
 

 

 

 

 

 

 

 

 

Copyright © 1980, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



A RECURSIVE QUADRATIC PROGRAMMING ALGORITHM

FOR SEMI-INFINITE OPTIMIZATION PROBLEMS

by

E. Polak and A. L. Tits

Memorandum No. UCB/ERL M80/50

22 September 1980

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



A RECURSIVE QUADRATIC PROGRAMMING ALGORITHM

FOR SEMI-INFINITE OPTIMIZATION PROBLEMS

E. Polak and A. L. Tits

Abstract

The well known, local recursive quadratic programming method

introduced by E. R. Wilson is extended to apply to optimization problems

with constraints of the type max <Kx,w) <_ 0, where u> ranges over a

compact interval of the real line. A scheme is proposed , which results

in a globally convergent conceptual algorithm. Finally, two implementable

versions are presented both of which converge quadratically.

Keywords: nonlinear programming, control system design, recursive

quadratic programming, global convergence.

*

Research sponsored by the National Science Foundation Grant

ECS-79-13148 and the Air Force Office of Scientific Research (AFOSR)
United States Air Force Contract No. F49620-79-C-0178.



1. Introduction.

This paper is concerned with a particular kind of semi-infinite

optimization problem which frequently arises in control system design

[1,2,3,4,5]. The problem is characterized by inequalities of the form

<j)(x,(o) £ 0 for all w € ft C ]R, where x £ ]Rn is the design vector,

w € 3R is a frequency or time parameter and ft is a compact interval.

A key property of <(> which holds true in the case of control system

design, is that <Kx,*) has only a finite number of local maxima in ft.

This fact has been strongly utilized in the first order algorithms for

these problems, see [3,4]. Recently, it has been shown in [5 ] that

this property can also be used to construct a Newton method, for solving

inequalities of the form <j>(x,a)) £ 0, w £ ft, which solves only finite

quadratic programs at each iteration.

The present paper takes up on the ideas in [6,3,4,5] to construct

a recursive quadratic programming algorithm for this class of problems.

Recursive quadratic programming algorithms were introduced by E. R.

Wilson [7 ], have been analyzed and extended in a large number of sub

sequent papers by other authors [8,9,10,11,12,13,14], and currently enjoy great

popularity.

In their simplest form, recursive quadratic programming algorithms

are only locally convergent [8 ]. A number of schemes have been proposed

to stabilize them, i.e. extend their region of convergence [9,12,6 ].

Some of these schemes use exact penalty functions for testing descent

[9 ,12] in choosing step size; others,e.g. [6 ],obtain stabilization by

cross coupling the R. Q. P. method with a more robust method as specified

in the general theory presented in [15]. In this paper, we follow the

latter approach. As a result, we obtain two globally convergent versions

-2-



of a quadratically convergent algorithm for semi-infinte optimization,

which solve only finite quadratic programs at each iteration. Further

more, the cardinality of these programs is bounded and will, usually,

be small.

2. Problem Definition and Preliminaries.

We are interested in solving the problem

min{f(x)|g(x) <_ 0, 4>(x,oj) <OV(o€n} (2.1)

with f : ]Rn -♦ 3R, g : IRn •* ]Rm , (J> : ]Rn x ft -* Hp , and ft a compact

interval of IR. We use the notation

tpix) = max ((r (x,w)
w£ft

^Cx)
CCx) =

SPCx)

and, for any integer k, kA {l,2,..,k}. Throughout this paper we shall

use the following

Assumption 2.1. The functions f, g and <{> are three times continuously

differentiable in all the arguments. n

Let \\> ; 3Rn -* ]R be defined by

Kx) Amax{^(x), j € £; gj (x) , j € m} (2.2)

and, for a £ B, let

a. A, max(0,a)

-3-



The feasible set F is defined by

F A {x|iKx) < 0} (2.3)

so that x £ F if and only if ip(x) , = 0. For e > 0, the e-most-active

constraints are specified by the sets J (x) and ftJ (x) ,j ^£, defined by

J£(x) A{j e m|gj(x) >iKx)+ ~e> (2.4)

^Cz) A{to eft|^(x,aj) >_ip(x)+ -e} ,je£ . (2.5)

We finally define ftJ(x), the set of e-most-active local maximizers by

$r(x) 4 {^ e ft (x)|oj is a local maximizer of (f>(x,0 over ft} .(2.6)

Now let e > 0 be given(possible infinite)and let x ^ Hnbe such that

(i) ftJ(x) is a finite set and V w S sr (x), <j>(x,oi) + e ^ iKx).
e e t

(ii) for any w € Jr (x) H int ft, j £ £ we have

^w(x,w) ?* 0(i.e., >0) (2.7)

(iii) for any w G ftJ (x) O bd ft, j £ £ we have

<^(x,u)) ^0 (2.8)

(i.e. (^(x,**)) > 0 if id = inf ft

< 0 if a) = sup ft)

Under these conditions, invoking the Implicit Function Theorem for

<j>J(x,a)) •* 0, we see that there exists a ball B = {£|ll£-x!l < p} (of
(A) X

radius p) such that for each to £ ft (x) there exists a unique,

-4-



continuously differentiable function w3 : B -*• ft such that
x,u x

i ~1
wt ,S& e ^CO for all ^ € B and w (x) « to. Its derivative is
x,w e x x,to

identically zero if to € bd ft (by (iii)) and, if to € int ft

«wL(x) =-+L(x»u>"1*L(x'u) • <2-9>

For the same given x and each u € o/J(x) we can tnen ^efine
e

nJ : B -• ft by
X,0) X J

nl „(•) - *d(-,w„ (•)) .x,to X,UT " " (2.10)

Obviously, if a solution x* of problem (2.1) is such that (i), (ii) and

(iii) are satisfied, then the condition

(jr(x,to) <_0 V to € ft

can be replaced by

x S B .
x*

i.e., we can substitute a finite set of continuously differentiable

inequalities for the original continuous set of inequalities.

Consider now the derivative of n^ . If to S bd ft, we have, for
x,to '

£ is some neighborhood of x,

3nj . .
-5p(« -^tt."i,B<«) =♦£(«.«> (2.11)

and if oj S int ft, for £ in some neighborhood of x ,

-5-



=*xCC<a^)> (2.12)

since ^(S.w^CO) »0by definition of 0^(5). Before proceeding further,
we introduce a second assumption (the meaning of subscript • is clear).

