d^0
-4 (x) = the smallest eigenvalue of U *Q'(x)U0 (A.3b)
dx+ * z

dip 3\j;
Proof: We provide only the proof for —-• (x), the Proof of —r-Cx)is entirely

dx 3X+
analogous. From analytic function theory [A.l] and from [R.l] we know that

there exists <$. > Q such that:
1 —. A\ As A\

(i) The maps x "*y (x) are analytic Vi e ku(x,0) on [x,x+<5]
(ii) There exists an analytic function V:[x,x+5] -+ c^M**0'

mxk (x,0) A
Cwhere C is the space of m x k (x,0) complex matrices) such

that for all x e [x,x+6] V*Cx) • V(x) = Ik (^Q^ and

V*(x)Q(x)V(x) =d1ag(yl(x)^2(x)..-.y U*' (x)). (A.4)
Finally define

k..(x,0)
A(x) AdiagCy'(x),...y u (x)) (A.5)



Then for all x e (x,x+6) we have from (A.4) that

4j£ (x) V(x) +V*(x) %(x) -0 (A.6)
and

Iff (x) - $£ (x)Q(x)V(x) +V*(x)Q(x) g. (x) +V*(x)«x)V(x). (A.7)

Letting x-*• x we get that

f (x)=y'(x)[^f(x) V(x) +V*(x) %(x)] +

+ V*(x)Q(x)V(x) = V*(x)Q,(x)V(x), (A.8)

and the last equality follows from (A.7). From (i) and (ii) we conclude

that ty M =the largrst element on the diagonal of ^ (x)
dx <ty .,/-\

=V*(x)Q*(x)V(x). Since -£ (x) =^4^-, and V*(x)Q(x) •Y(x) is
dx+ A dx+

diagonal, it follows that u+ =the largest eigenvalue of V*(x)Qtx)V(x)
A, dX As *But V(x) and Uu are related by V(x) =UUW, where W is aku(x,0) xku(x,0)

complex matrix, and W*W =WW* =Ik £^y Thus V*(x)Q'(x)V(x)
=W*UuQ'(x)UuW, and therefore V*(x)Q'(x)V(x) and Uu*Q'(x)Uu have the

same eigenvalues. The desired result now follows directly. B

The following fact is a direct corollary of Fact 1. Hence a proof is

omitted.

Fact 2: Let X be the Banach space of Herraitian mxm complex matrices.

Let uu :X! -* R1 be afunctional such that VAeXyy(A) Athe largest
eigenvalue of A. Given A and B in X we order the eigenvalues of A in

19 m 1 mdecreasing order, i.e. y^y^ ... >yj| where ^y^-j-] are the eigen-
1 11

values of A. Assume that yA =yAu f yA for some ku e m. Let Uu be



an m x k complex matrix such that U *U =1. and U *AU = y! • I. .
U U U K U U ft K

0 U U
Finally, let y (A,B) denote the directional derivative of y at A in

direction B. Then y[[(A,B) =tne largest eigenvalue of Uu*BUu.
Similarly let y^(A) A the smallest eigenvalue of A. Assume that

A m Z &

^A = yA and yA ^ yA for Some kJl G - Let U& be an mxra+-"* *"^o
complex matrix such that u^ =1^, and \l*mt =y/Vl-k/

0Finally, let y^ (A,B) denote the directional derivative of y- at A in

direction B. Then yA°(A,B) =the smallest eigenvalue of U^BU^.

The following fact is recalled from [P.8],

Fact 3: Let X and y be two Banach spaces. Let S:X -* y be a frechet

differentiable map and let \i:y -* IR be a (nonlinear) locally Lipschitz

continuous, directionally differentiable functional. Let p (y9r)

denote the directional derivative of y at y in direction e, and let

S^ denote the frechet derivative of S at x. Let <|>(x) A y(S(x)) and let

<j> (x,e) denote the directional derivative of <J> at x in direction e.

Then Vx, eex 4>°(x,e) exists and 4>°(x,e) =y°(X(x),Sx(e)).
n

We now return to the general setting of Problem Pk (and consequently of

Proposition 3.1), i.e. we consider the case where X e ]Rn .

The following fact is a direct corollary of facts 2 and 3.

