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Abstract

Each of several agents updates his estimate of the same random

variable whenever he makes a new observation or receives the estimate

made by another agent. In turn, each agent transmits his estimate to a

randomly chosen subset of the other agents. A subset of agents forms a

communicating ring if for every pair m, p of ring members there is a

sequence of ring members m= m-j, m2,..., mn+1 = p such that m. sends his

estimate to m^ infinitely often. If each ring member knows that he is

a ring member, then the estimates of all the ring members asymptotically

agree. However this common limit can depend upon the order in which

estimates are transmitted.
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1. Introduction

Consider a set of agents A := {1,..,M} and a fixed random vector X

which each agent wishes to estimate. If at any time t, the information
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available to m is represented by the a-field Ft, then m's estimate of

X is assumed to be Xt := E{X|Fj.}. At random times mtransmits his cur

rent estimate to a randomly selected subset of the other agents. In

turn, his own information field fJ? is generated by two sequences of

'observations'. The first consists of 'signals' received from the

environment. The second consists of 'messages' received from the other

agents; these messages are themselves the estimates of the transmitting

agents. Both sequences of observations are received at random times,

and a message sent by any agent is subject to a random transmission

delay. We wish to study the convergence of the estimates x"J as the
number of messages exchanged grows without bound. Simpler versions of

this process of message exchange and estimation were investigated by

Aumann [1] and Geanakoplos and Polemarchakis [2]. The results derived

below extend theirs.

It is easy to see that xT converges to arandom variable XJJJ as

t -> °°. The more interesting question is to determine the sample paths

a) along which two different agents m and £ agree asymptotically i.e.

XooM = KaM- Tne answer can be informally described as follows. Say

that m and £ communicate infinitely often (i.o) along oj if there is a

sequence of agents m,,...,m ,m , = m, such that m = m., p = m. for

some i and j, and m. sends messages to m.+, i.o. along w. Then

X^w) = x£(oj) if m and n_ communicate i.o. and they know that they do so.

(A counterexample is given to show that the first condition alone is
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insufficient for asymptotic agreement.) In particular, if all agents

communicate i.o. with each other and with probability one, then there

is universal asymptotic agreement. This common limit however does

generally depend upon the order in which the agents transmit their

estimates. Generally it also differs from the full information or

centralized estimate of X which would be obtained if all agents shared

all their "raw data" and not just their estimates.

Similar results hold for a distributed detection problem in which

the agents have to decide which of two alternative probability distributions

correctly accounts for the observation processes. In this problem the

message transmitted by an agent is his current estimate of the likelihood

ratio.

In the concluding section we argue that these results suggest that

in the design of a distributed information system, different agents should

share their raw data as much as possible instead of individually processing

it first and then sharing the resulting estimates.

2. The model

(fl, F, P) is the underlying probability space and X is a fixed random

vector with E|X| < ». Each agent m, 1 <m<M operates as follows.

mO ,* _j__ ,.. mO(i) m receives signal Z^ at random time r"V ,j = 1,2,...,

0 <•?<#, _<-....
(ii) m receives message Z? at random time r1?, j = 1,2,..., with

j j

01 rj i rj+i 1 °° 3-s. Here Zm is the estimate transmitted to mby some
other agent. It is assumed that when a message is received, m also learns

the identity of the transmitting agent.

^mLet £t denote the a-field of the information available to m at time

t. Thus ££ is generated by subsets of the form
-3-
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'{Zm0 € B} n{rm0 <s} ,{lm. e B} n {rm <s} ,

where B is a Bore! set and s < t. Note that some information may be

conveyed by the time instance at which signals and messages arrive. Let

(|£,t >0) denote acomplete, right-continuous version of the family

(££). Let^i-V^and^ :- Vf™. 0.^t<«. Let
t m

x? •" ECXllJ} , 0<t <«>

be the estimate of agent matt.

(iii) Let t^, j=1,2,... be an increasing sequence of (F1?)-stopping
times. At each time tm, msends the message Xm := Xmm to agents belong to

w J j.m

jthe nonempty subset A.. Am is randomly selected, measurable with respect
to F™.

It can be verified that the reception times rm0, rm are {£)-stopping
times. We do not insist that these be finite. However the transmission

times are finite:

Assumption 1. tm <« and lim tm =« a.s.
J j J

Assumption 2. Atmost one message transmission or reception occurs at

any time. That is, for j* k, tm. <t™+1 and tm f rm a.s.
This assumption is inessential, but it relieves some notational burden.

