

Copyright © 1980, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

FOURIER TRANSFORMS IN VLSI

by

C. D. Thompson

Memorandum No. UCB/ERL M80/51

15 October 1980

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Fourier Transforms in VISl*

C. D. TTwrnpson

Division of Computer Science
U. C. Berkeley

Berkeley. CA 94720

ABSTRACT

Eight designs are proposed for the computation of an TV-
element Fourier transform. The Largest of the designs requires
0(Nzlog N) units of silicon area and operates in 0(log N) time.
The smallest designs occupy only 0(N log N) area, but take
0(N log N) time to perform their calculations.

The designs exhibit an area-time tradeoff: the smaller ones
are slower, for two reasons. First, they may have fewer functional
units and thus less parallelism. Second, their functional units may
be interconnected in a pattern that is less efficient but more com
pact.

The optimality of several of the designs is immediate, since
they achieve the limiting areanime2 performance of Q(N2logsN).
Key words and phrases: parallel algorithms, area-time complexity,
VLSI. Fourier transform. FFT, shuffle-exchange network, mesh-
connected computers.

Fourier Transforms in VLSI*

C. D. Thompson

Division of Computer Science
U. C. Berkeley

Berkeley. CA 94720

1. Introduction

One of the difficulties of VLSI design is the magnitude of the task. It is not

easy to lay out one hundred thousand transistors, let alone ten million of them.

Yet there is a sense in which the scale of VLSI is advantageous. The complexity
of a VLSI chip is so great that asymptotic approximations can give insight into
performance evaluation and design.

This paper shows how asymptotic analysis can aid in the design of Fourier
transform circuits in VLSI. Approaching chip design in this way has three advan

tages. First of all, the analysis is simple: the calculations are easy to perform
and thus easy to believe. Second, the analysis points out the bottlenecks in a
design, indicating the portions that should be optimized. It is impossible to
"miss the forest for the trees" when one is thinking of asymptotic performance.

A third advantage of the analytic approach is that it provides a simple
framework for the evaluation and explanation of various designs. In the case of
the Af-eiement Fourier transform, it is known that no circuit can have a better

area*tinie2 performance than Q(iV2log2iV) [l3]t- Similar performance limits
have been proved for the problems of sorting, matrix multiplication and integer
multiplication [1.3,9,13].

V

The fact that there is a theoretical limit to area*tirne2 performance sug
gests that designs be evaluated in terms of how closely they approach this limit.
Any design that achieves this limit must be optimal in some sense and thus
deserves careful study. Tnis paper presents a number of nearly-optimal designs,
corresponding to different tradeoffs of area for time. For example. Section 3's
"FFT network" takes only 0(log N) time but quadratic area to perform its
Fourier transform. Thus it is a faster but larger circuit than, say, the "Mesh
implementation" which solves an N-element problem in approximately y/77 time

• This work was supported in part by the U.S. Army Research Office -under Grant 0AAG29-78-G-
0167.

t The omega notation means "grows at least as fast as": as N increases, the product of area-
with the square of the solution time for these circuits is bounded from below by some constant times
N log N. The more familiar "big-0" notation is used for upper bounds. A circuit occupies area
A—uXN^ if there is some constant C for which A^cN for all but a. finite number ofproblem sizes
N. F^iiaJiy, alMogarithms in this paper ara \:c:3e two.

-2-

and linear area.

Section 2 of this paper develops a simple model for VLSI, laying the ground
work for the implementations and the analyses. The model is based on a small
number of assumptions that are valid for any currently envisioned transistor-
based technology. Thus the results apply equally well to the field-effect transis
tors of the MOS technologies (CMOS. HMOS. VMOS, . . .). to the bipolar transistors
of I2L, and to any GaAs process.

Section 3 describes eight implementations of Fourier transform-solving cir
cuits in VLSI. Most of these circuits are highly parallel in nature.

Section 4 concludes the paper with a summary of the perormance figures of
the designs.

