

Copyright © 1980, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

COMPUTING MAXIMAL "POLYMATROIDAL" NETWORK FLOWS

by

E. L. Lawler and C. U. Martel

Memorandum No. UCB/ERL M80/52

22 December 1980

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

COMPUTING MAXIMAL "POLYMATROIDAL" NETWORK FLOWS

E. L. Lawler

Computer Science Division
University of California, Berkeley

C. U. Martel

Department of Electrical and Computer Engineering
University of California, Davis

Abstract

In the "classical" network flow model, flows are constrained by the

capacities of individual arcs. In the "polymatroidal" network flow model

introduced in this paper, flows are constrained by the capacities of

sets of arcs. Yet the essential features of the classical model are

retained; the augmenting path theorem, the integral flow theorem and

the max-flow min-cut theorem are all shown to yield to straightforward

generalization. We describe a maximal flow algorithm which finds

augmenting paths by labeling arcs instead of nodes, as in the case of the

classical model. As a counterpart of a known result for the classical

model, we prove that the number of augmentations required to achieve a

maximal value flow is bounded by the cube of the number of arcs in the

network, provided each successive augmentation is made along a shortest

augmenting path, with ties between shortest paths broken by lexicography.

Keywords: matroid, polymatroid, flow network, algorithm, optimization,

max-flow min-cut theorem.

This research was supported by the National Science Foundation Grant
MCS 78-20054.

1. Introduction

In the "classical" network flow model, flows are constrained by the

capacities of individual arcs. In the "polymatroidal" network flow

model introduced in this paper, flows are constrained by the capacities

of sets of arcs. Yet the essential features of the classical model are

related: the augmenting path theorem, the integral flow theorem and the

max-flow min-cut theorem are all shown to yield to straightforward

generalization. We describe a maximal flow algorithm which finds

augmenting paths by labeling arcs instead of nodes, as in the classical

model. As a counterpart to a result of Edmonds and Karp [3] for the

classical model, we prove that the number of augmentations required to

achieve a maximal value flow is bounded by the cube of the number of

arcs in the network, provided each successive augmentation is made along

a shortest augmenting path, with ties between shortest paths broken by

lexicography.

We believe that the theory of polymatroidal network flows

provides a satisfying generalization and unification of both classical

network flow theory and much of the theory of matroid optimization. In

particular, various well known algorithms for (poly)matroid intersection

[1,8,9,10,13], matroid partitioning [2,10] and other matroid optimization

problems [5,7] can be shown to be equivalent, or very nearly equivalent

to specializations of the maximal flow algorithm presented in this paper.

These specializations are obtained by applying the maximal flow algorithm

to appropriately formulated polymatroidal flow networks. Moreover, the

application of the max-flow min-cut theorem to these networks yields

simple proofs of known duality theorems for these matroid optimization

problems. These observations, as well as generalizations of the

polymatroidal flow model to provide for costs and lower bounds on arc

-2-

flows, will be reported in papers in preparation by the authors.

The plan of this paper is as follows. Section 2 deals with

preliminaries, in the form of some simple lemmas concerning polymatroidal

rank functions. In Section 3 the polymatroidal network flow model is

formulated and in Section 4 the concept of an augmenting path is

introduced. Sections 5 through 7 present the maximal flow algorithm and

provide proofs of the augmenting path theorem and max-flow min-cut

theorem with reference to that algorithm. Sections 8 through 10 concern

properties of shortcut-free augmenting paths and provide a proof of the

integrality theorem. In Sections 11 and 12 the bound on the number of

augmentations is proved, and various issues of computational complexity

are discussed.

2. Some Polymatroidal Preliminaries

We assume that the reader is familiar with the basic concepts of

network flow theory and with at least some of the ideas of matroid

optimization, as presented in [10]. In this section we present a few

results concerning polymatroids which are needed in the remainder of the

paper.

A polymatroid (E,p) is defined by a finite set of elements E and a

E +
rank function p: 2 -»• IR satisfying the properties

p(0) = 0, (2.1)

p(X) * p(Y) (X c Y c E), (2.2)

p(XuY)+p(XnY) < p(X) +p(Y) (X c E, Y c E). (2.3)

Inequalities (2.2) state that the rank function is monotone and inequal

ities (2.3) assert that it is submodular. If p is also integer-valued

and p({e}) = 0 or 1 for all e e E, then the polymatroid is a matroid.

-3-

We shall be dealing with polymatroids whose elements are arcs of a

network. We shall assign values of "flow" to these arcs, which is

equivalent to specifying a function f: E -*• R . This function can be

extended to subsets of E in a natural way, i.e.

f(0) = 0,

f(X) =Ie£X f(e) (0 f Xc E). (2.4)

Such an extended flow function f will be said to be feasible with respect

to the rank function p if for all X £ E,

f(X) < p(X). (2.5)

A feasible function f saturates X if (2.5) holds with equality. An

individual element e will be said to be saturated if there is some

saturated set in which it is contained.