It could equally well be replaced by establishing some fixed priority

ordering among messages received or transmitted simultaneously.

A transception at m is a transmission or reception of a message at

m. Let xn, n = 1,2,.. be the nth transception time. This is an a.s.

finite, strictly increasing sequence of (^)-stopping times such that
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U {t™(o))> =U (t%)} U {rm(w) <«} .
n n j J k K

Because of Assumption 1, lim t"J =« a.s.

Let ff" be the a-field generated by the first ntransceptions i.i
=n

by subsets of the form

rm c Qi n rjn ^ m, r/,m „ ;, r, rvm{Z. 6B}n {r. <t"V {A™ = A} n {x? € B} net? <Tm} ,

where Ais any subset of agents. gJJ does not explicitly include information
contained in the signals from the environment - the Zm0.

Let rk(p) be the time at which agent m receives the kth message from

agent £, and let Zk(p) be this message; set r^(p) =« if m receives from

£fewer than kmessages. The random variable z£(p) is defined only on the
event {r^(p) <-}. Similarly, let t£(p) be the time at which mtransmits
amessage to £for the kth time, and let x£(p) be this message; set

tk(p) =°° if mtransmites to £ fewer than kmessages. Again, x£(p) is
defined only on (t^(p) <«}.

Finally, let qk = n if the kth message transmitted by m (to any

other agent) occurs at the nth transception time i.e. if tm = t"1. Then

qn is a(G^-stopping time, and qJJ <°° a.s. by Assumption 1.

Assumption 3. Messages are subject to random but finite transmission

delays. That is, for each £, m and k,

.m.(t'^p) <«} -{rjJOn) <«} .

Moreover,

.m,dim tf'(p) = .} = {lim r£(m) = «} .
k K k k
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This completes the specification of the model. Assumption 1

guarantees that each agent sends his estimate to some other agent infinitely

often. As mentioned already, Assumption 2 is a technicality. In regard

to Assumption 3 observe that if all agents have the same "absolute" time,

then a message must be transmitted before it can be received i.e. t?(p)

_< r£(m). However, we do not impose such a restriction, so that each agent

may have his own "local" time. Nor is it required that the messages be

received in the same order that they are transmitted, (think of the

communication medium as the Post Office — but Assumption 3 implies that

messages cannot get lost or distorted, and messages are received out of

order by only a finite amount.) The different local times cannot be

completely arbitrary since all the transception times are defined on the

same probability space, so that there is an implicit restriction. It

would be an important extension of this model to specify each agent's

operation solely in terms of his own local time, and make explicit the

dependence between different local times imposed by message exchanges.

For a discussion of some of the issues involved here see [3,4,5].

Let

Gm := Gmm ,Gm := VGm and X* := E{X|G*} .
Is

Recall that X^ =E{X|^}, 0<t<«and Xm =Xmm .
*j

Theorem 1. (i) (X^F?), 0 <t <«, is a martingale, (ii) X1? = ECXIf'V}

(iii) lim X? = lim X* = lim X?1 = Xm.

Proof, (i) follows from the fact that X1?, 0 _< t <» is a uniformly

integrable family, (ii) then follows from the optimal stopping theorem
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[6, p. 133]. By the martingale convergence theorem [6, p. 131],

lim x£ =x£ and hence (ii) implies lim X^ =x£. Finally, by optional
sampling again, x£ =Xmm and since lim q£ =«a.s., therefore

lim Xk - X^.

Thus each agent's estimate converges. The interesting question is

to determine when there is asymptotic agreement.

3. When is there asymptotic agreement

Arandom variable Wis common knowledge for afamily H1,..,^" of
a-fields if W is measurable with respect to each of them.

For any event F in F let 1(F) denote its indicator function.

For any two agents m and £ let Smp be the event that m sends

messages to £ infinitely often (i.o.) Precisely,

Smp :-{eo|tjJ(p)(«) <•, k- 1,2,..}

«{w|rjj{m)(a>) <», k=1,2,..}

by Assumption 3.

Lemna 1. Both X* l(Smp) and l(Smp) are common knowledge for Gm and Gp.
'-CO —00

Moreover

xm 1(smpj =E{X|£n£} l(smp) a.s.

Proof. Since
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Ct?(p) <«} =u{p €Am and tm <t"J for at least kdistinct values of j},
n j j

it follows that (tj!(p) <«},and hence Smp, are in j£. Similarly,
<rp(p) <00} and Smp are in £.