2. The Model

Briefly, a VLSI circuit is modeled as a collection of nodes and wires. A node
represents a wire junction, a transistor, or a gate. A wire represents the con
ductor that carries signals form one node to another.

In keeping with the planar nature of VLSI, nodes are laid out in a non-
overlapping fashion Only a constant number of wires (say 2 or 4) can cross over
any point in the plane.

The unit of time in the model is equal to the response time of a simple cir
cuit. In particular, a wire can. carry one bit of information in one unit of time.
This bit is typically used to change the state of the transistor at the other end of
the wire.

The unit of area in the model is determined by the "minimum feature
width" of the processing technology. "Wires have unit width and nodes occupy
0(1) area, that is. a node is some constant number of wire-widths on a side. The
area of a node also includes an allowance for power and clock wires, which are
not represented explicitly in the model.

* The problem of long-distance communication receives special attention.
Most nodes can drive only short wires. Aspecialized "driver node" of 0{k) area
is required to send a signal down a wire of length k. Adriver has 0(\og k) stages
of amplification, the last stage of which has gate (or junction) area proportional
to k. This structure is consistent with the assumption that the load presented
by a long wire is capacitive in nature and proportional to its length [7], The
amplifier stages are individually clocked, so that a driver has 0(log k) delay but
unit bandwidth.

The notion of "self-timed regions" [10] is incorporated into the model to
account for the difficulty of obtaining chip-wide synchronization. The nodes in a
self-timed region are in synchrony: all signal transitions occur at the same
phase of a common clock. Signals originating outside the region are synchron
ized with this local clock by means of "receiver nodes."

-3-

The model is summarized in the list of assumptions below. Afuller explana
tion and defense of the model is contained in the author's thesis [13].

Assumption 1: Embedding.

a. Wires are one unit wide.

b. Two wires may cross over eachother at right angles.
c. A logic node occupies 0(1) area. It has 0(1) input wires and 0(1)
output wires, none ofwhich are more than 0(1) units long.
d. Each logic node belongs to a self-timed region. All wires connecting
to a logic node lie entirely withinits self-timed region.
e. Aself-timed region is at most O(log N) units wide or long.
f. A driver node of 0(k) area has an output wire that is k units long.
This output wire may pass through any number of self-timed regions
before it connects to the input of a receiver node.

g. A receiver node occupies 0(1) area. Its output wire is 0(1) units
long.

Assumption 2: Total area.

The total area of a collection of nodes and wires is the number of unit
squares in the smallest enclosing rectangle

Assumption 3: Timing.

a. Wires have unit bandwidth. They carry at most one bit of informa
tion in a unit of time.

b. Logic nodes and eceiver nodes have 0(1) delay.
c. The driver node for awire oflength k has 0(log A:) delay.

Assumption 4: Transmission functions.

a. The signals appearing on the output wires of a node are some fixed
function of its current "state."

b. The state of a node is changed every time unit, according to some
fixed function of the signals on its input wires.

c. Logic nodes and receiver nodes are limited to 0(1) bits of state.
d. Driver nodes have 0(iog k) bits of state, one bit for each stage in
their amplification chain.

e. The states of the nodes in an "input register" are set to arbitrary
values whenever a computation is initiated (see Assumption 6). No
attempt is made to model off-chip I/O.

Assumption 5: Problem, definition.

a. Each of N input variables takes on one of M different values with
equal likelihood.

A -

b. TV is an integral power of 2.

c. log M= ©(log /V): a word length of hogM] = c(log2iV) bits is neces
sary and sufficient to describe the value of an input variable.

d. The output variables -Q are related to the input variables £ by the
equation # = A£. The (i,;)-th entry of A has the value cyCC*-i)*C/-i))f
where q is a principal N-th root of unity in the ring of multiplication
and addition mod M. (This assumption defines a number-theoretic
transform; results for the more common Fourier transform over the
field of complex numbers are analogous.)