The following three lemmas apply with respect to any polymatroid

(E,p) and any feasible function f.

Lemma 2.1. If Y is a saturated set, then

P(X) -f(X) > p(XnY)-f(XnY),

p(X) -f(X) > p(XuY)-f(XuY),

for all X £ E.

Proof:

p(X) +p(Y) > p(XuY) +p(XnY), by submodularity

f(X)+f(Y) = f(XuY)+f(XnY), by (2.4).

Hence

p(X)-f(X) +p(Y)-f(Y) > p(XuY) -f(XuY)+p(XnY) -f(XnY),

and the result follows from the saturation of Y and the feasibility of f. Q

-4-

Lemma 2.2. If X and Y are saturated sets, 'then so are XnY and XuY.

Proof: Apply Lemma 2.1 with X a saturated set. •

Lemma 2.3. If e e E is saturated, then there is a unique minimal

saturated set S(e) containing e. Moreover, for each e1 &S(e), e' $ e,

it is the case that f(e') > 0.

Proof: Suppose S(e) and S'(e) are distinct minimal saturated sets

containing e. By Lemma 2.2, S(e) n S'(e) is also a saturated set

containing e, and neither S(e) nor S*(e) can be minimal.

Now suppose S(e) is the unique minimal saturated set containing e

and there is an element e' f e in S(e) such that f(e') = 0.

f(S(e)-{e'}) < p(s(e)-{e'}), by feasibility

<_ p(S(e)), by monotonicity

= f(S(e)), by assumption

= f(S(e)-{e'}), since f(e') = 0.

It follows that S(e)-{e'} is also saturated and S(e) cannot be the

minimal saturated set containing e. Q

3. Polymatroidal Flow Networks

We shall consider only the simplest type of flow network, namely

one in which there is a single source s and a single sink t. Our

objective will be to find a maximum-value flow from s to t.

For each node j of the network there are specified two capacity

functions a* and 3.. The function a.- ($•) satisfies properties (2.1)-(2.3)
J j J J

with respect to the set of arcs A; (B-) directed out from (into) node j.

Thus (Aj5aj) and (Bj>3j) are polymatroids. (Comment: We permit there to

be multiple arcs from one node to another. Hence A. and B. may be
j j

arbitrarily large finite sets.)
-5-

A flow in the network is an assignment of real numbers to the arcs of

the network. We let a flow be represented by a function f: 2E -*- IR ,

obtained as in (2.4), where E is the set of arcs. A flow f is feasible if

f(V =f(Bj)s J* S't' (3-D
f is feasible for a-, &., for all nodes j, (3.2)

f(e) > 0, for all arcs e. (3.3)

(We write f(e) in place of the more cumbersome f({e}).)

Equations (3.1) impose the customary flow conservation law at each node

other than the source and sink. Property (3.2) indicates that capacity

constraints are satisfied on sets of arcs, and (3.3) simply demands that

the flow through each arc be nonnegative. Our objective is to find a

feasible flow of maximum value, i.e. one which maximizes

v= f(As)-f(Bs) = f(Bt)-f(At). (3.4)

If, for a given feasible flow f, an arc e = (i,j) is saturated with

respect to ais we shall say that the tail of e is saturated and denote the

minimal saturated set containing e by T(e), where T(e) £A.. Similarly, if

e is saturated with respect to B-, we shall say that the head of e is

saturated and denote the minimal saturated set containing e by H(e), where

H(e) c Bj.

In the case of an ordinary flow network in which there is a specified

capacity c for each arc e = (i,j), we can define a.(e) = 3n-(e) = c..,
,J i J ij

and then extend the functions ai,3i to sets as in (2.4). The resulting

capacity functions are modular, i.e. satisfy (2.3) with equality. Note

that in this special case the head of an arc e is saturated if and only

if its tail is saturated, and H(e) = T(e) = {e}.

-6-

Remark: We could choose to formulate the network flow model in terms

of capacity functions which are simply nonnegative and submodular. All

of the results in this paper would then follow, in virtually the same

form. This is due to the fact that for ewery nonnegative submodular

function p there is polymatroidal rank function p in the relation

p(0) = 0,

p(X) = min{p(Y)|X cycEJ.XM,

where p has the same effect as a capacity function as p. We prefer to

assume capacity functions are monotone, as well as submodular, because

it slightly simplies definitions and seems somewhat more intuitively

appealing. Lemma 2.3 indicates the effect of monotonicity.

4. Augmenting Paths

With respect to a given feasible flow f, an augmenting -path is an

undirected path of distinct arcs (but not necessarily distinct nodes)

from s to t such that

(4.1) each backward arc e in the path is nonvoid, i.e. f(e) > 0, and

(4.2) if the head (tail) of a forward arc e in the path is saturated,

then the following (preceding) arc in the path is a backward arc contained

in H(e) (T(e)).