The kth message transmitted by m to £, X?!(p), is defined on

(t^(p) <»}, hence x£(p) 1{t^fp) <«} is awell-defined random variable
and by Theorem 1,

lim Xm(p) Ht£(p) <»} =X* l(Smp) . (1)

Suppose the kth message transmitted by m to £ is the A. th message received

by £ from m, i.e.

X£(P) Ht^(p) <»} =Zp (m) Ht^(p) <«} . (2)

^ is a random variable, and by Assumption 3, I. •+ «> as k -*• », hence

lim Z? (m) l{tm(p) <«} = lim Zp(m) l(Smp)
k k K i l

which is G^-measurable. But from (1), (2) this limit equals X^ l(Smp)

so that the first assertion is true. The last assertion is now immediate

since, by Theorem 1, E{X[G^} = Xm. n

Corollary 1. X™ 1(S) = x£ 1(S) a.s. where S=Smp n Spm.

Proof. Immediate from Lemma 1. n

The corollary says that if, on a particular sample path to, m and £

communicate with each other infinitely often, then they must agree

asymptotically on m. It seems reasonable to expect asymptotic agreement

even when m and p communicate with each other i.o. through other agents

rather than directly.
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Definition. Asequence of not necessarily distinct agents m,,.., m^, =m.
m_.m.11+1

forms a communicating ring for an event S in F if S c s 1 , 1 = l,..,n.

Theorem 2. Suppose that

(i) m^,.., m^i = mjj forms acommunicating ring for S, and
m, m

(ii) 1(S) is common knowledge for Gj,.., G .
=oo

m. m, rn

Then the Xj agree on S i.e. xj 1(S) = .. =xj1 1(S) a.s.

The following lemma is useful in the proof of the theorem.

lemma 2. Let W ,.., Wn+1 =W1 be integrable random vectors and H1,.. Hn

be a-fields such that W1 =EfW^^H1), i=l,..,n. Then W1 = .. =Wn a.s.

Proof. Since the argument below applies to each component we may suppose

that the W1 are scalars. Suppose first that the W1 are square integrable.

Since conditional expectation is the best mean square estimate, therefore

W1 =E(W1+l|Ji1) implies

E|Wi+1|2 =E|wV +ElW1!2 , 1-l,..,n

where W1 := W1+1-W\ Adding these relations and recalling that Wn+1 =W1
gives

0=ElW1!2 + .. + E|Wn|2
1 n

and so W = .. = W . Thus the assertion holds for square integrable

random variables.

Next, for any number x, let W^ := min{W1,x}. By Jensen's inequality,

W1 =E(Wi+1|Hi) implies

w! >e(m!+1|h1) > (3)
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and since from (3) we get EW1 >EW2 > .. > EW"+1 = EW1, so (3) holds
x — x

with equality. Therefore, for x > y,

W^-W^= E^-W^lH1*)

and since Wx - W is bounded,hence square integrable, therefore
ii n n

Wx-W = .. = Wx-W . The result now follows by letting x •*• », y •»• -».

Proof of Theorem 2. By Lemma 1

m. m.m.+1 m. m.+1 m-m..,
Xj KS 1 1+1) =E(X|G3o1nGn1+1) l(s 1 1+1)

m. - m. m.,, m.m.,,

=E(xJ+1|&JnG1+1) KS1 ,+1)

=E{X„1+1 KS1 1+1)l£>fiJ+1} . (4)

m. m.m.

By hypothesis (ii), Se^1 and Sc s n 1+1. Hence, multiplying both
sides of (4) by 1(S) gives

W1 =E(W1+l|fl1)
m. _. m. m.i '"i i '"•? '"i+l 1where W1 := xj 1(S) and H1 := Gj n^1^, By Lemma 2, W1 = .

and the assertion follows. n

Corollary 2. Under the hypotheses of Theorem 2

m. m, m„
Xj 1(S) =E{X|gJ n .. HGj1} 1(S) .

Proof. By (4)

m. m. m..,
Xj 1(S) = E{X HS)\gJ n^+l} . (5)

m. m. m.