Assumption 6: Input registers.

a. Each of the N input variables is associated with one input register
formed of a chain of Fiogi/1 logic nodes.

b. A computation is initiated at time TQ if the value of each input vari
able is encoded in the nodes of its input register. No other node has
any information about this value.

Assumption 7: Output registers.

a. Each of the N output variables is associated with one output regis
ter formed of a chain of \[ogM] logic nodes.

b. A computation is complete at time Tc if the correct value of each
output variable is determined by the current state of the nodes in its
output register.

Assumption 8: Solution time.

A collection of nodes and wires operates in "pipelined time T" if it can
complete a computation every T time units.

3. Tne Implementations

A basic building block for all of the designs is the multiply-add cell. This
cell has three bit-serial inputs «y*. x0 and xx. It produces two bit-serial outputs
y0 =x0 +w*Xi and yL =x0 - u*xl(The inputs and the outputs are all flog M] bit
integers.

A multiply-add cell can be built from O(iog N) logic gates [13]. The multi
plication is performed by 0(log N) steps of addition in a carry-save adder. The
subsequent addition and subtraction can also be done in 0(iog N) time. Thus a
complete multiply-add computation can be done in 0(iog Af) time and 0(iog N)
area.

Another basic building block is the shift register. A fc-bit shift register is
built of 0(k) logic nodes in 0(k) area. It is used to store constants, successive
bits of which are available during each unit of time.

The aspect ratios of the multipLy-add cell and shift register may be adjusted
at will. They should be designed as a rectangle of 0(1) width that can be folded

-5-

into any rectangular shape.

3.1. The MMDesign

Perhaps the most obvious implementation of the Fourier transform is by
direct computation of the matrix-vector product of Assumption 5d. The "sys
tolic array" of Kung and Leiserson provides an efficient means of calculating this
product [7, p. 277].

The MM or Matrix Multiplication design consists of (2JV-1)2 multiply-add
cells connected in a hexagonal mesh. These occupy a total of 0(Nzlog N) area.

As indicated in Figure 1, the input vector 2 is shifted into the upper-left-
hand edge of the mesh, the constant matrix A is shifted into the upper-right-
hand edge, and the result f = A£ emerges on the top edge. Figure 1 does not
show the position and time that individual elements enter and leave the mesh.

The interested reader is referred to [7, p. 277] for complete details of the
matrix multiplication process.

y

Rgure 1: The MM design for JV=2.

Shift registers must be provided on the chip
storage. If the chip is laid out according to Figure 1,
located in the upper left corner of the chip to hold
output registers are needed at the top of the chip to
The matrix A can be stored in N shift registers of
easy to see that the entire construction can fit in
area.

for variable and constant

N input registers should be
the vector 2. Similarly, N
collect the result vector p.
0(N log N) bits each. It is
a rectangle of 0(Nziog N)

Each multiply-add step takes O(log N) time; N steps are performed during
the computation of. a single Fourier transform. However, N computations may
proceed simultaneously it each is separated from the next by one multiply-add
cell. The MM design thus operates in pipelined time O(log N).

-6

The MM design has nearly the best possible time performance for a design
of its size, since its combined area*time2 performance is 0(Nzlog3N). As noted
in the Introduction, no circuit can do better than Q(NzlogzN). The 0(log N)
discrepancy between these figures is due to the use of a rather slow multiply-
add cell. A better asymptotic performance could be obtained through the use of
larger and more complicated multiply-add. cells; however, such a design would
be infeasible since the "constant factors" associated with the MM design are
rather large already (see Section 4).

3.2. The MVDesign

The previous implementation calculated N Fourier transforms at a time. If
such a large throughput is unnecessary, the MV or Matrix-Vector design can be
used.

