

Copyright © 1980, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

EFFICIENT ALGORITHMS FOR CHANNEL ROUTING

by

T. Yoshimura and E. S. Kuh

Memorandum No. UCB/ERL M80/43

11 August 1980

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

EFFICIENT ALGORITHMS FOR CHANNEL ROUTING*

T. Yoshimura** and E. S. Kuh

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

ABSTRACT

In the layout design of LSI chips, channel routing is one of the key

problems. The problem is to route a specified net list between two rows

of terminals across a two-layer channel. Nets are routed with horizontal

segments on one layer and vertical segments on the other. Connections

between two layers are made through via holes.

Two new algorithms are proposed. These algorithms merge nets inr

stead of assigning horizontal tracks to individual nets.

The algorithms were coded in FORTRAN and implemented on a VAX 11/780

computer. Experimental results are quite encouraging. Both programs gen

erated optimal solutions in 6 out of 8 cases, using examples in previously

published papers. The computation times of the algorithms for a typical

channel (300 terminals, 70 nets) are 1.0 second and 2.1 seconds, respec

tively.

*Research supported by the National Science Foundation Grant ENG-78-24425
and the Alexander von Humboldt Foundation.

**0n leave from Nippon Electric Company, Japan.

1. Introduction

The routing problem in LSI layout is to realize a specified inter

connection among modules in as small an area as possible. Several rout

ing strategies are available. Among them, channel routing is the most

important one; because (1) it is efficient and simple, (2) it guarantees

100% completion if constraints are noncyclic and channel height is ad

justable, and (3) it is used in the layout design of custom chips as well

as uniform structures such as gate arrays or polycells. Left edge al

gorithm [1,2,3] is commonly used for this problem. However, here we pro

pose two algorithms which produce better solutions in all cases tested.

2. Description of the Problem

Two rows of terminals are placed on both sides of a channel. A num

ber between 0 and N is assigned to each terminal. Terminals with the same

number i (l<i<N) must be connected by net i, while terminals with number

0 are left unconnected.

Two layers are available for routing. We assume horizontal tracks

on one layer and vertical tracks on the other. Nets are laid on tracks.

Horizontal tracks are isolated from vertical tracks, and connections be

tween them are made through via holes. The problem is expressed by a net

list as shown in Fig. 1, Arrows indicate whether nets are to be connec

ted to terminals in the upper or lower sides of the channel. Fig. 2 shows

a solution of this example.

Consider the example in Fig, 3ta), Because the vertical segment of one

net cannot overlap that of another on the same track, a constraint has

been introduced on the horizontal segments of net 1 and net 2. If we pay

attention to the leftmost column, the horizontal segment of net 1 must be

placed above that of net 2. By the same reasoning, net 2 must be above

net 1 if the rightmost column is considered. In other words, this routing

-2-

requirement cannot be realized without diyiding the horizontal segment of

some net, as shown in Ffg. 3(bi. However, this kind of situation can be

often avoided by rearranging the placement. In this paper, we assume

that the routing requirement is always satisfied, i.e., there exists no

cyclic conflict in the net list.

One objective function of the problem is to minimize the number of

horizontal tracks used to realize the routing requirement.

Consider the example in Fig. 4(a). This gives an optimal solution

if splitting of horizontal segments is not allowed. However, the same

example can be realized with two tracks by horizontal splitting as shown

in Fig. 4(b).

The splitting of horizontal segments of nets is called "doglegging."

This is not only used to avoid the vertical conflict as mentioned above,

but also used to minimize the number of horizontal tracks. The latter is

more important than the former. In the case of doglegging, we assume that

the horizontal splitting of a net is allowed at the terminal positions only,

which implies that no additional vertical track is allowed.

3. Definitions

3,1 Vertical constraint graph

As mentioned earlier, any two nets must not overlap at a vertical col

umn. If we assume that there is only one horizontal segment per net, then

it is clear that the horizontal segment of a net connected to the upper

terminal in a given column must be placed above the horizontal terminal

in that column.

This relation can be represented by adirected graph Gy, where each

node corresponds to a net and a directed edge from net a to net b means

that net a must be placed above net b (Fig. 5). Therefore, if there is

a cycle, the routing requirement cannot be realized without dividing some

-3-

nets. (Cycle a+b •* c -* a means that net a must be placed above itself.)

However, it should be noted here that ff the vertical constraint graph

is acylic the routing requirement is always realizable.

3.2 Ancester and descendent

Node i is said to be ancester of node j (node j is descendent of

node i), if there is a directed path from i to j in the vertical con

straint graph.

3.3 Zone representation of horizontal segments

The horizontal segment of a net is determined by its leftmost and

rightmost terminal connections. Let S(i) be the set of nets such that

their horizontal segments intersect column i. Since horizontal segments

of distinct nets must not overlap, the horizontal segments of any two nets

in S(i) must not be placed on the same horizontal track. This condition

must be satisfied at ewery column. However, it is easy to see that we

only have to consider those S(i) which are not subsets of another set.