Fact 4: Given xand e€IRn,ku(x,0) and kA(x,0) as in (3.7). Let u"u
As

and U0, be, respectively, mxk(x,0) and mxm+l-k (x,0) complex matrices,
* up

sucfi that VUu - l^(Si0). U-U, =Vl^-,0). V<^Uu =S&\&M
and U^QfxJU^ =/(xll^^ ^Qy Finally let ip{j(x,el denote the
directional derivative of i|>u at x in direction e, and let i|£(x,e) denote



the directional derivative of ty0 at x in direction e.
n

Then i|>{j(x,e) = the largest eigenvalue of Uu*( I e1 ^ (x))Uu and
O * ^ i 3A as~
C(x,e) = the smallest eigenvalue of U *( I e ^ (x))U0, where

1 n T 1 n T 1=1 3X
e= (e\...en)T and x= (x\...xn). ' «

At present, we shall discuss \p only, a treatment of if; will come later.
U Xi

Fact 5: V x e ]Rn, v e e iRn

ip°(x,e) =Max{<£,e>|£GV°(x)}. (A.9)
ku(x,0)

Proof: For all z € C , 9 z II = 1 we must have by Fact 4, that

<«Z,U *^(x)Uuz>,...<Z,U*^(x)Uz>),e> =<Z,U *( J e1 ^ (x))U z>
u 3X1 u u ax11 u 1=1 3X1 u

<the largest eigenvalue of U*( T e1 ^ (x))U,, =ty (x,e)
u 1=1 ax1 u

(A.10)
Therefore

,0f ,, . .0, '
U

n 4 *n k„(x,0)

Max{<£,e> |eev[J(x)} <*u(x,e) (A.ll)
n , an k (x,0)

On the other hand Max{Z,U*( I e1 ^H (x))U Z|zec u .tlzll = 1}
u 1=1 3X1 u

n . aA
=the largest eigenvalue of U*( I e ^ (x))U and hence we are done.

1=1 3x

We state the following fact without a proof, since the proof is

straightforward:

Fact 6: The map x-*Vu(x) is upper semicontinuous in the sense of

Berge ([B.2]). »

The "generalized directional derivative tp'(x,e) of i|i at x in direction e"

is defined in [C.l] as .



*.(Xie) ATC*<x*h+reH(x+h> (A.12)
h-0

It is shown in [C.l] that

if>'(x,e) = Max{<£,e>|£<=3ij;(_x)} CA.13)

The following fact holds when n = 1, i.e. x e ]R and follows directly

from the smoothness properties of eigenvalues.

Fact 7: If n=1then t/£(x,1) =ij^(x,l) Vxe3R1 . n

We also need the following auxiliary result.

Fact 8: Given E and F, two compact convex sets in ]Rn ,if for every

e€Kn Max{<5,e>|£<EE = Max{<S,e>|£€F} (A.14)

Then E = F.

Proof: If E f F, then, either there exists an f € F - E, or an

f e E - F. Suppose that f€F-E. Let e~ = arg min{Bf-gO|gGE} and

let e = f - E-. Then for all g e E, we have that

<g -f, ef -f> >llef -fll2 £0 (A.15)
Which implies that

<g, Ef - f> rj <ff Ef - f> (A.16)

and hence <g,e> > <f,e>, contradicting (A.14). n

From now on we assume that n^ 1and xe ]Rn . First, we prove that the

point to set map x-• vjj(x') has the mean value property with respect to
the function ty.



Fact 9: For all x,e e iRn there exist te [0,1] and £GVu(x+xe) such

that

^u(x+e) -<j>u(x) =<e,£>. (A.17)

Proof: For all t g [0,1] define C(t) A A(x+xe), and define

$ (x) A highest eigenvalue of C(x). From Fact 5, (A.13) and Fact 8 we

have that

V$u(t) =Wu(t) VtG [0,1]. (A.18)

From the mean value theorem of Lebourg [L.3] we have that

Vx+e) - Vx) =V1} "*u(0) sU*e) (A-19)

for some £e 3$ (t). and some xe[0,1]. From (A.18) £eVu?u(t)
^ (x+Te 0)