The MV design of Figure 2 consists Oi a row of N multiply-add cells con
nected in a linear fashion. This structure can perform a matrix-vector multipli
cation in N (parallel) multiply-add steps For the computation of a Fourier
transform # = AS, the vector £ is shifted into the left-most multiply-add cell,
one element at a time. After N multiply-add times have elapsed, elements of
the vector $ emerge from the left-most cell. Each cell uses a different element
of the matrix A for each multiply-add step: this may be visualized as vertical
motion of the matrix A past the horizontal row of multiply-add cells. (For a
more detailed description of this process, consult [7. p. 287].)

x

y
Rgure 2: The MV design (2N ceils).

The time performance of the MV implementation is 0(N log N), since it
takes O(N) multiply-add steps to compute a single Fourier transform. If the
array A were stored explicitly, the MV design would require O^V^og N) area —in
other words, it would be just as large as the }fif design, even though it operates
N times more slowly. Fortunately, it is fairly simple to calculate the elements of
A "on the fly" in the manner described by Kung and Leiserson [7, p. 290]. (The
calculation is performed on a second row of N multiply-add cells positioned just
above the original row. Each of these cells computes the value of d* required in
the next step of the matrix multiplication y - Ax. This computation may be
completely overlapped with the matrix multiplication, so that there is no time
overhead and only 0(«-v Jog N) area overhead associated with the matrix A.)

> >

< <

—> > >

<— < <

MM

-7-

The total area of the MV design is thus 0(N log N), for it has 2N multiply-
add cells of O(iog N) area each. Its combined area*time2 performance is
0(Ns\og*N). This is a surprisingly poor result in view of the fact that the related
MM design has a nearly optimal AT* figure. The reason that the MV design does
so poorly is that an implementation with 1/N of the area of the MM design
should only be slower by a factor of Nu2\ a linear tradeoff of time for area is not
optimal. (It is possible to make a circuit withapproximately linear area that has
near-optimal performance, as will be demonstrated by the Mesh implementation
below.)

3.3. The FFT Network

Another straightforward implementation of the Fourier transform takes
advantage of the Fast Fourier Transform algorithm (the FFT). This algorithm is
most naturally expressed as a computation on (N/2)*(log N) multiply-add
cells, arranged in log N rows of N/2 cells each. The interconnections between
rows can be in the form of a "perfect shuffle" [12] or a"butterfiy" [4], depending
upon how the cells are indexed. The butterfly arrangement is described below
since it seems to give a better area bound, if only by a constant factor.

_ A computation in the FFT network may be visualized as flowing from top to
bottom. The inputs are presented in pairs (xa^zi+i) to the top row of cells.
These cells perform a multiply-add step, passing the results down to the next
row of ceils. The computation is complete when the data has flowed through all
log N rows.

The best embedding of the FFT network is based on the butterfly organiza
tion. Please refer to Figure 3 for a sample layout. If the cells are numbered
from 0 to 3 in each row, cell i in the top row is connected to cells i and
(i +• N/ 4) mod N/2 in the second row. The latter connection must be laid out
carefully: you can probably convince yourself that N/ 2 horizontal channels of
wiring are required between the first and second rows, one for each lateral con
nection If the multiply-add cells are 0(log N) units tall and 0(1) units wide, the
first two rows occupy a region 0(N) units tall and 0(N) units wide. This layout
allows room for the length-/V wires. It also allows plenty of area to store the sin
gle «* value (0(log N) bits) required by each cell.

The connections between the second and third rows occupy just half as
much room as the ones between the first two rows. In this case, cell i in the
first half of the second row (0^i<iV/4) connects to cell i and to cell
((i+N/B) mod N/4) in the first half of the third row. The cells in the second
halves of these rows have analogous connections. Horizontal channels may be
shared by corresponding ceils in each half-side, so that N/ 4 channels are
sufficient.

Similarly, the connections beween the third and fourth rows occupy just
half as much roam as the connections between the previous pair of rows. In this
case, the N/ 2 cells in each row are broken into four groups. Cells within each

*0 Xf *Z *3

...._\W Y3 Y4 Y5Y6 Y7
JOgure 3: The FFT network for #=8.

group communicate solely with the cells in the group immediately beneath
them.