In an ordinary flow network the minimal saturated set containing

a saturated arc e is simply {e}, and since repetitions of arcs are not

allowed, (4.2) does not permit any forward arc to be saturated. Thus,

in this specialization our definition almost exactly coincides with the

accepted notion of an augmenting path, the only (inconsequential) dif

ference being that we permit repetitions of nodes.

We shall want to use augmenting paths in the customary way. That is,

for some strictly positive 5, we want to increase the flow through each

forward arc by 6 and decrease the flow through each backward arc by 6,

-7-

and thereby obtain an augmented flow which is feasible. It is not

readily apparent that this can be done in our generalization.

Lemma 4.1. For any augmenting path there exists a strictly positive value

of 6 by which the flow can be augmented.

Proof: There are two types of constraints on 5. First, the flow through

each backward arc must remain nonnegative, and (4.1) assures us that

there is a strictly positive value of 6 for which this is possible. Second,

for each node j and each X £ A; (and similarly for each X £_ B•) the resulting
j j

flow f1 must be such that

f (X) <ol.{X).

Let u(X) denote the number of forward arcs in X minus the number of backward

arcs. Then we must have

f'(X) =f(X)+5u(X) <Oj(X). (4.3)

The only way in which (4.3) could fail to permit 6 to be strictly positive

would be for X to be saturated by f and for u(X) to be strictly positive.

But if X is saturated and contains forward arcs e,,e2,... ,e., then the

tails of these forward arcs are saturated and T(e-) £ X, i = l,...,z.

By (4.2), each e^ must be paired with a distinct backward arc e! e T(e-).

It follows that u(X) < 0 if X is saturated, and the constraints (4.3)

permit 6 to be strictly positive. 0

5. Maximal Flow Algorithm

Augmenting paths can be found by means of a labeling procedure which

is much like that employed for ordinary flow networks. The principal

difference is that labels are applied to arcs instead of nodes. We

present below an algorithm for computing maximum-value flows in which

labeling is carried out in a "breadth-first" manner so that when an

-8-

augmenting path is found it contains as few arcs as possible. We do not

need shortest augmenting paths for our present purposes, but such paths

will be useful later on.

The label applied to each arc has three components. The first

component is either '»+» or "-" indicating whether the arc is forward or

backward. The second component is an arc name or index, for use in

backtracing to find an augmenting path. The third component is a level

number used to carry out labeling in a breadth-first manner. (The level

of an arc is its position in a shortest path from s.) An arc is said to

be at level I if it is labeled and its level number is I.

Maximal Flow Algorithm

Step_0. (Initialize flow) Let f be any feasible flow, possibly the

zero flow.

Step_J_. (Label arcs at level 1) To each nonvoid arc directed into s

apply the label (-,*,!) and to each arc directed out from s

whose tail is unsaturated apply the label (+,*,1). (No other

arcs are labeled and no arcs are scanned.)

Set I to zero.

Go to Step 3.

Ste£_2. (Label arcs at level Ul) As long as there remains a labeled

arc at level %which is unscanned, choose such an arc e and

scan it as follows:

(2.1) If e has a "+" label and its head is saturated, then

apply the label (-,e,Z+l) to all unlabeled arcs in H(e).

(2.2) If e has a ',-" label and its tail is saturated, then

apply the label (+,e,Ul) to all unlabeled arcs e' such that

e e T(e').

(2.3) If e has a "+" label, its head is unsaturated, and e is

directed into node j, or if e has a "-" label and e is directed

-9-

out from node j, then apply the label (+>e,£+l) to all unlabeled

arcs directed out from j whose tails are unsaturated and the label

(-,e,£+l) to all unlabeled nonvoid arcs directed into j.

Step 3. (Check for augmenting path) If there is an arc e labeled "-"

which is directed out from t or there is an arc labeled "+" which is

directed into t and whose head is unsaturated, go to Step 5.

(An augmenting path has been found.)

Step 4. (Check for maximality of flow) If there is no arc at level £+1,

then stop. (There is no augmenting path and the flow is maximal.)

Otherwise set I to £+1 and return to Step 2.

Step 5. (Augment flow) Starting at arc e, identified in Step 3, find

an augmenting path by backtracing. (If e has the label (+,eU+T)

then e' is the second-to-last arc in the path, the label on

arc e' indicates the third-to-last arc, and so on.) Determine

the maximum amount o by which the flow can be augmented.

Augment the flow to obtain a new feasible flow f and return to

Step 1. (We defer until later a discussion of how to find 6.)