By Theorem 2, Xj 1(S) = xj 1(S) and so Xj 1(S) is common knowledge for

-10-
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m, m
1 n

On > .., 4o . Hence taking conditional expectation with respect to
m, m

fij n .. ogJ1 in (5) gives

m. m, in

Xj KS) =E{X 1(S)|gJ n.. ngj*}
m, m_

• ECXlfiJ n.. n^"} KS) ,

mi
since by hypothesis SGG ], all i. h

- CO

Corollary 2. Suppose that with probability one, all agents are members of

the same communicating ring. Then the estimate of each agent converges

to E{X|(|!n .. nGM}.
1 00 : -CO

Proof. Immediate from Corollary 2 since l(fi) is certainly common knowledge

for all. n

Hypothesis (i) of Theorem 2 says that, over the event S, every pair

of agents in the communicating ring send messages i.o. to each other

either directly or through other agents in the ring. Hypothesis (ii)

says moreover that, over the event S, each agent in the ring knows that

he is a member of the ring. This second hypothesis is not implied by

the first. For example, if for a sample path to, m, sends i.o. his estimate

to nig and m^ sends i.o. his estimate to m,, m, may not be able to infer

whether or not m^ sends i.o. his estimate to m3 (and then m,, m«, nu, m,

forms a ring for w), even though m_3's message to m, will depend upon

whether or not and how often he hears from m^.

It may be conjectured, however, that the fact that m,, m2,..,m +,

form a ring is sufficient to guarantee asymptotic agreement i.e. that

hypothesis (ii) is unnecessary in Theorem 2. We now give a counterexample

to this conjecture.

-11-



Example 1. Take Q = {a,..,g}, £ = 2 , and let P be uniformly distributed

on Q. There are three agents labelled 1, 2, 3. The table below gives

12 3
the random variables X, X, X , X . Thus, for instance, for w = a,

the random variables take the values indicated by column a, so X(a) = 1,

X](a) = 0.5, X2(a) =1

(1) a b c d e f g

X 1 0 -2 1 0 2 1

X1 .5 .5 -2 .5 .5 1.5 1.5

X2 1 0 0 1 0 0 1

X3 1 -1 -1 1 1 1 1

and X3(a) =1. For i=1, 2, 3let G1 be the subfield of £ generated by

the partition jf where

P1 = {a,b}, {d,e}, {f,g}, {c}

P2 = {a,d}, {b,e}, {c,f}, {g}

P3 = {d,g}, {e,f}, {b,c}, {a} .

Observe first that X1 =EUIG1). Define the events S12 ={a,b,d,e},
S23 ={b,e,f,c}, S31 ={d,e,f,g}, and check that X1 1(S1,1+1) and KS1'1*1)

are common knowledge for J31, £ (Here and below i+1 =4 refers to

agent 1.) Also check that X1 1(S1,1+1) =E{X1+11S1 n|1+1} 1(S1,1+1).
Suppose now that agent i receives signal X1 from the environment, and

when a) € S1*1 he transmits X1 to agent i+1. It is easy to check that

under these circumstances X1 and G1 remain unchanged, so that in terms

of the previous notation G1 = G1, and X1 = X1. Now S12 n s23 n s31 = {e},
= • 00 00

so all agents form a communicating ring over {e}. However, {e} £ G1 for
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every i, i.e. none of the agents can know if they do form a ring, so that

hypothesis (ii) of Theorem 2 does not hold. And indeed X (e), X (e) and

X (e) are all different, so that the conclusion of Theorem 2 does not

hold either.

3. Properties of the asymptotic estimate

Throughout this section it is assumed that with probability one,

all agents form a communicating ring. By Corollary 3 then, all estimates

agree asymptotically and equal X, where

X:= E(X|sln.. n£) =E(X|£) =X™, . (6)

(In case all agents form a communicating ring over S and 1(S) is common

knowledge for all JaJJ, then the discussion below continues to apply

provided X is replaced by X 1(S).)

Now if the agents shared their "raw data" rather than their estimates,

then their estimates would converge asymptotically to the full information
*

estimate X ,

X* := Ettlfiv .. v£) . (9)

Since X=EfX*!^ n .. nj^), therefore X* is abetter estimate than X.
*

The next example shown that X can be strictly better.

Example 2. Let ft = [0,1] , F the Lebesgue field and P the Lebesgue

measure. Agents 1 and 2 try to estimate the random variable X := 1(A)

where A is the hatched region in Figure 1. At t = 0, agent 1 observes

1(B), and agent 2 observes 1(C). At t = 1, 3, 5, ... agent 1 transmits

his estimate Xt to 2 and at t = 2, 4, 6, .. agent 2 transmits his estimate

Xt to 1. Since 1(A), 1(B), 1(C) are pairwise independent, X' = x£ =X

= EX = 0.5 a.s., whereas if the agents shared their observations the
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resulting estimate X would take the values 0.25 and 0.75 each with

probability 0.5. Thus X f X*.

Thus the raw data contains information beyond what is common

knowledge and which can be used to provide a better estimate of X.