Assumption 2.2. For all x in Hn, the sets ftJ* (x) ,jG m are finite.
a

We shall denote by k^(x) the cardinality of 1? (x). For the purpose of

simplicity of notation in stating on algorithms, we define the "pseudo-

functions"^' n1J (x), by

n^(x) A(j)J(x,to^(x)), i=l,..,k^(x), (2.13)
i*i ** *where u^ (x) is the ith element of ft^(x) considered as ordered by "< ".

We now see that, if x* satisfies (i), (ii) and (iii) and if

k£(x) is constant in a neighborhood of x* then, in that neighborhood,

{Y"Cx)|i =l,..,k^(x)} =(nx5l:>aj(x)|to€^(x*)} .

We will see later how we can devise algorithms exploiting this fact, by

using amodification of the recursive quadratic programming technique,

which was first introduced by Wilson [7] for the standard nonlinear

programming problem and later analyzed by Robinson [8], see also

[ 9,10.,11,12,.13,14 ]. However, first we need to introduce some more

notations. Remembering that expressions(2.11) and (2.12) are valid only

(*)
By this we want to emphasize the fact that n1J(x) is defined only

for all x s. t. i < k^ (x).
— e

-6-



if x is such that (i), (ii) and (iii) are satisfied, we get around the

difficulty by defining a "pseudo-gradient" Vn J(x) by

Vn^Cx) 4 ^(x,tofj(x))T, i=l,..,k^ (x), (2.14)e x e eQ

Similar considerations lead us to define a "pseudo-Hessian"

V n£J(x) by

vVjCx) 4*;L(x,toij(x)), i=l,..,k^(x) (2.15)

which is equal to the Hessian 7 n J(x) whenever the latter is well-
e

(is")
defined. Finally we introduce an appropriate Lagrangian. We define

L£ :mn x (1RP) x lRm -* IR together with its "pseudo-gradient"and

"pseudo-Hessian" as follows:

« kj(x)
p e ..

L (x,y,X) =f(x) + I I yljn^j(x) + I Ajgj(x) (2.16)
3=1 i=l j%(x)

p ki(x).._,. • .
7L (x,u,X) = Vf(x) + I I u1J7rrJ(x) + £ X^g^x) (2.17)

3=1 i=l> £ J^J£(x)
— p ^(x) _
72L (x,u,X) =72f(x) + I I y±j7Vj(x) + £ Xj72gj (x) .

j=l i=l E 3^Jc(x)
£ (2.18)

3. A Conceptual, Local Quadratically Convergent Algorithm.

We begin our development of an algorithm by first defining a

locally convergent, conceptual version.

Algorithm 3.1.

Parameters, e > 0

(JRp ) is the space of infinite sequences in IRP

-7-



Data, x G ]Rn, X € ]Rm, y S (]RP) K,i.e.{u*»J}
i=eiN

3=1,..,?

Step 0. Set Z = 0 .

Step 1. Solve the following quadratic program t

min<Vf(x)l),v> +| <v.v\(x£.W£.VV>

subject to n^Cx^) +<7n^j(Xjl),v> <0for i-1,.. ,k^(x^), j=l„ .. ,p

gj Cx£) +<7gj (x£),v> <0for je J£(X) ; (3.1)

obtain v and corresponding multipliers X . and y .-.

Step 2. Set x^+1 =x£ +v^ and y^ =0for all i€[k^x^+l,^(x^) ],
j € £;set A « A + 1 and go to Step 1. °

The above algorithm is obviously related to the method of recursive

quadratic programming for the standard nonlinear programming problem.

Hence we can hope that under suitable assumptions it will exhibit a

local quadratic rate of convergence. Note however that, since local

maxima of <j>(x,*) cannot be computed exactly, Algorithm 3.1 is only

conceptual; in section 5, we will introduce an implementable version.

Note also that, unless we are close to a local solution of(2.Dour way

of updating the y's does not seem too promising, since, when the sets

,__. vary in cardinality, some of the y J,s will be associated withJr(x) vary in cardinality, some of the y ';

constraints they were not meant for, since in (2.16)-(2.18) they are

assigned in increasing order of the maximizers. We will come back to

this question in section 4. Before proceeding further, let us introduce

a few more assumptions, which formalize our stipulations (i), (ii) and

(a)
throughout this paper, by "solving a quadratic program" we will

mean finding its Kuhn-Tucker point of minimal norm

-8-



(iii) in section 2. Our assumptions will be in terms of a local

solution for problem (2.1), i.e. a point x* such that x* S F and

f(x) >, f(x*) for all x € F H B(x*,p), for some p> 0. We denote by S the

set of local solutions to problem (2.1).

Assumption 3.1* Suppose that x* £ S and j ^ £

CD If w€ ftJ(x*), then if w <= int ft, <j>j (x*,to) $ 0 and if
toto

to € bd ft, <^(x*,to) $ 0 .

(ii) If to 6 ft^(x*) and <!>j(x*,to) =0, then $ (x*,<*0 t 0 . n

Assumption 3.2. For any x* € s and oi £ ft (x*) ,

<Kx*,to) + e f 0 . n

Assumption 3.3. For any x* € S,

{Vg3(x*), j e J0(x*); <f>x(x*,to)T, to e ftQ(x*), j e£

is a set of linearly independent vectors. n

Note that if S is finite Assumption 3.2 should not cause any

difficulty :it will be "almost surely" satisfied. Our first result is

Lemma 3.1.

Let Assumption 2.1, 2.2, 3.1 and 3.2 be satisfied and let x* <= S.

Then there exists an p* > 0 such that, for all x S B(x*,p*), we have

kg(x) = k£(x*),¥j €£J (3.2)

moreover, for all <^ € ft^(x*), j € p, the functions A (•), are
e •»- x*,oj

-9-



continuously differentiable in B(x*,P*) and for all x £ B(x*,p*)

\j(x) =nj ±,(x) (3.3)
X*,0)

where a) is the ith element of ftJ (x*) is increasing order; consequently

n (') is continuously differentiable in B(x*,p*).

Proof.

Follows from the Implicit Function theorem, using Assumptions 2.1,

2.2,3.1 and 3.2. n

The above lemma is the key to local convergence of our Algorithm 3.1.

To see this we first note the following fact.

Lemma 3.2.

Let Assumptions 2.1, 2.2, 3.1 and 3.2 be satisfied and let x* € S.