6. Augmenting Path Theorem

We asserted in Step 4 of the maximal flow algorithm that if the

labeling procedure fails to find an augmenting path, then no augmenting

path exists. This fact is by no means evident. The alert reader may even

suspect that the labeling procedure may be defective, in that it permits

a given arc to be given only one type of label ("+" or "-"), whereas both

types might be applicable. We shall now prove that if the procedure fails

to find an augmenting path then not only is there no augmenting path,

but the flow is in fact maximal.

-10-

Theorem 6.1. (Augmenting Path Theorem). A flow is maximal if and only

if it admits no augmenting path.

Proof: If there is an augmenting path then Lemma 4.1 shows that the flow

cannot be maximal. So suppose that the labeling procedure fails to find

an augmenting path and let us show that this implies that the flow is

maximal. The discussion which follows is with reference to the labels

existing at the termination of the procedure.

Let us partition the nodes of the network into two sets, S and T.

S is to contain node s, together with all nodes i such that either there

is an arc directed from i with a "-" label or there is an arc directed

into i with a "+" label whose head is unsaturated. All other nodes

(including necessarily t) are in the set T.

We have thus defined a cut (S,T). Each "backward" arc (i,j), where

i c T, j c S, must be void, else it would have received a "-" label and i

would be in S. Let us partition the "forward" arcs (i,j), where i £ S,

j € T into two sets U and L. Set U is to contain all unlabeled forward

arcs and L is to contain all forward arcs which are labeled (either "+"

or "-"). We thus have the situation indicated in Figure 1.

Consider any node i e S and any arc e € U n A.. The tail of e is

saturated, else a "+" label would have been applied to e, either in

Step 1, if i = s, or in Step (2.3), if i f s. Moreover, we assert

that T(e) £ U n A-. Suppose there were some arc e' £ T(e), with eW U.

The following cases exhaust all possibilities, if e' is not in U:

(i) e1 is unlabeled and directed into a node j £ S. This is not

possible, because a "-" label would have been applied to e' in Step 1,

if j = s, or in Step (2.3), if j f s, when some arc incident to j was

scanned. (Note that e' is nonvoid, by Lemma 2.3.)

(ii) e' has a "-" label. This is not possible, because scanning

e' would apply a "+" label to e in Step (2.2).

-11-

(void)

Fig. 1. Cut (S,T) with sets of forv/ard arcs L,U

-12-

(iii) e1 has a "+" label. If so, e' could only have received its

label in Step (2.2) when an arc e" £ T(e') was scanned. But e" £T(e),

else we would have e' e T(e) nT(e') ^T(e*), in contradiction to

Lemma 2.2. But if e" € T(e), then e would have received a "+" label

in Step (2.2) when e" was scanned. Hence this case cannot occur.

Since T(e) £ U n A.., for each eeUnA.JnA. is the union of

saturated sets and is itself a saturated set.

Now consider any node j £ T and the set L n B.. If any arc
j

c t L .. Sj iias a •'-" label, then this label could only have been applied

in Step (2.1) when some arc e* with a "+" label was scanned and e e H(e') .

It follows that if H(e) £ L n B,, for each arc e e B- with a "+" label,
j j

then L n B- is the union of saturated sets. So suppose e £ B. nL,ehasa
•J J -

"+" label, and there is an arc e' £ H(e), with eW L. The following

cases exhaust all possibilities, if e' is not in L:

(i) e' is unlabeled. This is not possible, because a "-" label

would have been applied to e' in Step (2.1) when e was scanned.

(ii) e* has a "-" label and is directed from a node i e T. This is

not possible, because i £ S if e' is labeled "-".

(iii) e' has a "+" label and is directed from a node i £ T. The

tail of e' is saturated, else e' was labeled in Step (2.3) with i £ S.

Since the tail of e' is saturated, it could only have received its label

in Step (2.2) when some arc e" £ T(e') with a "-" label was scanned.

But then i e S. Hence this case cannot occur.

It follows that L n B- is the union of saturated sets and is itself

a saturated set.

We have shown that f(UnA.|) = ^(UnA^), for each i £ S, and

f(LnBj) = 3j(LnB-)» for each j £T. Since each arc (i,j), with i£T,

j € S, is void, it follows that the net flow across the cut is

-13-

f(U) + f(L) = I f(UnA.) + I f(LnA,)
ieS 1 J£T J

= I a-(UnA,) + I a^LnB.).
i£S 1 j€T J J

The flow is therefore maximal and there can be no augmenting path. Q

7. Max-Flow Min-Cut Theorem

The proof of Theorem 6.1 clearly indicates the form of a max-flow

min-cut theorem for polymatroidal network flows, which we now proceed

to state.