Therefore, we assign the sequential number to the columns at which S(i)

are maximal and these columns define zone 1, zone 2, etc. as shown in

Table 1 for the example in Fig. 1. The number of elements in S(i) is

called local density, and the maximum among them is called maximum den

sity.

Clearly, we need not consider S(l) or S(2) because the horizontal

constraints related to these sets are included in that of S(3). Zone

representation is expressed as shown in Fig. 6(a).

Zones can be defined more clearly by using an interval graph based

on a horizontal segment of nets. A graph G(V,E) is an interval graph

corresponding to a set of nets, where v.. e V represents net n. and

(.v. ,v.) <= E iff n. nn. ? 0 [4,5], The interval graph of the net list

in Fig. 1 is shown in Fig. 6(b), In terms of an interval graph, a zone

-4-

is defined by a maximal clique and the clique number is the density.

Table 1

Column

1
SO) ,

2
Zon

2 1 2 3

3 12 3 4 5 ' 1

4 12 3 4 5

5 12 4 5

6 2 4 6 2

7 4 6 7 3

8 4 7 8 1
9 4 7 8 9 • 4

10 7 8 9 1
11 7 9 10 ^I 5
12 910 J

• sJ

It should be emphasized that the channel routing problem is com

pletely described by the vertical constraint graph and the zone represen

tation. Our problem is to determine an optimum ordering of nets such

that 0) the vertical constraints as expressed by G are satisfied, and

(2) the number of tracks needed for realization inherent in the zone re

presentation is minimized. A lower bound is of course the maximum den

sity.

3,4 Dogleg

So far, the vertical constraint graph and the zone representation

are defined for the no-dogleg problem where the number of horizontal

segments per net is limited to one. However, these two representations

can be extended for the dogleg problem, where the horizontal segment of

a net can be divided at its terminal positions. In this case, subnets

whose horizontal segments are parts of a net between two consecutive ter

minals are introduced.

-5-

Fig. 7 gives a four-net example indicating subnets and cuts correspond

ing to maximum cliques. Fig. 8 shows the vertical constraint graph and

the zone representation of the net list in which dogleg is not allowed.

In the dogleg problem, subnets l-a,l-b,...,4-b are considered instead of

nets and the vertical constraint graph and the zone representation are

shown in Fig. 9.

4. Simple Algorithm

To find an optimum realization of the channel routing problem may be

very difficult. It may take an enormous amount of computation time for

problems of practical size. Therefore, we propose heuristic algorithms

which generate optimum or near optimum solutions with a reasonable amount

of computation time.

4.1 Merging of nets

Let net i and net j be the nets such that there is no horizontal

overlap in the zone representation, and no directed path between net i

and net j in the vertical constraint graph, i.e., net i and net j can

be placed on the same horizontal track. Then, the merging operation re

places net i and net j by a net i»j as illustrated in Fig, 10 and Fig. 11.

Here net 6 and net 9 are candidates for merging. The operation "merging

of nets" modifies the net list as shown in Fig. 11, where net 6 and net 9

are replaced by net 6-9. By merging, we mean that net 6 and net 9 are

placed on the same horizontal track, although the position of the track

is not yet decided. Consequently, the zone representation and the ver

tical constraint graph are updated as shown in Fig. 12.

4.2 Algorithm #1

Since it is assumed that there is no cycle in the vertical constraint

graph, the updated vertical constraint graphs do not have cycles either.

Hence, we can repeat this operation. The following algorithm merges nets

-6-

systematically according to the zone representation.

Algorithm 1

procedure Algorithm 1 (i,j)

begin ;

al: L = { } ;

a2: for z = i to j do ;

begin ;

a3: L = L + {nets which terminate at zone z} ;

a4: R = {nets which begin at zone z + 1} ;

a5: merge L and R so as to minimize the increase

of the longest path legnth in the vertical

constraint graph ;

a6: L= L - np ng,..., where n. is a net merged
at step a5 ;

end ;

end ;

If there is a path n-j - n2 - n3 -, - nk in the vertical con-

constraint graph, then no two nets among n-j, n« ,nk can be placed

on the same track. Therefore, if the longest path length in terms of

the number of nodes on the path is k, at least k horizontal tracks are

necessary to realize the interconnections. Thus, nets are merged so as

to minimize the longest path length as much as possible.

Fig. 13 illustrates how the vertical constraint graph is updated by

the algorithm. First, net 5 and net 6 are merged, then net 1 and net 7,

, and at the fourth iteration net 10 and net 4 are merged. Finally,

we have the graph in Fig, 13(e). At this stage, the problem has almost

been solved. The remaining task is to assign the horizontal tracks to

each node of the graph. This is almost trivial, For example, we can

assign track 1 to net 10-4, track 2 to net 1-7, track 3 to net 5-6-9,

track 4 to net 2 (or net 3»8) and track 5 to net 3-8 (or net 2). Fig.