Then

F OB(x*,e*) « {x|gj(x) <0,Vj6j (x*); n±j (x) <_ 0 Vi € kj (x*),
e e ~— e

V j E £>n B(x*,e*) (3.4)

when e* is given by Lemma 1.

Proof.

^'^ BObvious from Lemma 3.1 and the definition of n J(*).
e v

From Lemma 3.1 and Lemma 3.2, it now follows that problem (2.1) is

equivalent, in a neighborhood of x* to the problem

min{f(x)|gJCx) <0, VjG J£(x*); n*j (x) <.0,¥ i€k£(x*)},V je p_}
(3.5)

-10-



In order to prove quadratic convergence of Algorithm 3.1, we need to

adapt to problem (2.1) the well-known notion of a strong local solution.

Definition 3.1. Let x* € S. Then x* is a strong local solution to

problem (2.1) if

k^(x*)
(i) there exist multipliers X* € 1R™, y*^ G ]R ° ,j= l,..,p

such that

ki(x*)
VfCx*) + I X*i7gi(x*) + I I y*ij7^j(x*) =0(*>

i=i j=i i=a o
(3.6)

X£g (x*) = 0 ,Vi S m (3.7)

(ii) {7gi(x*)|gi(x*) =0} U{7nQj (x*) |i €k^(x*),j€£} (3.8)

is a linearly independent set of vectors

(iii) \± > 0 ¥i such that g (x*) =0 (3.9)

V*1* >0 Vi e kj (x*) ,3€£ (3.10)

2
Civ) <y,7 LCx*,y*,X*)y> > 0 for all y $ 0 such that (3.11)

<y,Vg (x*)> =0 ¥i such that gi(x*) =0

<y,VriQJCx*)>« 0 ¥i e kj(x*), 3G£

The triplet (x*,X*,y*) is then called a strong Kuhn-Tucker triplet where

y* - (y*1,...^) . B

kjkx*)
'with the convention that kj(x*) =0 implies that £ y3Vn J(x*) = 0.

i=l °

-11-



Theorem 3.1. Let z* = (x*,X*,y*) be a strong Kuhn-Tucker triplet for

(2.1) and suppose that Assumptions 2.1, 2.2, and 3.1-3.3 hold. Then

there exists a p > 0 such that, if (x ,X ,y ) e B(z*,p), Algorithm 3.1
o o o

constructs an infinite sequence {x_,X ,y } which converges to z*
* « Jir

R-quadratically.

Proof.

This theorem is a direct consequence of Lemma 3.1 and 3.2 and of

Theorem 3.1 in [11] and the fact that, for x in a neighborhood of x*,

pseudo gradients and Hessians are identical to gradients and Hessians,

i.e.,

vn«(x) =in^2l (3.12)

7n«(x)=l^ixI (3.13)
3x

Assumption 3.3 insures that the quadratic program in Step 2 of

Algorithm 3.1 has a solution when p is small enough. n

Computational Considerations.

There is a tradeoff involved in the choice of parameter e. On the

one hand, a small value of e will reduce then number of gradient

evaluations necessary to set up the quadratic program. On the other

hand, if e is large, the quadratic program will be more likeley to have

~2
a solution; for instance, if V L (x ,y ,X ) is not positive definite,

e Xt x> Jt

constraints are indispensable for the quadratic program to be bounded.

Also for e large enough, all local maxima will always be contained in

the e-strip and the algorithm will not suffer from local maxima

entering and leaving the quadratic program (incidentally, Assumption

3.2 will then be satisfied for sure). If one decides to use a large e,

-12-



£ = oo would probably be as good a choice as any.

Computational efficiency might also be improved by the following

modification. In solving the quadratic program, we might drop the

constraints associated with zero multipliers, thus saving gradient

computations and decreasing the size of the quadratic program. All

our results will still be valid since, when (x,X,y) is close to z*,

zero multipliers correspond to constraints inactive at z*, and also

inactive for the quadratic program in a neighborhood of z*. However,

the tradeoff here is that, away from z*, the quadratic program might

become unbounded.

4. A Conceptual Stabilized Algorithm.

In section 3we have presented an algorithm which solves problem

(2.1) with an R-quadratic rate of convergence. However, this algorithm

requires that the initial triplet (x^X^) be close to astrong Kuhn-
Tucker triplet. In this section, we will construct a mechanism for

initializing Algorithm 3.1. The mechanism consists of two blocks. The

first block is any globally convergent algorithm yielding points close

to some local solution; we shall use the algorithm proposed by Gonzaga,

Polak and Trahan [4]. The second block is any test for detecting when

the sequence constructed by the globally convergent algorithm is suf

ficiently close to astrong local solution for the local quadratically

convergent algorithm to take over; we shall use a test related to the

one in Algorithm Model 3in [i5]. Let A^-) be defined by Steps 2and

3of Algorithm 3.1 (whenever the quadratic program or Step 2 has a

solution), so that an infinite sequence Ux^X^y^)} ={ZJ generated
by Algorithm 3.1 satisfies z^ =A^), i =0,1,2,... .

-13-



Gonzaga, Polak and Trahan [4 ] present a first order algorithm which

is a "phase I-phase II" feasible direction algorithm for problem (2.1).

This algorithm constructs search directions by evaluating the optimality

function 9 (x) defined, for e^ 0 and x ^ ]Rn , by

P ke(x)
6pCx) =max{- ylly07f(x) + J Xj7gj(x) + T ? yij7nij (x)ll2 -yv°*(x)

j^Je(x) j-1 1-1 £

. . P ke(x)
+ I ^ig3U)-Ux)+) + I I y±J (/j (x) -t|;(x),) |
j£J GO j-1 i-l e

e

k£(x)
y° + I Xj + I y1 -1, y° >0, y±j >_ 0, Xj >_ 0} .

j^Te(x) i-1
(4.1)

Let the solution of the quadratic program (4.1) be denoted by

y (x) e 3R, \ (x) G mm and u (x) 6 (3RP )"^ . We define the search
e e e

direction h (x) by
e

h (x) --{yI(x)Vf(x) + I Xj (x) 7gj (x)
£ £ j€J£(x)e

P ke(x)
+ I I ^(x) 7n^(x)} . (4.2)
j-1 i-1 £ £

For our problem, the algorithm proposed in [4 ] assumes the following form.