An arc-partitioned cut (S,T,U,L) is defined by a partition of the

nodes into two sets S and T, with s £ S, t e T, and by a partition of

the forward arcs across the cut into two sets U and L. The capacity of

such an arc-partitioned cut is defined as

c(S,T,U,L) = I a,(UnA.) + I 3,(LnB,).
1cS n jeT J J

As in the case of ordinary flow networks, the value v of any

feasible flow f is equal to the net flow across any cut, i.e.

v = f(U) + f(L) - f(B),

where B is the set of backward arcs, and clearly

v < c(S,T,U,L). (6.1)

Theorem 7.1. (Max-Flow Min-Cut Theorem). The maximum value of a flow is

equal to the minimum capacity of an arc-partitioned cut.

Proof: Let f be a maximal flow. (Such a flow clearly exists, since the

flow problem is a linear programming problem with a nonempty bounded set

of feasible solutions.) Apply the labeling procedure of the maximal

-14-

flow algorithm and construct an arc-partitioned cut, as in the proof

of Theorem 6.1. The capacity of this cut is equal to the value v of the

flow f. The theorem now follows from (6.1). Q

8. Shortcut-free Augmenting Paths

An augmenting path can be shortcut if some portion of it can be

removed to obtain a shorter augmenting path. For example, suppose

P= (e-|,...,e)contains a forward arc e. and a backward arc ek, with

i+1 < kand e^ € H(e•}. Then amoving arcs e.+1,...,ek , from Pyields

a shorter augmenting path P" = (e^.. ..e^e^.. .,e). The labeling

procedure of the maximal flow algorithm finds shortest augmenting paths

and these are certainly shortcut-free.

In the next section we show that that the capacity of a shortcut-free

augmenting path, i.e. the maximum amount 6 by which the flow can be

augmented along it, can be determined by computing the "capacities" of

successive pairs of arcs in the path. The integrality theorem for

polymatroidal flows then follows immediately. In order to obtain these

results, we first provide a few more definitions.

An ordered pair of arcs (e,e) is said to be admissible with respect

to a given flow f if, when e is scanned in the labeling procedure, i is

eligible to receive a label from e. More specifically, admissible pairs

are of three kinds, corresponding to the ways in which e' might be

labeled in Steps (2.1)-(2.3) of the maximal flow algorithm:

(i) A pair (e,i) is a saturated head pair at node j if both

e and e are directed into j, the heads of e and e are saturated and

e € H(e).

(ii) A pair (e,e) is a saturated tail pair at node j if both e and

i are directed from j, the tails of e and e are saturated and e £ T(i).

-15-

(iii) A pair (e,i) is an unsaturated'pair at node j if either

(a) e and i are both directed into j, the head of e is

unsaturated and e is nonvoid.

(b) e and e are both directed from j, e is nonvoid and the

tail of e is unsaturated.

(c) e is directed into j, i is directed from j, and the head

of e and the tail of i are unsaturated.

(d) e is directed from j, e is directed into j and both e and

i are nonvoid.

Let P= (e^,...,ep) be an augmenting path with respect to f. Clearly

each pair of arcs (e^e...^), i= l,...,p-1, is admissible with respect

to f. In order for arcs e-, and e each to be contained in two admissible

pairs in the path (one pair for the head and one for the tail of each arc), we

introduce two virtual arcs * and **, incident with nodes s and t

respectively. Hereafter when we refer to the consecutive pairs of arcs

in P we mean by convention to include the pairs (*,e-,) and (e ,**) which

are considered to be unsaturated. This convention enables us to avoid

the statement of exceptions and special cases.

Lemma 8.1. Let P be a shortcut-free augmenting path. With reference to

any node j and the consecutive pairs of arcs in P:

(i) P contains at most one unsaturated pair at j.

(ii) All unsaturated head pairs at j precede the unsaturated pair,

in any, followed by all saturated tail pairs.

(iii) If Pcontains saturated head pairs (e-j, e-|),..., (e ,i)at node
j, in that order, then the sets

H(ei) U ... UH(e.j), 1 < i< k ,

-16-

remain saturated after augmentation of the flow along P.

(iv) if? contains saturated tail pairs (e1 ,i1),...,(ek,ek) at
node j, in that order, then the sets

1{1A) u ... UT(ik), 1<1<k,

remain saturated after augmentation of the flow along P.

Proof: (i) Suppose Pwere to contain two unsaturated pairs (a,a), (b,b)

in that order. Then (a,5) would be admissible and P would have a

shortcut.

(ii) Suppose an unsaturated pair (a,a) were to precede a saturated

head pair (b,6). Then (a,5) would be admissible and P would have a

shortcut. Similar analyses of other cases completes the proof of (ii).

(iii) If a saturated head pair (a,a) is followed either by another

saturated head pair (b,b) or by an unsaturated pair (b,b) in P, then

b k H(a), else P would have a shortcut. It follows that for each i,

1 < i < k,

u(H(e1) u ... UH(ei)) > 0,

where u is defined as in the proof of Lemma 4.1. Therefore the set

H(e-j) U ... u H(e.|) must remain saturated after augmentation.