14 shows the solution corresponding to the graph in Fig. 13(e).

-7-

4.3 Merging algorithm

The key part of the algorithm is step a5 where two sets of nets are

merged. In the following, this process is explained. To make the situa

tion precise, let us introduce several definitions.

(1) P = {nl,n2,...,np} and Q = {ml,m2,...,mq} (p > q) are the two sets

of nets to be merged. Obviously, elements of P are on separate

vertical paths from that of Q.

(2) A modified vertical constraint graph is defined as shown in Fig.

15, where two fictitious nodes s and t are added, corresponding to

a source and a sink, respectively.

(3) u(n), n € pu Q: the length of the longest path from s to n

(4) d(n), n e pu Q: the length of the longest path from n to t

Example:

Q = {6,7}

P ={1,3,4}

u(D = 1, u(3) = 3, u(6) = 2,...

d(l) = 4, d(3) = 2, d(6) = 2,...

The purpose here is to minimize the length of the longest path after

merger. A heuristic merging algorithm will be given. First, let us in

troduce some basic intuitive ideas. First, a node m e Q is chosen, which

lies on the longest path before merger; furthermore, it is farthest away

from either s or t. Next, a node n € P is chosen such that the increase

of the longest path after merger is minimum. In case of tie, we will

choose nsuch that the condition ^jjjji =̂ l is satisfied or nearly
satisfied. These can be implemented by introducing the following:

(1) for m e Q

f(m) = Coo*{u(m) + d(m)} + max{u(m), d(m)}, C » 1

-8-

(2) for n 6 p, m e q

g(n,m) = Coo*h(n,m) -' {i/u(m)*u(n) + \/d(m)*d(n),}

where

h(n,m) = max{u(n), u(m)} + max(d(n), d(m)}

- max{u(n) + d(n), u(m), + d(m)}

- - the increase of the longest path length passing through n or

m, by merging of n and m

Merging algorithm

given P, Q ;

begin ;

while Q is not empty do ;

begin ;

among Q, find m* which maximizes f(m) ;

among P, find n* which minimizes g(n,m*), and

which is neither ancestor nor descendent of m* ;

merge n* and m* ;

remove n* and m* from P and Q respectively ;

end ;

For the example given above, let us pick C = 100, we obtain the fol
CO

lowing table:

P 0
71 3 4 6

uC)

d()

1 3 4

4 2 1

2

2

3

1

403f(m) 402

Table 2a

Since f(7) > f(6), node 7 is chosen first from Q. Next, we evaluate

g(n,7) using C^ = 100 and obtain the following:

-9-

n 1 3 4

h(n.7) 2 0 0

g(n.7) 196.27 -4.41 -4.46

Table 2b

Since g(4,7) is the smallest, we merge node 4 with node 7.

5. Improved Algorithm

5.1 Overview of the algorithm

In Algorithm #1, nets are merged when they are processed, and the

merging may block the subsequent ones. Fig. 16 shows an example. Let

us assume that, at zone 1, Algorithm #1 merges net a and net d, net b

and net e, respectively (if. we follow the jnerger algorithm of the last

section, these mergings will not occur, but they are assumed for explana

tion). The vertical constraint graph and the zone representation are

modified as shown in Fig. 17. The merged vertical constraint graph in

dicates that net f cannot be merged with either net c or net g because

a cycle would be created. On the contrary, if net a and net d, net c

and net e are merged, respectively, net f can be merged with net b.

To avoid this type of problem as much as possible, or to make the

algorithm more flexible, we introduce another algorithm. In Algorithm

#2 we construct a bipartite graph Gn, where anode represents a net and

an edge between net a and net b means that net a and net b can be merged.

A merging is expressed by a matching on the graph, and it can be updated

dynamically. We will explain this idea by using the previous example.

At zone 1, we can see that net d (as well as net e) can be merged

with any of three nets a, b, or c. So, the algorithm constructs the bi

partite graph G in Fig. 18, and a temporary merging is indicated by a

matching on the graph. The algorithm checks if the merging is feasible,

but neither the vertical constraint graph nor the zone representation is

-10-

Step 2: for each net nf which begins at zone z.+,, add

node nr to the right side of graph Gu, and add

edges between n and a node on the left side,

if they can be merged ;

Step 3: check if the merging based on the current

matching satisfies the vertical constraints.

If not, modify the matching and graph G. ;

Step 4: for each net n-j terminating at zone z.+,, merge

n1 with the net nx specified by the matching on

graph Gh- Then put the merged net n-j-nx to the

left side of Gh ;

end ;

end ;

5.2.1. Step 1

This step is for initialization. The algorithm simply adds nodes

corresponding to the nets terminating at zone z . There is no edge in

graph Gh at this stage.