Algorithm 4.1. (Gonzaga, Polak, Trahan)

Parameter, a,8 ^ (.0,1), 6 € (0,1], y>l, eQ > 0.

Data, x € lRn

Step 0. Set I = 0.

-14-



Step 1. Set e = eQ.

Step 2. Compute 9 (x ) and h (x ) via (4.1) and (4.2).
e x> e X/

Step 3. If 9£(x.) £ - 6c go to Step 4. Else set € = e/2 and go to Step 2

«lStep 4. If »j/(x.) _< 0, compute the largest step size a - S

(q. nonnegative integer) such that

f(xjl+crjlhe(xjl)) - f(x^) <- aa£5e (4.3)

^V^W* <0 . (4.4)

qo
If Kx.^) _> 0 compute the largest step size a = 8 (q nonnegative

integer) such that

Kx^h^x,)) - iKx0) 1- aa^e . (4.6)

«<V- If ^w
and \wl =V\«

A+l =Pe(W and A£+i =VW" Set I =^+1and g0 to Step ^

S£flLi- Set Via x* +WV- If ^W *°
Set V*+l =",<W'#W and Vl =VW^W- **«• set

We will be interested in triplets z = (x,X,y)where x S 1 is an

estimate of alocal optimizer and X£ Hm , y €= (3RP) estimates of

corresponding Kuhn-Tucker multipliers. It is shown in [4 ] that if

x is optimal for (2.1), then 9Q(x) = 0. Hence, we will define the

set A of desirable points by (see (4.1))

-15-



A- {z - (x,X,y) |X >_ 0, y :> 0,^(x) £ 0 and

3v >. 0 with (y ,y) $ 0 s.t. y°Vf(x)

* y . - p ko(x) ..
J,^« + I I u1JVn01J(x) -o}. (4.7)3<=J0(X) j=1 i=1 0

We will denote by \? an infinite sequence with elements yi:*.

The convergence properties of Algorithm 4.1 are stated in [4] as

follows

Lemma 4.1. If Algorithm 4.1 constructs a sequence (z }= {(x ,X ,y )}
At At At Xt

which is finite (due to infinite looping in Steps 2-3), then

^V^2^' ^^^ is desira°le» where x, is the last value of x . If
{z^} is infinite, any accumulation point is desirable. c

We can express the computations in one iteration of Algorithm 4.1 in

terms of the maps A* and E* which are evaluated as follows (the

definitions depend on a,8,Y><5).

Procedure 4.1. Evaluation of A^(-) and E^(»).

Data, z - (x,X,y), e >_ 0 .

Step 0. Set F = e .

Step 1. Compute 9-(x), h-(x) .
e e

Sten_2. If Qj(x) £ - 5e" go to Step 3. Else, set 7 = 7/2 and go to

Step 1.

-16-



Step 3. If ij>(x) £ 0, compute the largest step size a - g

(t nonnegative integer) such that

f(x+ah^(x)) - f(x) <_- aa6F (4.8)

iKx+ah-(x)) £0 (4.9)
e

If i|>(x) > 0, compute the largest step size a = 3 (t nonnegative

integer ) such that

Kx+ah--(x)) - i/»(x) £ - aaSe • (4.10)

Step 4. Compute y = y- (x+ah-(x)), X = X-(x+crti (x)), y - y-(x+ah (x)).
& e e e e

If y ^ 0-, set X= X/yQ, y= y/yQ.

Step 5. Set A^(z) - (x+ah-(x),X,y), E*(z) = s .

Remark.

Obviously if this iteration is used several times in a row, Step 4

is needed only for the last one (since Step 1 of next iteration solves

the same quadratic program). n

We are going to present two different ways of connecting A_ and A^

together to produce a stabilized algorithm. The first one follows a

technique used previously among others by Polak and Mayne [6 ]; we will

see that, in order to obtain satisfying convergence theorems, we need

-17-



to introduce a rather strong assumption (Assumption 4.1). The second

scheme has been used previously [16] to stabilize a Newton algorithm by

using a multiplier method; this second scheme allows stronger theoretical

results. From a practical point of view, however, it is not clear

whether one of these schemes is definitely superior to the other. In

most situations, both algorithms are expected to behave identically.

The following assumption will be needed for the first scheme (see Polak

and Mayne [ 6]).

Assumption 4.1. Suppose z £ A. Then z is a strong local Kuhn-Tucker

triplet. n

In the algorithm stated below, A. depends implicitly on a parameter

e > 0 (possibly °°) as described in section 2. This constant parameter

is not to be confused with the variable e used in the stabilizing

algorithm.

Algorithm 4.2a. (stabilized, version 1).

Parameters, a, 0 € (0,1), y>l, 5 S (0,1), n ^ (0,1), K > 0, e > 0,

e > 0, v € (0,1).

Data. xQ €]Rn ,XQ S]Rm, yQ € (IsP)™.

Step 0. Set i =0, j-0, zQ = (xQ,y0), 7 = eQ.

Step 1. If A. (z„) is well defined and DA- (z ) - z II <Kn^
1 Z 1 i Z —

set z - Ai^z»^» J " 3+1» ^ = ^+ 1 and go to Step 1.

*£SB_2- SSt Vi "A2E*(V' Vl =E2E*(Z*>' *=*+!•

-18-



Step 3. If e^ <_ vs go to step 2. Else proceed.

Step_4. Set F-v Compute 9^), to obtain y°(X£), y^). Set
P° =U°(x£), X=Xe(Xt), B=U£(V. If y0 ,Q> sec x_x/^ =̂̂
Set Zji = (x^,X,y) and go to Step 1. n

Theorem 4.1. Suppose that the sequence {z^} is constructed by Algorithm

4.2a and that Assumptions 2.1, 2.2, 3.1-3.3 and 4.1 are satisfied. Under

these conditions

(i) if {z^} is finite then the last element is desirable,

(ii) if {z£} is infinite and bounded, then z% -+ z*, R-quadratically,
with z* a strong local triplet. n

We first prove two lemmas.

Lemma 4'2' Suppose that Assumptions 2.1, 2.2, and 3.1-3.3 are satisfied

and that Algorithm 4.2a constructs an infinite sequence {zg} such that

there exists an ZQ such that for i >ZQi z£ is constructed in Step 1.
Then z -• z with z S A.

Proof.