=co{<Z,u;.C'(T)Uz>|zeC u § ,0z» =1), where Uu*Uu =Ik (x+Te)
u

and Uu*C(t)Uu =y^x+xe)^ (x+Te). Thus
Ke co{<z,U.^(ze1 H (x+Te))Uz>|llzll =1} =co{<(<z,U* ^ (x+xe)Uz>,...,

A 3X T 0 3X<Z,U * -£ (x+ e)U z>)',e>|llzl! =1} ={< S,e>|cev|j(x+xe)}, which concludes
our proof. n

Corollary: V x,e € ]Rnwe have that

*u'(x,e) =Max{<S,e>|ir<=vC[(x)} (A.20)

Proof: *'(x,e) =TO ^x+h+Xe)^(x+h) >Vm <£h x,e> (where
u U0 A "~AI0 n,A

h-K) h-0

Ch X€vS(x+n+SAe' for a11 se C0'1]) =Max{<§,e>|tev2(x)}, where the
inequality follows from Fact 9 and the equality follows from Fact 6.



Fact 10: For all xe XV°(x) = 3* (x).

Proof: This fact follows directly from Fact 5, (A.13) and Fact 8.

Fact 11: For all xeX-V°(x) =3^(x).

Proof: Define l^(x) A the highest eigenvalue of -Q(x). Then

& +^(x) =\f^(x) and hence 3^(x) =3^(x). But by Fact 10,

3^(x) =-V°(x). Consequently 3i|^(x) =-V°(x). n

We can now conclude the proof of Proposition 3.1 if ^,,(x) > i[>0(u) then
U X*

W(x) =3ij;u(x) =V^(x). If ipu(x) <*£(x) then 3i|;(x) =3^(x) =-V°(x).
Hence, for these two cases we are done. It remains to consider the case

where ^{x) =*£.(x).

In this case, it follows from [P.8], Theorem 3.2 that

*°(x,e) =Max{^(x,e), *°(x,e)} VeeFn (A.21)

and from [P.8], Theorem 3.4 it follows that

co{v[[(x) -V°(x)} =UeRu|<?se> <4»°(xfe) Ve€]Rn}. (A.22)

Now for x and e ]Rn, we have that

t.(X,e) =Hm *(x+h+AeH(x+h) <Max^e); *'(Xie)>
no A - u &

=if«ax{.*J(x,e);^(x,e)} =Max{<C,e>|C€Co{V°(x),-V°(x)}}. (A.23)

with the last equality holding because of Fact 5,(A.13) and Facts 10 and

11. From Fact 8 it now follows that

3Kx) = Co{v°(x),-V°(x)}. n



Appendix B: Proof of Proposition 3.2, Corollary 3.1 and Assumption 3.2.

Proof of Proposition 3.2:

a) If 0<e<e1 then Ve(x) cve'(x). Hence, flh. fx)D >Oh, ,(x)D
and Dhf (x)H > [In.. _..(x)D. Consequently, 6 (x) < 6 .(x).

b) First we show that the point to set map x•+ v|~(x) is upper semi-

continuous. Let {x..}"=1 cxbe such that x.. -»• x, as i•*- ». We know that
ku(x..,e) 6|. Let K1 c u+ be any infinite set of integers such that

for every ie K*, ku(xi9e) = £, a fixed integer in m. From the definition

of ku('»e) *It follows that

yk(^) -yk+1(x.) <e V(i,k) 6K'xW (B.l)

and that

y*~\xn) -y^(xn) >e>0 (B.2)

From (B.l) we conclude that yk(x) -yk+1(x) <efor all ke kj_» and
hence that ku(x,e) > k. From analytic function theory ([A.l]) and

from [R.l], we know that there exists 0„ and U„ ., complex mx k„(x,£)
U U ,1 u

matrices, and I e Tl+ such that for every 1 > I

KK =I* il .\ (B.3a)Vu \&.e)

and

°u,1°u,i =\C*,z) <B-3b>
0*Q(x)Ou=diag(y1(x),...,yku(X)(x))

and

Uu,i Q(Xu)Uu,i =d1a9(y (x||)i...^ u (xu))

and U . -* U .
u,i u

(B.4)