5.2.2. Step 2

A node corresponding to a net originating at zone z.+, is added to the

right side of graph G^. If the net can be merged with the net corres

ponding to a node on the left, the edge between them is added.

To reduce the cpu time and memory requirement, the number of edges

per node is limited by a parameter. Cits value is fixed at 3 in the

program,) Edges are selected according to the same intuitive ideas

as in the Merging Algorithm of the last section.

The matching is updated by using a maximal flow algorithm,

5,2.3 Step 3

Here, we have to solve the following two problems:

-12-

updated at this stage. Next, we move to zone 2, where net g terminates

at this zone and net f begins at the next zone. So, we add node g to the

left side and node f to the right side of the graph Gn as shown in Fig.

19(a). Since the graph Gy in Fig. 16(b) indicates that net f can be

merged with either net a, net b or net c, three edges are added and

matching is also updated as shown by the heavier lines in Fig. 19(a). Of

course there is no guarantee that the merging which corresponds to the

updated matching satisfies the vertical constraint (horizontal constraints

are satisfied automatically), so the algorithm checks the constraints and

modifies the matching as shown in Fig, 19(b). This process will be ex

plained later.

At zone 3, net d and net f terminate. This means that, in process

ing zone 3, node d and node f should be moved to the left side in graph

Gn and merged with their partner nets a and b, respectively, as shown in

Fig. 20(a). Net c and net e have not been merged yet, since e has not

terminated. The vertical constraint graph is also updated as shown in

Fig. 20(b). A matching is next sought for the updated G.. The procedure

will continue until all zones have been processed.

5.2 Algorithm #2

The general flow of Algorithm #2 is as follows.

proc. Algorithm #2 (z$, zt)

begin ;

Step 1: for each net n1 terminating at zone z ,add node

n to the left side of graph G. ;

for z. = z$ to zt do ;

begin ;

-11-

CU Vertical conflict check for the current matching,

C.21 Update matching Cwhen conflict is found).

It is obvious that the solution corresponding to any matching on

graph Gh does not have horizontal oyerlaps because Gu is constructed

based on the horizontal constraints, However, vertical constraints

are not totally considered, so there may be vertical conflict. Fig. 21

shows an example, where the realization corresponding to the matching

in Ffg. 21Cc) is not feasible,

The following gives a procedure to consider the contraints imposed

by Gy, By using Algorithm A below, we derive conditions under which

any matching in Gu will lead to feasible solutions.

Algorithm A

Given graph Gu = CN, Eu) and graph Gy = (n, Ey) ;

begin

cl: Ex = 0 ;

while N is not empty do ;

begin ;

c2: let NQ be the set of nodes which do not have

ancestors in G ;

c3: remove a set of edges EQ from graph Gu, where

E0 *'{(1,j) |i,j €NQ, (i,j) e Eh} ; .

c4: if there is a node whose degree is equal

to zero in graph Gh

c5: then let it be v,

c6: otherwise, choose one of the nodes v e N , which has the small-
o

est number of edges incident to it and let E = E + E ,

where E is the set of edges connecting to node v

-13-

c7: remove node v and connecting edges from graph Gh

and graph Gy ;

end ;

end ;

Fig, 22 shows how the algorithm works. In the first iteration,

NQ s{a,c,d} and two edges Ca»c) and Ca,e) are removed from Gh, Then

node a is removed from G^ and Gy because the degree of node a in G. is
equal to zero etc

Theorem

The merging corresponding to any matching on graph G. is feasible

if and only if Ex is empty.

Proof

We first prove that if Ex is empty, any matching of Gh is feasible.

Let NQ be the set of nodes with no ancestors in G . Obviously, those

edges in Gh which connect nodes in NQ and which are removed in c3 in

the first go around are feasible edges for matching. Let N c n be

the set of isolated nodes in Gh after the removal of the edges above.

These nodes are connected in G^ only to nodes in N and are obvious can

didates for merger; therefore, once deleted, they can be forgotten as

far as Gv or subsequent merging is concerned. Let N, be the second set

of nodes with no ancestors. This set consists of new nodes in N"-. c N,,

while the rest belong to N - N . Clearly, nodes in N-j are descendents

of Nrt and they are not descendents of N -N . The edges in Gu removed
o o o h

at this step are therefore similarly feasible for matching. We next de-

i *lete N-j c N-j which are the isolated nodes. Since E = 0, the process

continues until all edges are removed.