(iv) Proof is similar to that for (iii). Q

9. Augmenting Path Capacity and the Integrality Theorem

With respect to a given flow f, let us define the value 6(e,e) for

an admissible arc pair (e,e) at node j as follows.

<5(e,i) =min{61(e,e), 62(e,e)},

where

-17-

rf(e) if e £Aj
6l(e,e) =lmin(3i(X)-f(X)|e kXCB. - {£}} if eeB,.

mintejU) - f(X)|i £X£ Bj - {e}} if i £ A...
52(e,i) -|f(g)

if i £ B.
j

By definition, 6^*,!) = 62(e,**) = +00 .

Let us define <S(P) to be the minimum of the values Sfe-.e..,)
i i+i

over all consecutive pairs of arcs (e^e^), 1=0,...,p, in an augmenting

path P=(elf...,ep). (Here eQ =*, e+1 =**, as before.) An arc pair

(ei»ei+]) is sai'd t0 °e critical if 6(P) =6(e.,e.+1).

Theorem 9.1. If ? is a shortcut^free augmenting path with respect to flow

f, the maximum possible augmentation of the flow along ? is 6(P).

Furthermore, after augmentation of the flow by <5(P), each critical pair in

P is inadmissible with respect to the augmented flow.

Proof: Let 5 be the maximum amount of augmentation possible along P. We

first show that 6 > 6(P).

If 5 is determined by the flow through a backward arc in P, then

clearly 6 > 6(P), from the definition of 6(P). So suppose 6 is determined

by an inequality of the form

f'(X) =f(X) +6u(X) <aj(X),

where u(X) is defined as in the proof of Lemma 4.1. By that lemma, 6 > 0,

hence we can assume that X is unsaturated by f and that p(X) > 1. Hence X

contains at least one consecutive pair of arcs (e,i) such that e is a for

ward arc, e€XnAj and e /X. Let (e,e) be the first such arc pair in

P. Let (e-|,e«j),..., (ek,ek) be the saturated tail pairs at node j in P.

-18-

If the tail of e is unsaturated, let

X' =XUTtij) U... UT(ik), ' (9.1)

and if the tail of i is saturated, let

X' =(xnr(i.)) UT(ij+1) u ... UT(ik), (9.2)

where e. = i. By assumption, X is saturated by f, hence X' is also

saturated, by Lemmas 2.2 and 8.1. X' has been constructed to have

exactly one forward arc which is not paired with a backward arc, so

u(X') =1. It follows that

f'(X') = f(X') + <5 = a.(X').
j

Because i £ X' c A, - {e}, we have
j

<3 a ^.(X1) - f(X') > 5(e,e) > 6(P).

We shall now show that augmentation by an amount <5(P) renders each

critical pair inadmissible with respect to the augmented flow. (Consequently

<5 £ 6(P).) Let (e,i) be a critical arc pair at node j. If e or i is a

backward arc and 6(e,i) = f(e) or c(e,i) = f(i), then (e,e) obviously

becomes inadmissible. So suppose i is a forward arc and

•5(e,i) =aj(X) -f(X),

-19-

for some X such that e £ X £ A. - {e}. If u(X) >_ 1 we are done. So

suppose y(X) < 0. From the definition of <5(e,e) it must be the case

that e is a forward arc in P. Now construct the set X* as in (.9.1) or

(9.2), depending upon whether or not the tail of e is unsaturated. By

applying Lemma 2.1, we see that

aj(X«) -f(X') <a.(l() -f(X) =6(e,i) =5(P).

Hence augmentation by an amount 5(P) renders (e,i) inadmissible. D

From the definition of 6(P), it is evident that if the capacity

functions and the flow f are integer-valued, then <5(P) is also a positive

integer. The theorem below then follows immediately.

Theorem 9.2. (Integrality Theorem) If all capacity functions are integer-

valued, then, there is a maximal flow f which is integral. Moreover, f

can be obtained by a finite number of augmentations along shortcut-free

augmenting paths, beginning with the zero flow.

10. The Splicing Lemma

We now prove a technical lemma needed in the following section.

For the purpose of this lemma, (e,e), for any arc e, is by definition an

admissible pair with respect to any flow. (Note also that if e is

directed from i to j, there are actually two such admissible pairs, one

at i and one at j.)

Lemma 10.1. (Splicing Lemma) Suppose flow f is augmented along a

shortcut-free path P to obtain flow f! • If (e,e) is an admissible pair

with respect to f' but not with respect to f, then ? contains two axes

x and x, with x preceding x Cand possibly with x = e or x = e), such that

(e,x) and (x,e) are admissinc pairs with respect to f.

-20-

Proof:

Case 1. (e,e)- is a saturated head pair at j with respect to f'. In this

case, i t ** and f(i) > 0.