The total area of the FFT network is 0(N2), the sum of a geometrically
decreasing sequence whose first term is 0(N2).

The pipelined time of this implementation is O(log N), since log N computa
tions may proceed simultaneously. Each computation must be separated from
the next by at least one multiply-add cell, or by O(log N) time.

Note that the long wires between the rows do not change the asymptotic
performance of the network. The drivers for these wires contribute a delay of
O(log N) to each multiply-add step, but they do not affect the rate at which data
can be shifted into and out of the multiply-add cells.

3.4. The SE Network

A shuffle-exchange (SE) network with N/ 2 multiply-add cells can perform
an FFT in log N steps of computation [12]. Each cell uses a different J" value
for each step. These values are obtained from an 0(log2iV)-bit shift register
associated with every cell.

-9

1—> * •

^2 >^3 ^4,X5*OiX|
*

r

t -»

—»

^6 i^7W ^ ,

Figure 4: The SE network for N=Q.

Figure 4 shows a 4-cell shuffle-exchange network capable of performing an
8-element transform. This layout is a condensed version of Stone's [12]. Only
the shuffle connections are visible here; the exchange connections are internal
to the cells.

The shuffle-exchange connections occupy much more room than the cells
themselves: 0(N*/log N) area in the best embedding known [6]. This result
applies only if N is of the form 22n. In the general case of N = 2n, the best
embedding is 0(N2/^Aog7I) [13]. (An 0(JV2/log27V)-area embedding is the best
possible result. Anything smaller would contradict the lower bound of
QC/v^log2^) for area*time2 performance: the SE network operates in 0(log2jV)
time, as shown below.

Each stage of computation on the SE network consists of a multiply-add
step followed bya routing step. Ina routing step, one word of data is sent along
each intercellular connection. These connections are 0(N2/ log N) in length, so
that the drivers contribute O(log N) delay to the O(log N) time of a multiply-
add step - an insignificant amount. The pipelined time of the SE network is thus
0(log2N), since there are log N stages of computation.

3.5. The CCC Network

The cube-connected-cycies (CCC) interconnection for N cells is capable of
performing an /V-eiement FFT in O(log N) multiply-add steps [8]. Using the
multiply-add cell of the previous constructions, the complete FFT takes
0(log2JV) time.

The CCC network is very closely related to the FFT network. In fact, a CCC
network is just an FFT network with "end-around" connections between the first
and last rows. For this reason, CCC networks do not exist for all N, only for
those N of the form (K/2)*(log K) for some integer K. Figure 5 illustrates the
CCC network for N=Q. It is derived from the 4-element FFT network with "split
cells": each cell handles one element of the input vector 2, instead of two as in
the TFT network of Figure 3. (The reader is invited to redraw Figure 5. combin
ing the cells that are linked by horizontal data paths. The resulting graph
should be an end-around connected "butterfiy.")

The CCC network is somewhat smaller than the FFT network, since it uses
only N cells to solve an A*-element problerr instead c-f *-.he .'/v/2)*(Log N) cells
used in the FFT network. Its intercoonectic--- can be embedded in 0(7^/log2//)

10

< >

| f
i

Rgure 5: The CCC network for JV=8.

area [8]. This is an optimal embedding, for the combined area*tirne2 perfor
mance is within a constant factor of the limit, Q(iValog2JV).

It is rather difficult to describe the data routing pattern during the compu
tation of a Fourier transform on a CCC, although the basic approach is similar to
that taken on the SE network. Each of the log N multiply-add steps is preceded
and followed by a routing step. These routing steps take O(log N) time each,
for they move 0(1) words over each intercellular connection. Thus the total
time spent in routing data does not dominate the time spent on multiply-add
computations.

3.8. The Mesh Implementation

The Mesh implementation is the first example of a "small design." It
requires only 0(N log2N) area, which is to say that its area grows about linearly
with problem size. The other designs have had nearly quadratic growth func
tions.