We next prove that if Ex is not empty, there exists a matching which

is not feasible. We start as in the previous paragraph, but assume that

-14-

there exists no isolated node after the removal of the initial set of

edges. Let nj' eNQ be anode in NQ. Then there is at least one edge
in Gh which connects node n£ 'and anode, say n^ 'which is not in N.
If node n^j 'is adescendent of node n£ ', then merger between them is
clearly unfeasible. Thus we assume nv' is adescendent of node ni2' in

a 0

No "{no }* Meantime, node n^2' is also not isolated after the initial
removal of edges. So, it is connected to anode n^ 'which, by asimilar
reasoning, is adescendent of node n^ in NQ -{n£2h. Thus, we can
construct asequence of nodes n^, n^\ r\^2\ n^2K n^3\ n^,
Since the number of nodes is finite, there must be a "cycle" of nodes in

the sequence. Without loss of generality, we can assume that the cycle

1s no1}' nd 'no2)' nd2)' ••""o^9 ndk)» nd1)j and tnat no two nodes
among it are identical. However, the merger according to the set of

edges E$ ={(n^9 n^) |i=l,...,k }results in acycle in the
merged Gy, which is unfeasible. This completes the proof of the theorem.

Corol1ary

The merging corresponding to any matching on graph G = (N, E. - E)
i 11 /\

is feasible.

The example shown in Figs. 23 and 24 illustrates the use of the corol

lary. Fig. 23(a) gives the graphs Gu and Gy where the initial nodes with

no ancestors and the connecting edges are specially marked. With the re

moval of the heavier edges, node d is isolated and removed, together with

edges (d,g). In Fig, 23Cb), the new nodes and edges to be considered

next are marked. After the removal of edge Ca,i), there exists no iso

lated node. Let us delete node a and remove edge (a,h) e EY as shown in

Fig. 23Cc). The process then continues with no further problem. In

Fig. 24(a) we show the horizontal graph Gr with Ex removed. The heavier

edges represent an arbitrary matching. The corresponding vertical graph

-15-

after merging is shown in Fig, 24Cbl. In a sense, the bad element Ca,h)

which could have caused a problem has been deleted before matching.

6. Additional Comments on the Dogleg Problem

So far, we have discussed essentially the problem without doglegs.

Of course, the presented algorithms can solve the dogleg problems using

the zone representation and the vertical constraint graph introduced in

section 3.4. However, additional consideration may be necessary to re

duce the number of doglegs and cpu time. Thus we introduce a process

"merging of subnets" which merges subnets belonging to the same net to

form a net or larger subnet, If we carry this process to the extreme,

the problem is reduced to the no-dogleg problem. Hence we impose the

following two restrictions on the subnet merging,

Subnet i and subnet j can be merged only if:

01 merging of net i and net j will not increase the length of the

longest paths which pass through node i or node j on the vertical con

straint graph,

C2) L(i) «- dmax -pr L(j) + dmax -pr where L(k) is the length of the

longest path which passes node k, dmax is the maximum density, and p,

is a parameter.

According to the results of the preliminary experiments, this pro

cess significantly reduces the cpu time and improves the solutions in

the sense that the number of horizontal tracks and the number of dog

legs are both reduced. Parameter p^ has little effect on the results

when its value is 0 ~ dm,v/2. Hence, its value is fixed at 3.

7. Computational Results

Algorithm #1 and Algorithm #2 have been coded in FORTRAN and im

plemented on the DEC VAX 11/780 computer.

-16-

7.1 Programs

Both programs have a parameter, the "starting column." In the ex

planation of algorithms, zone processing is carried out from zone 1 to

zone n where n is the number of zones. However, we need not process in

this order. In fact, we obtained better solution when we processed the

zone with the highest density first. The above parameter specifies the

starting zone. Programs process zones from this zone toward zone n (or

zone 1), then toward zone 1 (or zone n). Usually, the starting zone is

chosen among the zones which have the maximum density.

7.2 No-dogleg problem

Here, no dogleg is allowed. Ex. 1 - Ex. 5 are the data taken from

the existing paper [1], and the "difficult example" was provided by

Deustch and'Schweikert of Bell Labs. Table 3 compares the number of

horizontal tracks of optimum solutions, the results of left edge al

gorithms, Algorithm #1 and Algorithm #2. The cpu time for Algorithm #1

and Algorithm #2 are also listed. Figs. 25-31 show the computer out

puts of Algorithm #2.

Table 3: No Dogleg

Problem
solution

data(#nets) opt left e alg. l(cpu)

ex. 1 (21) 12 14 12 (0.05)
ex. 2 (30) 15 18 15 (0.07)
ex. 3b (47) 17 20 17 (0.17)
ex. 3c (54) 18 19 18 (0.18)
ex. 4b (57) 17 23 17 (0.23)
ex. 5 (62) 20 22 20 (0.22)
dif. ex(72) 26* 39 30 (0.40)

al<h 2(cpu)

12 (0.07)

15 (0.43)

17 (0.57)

18 (0.72)

17 (0.77)

20 (0.88)

28 (1.60)

*0btained in [1] by means of the method of branch and bound after four
hours of computation.

-17-

The result indicates that both Algorithm #1 and Algorithm #2 reach

the optimum solutions for the data in Ex. 1 ~ Ex. 5, and obtain con

siderably better solutions than the left edge algorithms for all examples.