(i) If the head of e is unsaturated by f, then f(i) = 0,

else (e,e) would be admissible with respect to f. Because

f' (i) > 0, i is a forward arc in P. Let x be the arc

immediately following i. Then (e,x) and (x,e), where x = i,

are admissible pairs with respect to f.

(ii) If the head of e is saturated by f and f(e) = 0, then the

argument in (i) applies.

(iii) If the head of e is saturated by f and f(e) > 0, then

i £ H(e), else (e,e) would be admissible with respect to f.

(Here and below H(e) and H'(e) denote head sets with respect

to f and f.) But H(e) is not saturated by f, else we would

have H'(e) c H(e) and i k H'(e). It follows that P contains

at least one backward arc x, where x e H(e). Let x be the last

such arc in P and let x te the immediately preceding arc.

If (x,x) is either an unsaturated head pair or a saturated

head pair with i £ H(x) then we are done; (e,x) and (x,e)

are admissible with respect to f. So suppose (x,x) is a

saturated head pair with e i H(x). By Lemma 8.1, P contains

no unsaturated pairs at the same node, prior to (x,x). Let

(x1 »x-|)5.. .,(xi,x^) be the saturated head pairs in P, up to

and including (x,x). By Lemmas 2.2 and 8.1,

X= H(e) u H(^) u ... u Hfx^ is saturated by f. 8y

construction, y(X) > 0 so X remains saturated by f'. But

e £ X, hence H'(e) £ X and e e X. Thus for some x., 1 <_ i £

k-1, i £ H(x.). Now choose x to be x- and (x,e) is admissible

-21-

with respect to f,

Case 2. (e,e) is a saturated tail pair with respect to f. The proof

for this case is similar to that for Case 1.

Case 3. (e,e) is an unsaturated pair with respect to f. We consider

the case that (e,e) is an unsaturated pair at a node into

which both e and e are directed; the proofs for other cases are

similar. If the head of e is unsaturated by f or if f(i) = 0,

then the argument in Case 1 (i) applies. So suppose the head

of e is saturated by f and f(i) > 0. Then there is a backward

arc x in P such that x e H(e). •(Possibly x = e). Let x be

the arc immediately preceding x in P. Clearly (x,i) and

(e,x) are admissible pairs with respect to f. D

11. Bounding the Number of Augmentations

We now wish to obtain a polynomial bound on the number of

augmentations required to compute a maximal flow, using the splicing

lemma as a tool. This requires a bit more notation. With respect to a

given feasible flow f, let a.-(e) denote the number of (nonvirtual) arcs

in a shortest path from node s to node j, such that each successive

pair of arcs in the path is admissible with respect to f and e is the

last arc in the path (either e £ A. or e £ B,). Similarly, let x.(e)
j j j

denote the length of a shortest path from node j to node t v/hich begins

with arc e. Recall that by convention each augmenting path starts with

virtual arc * and ends with **. Let a (*) = t.(**) = 0.
s t

Lemma 11.1. Suppose flow f is augmented along a shortest augmenting

path P to obtain flow f' , For each node j and arc ef

-22-

Oj(e)<oj(e). Tj(e)<Tj(e),

where o*', x1 and a, t denote path lengths with respect to- f and f.

Proof: Assume that for some j and e,

ffj(i) <aj(i)
and let

a\(e) = min (a'.(x) |a'.(x) < aAx)} .
J i,x ' '

There is some arc e preceding e in a shortest path from s to j with

respect to f (else e = *, j = s and we would have a'(*) = 0 < a (*) = 0).

Let k be the node which both e and e are incident to. By assumption,

aj^e) > ak(e), so (e,i) is not admissible wi-th respect to f (else

tfj(e) ^ a.(e)). Since (e,i) is admissible with respect to f, we know

by the splicing lemma that P contains arcs x, x such that (e,x) and

(x,e) are admissible pairs at node k. It must be that a, (x) < o 'eh
kv k'

else P would not be a shortest augmenting path with respect to f. But

then

<jj(e) <ak(x) +1 <ak(e) +1 <cr^(e) +1 =aj(i),

which contradicts our assumption that cr.(i) > a*.(i). The proof that

x.(e) <> x'.(e) is similar. q

Corollary 11.2. If augmentations are mad^ along shortest augmenting -oaths,

then the number of arcs in successive -x.varr.er.tina paths is nordeoreasina.

Proof: The length of a shortest augmenting oath is min [x (e)}.
• e s

-23-

V

Apply Lemma 11.1 and note that

mine(x^(e)} >mine(xs(e)}. 0

Suppose we carry out successive augmentations along shortest

augmenting paths. The augmentations made along paths with the same

number of arcs will be said to constitute a phase of the maximal flow

computation. There can be no more than m phases, where m is the number

of arcs in the network, since no path can contain more than m arcs.

In order to bound the number of augmentations within a phase we

introduce a lexicographic ordering to break ties between shortest paths.