The proof of this lemma is identical to the first part of the proof of

Lemma 3.1 in [6 ], bearing in mind the definition (4.7) for a desirable

point. n

Lemma 4.3. Suppose Algorithm 4.2a constructs an infinite sequence {z },

containing an infinite subsequence {z£>Kwhich is constructed in Step 2

and which satisfies the test in Step 2. Then any accumulation point

of tz^} is desirable.

-19-



Proof.

Let z% •* z with K' C K. Since, for any Z^ i^K', with Z2 > Z,

e. < ve , (4.15)
*2 \

we know that e ">• 0 as £-*•«, £ € K!. Also, we have
x*

e. < e0 for i = 1,2 (4.16)
*i *i-l

which implies that

£0e - E2u(Zjl )for i=1,2 . (4.17)
i i

It has been shown (Lemma 1 in [17]) that this implies

eQ(x) - 0 . (4.18)

Since it follows from our choice (4.1) of an optimality function that

y (x), X (x) and y (x) as they are constructed in Step 4 converge to

0 a * AyQ(x) , XQ(x) and yQ(x) ,we conclude that z € A. n

Proof of Theorem 4.1. First suppose that, for Z >_ £-, {z } is entirely

constructed in Step 1. By Lemma 4.2 and Assumption 4.1, z "*" z*, where

z* is a strong Kuhn-Tucker triplet. From Theorem 3.1, we conclude that

convergence in R-quadratic. Second, suppose that there exists an infinite

subsequence {z } such that z0 is constructed in Step 2. Then, it
At K At

follows from Lemma 4.1 and from Lemma 1 in [17] that there exists a

further subsequence indexed by K' C k such that

e^ < ve& V Z2 > I 9 ZVZ2 € K' (4.19)

-20-



K'Using Lemma 4.3 and Assumption 4.1 we conclude that z -* z*, a strong
Xr

Kuhn-Tucker triplet. Again, by Theorem 3J.we conclude that convergence is

R-quadratic. n

We now introduce our second stabilized version.

Algorithm 4.2b (stabilized, version 2)

Parameters, a, g€ (0,1), y>l, S e (0,1], n e (0,1), K > 0.

Data. xQ e m11, XQ €mm, yQ € <mp)™ .

StegJ). Set Z= 0, j = 0, zQ = (*0AQ,\iQ) .

Step 1. If A1(z£) is well defined and ilA-(z )-z II <_ Kn^ then go to
Step 2. Else go to Step 3.

Step 2. If z^ was constructed in Step 3 or if Z= 0, then set

iai, j3jand z=2r Set z%+1 »A^z^) ,j«j+l,4-A +laad
go to Step 1.

Step_3. If z was constructed in Step 2, then set £- I, j-j and z„ =»

:£ g-a

If y *0, set X=X/yQ, y=y/^. Set z£ =(x^y) and go to Step 1.

Theorem 4.2. Suppose that the sequence {z^} is constructed by Algorithm4.2b

and that Assumptions 2.1, 2.2 and 3.1 - 3.3 are satisfied. Then

u — n

SSt ZZ+1 =A2 (z£)j ez+l " E2 (z£}' *=*+L Compute 8(xJ to obtain
n ex.

U£(x£), Xe(xt), H((x£). Set p0 . B°(x ), X=l(t), y=„(, ).

-21-



(i) ^ ^z^is finite the last element is desirable,

(ii) if {z^} is infinite then any accumulation point of {z } is

desirable and if any such accumulation point z* is a strong local

triplet, then z% -»• z* R-quadratically.

Proof:

Clearly, the aLgorithm can behave in two different ways. Either

{z } is entirely constructed in Step 2 or, if there is an Zn such that
* 0

z is constructed in Step 1, then z. is constructed in Step 1 for all
0 l

Z > £Q. In both cases all accumulation points are desirable (by Lemma

4.1 or Lemma 4.2). Let us show that in the first case, {z } does not have any

accumulation point which is a strong local triplet. For suppose that

z^"-* z* for some K, with z* a strong local triplet. Then the sequence

would eventually reach a z such that, by Theorem 3.1, {z.} would be
*0 z

constructed in Step 1 from then on. Hence, if any accumulation point

z* is a strong local triplet, then the tail of the sequence is constructed

in Step 1 and, by the same argument as in Theorem 4.1, z. -*• z*

R-quadratically. a

As mentioned earlier, it appears that Algorithm 4.2b results in a

stronger convergence theorem than Algorithm 4.2a(because Assumption 4.1

is not needed)and, in.addition, the proof is much simpler. However,

as far as efficiency is concerned, the comparison is more delicate.

Indeed, it may appear wasteful not to retain anything from the

computations performed in Step 1 as soon as Step 2 is reentered. However

the following two facts have to be taken into consideration. First, if

-22-



Step 2 is reentered after Step 1, then we must conclude that Step 1 was

entered improperly, probably too far away from a strong solution, and

hence the effect of using A^, in that case,is unpredictable. Second,

even if the effect of using A is beneficial, since the stepsize is

limited to a small value by the test is Step 1, the possible improvement

obtained in the Step 1 iterationsthat have been performed is probably

not very large.

Computational Considerations.

In section 3 it was pointed out that, away from a strong Kuhn-Tucker

triplet, the multipliers provided by A. may be very poor estimates, as

in particular they may be assigned to local maxima they were not meant

for. A way to circumvent this difficulty would be to solve 8 (x ) at

each iteration to give proper estimates to the multipliers to be fed to

the quadratic program. The tradeoff is that such a modification might

prevent quadratic convergence.

5. An Implementable Stabilized Algorithm.

The algorithm given in section 4 is conceptual since computation of

the set of local maximizers cannot be performed exactly. To make the

algorithm implementable we approximate Q4 [u)n,o> ] by the finite set
U c

Gq 4M" =w0 +kAq, k=0,1,..,q} (5.1)

where Aq - (a)c-co0)/q (5.2)

The points in ft will be referred to as mesh points. Similarly, C (*),

an approximation to CJ(*) is defined by

• •

C^(x) =max{(J):i(x,aj)|(o €n} . (5#3)

-23-



The function ^ (•) is defined by
q

*q(x) =maxCg^x), jSi; C^(x), j€£} (5.4)

The approximate e-most-active constraint set and the corresponding local

maximizing set and index set are defined as follows :

Gqe(x) 4{« e fiq|<J>3(x,u>) >*(a0+ -e> (5.5)