7.3 Dogleg problem

Algorithms were applied for the previous examples and, of course, pro

duced optimum solutions for ex. 1 — ex. 5. However, some solutions have

several doglegs. Table 4 shows the results for the "difficult example."

We can see that all three programs calculate near optimum solutions as

far as the number of horizontal tracks is concerned. However, the solu

tions of Algorithm #1 and Algorithm #2 require only 19 and 18 doglegs,

respectively, while the solution of LTX has more than 50. Fig. 32 shows

the computer output of Algorithm #2.

Table 4: Dogleg

data (#nets) density LTX alg, l(cpu) alg. 2(cpu)

dif. ex(72) 19 21 21. (1.0) 20 (2.1)

8. Conclusion

We proposed two new algorithms for the channel routing problem. Al

gorithm #1 is a simple one, which depends on a process of merging nets

instead of assigning horizontal tracks to each net. The basic idea of

Algorithm #2 is the same as Algorithm #1, but it uses a matching algo

rithm to improve the solution. According to the computational results,

when doglegs were not allowed, both algorithms produced optimum solutions

for five examples taken from a published paper, and better solutions than

LTX for a "difficult example." As for the dogleg problem, we used the

"difficult problem" to make comparison. Algorithm #1 produced a solu-

-18-

tion which has the same number of horizontal tracks but far fewer dog

legs than the solution of LTX. Algorithm #2 generated better solution

than Algorithm #1 and LTX in the sense that the number of horizontal

tracks and the number of doglegs are both smaller,

-19-

References

[1] Kernighan, B. W., Schweikert, D. G, and Persky, G., "An Optimum

Channel-Routing Algorithm for Polycell Layouts of Integrated Cir

cuits," Proc. 10th Design Automation Workshop, pp. 50-59 (1973).

[2] Persky, G., Deustch.D, N. and Schweikert, D. G., "LTX - a System

for the Directed Automation Design of LSI Circuits," Proc. 13th

Design Automation Conference (1976).

[3] Persky, G., Deustch, D. N, and Schweikert, D. G., "LTX - a Mini

computer-Based System for Automatic LSI Layout," Jl. Design Auto

mation and Fault-Tolerant Computing, pp. 217-255, (May 1977).

[4] Ohtsuki, T., Mori, H., Kuh, E, S., Kashiwabara, T. and Fujisawa,

T., "One-Dimensional Logic Gate Assignment and Interval Graphs,"

IEEE Trans, on CAS, pp. 675-684- (Sept. 1979).

[5] Lekerkerker, C. G. and Boland, J. Ch., "Representation of a Finite

Graph by a Set of Intervals on the Real Line," Fund. Math., 51,

pp. 45-64 (1962).

Acknowledgement

The second author wishes to achnowledge the support of Professor

Dr.-Ing. R. Saal at the Technical University of Munich.

-20-

2 3 4 5 6 7 8 9 10 II 12

H 1 1 1 1 1 1 1 1 1 f-

t_J_t ti, pX^
2

1
3 t I ,

1 1
t 1 t
. t 8 ♦ ♦

H 1 1 1 1 1 1 1 1 1 1 h

Figure 1. Netlist representation for
routing requirement.

0 145167049 10 10

2353526898

.0 10 \

7 9/

(D 4 •5 1 (7 0 4 9 10 10

4 10

1 7

5 6 9

2

3 8

i

235352689879

Figure 2. A realization for the requirement
in Figure 1.

<

1
.

/
2

1
f 1 1

•

2
0 (a

)

Fi
gu
re

3.
An

ex
am
pl
e

wi
th

c
y
c
l
i
c

c
o
n
f
l
i
c
t
.

1
1

2
\l

0

(
>

i
•

(
>

i
>

1
.

0
2

0
3

3

a)
n

o
d

o
g

le
g

2
2

0 r
~

—

1
1

..
..

2
0

3
3

b)
d

o
g

le
g

F
i
g
u
r
e

A.
A
n
e
x
a
m
p
l
e
i
l
l
u
s
t
r
a
t
i
n
g

t
h
e
a
d
v
a
n
t
a
g
e
o
f

u
s
i
n
g

d
o
g
l
e
g
*

© © ©

Figure 5. Vertical constraint
graph Gv for the
netlist in Figure 1

zone

J3>
4

2 3 4 5

m
l 8

!~9

(a)

Figure 6. Zone representation and interval graph.

Maximal cliques are 12345, 246, 467,
4798 and 7910.

(b)

C|
C

Z
C
3

*
'j
0
*

''
b'

'
*

2t
q

2-
b
j

j
2-
c

1
fJ

L
i

t
1

4
-
q
1

I
4
-
b

I
^-
1

'
r-
^L

Fi
gu
re

7.
A

fo
ur
-n
et

e
x
a
m
p
l
e

i
l
l
u
s
t
r
a
t
i
n
g

s
u
b
n
e
t
s

an
d

c
u
t
s

c
o
r
r
e
s
p
o
n
d
i
n
g

to
ma
xi
ma
l

cl
iq
ue

Cj
,

C
y
a
n
d
Co
.