A square Mesh of N cells can do an N-element FFT in log N steps of compu
tation by "simulating" the FFT network [11.13]. The action of each cell in the
FFT network is implemented by one of the cells in the Mesh. Since there are N
cells in the Mesh but only N/2 cells in each row of the FFT network, half of the
Mesh cells are idle during each stage of the computation.

It turns out that a very good way to organize the computation is to put the
i-th input and output registers in the i-th. cell of the Mesh. (Mesh cells aare
indexed in the natural, row-major ordering.) Then, following the "butterfly" form
of the FFT network [4], the first multiply-add step combines the data in cell i
with the data in cell (i+N/ 2) mod N. This is accomplished by routing all of the
data in the bottom half of the Mesh "upwards" by V77/2 rows, performing a
multiply-add steps, then shifting the yl values back "downwards" by ^7?72
rows.

-11-

The connections between the second and third rows of the FFT network can
be simulated in a similar fashion, by global shifts upwards and downwards of
vW/4 rows. The third butterfly is simulated by shifts of V7v78 rows and
the (1/ 2 log N)-th butterfly corresponds to a shift by a single row. Then a series
of column shifts begins, first by V77/2, then by VJ7/4r until the final com
putation of the FFT is performed with the aid of a single column shift.

Define a "unit-distance route" as a global shift of one word form each cell to
its (right-, left-, up-, or down-) adjacent neighbor. There are 4(V]7-1) unit-
distance routes in the FFT implementation described above.

•

• •

••• ^-^

••• ^>^

• • •

• • •

• • •

• ••<

••• «

« • •

• • •

• • •

HI HI

BL EffjEG

Figure 6: The Mesh of N multiply-add cells.

Parallel data paths should be provided in the Mesh design to make the rout
ing steps as fast as possible. These paths are shown in Figure 6. The paths are
one word wide; the complete Mesh of N cells occupies a square region
0(V77 log N) on a side. The total area of the Mesh is thus 0(N log2N).

The cells in the Mesh implementation are more complicated than those in
any of the previous approaches. A different distance and/or direction is used
for each routing step. It is perhaps simplest to generate alL routing and control
signals in a local fashion, with O(iog N) microinstructions of 0(log iV) bits each
[13]. Ashift register can be provided at each cell to store its microinstructions
without any increase in its area, for the word-parailel data paths of the previous
paragraph imply that each cell is 0(iog N) units on a side. This approach also
allows plenty of room for the log N different cj* values required by each cell.

A serial-to-parallel converter is used at the interface between the bit-serial
multiply-add cell I/O and the word-parallel data paths. Each routing operaUon
consists of O(log N) time periods to load this converter, some number of unit-
distance routes, then another 0(iog N) time to get the data into the cells. Since
the ceUs are O(iog N) apart, drivers of 0(log N) area and 0(loglog N) delay are
used on each routing path.

Total time for the FFT on the Mash is thus 0(V77 iogiog N). The O(VF)
unit-distance routes take the majority cf th* time; the 0<log iV) multiply-add

12-

steps are asymptotically insignificant.

3.7. The Cascade Implementation

It is possible to do an //-element FFT with many fewer multiply-add cells
than used in the previous implementations. The Cascade is an approach that
uses only log N cells, one cell for each row of the FFT network [5]. See Figure 7.

H I— «-i | <5 1

> I 1 I— n I—
> > > >

y
Figure 7: The Cascade implementation of the 8-element FFT.

The cell corresponding to the j-th row of the FFT network (l ss; ^ log N)
buffers its data in a shift register of N/ 2* words. The data streams through the
cascade in a serial fashion: the first cell is able to combine x^ with ^i+JV/2i by
buffering xj in its shift register. A similar process occurs at the other cells.

The total area of the Cascade is 0(N log N), due mostly to the shift regis
ters. The area of the multiply-add cells is unimportant in an asymptotic sense.