However the additional information available to any single agent must be

uncorrected with Xgiven the common knowledge G := G n .. n GM.
— ** "CO 00 00

Lemma 3. Let F€^. Then E{X 1(F)\gj =XEfKFJlGj.

Proof. Using (8),

E{X 1(F) |4.} =E{E{X KF)|^}[Goo> =XE{1(F)|4,} .

The lemma shows that in the Gaussian case X = X . More precisely, by

the Gaussian case we mean that (i) X and the signals received from the

environment — the Z. — are all jointly Gaussian and (ii) the transmission
j

and reception times as well as the sets Am are all deterministic. Then
j

£» anc* JL are generated by sequences of Gaussian random variables, and

so by Lemma 3, for each m, Xand FJjJ are independent given G^. But then

X and V FJJJ are also independent given G ,which proves the next result,
m

Lemma 4. In the Gaussian case X = X .

Now suppose that each agent receives exactly one signal from the

environment at t = 0 and that there is no transmission delay. The next

example shows that the common asymptotic estimate can depend upon the

sequence in which messages are exchanged.

Example 3. Let ft - [0,2] x [0,3], g the Lebesgue field and P the

Lebesgue measure (normalized to give P(ft) =1). Agents 1 and 2 try to

estimate 1(A), where A is shown in Figure 2. At t = 0, agent 1 observes

-14-



l(B-j) and agent 2 observes {l(C-j), 1(C2)}. At t= 1, 3, 5,.. agent 1

sends his estimate X. to 2 and at t = 2, 4, 6,.. the latter sends his

estimate X£ to agent 1.

Now x](a>) := E{l(A)|l(B-|)}(a>) =̂ or jaccording as ueB] or
a) e B2. Hence a(X-j) is generated by the partition {B, ,B2L After

receiving X^ therefore, agent 2's information field is generated by the

partition {B1 n c.; i= 1,2, j = 1,2,3}. Since this is also the field

generated by all the observations l(B-j), l(C-j), 1(C2), therefore

X2 = E{X|1(B-|), l(C-j), 1(C2)} =• X is the asymptotic estimate. Note that

X(u>) =1if ueB1 nC3.
Suppose now agent 2 sends his estimate Xt at t = 1, 3, 5,.. and

agent 1sends xj at t=2, 4, 6,.. . Then X2(oo) =:EttlKCj), k(C2)}(w)
11 2= j or j according as we C1 or we C2 u c3. Hence a(X^) is generated

by the partition {C|, C2 u C3L After receiving Xt therefore, agent Ts

information field is generated by the partition {B. n c1, B.. n (c2 u c3);

i=1,2}. Hence X2(u>) := E{X|l(B-,), X2}(u>) =0or j according as
oj e B2 n C-j or to ^ B2 ^ C-j, and so a(X2) is generated by the partition

c 1{B2 n Cp (B^C-j) }. After receiving X« therefore, agent 2's information

field in generated by the partition {B^ n^, B2 n C-j, C2 u c3}. But
2 1then X3 = X2 =: X must also be the asymptotic estimate. But note that

X£X, since X(w) =1and X(oj) =j for web1 nc3.

4. Distributed detection

The setup is almost the same as in section 2 except that the message

X? transmitted by any agent m at time t is different.

The space of events (ft,£) admits two probability distributions

P-| and P and the agents need to decide which of these is "true." Agent

m's decision at time t is based on the conditional likelihood ratio,

-15-



Xm •= Ff—1
At * hldP S) • (10)=H

The messages consist of these ratios.

For any a-field G eg say that P, « P|G if, restricted to g, P,

is absolutely continuous with respect to P, that is for G <= G, P(G) = 0

implies P^G) = 0.

Recall that F. = Vfj.
==t ==t

m

Assumption 4. For each t, P, « P|_F..
dP, l ~z

Then Xt := E(-^pr F+) is well-defined when interpreted to mean the

Radon-Nikodym derivative of P-, wfth respect to P restricted to E+.

X. in (10) is similary interpreted. Observe that if P, « P|F. then

m m dPlXt = E(X|£t) where X := -gp- ,and so the problem reduces to the one

considered already. Hence the discussion below is of interest only when

P, is not absolutely continuous with respect to P and Assumption 4 holds.

This is the usual situation in detection or system identification problems

Here is the result corresponding to Theorem 1.

Theroem 3. (i) (X™, fJ), 0 < t < «> is a martingale, (ii) the limit

x|JJ := lim x"j) a.s. exists, (iii) (X1?, F1?), 0<t<»is asupermartingale.