Jr )x) A. {w e ft3 (x) |co is a left local maximizer of
q e — q,e

<}>3(x,0 restricted to Q3 (x)} (5.6)
qe

Jqe(x) ={j eB|gj(x) >*G0+ -e> • (5.7)

A left local maximizer is defined as follows: if

&3 (x) = {oj ,w0,..,oj } then u>. is a left local maximizer of
qfc- 1 £. s i

<|>j(x,-) in ^£(x) if ^(x,^) ><t)j(x,wi-;L) and <j>3(x,w±) >(j>3 (x,«1+1)
(with the convention that <on = to -=» -<»). We denote by k3 (x) the

0 s+1 ' qe

cardinality of ft3 (x) . We first discuss an implementation of A.(«). We
qeyx +v(x)>

recall that A (z) =i X(x) \ where v(x) and (X(x) ,y(x)) are solution
1 I y(x) J

and multipliers of the quadratic program (3.1). The naive approach would

be to substitute fi3 (x) for ft3 (x) , i.e. to consider n 3 (x) as <|>(x,a)) forqe e qe t% » •

(i) in ft3 (x) and similarly for its pseudo gradient and pseudo Hessian.

However it appears that with little more work we can obtain much better

convergence properties. Indeed, considering the naive approach, we have

to deal with the constraints

<J>J(x,u>*3 + *3(x,</3)v <0, </3 6 5j(x) . (5.8)
qe x qe — qe qe

Heuristically, we see that, if q is large enough, although u> is not in
q e

-24-



general an element of S3 Cx), its distance to ft3 (x) is of the orderof the

mesh A . Now suppose we constrain A to decrease as fast as IIvll where

vis the solution of our quadratic program, then (5.8) will still be

accurate to first order, provided that we substitute for <J>3(x,w 3) a
qe

first order approximation to <J>3(x,o>), where ui is an element of S3 (x)

(see Mayne-Polak [5]). Heuristically we have

<jr(x,to) «<j>3(x,wq3e) +^(x,o)q3£) So (5.9)

where So) satisfies

0=^(x,B) =^(x,UJ) +♦*>,.£> to (5.10)

i.e.,

Expression (5.11) assumes that 6a) is small. Hence we introduce the

quantity 5co 3Cx) defined as follows. Let
qe

d A min(|<So>|, 2A ) ^ , s A sgn(6o)) . (5.12)

If Wq3 =oj0 and ^(x,^) <0, then

6wq3(x) =0 . (5.13)

ij
If wqe = ^c and *w(x,a)c) >°» then

6wqe a ° • (5.14)

(*)
if a) is an endpoint, then 6w = 0

(**)
the reason for choosing 2A is that, for large q and some c > 0,

IM 1Aq +ca2 12A (see [5]).

-25-



Otherwise,

if a). < u 3 + so < (a then ooj13 (x) = s6 ,c ,CN
0 — qe — c qe (5.15)

if u>q3 +s6<_a)0 then Sc/3 (x) »u - oi13 (5.16)

if «c <wq£ + s6 then <5q3(x) - uc - o^3. (5.17)

Accordingly, we now define

nq3(x) A*3(x,u>q^) +^(x,^)6wq3(x) (5.18)

Vnq3(x) 4 4»x(x'a,qi) (5'19)

WZ\iM ±*L<X'°Q (5.20)

all three with a£3, the ith element in increasing order of S3 (x).
qe — ° qe

The extra work in obtaining the first order approximation on (5.18)

is relatively small (two scalar function evaluations for each pair (i,j)).

However, as we shall see,it results in much better convergence properties.

An even better approximation would have been obtained by defining n (x) ,

instead of (5.18), by 4>3(x,uj 3+6ojL3(x)). However, the extra function
qe qe

evaluation does not provide stronger convergence properties, at least

as far as theory is concerned. Also note at this point that our

approximation to the pseudo Hessian has not been refined beyond expression

(5.20), since this already yields a second order approximation to the

cost function in the quadratic program (if A is of the same order as

llvll) and the cost function in the conceptual version is already a second

order approximation.

We define

k3 (x)
7LQ(x,y,X) «V2f(x) + I qf uiWj(x)+ I X3 3-^0 .

4 j=l i-1 qe j<=J (x) 3xZ
£ (5.21)

-26-



We are now ready to state the inplementable version of Algorithm 3.1.

Algorithm 5.1.

Parameters. e>0, c>0, q > 0 an integer

Data. xQ e m11, Xq €mm, Uq 6(rP)^

Step 0. Set Z = 0, q = q*.

Step 1. Solve the following quadratic program

min<Vf(Xjl),v> +7<V>7\£(VVVV> (5.22)

subject to

n5e(x£) +<^oi(V>V> 1°' i=l.-.-,kJe(x£), j-l,..,p (5.23)
g3(x£) +<Vg3(Xjl),v> <0, jej£(x) . (5.24)

If the solution v is such that

qlc/M , (5.25)

set q = q + 1 and go to Step 1.

SteP 2- Denote by v^ the solution of the last quadratic program and

XZ+V yJW-l the cor^esPOTiding multipliers.

SteP 3- Set Kl+1 " *z + \ and y^ =* 0for all i€ [k3 (x )+1,
kqe^+l^» ^€£, set Z=Z+1and go to Step 1. n

Theorem 5.1. Let z* = (x*,y*) be a strong Kuhn-Tucker triplet for (2.1)

and suppose Assumptions 2.1, 2.2 and 3.1-3.3 hold. Then there exists

a p>0 such that, if U0AQ,VQ) € B(z*,p), Algorithm 5.1 constructs an

infinite sequence {z } which converges to z* R-quadratically.

-27-



Proof.

Our proof is strongly inspired by the proof given by Garcia-

Paloinares and Mangasarian [11] for the basic recursive quadratic pro

gramming algorithm (when no functional constraint is present). Following

[11], we just establish the convergence of the algorithm with an

R-linear rate. We need the following lemma, a direct extension of Lemma

3.1; we state it without proof.