Each cell uses jV/2 different d6 values of O(log N) bits each. These would
occupy 0(N log2N) area if stored explicitly. Thus they should be computed "on
the fly" by each cell, in much the same way as in the MV implementation. Each
cell can compute a new value in a single multiplication time, obtaining oi0N/2i
for its i-th multiply-add step from the product of uN/2i with the value it used in
its (i-l)-st multiply-add step, w^1)*^.

The time performance of the Cascade is 0(N log N). A second computation
may be started as soon as the first one has cleared the first cell, which takes
time 0(N log N).

3. a The CPU Implementation

As its name suggests, this approach mimics the actions of a conventional
CPU or uniprocessor as it runs an FFT. The input and output registers are real
ized by a random-access memory of 0(N log N) bits and 0(N log N) area [7, p.
321].

The CPU portion of the design is a glorified multiply-add cell that does a
step of computation in O(log N) time. This is just sufficient time to fetch a word
that might be as much as 0(VjV log N) units distant. There i3 thus no asymp
totic incentive to build a super-fast multiplication unit.

The (N/2) *(log N) multiplication steps in an FFT take a total of 0(N log2;V)
time, making this the slowest design of this paper. Total area is 0(N log N), due

mostly to variable storage,
obtain this area bound.

-13-

The d° values must be generated "on the fly" to

4. Conclusion

The area and time performance of the eight implementations is summar
ized by Table 1. Note that all the designs are nearly optimal in an area*time2
sense except for the MV, the Cascade and the CPU. (Remember that
AT2 =Q(JV2log2^) for the solution of the W-element Fourier transform.) The
problem with these nonoptimal designs is that they are processor-poor: the
number of multipiy-add cells does notgrow quickly enough with problem size.

Design Area Time Area*Time2

MM. N2\ag N logiV A^log3^
FFT N2 logN ^log'-N
SE N2/logN log2N N2log*N
CCC N2/log2N log2// fl*log*tf
MESH N log2N VF loglog N //2log2Moglog2//
MV NlogN NlogN N3log2N
Cascade N log .V NlogN N*log*N
CPU NlogN N log2N N*logsN

Table 1: Area-time performance of the Fourier transform-solving circuits.

The Mesh is the only design that is nearly optimal under any AT29 metric for
Q£M1. Here the limiting performance is AT** =fl(JVl+slog2ajjV) [13]. None of
the otherdesigns with 0(N) or fewer multiply-add cells is fast enough, while the
other designs are much too large.

Of course, asymptotic figures can hide significant differences among
designs due to "constant factors." The model used in this paper penalizes
designs with simple control structures and those with a high ratio of memory to
logic, since these designs will have muchsmaller constant factors than the oth
ers. The MM. the MV, the FFT, the SE and the Cascade are especially simple
implementations because they have no complicated routing steps. They thus
deserve a more detailed examination.

As indicated in Table 1, the MM is nearly optimal in its area*time2 perfor
mance. However, it is by far the largest design considered in this paper since it
uses N2 multiply-add cells. (The others use 0(N log N) or fewer cells.) Using
current technology, one might place 10 multiply-add cells on a chip [13]; about
105 chips would be needed for a thousand-element PTT! Thus the MM design can
not be considered feasible until technology improves to the point that 100 or
1000 ceils can be formed on a single wafer. Even then, the interconnections
between chips will pose sorn? r^L-v-lt.-sa, for there are 40 cells on the "edge" of a
100 cell chip.

- 14-

The MV is an attractive design at present, despite its non-optimal
area*time2 performance. It uses only 2N cells in a linear array, so that a
thousand-element Fourier transform can be implemented with only 102 chips of
10 multiply-add cells each. This design is of course much slower than the MM.
since it produces only one element of a transform at a time rather than an
entire transform.