Proof. The first assertion follows from (10). Also X? is obviously

nonnegative and so (ii), (iii) follow from [6, p. 131]. n

We now investigate asymptotic agreement. The same argument as in

the proof of Lemma 1 shown that xJJ l(Smp) and l($mp) are common knowledge

for G^, g£. If P, is not absolutely continuous with respect to P

restricted to F , then the last assertion in Lemma 1 does not hold, and
•-co

so the proof of Theorem 2 no longer applies. Indeed we are unable to

prove asymptotic agreement without some additional restirctions. Several
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alternatives are possible, and we present one of these.

Assumption 5. The transmission delay between any two agents is fixed.

This assumption implies that messages are received in the order

in which they are sent. Let GJj!(m,k) be the a-field generated by the
first kmessages received by £ from m before t. G?(m,k) is generated by

subsets of the form

{zP(m) e b, rg(m) <s} , i < k, s<t . (11)

If A is the delay experienced by messages sent by m to £, then G?(m,k)

is also generated by the first k messages sent by m to £ before t-A

i.e. by subsets of the form

{x'J(p) e B, tg(m) <s}, *,<k, s<t-A. (12)

Lemma 5. E{x]j!|GP(m,k)} l(rjj(m) <t) =Xmm l(t^(p) <t-A) . (13)
tk(p)

Proof. From (10), (11) it follows that the random variable on the left

equals

E{Xt|GP(m,k)} l(tm(p) <t-A) ,

and by Theorem 3 (i) and (12), this equals the variable on the right, n

Letting t -* «> in (13), and using Theorem 3, gives

E{x£|GP(m,k)} l(t>) <«) <Xmm l(t^(p) <-) .
tk(p)

Letting k -*• «, and again using Theorem 3, gives

E{x£|£(m)} USmp) <x!!l(Smp) , (14)
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where G£(m) := V G£(m,k) is the a-field generated by all messages received
k

by £ from m.

Theorem 4. Suppose that

(i) m,,.., m+, = m, forms a communication ring for S, and
mi+l(ii) 1(S) is common knowledge for J (m«), i = l,..,n.

m.

Then the X^ agree on S.

Proof. Clearly Smp c G£(m). Hence the hypothesis and (14) give

m_. xl m •. •% m.

E{X 1+1 l(S)|5aDl+l(m1)}<X "1(S) .

Since m +, = m-p there must be equality. The assertion now follows from

Lemma 2. «

5. Concluding remarks

A distributed estimation system consists of several local sensors

and processors, each sensor feeds "raw" data to one or more processors,

and the processors in turn are linked by a communication network. One

of the decisions that must be taken in designing such a system is to

determine how much "preprocessing" of data should be done by each local

processor before it communicates to its neighbors. Underlying this

tradeoff is the presumption that the greater the amount of preprocessing

(more precisely, the greater the raw data is stripped of irrelevant

components), the less is the need for inter-processor communication

capacity.

Intelligent use of processed data requires a knowledge of how the

original data relates to the processed data. In terms of the model of

Section 2, if £ receives from m the Tatter's current estimate Xt» the

proper use of this statistic requires that £ should know the joint

-18-



,mdistribution of Xt and X, a knowledge which would normally be derived

from the joint distribution of the messages that m has received. Since

the relation between raw and processed data is often complex, use of the

latter will then entail a lot of computation. These computational tasks,

moreover, are very contingent on the manner in which processing is done

locally, so that a change in this processing at one location will

propagate changes everywhere.

These remarks concerned with the implementation of distributed

implementation and related considerations (see Wong [7]), suggest that

preprocessing of data should be limited to the simplest possible

operations. The results presented here reinforce such a conclusion.

In the first place it is clear that an estimate based on processed data

is inferior to the full information estimate (cf. Section 3). A more

subtle observation stems from the fact that the former depends upon the

ordering of inter-processor messages (cf. Example 3), thereby introducing

an additional complication in the design of distributed estimation systems

The specific problems discussed in this paper raise two additional

questions. The first which concerns formulating distributed estimation

problems solely in terms of local description was already stated in

Section 2. The second concerns the role of a priori information. Our

discussion stipulates a single probability space. This presupposes that

all processor-agents have the same "view of the world," in particular

the same prior probability. There are many situations (horse races, the

stockmarket?) where agents with different beliefs exchange information.

How can we model the process of expectation formation in such systems?

-19-
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Fig. 2. Parameters for Example 3.
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