Lemma 5.1. Let Assumptions 2.1, 2.2, 3.1 and 3.2 be satisfied with

e > 0 and let x* S 3. Then there exists a p* > 0 and a q* > 0 such

that, for all x £ B(x*,p*) and all q >_ q*

k (x) = k (x*) (5.26)

To simplify notations we assume that m = 0 and p = 1 (our results

carry through easily to the general case). We denote by Q (z) the

quadratic program (generalizing (5.22)-(5.24))

min<7f(x),v> +i<v, G (z)v>
v ^ q

subject to

V(X)+<7V«'">1° ««%<*> • ' (5.27)

We introduce the function h : mn+ke(x*) ^mn+ks(x*) and

aQ : Rn+kqS^ xa***qe«) - ^qs& as follows

-28-



h(z) =

k£(x*)
izr ivf(x) + I yrvxizw

i=l e

.1^1/y^n^x)

ke(x*) k (x*)
(x)

(defining n1 (x) A. 0 for i > k (x))
e — qe

1

K (x)
i- iVf(x) + Gn(£)(x-x) + J yW (x)

qe

and d (z,z) -
q

i=l

ulCnqe(x) +<VTlqeW» x"x >>

k(i) k (x) k (x)
yqe (nqe +(Vn^ ,x-x >

qe qe

(5.28)

(5.29)

The functionsh and d are obtained from the equalities h(z) = 0 and

d (z,z) » 0 which constitute the equalities of the first order Kuhn-

Tucker conditions of the original problem and of the quadratic sub-

problem. Extending to functional constraints a result of McCormack [18],

we obtain that, whenever z* is a strong Kuhn-Tucker triplet,

3h(z*)
dz

is nonsingular, As in [11], we define

64|„ih^-1

(5.30)

3h
Since h(z*) = 0 and — (z*) is nonsingular, there is some p.. ^ (0,p*)

such that B(z*,p-) contains no other zero of h, hence no other Kuhn-

Tucker point. From Assumption 2.1, we conclude that there exist

-29-



Pe [0»P-j_], M > 0, q >0 such that such z* is the unique zero of h in

B(z*,j) and that for any z^ and z„ € B(z*,p) and q > q" we have that

(ia) ij^) -||(z2)l £1/23 (5.31)

(ib) B-fj^) -d^(Zl,z2)il <_l/28 (5.32)

where d^(Zl,z2) -£ <K*r*> l„2

(ii) i!h(2l) - dq(z1,z2)ll <Milz2-Zlil2 + ll(V2L(Zl) - G(z1))(x1-x2)H
(5.33)

(iii) nqe(xl) +^i(x1>(x2"xl) <° ¥i G(i|\(x*) <0} (5.34)

(iv) y^ >0 Vi e {ilu*1 >0} (5.35)

The following 2 lemmas, direct extensions of lemmas due to Garcia and

Mangasarian [11], are stated without proof.

Lemma 5.2. Suppose, that, with the quantities defined above, it holds

z€B(z*, -|) ,4$llh(z)ll <_ pand q^"q. Then there exists unique Kuhn-

Tucker triplet z of Q (z) in B(z,y) and IIz-zII <_28ilh(z)ll <_ p/2 . *

Lemma 5.3. Let zQ 6 B(z*,p/4). Let {zJ be the sequence generated

by Algorithm 5.1, with Gq(z) replacing 72L (z) such that, for all i,
ty "

lGq<zi> "vVZi)!l ii/lOS- Then {z±} exists, remains in B(z*,P/2)
and converges R-linearly to z*. Moreover for i » 1,2,..

(5.36)
n

-30-



Now let us consider G (z) 4 V2L (z). From Assumption 2.1 and definition
2

of V nqe We have» for some \ >0 and all z€ B(z*,p)

IlAqe(z) -V2L£(z)« <KlAq (5.37)

and, from (5.25), for some K2 >0

*"^V2^ "*%<*!>°̂ K2llxi+rxi!l» ±=1»2--- (5.38)

Hence, from (5.36), since IIx -x II <_ Hz -z II,

^i+l-^H iKllz^^ll2 (5.39)

for some K > 0, which implies R-quadratic convergence. n

Our final task is to propose an implementable version of our

stabilized algorithms 4.2a arid 4.2b. First we denote by A^(-) the

effect of Steps 1-3 of Algorithm 4 and by vq(-) the solution of the.

quadratic program in Step 1. Then, following [4 ], we make use of

9q£(*) and h (•), discretized version of 6 (•) and h (•) obtained by

replacing in (4.1) and (4.2) J (x), kJ'(x), r£J (x), *(x), Ax), y(x)
t» t e e e

and X£(x) respectively by Jq£(x), kjjg(x), nqg(x), *q(x), y°£(x),
Uqe(x) and *qe(x)* We now can introduce the maps A^e and E^£, discretized

e e

versions of A2 and E2, together with a new map denoted (£e (again the

maps depend on a,$,y and <5 as well as two more scalars a, b > 0) (see [4]).

Procedure 5.1. Computation of A^e(*), E^e('), Qqe(0

Data, z = (x,A,y), e > 0, q > 0

Step 0. Set e* - e

-31-



Step 1. Determine q, smallest integer >_ q such that(rix) does not contain

two adjacent mesh points (for all j ^ d)

Step 2. Compute 8—(x) and h-(x) . If

3—(x) > - Se, z < a/a and i> (x) , < b/q (5.40)
qs: — q + — s

set q = q + 1 and go to Step 1. If

9—(x) > - oe but either £ > 2/q or >JJ (x) ,>b/q . (5.41)
q£v q t

set £ = e/2 and go to Step 1. Otherwise proceed.

Step 3. If ifi—(x) £0, compute the largest step size a = S" (t non-

negative integer) such that

f(x+ah=-(x)) - f(x) : - aade (5.42)
qe -

•ii Cx+ah—(x)) < 0 .
•q qe —

(5.43)

If :Jj_(x) > 0, compute the largest step size a = 6 (t nonnegative integer)

such that

•b (x+ah—(x) - '}j (x) < - aaoe
q qe q —

Step 4. Compute

(5.44)

0 0= ,° (x+ h--(x)), X= X--(x+ah~(x)), y = U~(x+ah~(x)) (5.45)
qe qe

If y° i 0, set X= X/u ,y = y/y

SteD 5. Set

A^(z) = (x+crh--(x),X,y)
2 qe

E*e(z) =

Qr(z) = q

(5.46)

(5.47)

(5.48)



We are now ready to state both versions of our implementable

algorithm.

Algorithm 5.2a. (stabilized implementable, version 1)

Parameters, a,8 £ (0,1),Y>1,66 (0,1], n6 (0,1), 9 < 0, K > 0,

v€ (0,1), eQ > 0, e> 0, c > 0, q >0 an integer.