As

Let U . be the mxk matrix consisting of the first k columns of
U,l i/|

k AU i. Now, for every sequence of unit vectors Z. e G such that Z. -• Z
U , I 1 1

we have

«Vuu,i Jr <xi> uu,izi> 'V^^^' ViV*
3x 3x (B.5)

- «Z,(UuT)*^r(x)(0T)Z> ...<Z,(UT)*3A-(x)(0T)Z» .
i-*» u 3x 3x

where T is the k (x,£) xkmatrix, the upper kxk block of which is l£,

and the lower (k,,(x,£)-k) x k block of which consists of zeros only.
k (x,e)

Let ZQ =TZ. Then Z^ ecu and DZqB =1. It follows that

«Z,(0,T)* 3A (J)(fliiT)2> ...<Z,(G T)* % (0 T)Z» €ve(x).
3x 3x

since the above analysis holds for every sequence {x.}°°=q such that x^ -»• x
^u(xu £)

and every Z. € C ' , we conclude that the point to set map:

[xj is upper semi-continuous.

£j

x •+ V (x) is upper semi-continuous.

In a similar way, one can show that the point to set map: x •*• V^(x)

is upper semi-continuous. It follows therefore that the point to set map:

x •* 7e(x) is also upper semi-continuous.

Proposition 3.2.b now follows directly from the fact that the map:

x •* Ve(x) is upper semi-continuous and that r(») is continuous,

c) If x solves Pk

ee(x) =-llhfj£(x)D2. (B,6)

If Qfi(x) <0then ilhf o(x)02 >0. Consider first the case where ij>(x) =0.
From upper semi-continuity of V°(-)> it follows that there exist p>0

and jj >0such that for every xeB(x,p) 0hf 0(x)U2 >y. Now for every



X > 0 we have that

*(x-Xhf>0(x)) -iMx) =-X<hfjQ(x),C> (B.7)

for some £€ V (x) and some xe B(x,h.e q(x)X).

We have therefore that

yr— ij>(x-Xh.p n(x))-^(x) ^ 9TTi! f'°x <"hf>Q(x)02 (B.8)

Therefore, there exists X > 0 such that for every X e [0,X] we have that

i|/(x-Xhf q(x)) < ty(x). We also have the fact that

f(x-Xh.p n(x))-f(x) n A ^ o
lim 1^— =-<hf n(x),Vf°(5)> <-0hf n(x)02 <0. (B.9)
X+0 A t,u . T,U

Hence there exists X>0 such that for every X€ [0,X], f(x-Xhf 0(x))

< f(x) and ip(x-Xhf Q(x)) <^(x). Therefore x is not optimal.

If iKx) <0then hf Q(x) =Vf°(x). If Vf°(x) f0then we can
clearly find X>0 such that f(x-XVf°(x)) <f(x) and (by continuity of

\\>) iJ>(x-XVf (x)) < 0, and x can not be optimal. n

d. Suppose that e(x) < 0. Then there exists an £ > 0 such that

9 (x) < -£. From (b) we know that there exists a p > 0 such that for
£

every x € B(x,p) e (x) < -£. But for every x e B(x,p) and £ € [0,i] we

have that 0 (x) < 6 (x) < -£. n
e £

A Proof of Corollary 3.1.

If the statement of the corollary is not true, then there exists

asequence (x^"^, such that xi -* xand z(x.) <3 e(x). Consequently,

03£(x)^xi^ >"^M- Tnus 0Mx)^ 1-Mx). However, ^(J)
< 6 /C\(x) < -e(x) < -Mx), which leads to a contradiction, unless

e(x) = 0. But this implies that 8(x) = 0. Hence we are done. «



A Proof of Lemma 3.2:
Ak k ^ k +1 A

We prove only the case of V u. We know that y u(x) f y" (x).
k

Hence there exists an p > 0 such that for every x e §(x,p) y (x)
ku+l „ k

i y U (x). For every x€ B(x,p), $ u(x) is independent of U, provided
k

that U*U = 1$ and U*Q(x)U =d1ag(y1(x),...»y u(x)). Moreover, from
u

[R.l] we can find for every x e B(x,p) a U(x) such that U(x) is analytic

as kin xon B(x,p). From continuity of Qv it follows that V (•) is

continuous in x on B(x,p). n



Appendix C: A Proximity Algorithm.