V
F
i
g
u
r
e

8
.

Z
o
n
e

r
e
p
r
e
s
e
n
t
a
t
i
o
n

a
n
d

v
e
r
t
i
c
a
l

c
o
n
s
t
r
a
i
n
t

g
r
a
p
h

w
h
e
r
e

n
o

d
o
g
l
e
g
g
i
n
g

i
s

a
l
l
o
w
e
d
.

F
i
g
u
r
e

9.
Z
o
n
e
r
e
p
r
e
s
e
n
t
a
t
i
o
n

a
n
d
v
e
r
t
i
c
a
l

c
o
n
s
t
r
a
i
n
t

g
r
a
p
h
w
h
e
r
e

d
o
g
l
e
g

i
s
a
l
l
o
w
e
d
.

H 1 1 1 *

1 ' 1
—1—I—

' 1

-l—I—^—I—h

1 9
2

1 3
1

7

1

1 . ' 4 1
1

1 8 1 1
1 5 1 1 1 10

(a) net list

I ' ! 7 |
1 2 I l 8

19| 3]]
1 4 1 10 1

J 5 | 6

(c) zone representation

(b) vertical constraint graph

Figure 10. Example of Figure 1.

1 t_6-9)

^ 4

>P 3^

f

v ^ io

Figure 11. Net list after merging of net 6
and net 9 to form net 6f9.

1 1 1 1 1 1

ill i 7 I i i
i i i 1 i i

• 2 i » i 8 i i

131 • 1 1 '

141 1 1 1 10 •

15' '6.9, , ,

•

(b) updated zone representation
(a) updated vertical constraint graph

Figure 12. Merging of nets.

Track4- -

(or 5)

id) Track I

j) Track 2

(e)

Track 3

- Track 5

(or 4)

Figure 13. Illustration of Algorithm 1

1

4 10

6

7

5

8

9

2

3

Figure 14. A solution corresponding to Figure 13(e)

Figure 15. A modified vertical
constraint graph.

2 3 4

i a i d i i h i

, b , e , , ,
I c i i f i '

i 9 i . « k ,
i i i i i

(a) zone representation (b) vertical constraint graph

Figure 16. An example to show possible difficulties of Algorithm 1

!/

£1
M

9

(a) (b)

Figure 17. Updated zone representation and
vertical constraint graph.

Figure 18. Graph Gh and a possible
matching in processing zone 2

©
(a)updated matching

©
(b)modified matching

Figure 19. Updating graph % in processing zone 3.

(a) (b)

Figure 20. Updated graph Gh and Gr for the processing of zone 4

(a)zone representation

(c)graph Gh and

matching M

® ©

® ®

(b)vertical constraint
graph

(d)vertical constraint graph
after merging corresponding
to the matching M

Figure 21. Example to illustrate a matching which violates
the vertical constraint.

(a)

Graph Gn

(b)

Graph Gn

Graph Gv

©©©

©
Graph Gv

(C) © © © ©

Graph Gn Graph Gv

Figure 22. Illustration of Algorithm A.

N0Ha,c,er

E0H(a,c),(a,e)}'

v = a

N0-|b,c,el'

E0H(b,0,(b,e)^

v = c,e

N0Hb,d^

E0H(«»,d)f

v=b,d

(c)

(a)
Gv

®©o

®
(e)

Figure 23. Example to illustrate the use of the
corollary.

®©o
V \f v

0©®

(b)

®©o

® ©

(d)

®©®

(f)

Figure 24.

(a)Gr (b)

An arbitrary merging in Gr and the corresponding
vertical constraint graph after merging.

CD CD ©

****** example.1 ******

V CD CO V CM »-• CM "V CO v« *• V «H

CM *•« •rl CM CM CM
CM CD -• CD CO C* CM CO CD

CM
CM CO CO *•* C>

Figure 25. Example 1..

number of tracks = 12

maximum density = 12

CM
CD

****** example.3a ******

-• • i i

ill* 4—1-

-i-* +-* •4 *-

•4-* t—f

• 9

•4—4-

rt-r

» I I 4—i-

-♦H- -t—I—r- t-#

Figure 26. Example 3a.

*-4-

•1—i- +-*
-•—+•

number of tracks = 15

maximum density = 15

****** ex.3b ******

, • • , I rTT-l : • i : : TTTl M M », H

rtr* Mil I Mi Mm ! -i-H+H-H
-U-U 1 1 i s* i? j; M M

I] -^ '—«H—h* * i M i j j j !Hi j i
4 i i {

4-H
4-4- 4—4-

* ! M MM I 1
—I—H-1—r-r-\—! H

_.rf—nl i*-rTM-'MM n..Tt. . rmxii
~HI ITT i MM M M MM M ir*

\ i \ \ \ i . H—H-iH—i j I ! j ! M.