Data- x0 €Rn ,XQ €Rm ,yQ 6 (jbP) M

Sten^. Set *=0, j=0, zQ =(x^X^), F= eQ, q=q

Sten_l. If aJ(z^) is well defined, go to Step 2, else go to Step 3.

Step__2. If q<c/H ^(z^K set q=q+1and go to Step 1.
Else, if 1^(^)11 <Knj, set z£+1 -aJ(z£), set £-£+1, j-j+i
and go to Step 1 . Else proceed.

^£J- Set 2*+i - ^e<«t)- h+i - E2£<V> q- Qf(V
Step_4. If e > „7g0 to Step 3. Else proceed.

§t-2_S. Set «=^ . compute 9(x )Co obtain °(x?), X(Xf),„(x ).
q E * £ * e £

e(V' A=W' »* "VV- If w</ °' SSt A=AV "- y/y0
0 0

Set y

SSt ZZ = ^V*'^ and So to Step 1.
n

The following theorem is easily verified.

The°rem 5'2- Suppose that the ••*»«« {z^} is constructed by Algorithm
5.2a and that Assumptions 2.1, 2.2, 3.1-3.3 and 4.1 are satisfied. Under

-33-



these conditions

(i) if iz^ is finite then its last element is desirable,

(ii) if {z } is infinite and bounded then z -+ z* R-quadratically,

with z* a strong Kuhn-Tucker pair. B

In fact, Theorem 5.2 is identical with Theorem 4.1 (dealing with

the conceptual version, Algorithm 4.2a). In the same way we can state

an Algorithm 5.2b, an implementable version of Algorithm 4.2b. The

convergence properties of this algorithm will be identical to those of

Algorithm 4.2a, as stated in Theorem 4.2.

6. Conclusion

We have obtained implementable algorithms, for solving (2.1), which

converge quadratically. However, for this strong property to result in

efficient computation, it is necessary to make a satisfactory choice of

the values of the parameters. The choice of c, in particular, is critical

The reason is that a very large value of c would result in a very large

value of q, even far away from the solution. This "over-discretization"

is obviously wasteful when the current estimate of the solution is poor.

On the other hand if the value of c is too small, convergence will be

slower due to the poor approximation of the constraints and of the

Hessian of the Lagrangian. Since the stepsize of the- Newton method is

an estimate of the distance to a solution, a reasonable choice seems to be

c = v q

wherev is the smallest stepsize one is willing to accept before stopping

computation and q is the number of meshpoints defining the required

-34-



final precision.

Finally, we wish to point out that it may be possible to avoid

computing second derivatives, which is generally costly. In the case

of a finite number of inequality constraints, it has been shown ([11])

that if a suitable approximation is substituted for the Hessian of the

Lagrangian, one preserves superlinear convergence. The condition is

that the sequence of approximations converge (in a weak sense) to the

exact Hessian at the solution. This result has been exploited by various

authors, using either a secant method ([6]) or an update formula

(.[10,13]). We feel confident in predicting that a similar scheme would

work in the semi-infinite case as well.

-35-



References

1. E. Polak, Algorithms for a class of computer-aided design problems:

a review, Automatica, 15 (1979), pp. 531-538.

2. E. Polak, Algorithms' for optimal design, University of California,

Electronics Research Lab. Memo No. UCB/ERL M80/18, 1980.

3. E. Polak and D. Q. Mayne, An algorithm for optimization problems

with functional inequality constraints, IEEE Transactions on

Automatic Control, 21(1976), pp. 184-193.

4. C. Gonzaga, E. Polak and R. Trahan, An inproved algorithm for

optimization problems with functional inequality constraints, IEEE

Transactions on Automatic Control, 25(1980), pp. 49-54.

5. D. Q. Mayne and E. Polak, A quadratically convergent algorithm for

solving infinite-dimensional inequalities, University of California,

Electronics Research Lab. Memo No. UCB/ERL M80/11, 1980.

6. E. Polak and D. Q. Mayne, A robust secant method for optimization

problems with inequality constraints, University of California,

Electronics Research Lab. Memo No. UCB/ERL M79/2, 1978, also J.

Optimization Theory Appl. (to appear).

7. R. B. Wilson, A Simplified Algorithm for Concave Programming, Ph.D.

dissertation, Graduate School of Business Administration, Harvard

University, Cambridge, Mass., 1963.

8. S. M. Robinson, Perturbed Kuhn-Tucker points and rates of convergence

for a class of nonlinear programming algorithms, Mathematical

Programming, 7(1974), pp. 1-16.

9. M. J. D. Powell, A fast algorithm for nonlinearly constrained

optimization calculations, presented at 1977 Dunder Conference on

Numerical Analysis.

-36-



10. M. J. D. Powell, The convergence of variable metric methods for

nonlinearly constrained optimization calculations, in Nonlinear

Programming 3, 0. L. Mangasarian, R. R. Meyer and S. M. Robinson,

eds., Academic Press, 1978, pp. 27-63.

11. U. M. Garcia Palomares and 0. L. Mangasarian, Superlinearly con

vergent quasi-Newton algorithms for nonlinearly constrained

optimization problems, Mathematical Programming, 11(1976), pp. 1-13.

12. S. P. Han, A globally convergent method for nonlinear programming,

J. Optimization Theory Appl., 22(1977), pp. 297-309.

13. S. P. Han, Superlinearly convergent variable metric algorithms for

general nonlinear programming problems, Mathematical Programming

11(1976), pp. 263-282.

14. S. P. Han, A hybrid method for nonlinear programming, in Nonlinear

Programming 3, 0. L. Mangasarian, R. R. Meyer and S. M. Robinson,

eds., Academic Press, 1978, pp. 65-95.

15. E. Polak, On the global stabilization of locally convergent algorithms,

Automatica, 12(1976), pp. 337-342.

16. A. Tits, Lagrangian Based Superlinearly Convergent Algorithms for

Ordinary and Semi-Infinite Optimization Problems, Ph. D. dissertation,

Department of Electrical Engineering and Computer Science, University

of California, Berkeley, 1980.

17. C. Gonzaga and E. Polak, On constraint dropping schemes and optimality

functions for a class of outer approximation algorithms, SLAM

Journal on Control and Optimization, 17(1979), pp. 477-493.

18. G. P. McCormack, Penalty function versus nonpenalty function

methods for constrained nonlinear programming problems, Mathematical

Programming, 1(1971), pp. 217-238.

-37-


	Copyright notice 1980
	ERL-80-50