In Step 1 of Algorithm 3.2 we need to compute hf1-, h.. and e.

which satisfy (3.4a). First we state a suitable proximity algorithm.

Algorithm C.l.

Data: X. € ]Rn, £>0, ^(x^ =Vf(x.) and h0^.^) e ve{x.).
Step 0: Set j = 0.

Step 1+: Set g^. =arg min{< g,h^i>|g€ve(x.)} (C.l)

and set a} =arg mintfg,^ >|g€Ve(x)} (C.2)
V^ W^ u

Step 2: a) If <4l,hf1> 1 1Ihfij2 ~e/4 (C.3)
If then <gfi,h^.> <<7f(x.),h^.> (C.4)

- <sj1.h«> jthen set ty.^ ^ ^ hf.. (C.5)
Else set

<Vf(x.),h^> _J
hf. = rs—? hf.. (C.6)
fl»e Qh^ll2 fl

If <g^ ,h^ >>flHj2 - £/4 CC.7)

<VV jthen set h, = ~ , hV (C.8)
*1,e llh>.ll2 1

. . .

Step 3: Set h^.= Nr(Co{h^.,gf.})

set g^+1 = Nr(Co{h^ .g*? }),

set j = j+1 and go to Step 1. a

+A discussion of the computation in (C.l) and (C.2) will follow,



Lemma C.l: If £ > 0 then the proximity algorithm C.l yields hf. and h.

in finitely many iterations.

Proof: If h-. is not construed in finitely many iterations then for all

j € {0,1,2,...} A IN+ we have in Step 2 that

• • •

<g^,h^.> <llhljLtt2 -£/4. (C.3)

Since for all 5€in+, h^. e Ve(x.), and Ve(x..) is acompact set, it
follows that there exists r e (0,1) such that for all

JeIN+0h^f!2 -e/4 < rOh^O2 . From Proposition 5.8 of [P.6] it
follows now (by setting M ={-h^.}, r={-g^j} and fi =Co{Vf(x1),ve(x.})
that there exists aconstant Ce(0,1).such that IIh^t1 II2 <Max{r,c}-Ilh^.ll2.
This implies that h^ .-> 0. But then min{<g,h^i>|geve(x.)} .—• 0.
Thus there exists a J« 6 I+ such that for every j^ JQ we have that

<glpi»h!i.> >_ llhv.lr - £/4, contradicting (C.3), and hence h^. is construeded

in a finite number of iterations.

The proof for h. is similar and hence will be omitted. n

We now indicate an efficient way for solving the problems in (CI)

and in (C.2),

Assume for simplicity that VE(x») =vfj(x.|). For agiven vector

ae IRn, we need to compute arg min{<g,a>|g€vfj(x.)}.

We note that

min{<g,a>|geve(xi)} =min{<Z,U *( £aj ^ (xi))U1IZ>|DZ1 =1}
1 9 ,, t j=1 8X(where a = (a ,aS...aur) = the smallest eigenvalue of

n

U*( l aJ ^4 (x.))U .
u X.S tv v u

J=l 3xJ

Let z be any unit eigenvector for the above eigenvalue. Then

arg min{< g,a>|geve(x.)} =«Za,Uu* ^ ^Va^W^ (xi)UuZa>s
3A - 3X 3x

-<Za'V5u(xi)Va»T*3xu



To compute £. and hence h. = h. ~ and h-. = h-. ~ , we need tol i|/.j y^£. fi fi ,e.
find the largest £e zsuch that max{tlr(x.)h-. II2, ll(l-r(x.)h. il2) > e.

1 Tl ,£ 1 ip« ,£ ——

Since in general, {£.} is an (almost) monotonically decreasing sequence,

we initialize the search for e., by applying the proximity algorithm

2*"
with. £ = $ £. ,. If this value of z is too small, then the computation

in Algorithm C.l can be continued with 3£ replacing£ and h. . h-. _
V* »E Tl ,E

as a starting point. This will prove to be much more efficient then

starting with £ = 1 and decreasing it by a factor of 3 over and over

again.
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