The FFT network is also fairly attractive at present, for its (N/ 2) *(iog N)
cells can be formed onabout the same number of chips as the MV, yet its perfor
mance is equal to the MM. The drawback of the FFT design is that the wiring on
and between the chips is very area-consuming. This design requires Q(N2) area
since its time performance is so fast; there is no hope of finding a clever parti
tion of the design to reduce this value. The FFT thus has inherently long wires.
whereas the MM and MV use only nearest-neighbor connections. If inter-chip wir
ing carries an extremely highcost, then the FFT is not a good choice.

The constant factor considerations of the SE design are very similar to
those of the FFT network discussed above. The SE uses a factor of log N fewer
cells than the FFT. so it is a bit smaller and slower. It suffers from the same
problem of long inter-chip wires and poor partitionability.

The Cascade is another non-optimal design, like the MV, that deserves con
sideration because of its good "constant factors." It uses only log Nmultiply-add
cells and N words of shift-register memory. These are arranged in a simple
linear fashion. The Cascade achieves the same performance as the MV, produc
ing one element of a Fourier transform during each multiply-add time. It is
superior to the MV in that it uses many fewer multiply-add cells.

It is interesting to speculate whether the Cascade is the best way ofproduc
ing one element of a Fourier transform at a time. A new metric and method of
analysis is needed to answer this question, for such designs are non-optimal by
definition. (If O(N) time is required to complete an entire transform, there is
only 0(log2N) area remaining before AT2 =Q(N2log2N) bound is reached. This is
not even enough room to store the problem.)

Another interesting open problem is that of partitioning the SE network. If
100 or 1000 multiply-add cells can be placed on a single chip, what sort of off-
chip connections should be provided so that these chips can be composed into a
large SE design?

References

[1] Abelson H. and Andreae P., "Information Transfer and Area-Time Tradeoffs
for VLSI Multiplication" Comm. ACM, Vol. 23, No. 1. pp. 20-23. Jan 1980.

[2] Aho A.. Hopcroft J., and Ullman J.. The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.

- 15 -

[3] Brent R. and Kung H., "The Area-Time Complexity of Binary Multiplication."
CMU-CS-79-136. Carnegie-Mellon Computer Science Dept., July 1979.

[4] Cochran W., Cooley J. et at., "What is the Fast Fourier Transform?." IEEE
Trans, on Audio and Electro., Vol. AU-15. No. 2. pp. 45-55, Jun 1967.

[5] Despain A, "Very Fast Fourier Transform Algorithms for Hardware Imple
mentation," IEEE Trans. Corn-put., Vol C-28. No. 5. pp. 333-341. May 1979.

[6] Hoey D. and Leiserson C, "A Layout for the Shuffle-Exchange Network,"
Proc. 1980 Int'l Conf. on Parallel Processing, IEEE Computer Society, 1980.

[7] Mead C. and Conway L., Introduction to VLSI Systems, Addison-Wesley. 1980.
[8] Preparata F. and Vuillemin J.. "The Cube-Connected Cycles: AVersatile Net

work for Parallel Computation," 20th Annual Symp. on Foundations of Com
puter Science, IEEE Computer Society, pp. 140-147. Oct. 1979.

[9] Savage J., "Area-Time Tradeoffs for Matrix Multiplication and Related Prob
lems in VLSI Models." TR-CS-50. Brown Univ. Dept. of Computer Science,
Aug. 1979.

[10] Seitz C. "Self-Timed VLSI Systems," Caltech Conf on VLSI, Caltech Com
puter Science Dept.. pp. 345-354. Jan. 1979.

[11] Stevens J.. "A Fast Fourier Transform Subroutine for Illiac IV," Technical
Report. Center for Advanced Computation. Illinois, 1971.

[12] Stone H.. "Parallel Processing with the Perfect Shuffle," IEEE Trans. Corn-
put., Vol. C-20, No. 2, pp. 153-161. Feb. 1971.

[13] Thompson, C, A Complexity Theory far VLSI, Ph.D. Thesis, Carnegie-Mellon
Computer Science Dept., Aug. 1980.

	Copyright notice 1980
	ERL-80-51