I MM i MSj M 1 1Li MMi Il^UtZttt
it! i i . . i • i ! • • • 1-rrr imii"M i m

Figure 27. Example 3b.

» » * t t t ; t

{ } I | j ?

number of tracks = 17

maximum density • 17

****** example 3c ******

H M i
4-*

4-4-

4-4-4-

I I t t I I

4-4-4-4- 4-4-4-

TT

-*-«- 4-*

#-f-f

4-4-

4-#-f

4-4

I I M l I

4< i ♦ > i

4-4

• i- i

I 1 I

i i i-
4-4-

1-1-

: i :
» » ♦■

....

1*11

•-4- 1 I i • < 4-4-

•4B-

-U4

-* I i -t-»- •1 1 > I

4-4-4-4- 4-4-4-

?!!?!?!

I I » t I • :

•« i ♦ i «•

>• i" < « <

4-4 4-

i i ill! till ! j j ! ! 8 t I

4-*

> »

•4-4- 4-4-

1 > 4

4-4- 4-4- I I 1 I

t i i t i

-* m-

* m I

i d i •

•t-f-

-t-f

-t-t- I > t

j 4-L.
4—4-

-1-t-

4-i-

i f > I *-f t > t f

number of tracks = 18

maximum density = 18

Figure 28. Example 3c,

****** example 4b ******

LiiiLiiLiiimL
IT! !!!!

* f f ! { ! | t : j i iiitnitiii

number of tracks * 17

maximum density =» 17

Figure 29. Example 4b.

****** example 5 ******

3

tr

-Hff

\riUr
iJrjr

m
Si

frr
44-

I J

ii
II

ill
i it!!.

I! i i 11 i
Hi!!
liihllr
iiiiiiii
i i jih'ii
i I i i 111!
11j! I i I i
:::::::

:::::::
: t j j t t t

4—4-

?n

44- 444

irtt

! 8! 8 •A—4-
ir

44-

—i. ii

tr 44 UUhp

it :

: | :]:!!!
I i f I * i i i i

: I

t i f f i • . i

U

I : t

iii

mum ; {

j j i j j j »44-
i 5 i 5 l t t : i

Mil
» { : j |

I j I ! I

•4-

44
H II H

ii

•«

44-
:
: .

:!:
; i i

Ttttrrti—r

! i*j

f*4

! * I
N»«44-

44-

i i l

Ui.

I» fi11jj j11jI II j jj ii
11111111111 • ii ii

j | i\ j j j
I i L»»_i

H
i i

tttt

-U4-

44-

i i
*♦-»■

TT

4-k

44-4- 44444
| Mi;
iii i
*i: ;

Tjj

Tt^+T

»4

r+i-H
:j:j it

i fc • t - j

I ii i

444-M! »-

^»« « s

Tt"

I • 8 > I! !»8 8 i f I j
"i-i-f

4-4-

• ! :
i i i

ii

: ;:i:

number of tracks = 20

maximum density » 20

Figure 30. Example 5.

t w ••

444
iiiiiii!
i ijij i j 5
iiiiiii
:::::::

Iii f-Hf

***-»!!

mi*
i «J-L

!!

!!!!!
fill
iiii

III!
1111

{j
: { { : k
Hri-4?

!! 4
•hi mi

r
IliiirHH

****** difficult example *****

it::
I »j j i >

4-4444
!!!

iii
444H

i-ii

«•

i I

*: ik-
-4-4—

.14-

j i: i -

iliii
iliii

Tt

• I I III

i Nil
i iiii

-H+i-

f I I l jI I*l

:i .iiii

::::;. ::t; .:;; ;::;;;::::;;::;

i MM i

:::

!+H

; jifiljii
i iiiiiiii

till

>i S i i i i k

Mi

iii

i;: t;:: :::

iiiiiiiJ44-

1-!-+

i i e *•*

: : i

i i i

iii.

: t : i

: •! •? t

U

4-«

II, .8 I

number of tracks = 28

maximum density = 19

1,1 i I I I I I

Figure 31. Difficult Example without dogleg

****** difficult example *****

lllliilllllllllllllllllll Ntunw I rll u l illllll IIII IIII I'll llllillll' r1 H1 IIII 111
>

,

>-.-1 —— — - — »- _i_..-i. — ^-
.i

• _. —1 I.-.-...— -• -.—1 t r *-r f- r —...- — — .. — '
— 1

r I 1 ^ tt— ^ r~" "*r *—T—--i---f •—t -r *-*

^

,..._,.. . » ——. * ——.

S - i •••"
1i:::.i:::::::i....i::::: :::::n .:ii i:::::::::::::::::_:il ::i::::::: n..-..i..n..3.._...ii

number of tracks * 20

maximum density = 19

Figure 32. Difficult Example with dogleg.

	Copyright notice 1980
	ERL-80-43