The arcs are indexed arbitrarily. Given two paths P and P' with the

same number of arcs, the rule to determine if P is lexicographically

smaller than P\ written P < P*, is as follows. If the index of the last

arc in P is smaller than the index of the last arc in P', then P < P' .

If these arcs are the same, then compare the indices of the next-to-last

arcs, and so on. If all arcs are the same, then P = P'and P' < P.

It is easy to modify the maximal flow algorithm so as to insure

that each augmentation is made along a lexicographically minimal

shortest path. Modify Step 2 so that the arcs at level l are scanned

in order of increasing index. Also modify the algorithm so that the

arc e identified in Step 3 (as the last arc of an augmenting path) has

the smallest possible index. These are the only changes necessary.

Lemma 11.3. Suppose flow f is augmented along a lexicographically

minimal shortest augmenting path P to obtain flow f ana znat

a.(e) =a'.(e), for some given node j and arc e. If Q, Q' are lexico-
j J

graphically minimal paths realizing the values Cj(e), aj(e) respectively,

then Q < Q'.

-24-

Proof: Assume that for some j and e, oAe) = cr'.(e) and that Q /£Q\
j j —

Further assume, without loss of generality, that the next-to-last arcs in

Q and Q' are different, these being e and e', respectively. Since

Q t_ Q' the index of e is greater than the index of e' ,therefore (e',e) is not

an admissible pair with respect to f. Since (e',e) is admissible with

respect to f but not f, by the splicing lemma P contains a pair (x,x)

such that (x,e), and (e,*) are admissible with respect to f. The index of e'

is greater than or equal to the index of x, else P is not a lexicographically

minimal path. Hence the index of e is greater than the index of x, by

our previous observation. But the index of e is less than or equal to

the index of x, else Q is not lexicographically minimal. This

contradicts our assumption that Q _£ Q'. g

Lemma 11.4. If augmentations are made along lexicographically minimal short

est augm.enting paths, then an arc pair (e,e) which is critical in a path P

cannot appear in any later path P' in the same phase of the computation.

Proof: 3y contradiction. Assume that a path P with respect to flow f

contains a critical pair (e,i) which is contained in a later path P"

with respect to flow f", in the same phase. Let k be the node to which

both e and e are incident and let j be the other node to which i is

incident. We know that (e,e) is not admissible with respect to f', the

flow existing after augmentation along P. The lexicographically minimal

shortest path Q' realizing a'.(e) contains some arc x as its next-to-last

arc, with index x > greater than index e. But we must also have index

e > index x, else either P" or Q is not lexicographically minimal. This

yields the desired contradiction. Q

-25-

Theorem 11,5, If augmentations are made along lexicographically minimal

shortest augmenting paths, then a maximal flow is achieved with at most

m3 augmentations, where m is the number of arcs in the network.

Proof: There are at most m2 possible arc pairs. At least one pair is

critical in each augmenting path and cannot be contained in a later
2

augmenting path in the same phase. Hence there are at most m

augmentations in each phase. There are at most m phases and so at most

m augmentations in all. D

This result can be compared with that of Edmonds and Karp [3] for

the classical network flow model. In that case there are at most n

phases, where n is the number of nodes, and at most m augmentations per

phase.

12. Complexity of the Maximal Flow Algorithm

The maximal flow algorithm requires that certain computations be

carried out with respect to the capacity functions and a given feasible

flow f. Until this point, we have not discussed how these computations

can and should be carried out. There are two types of problems we should

like to be able to solve. In general polymatroidal terms these are

as follows:

(i) The saturation, problem. Given a polymatroid (E,p), a feasible

function f and an element e £ E, is e saturated by f?

(ii) The o problem. Given a polymatroid (E,p), a feasible function

f and an element e £ E, what is the maximum value <5 such that f is

feasible, where f(e) = f(e) + 6 and f'(e') = f(e') for e' /* e?

We must be able to solve the saturation problem in order to perform

-26-

scanning and labeling in Steps 1 and 2 of the algorithm. Notice that any

procedure solving the saturation problem in time c can be used to find

S(e), the unique minimal saturated set containing e, in time c|E|.

Simply set f(e') = 0, for each e' / e, one at a time. Then e' £ S(e) if

and only if e becomes unsaturated.

If we can solve the <5 problem for each capacity function a. or 3 .,
j j

then we can computes (e^.e.^) for each consecutive pair of arcs in an

augmenting path P= (elf...,e), as required to determine the path

capacityo(P) in Step 5. For example, suppose (e1 ,e.+1) is a saturated

head pair at node j. Then we can solve the 5 problem for the polymatroid

(Bj,Sj), e. £Bj, and f, where f(e.+1) =0and f(e) =f(e) for ej* e.+r

The smaller of thisvalue of -5 and f(e.+1) is then o(e1fe.+1). Notice
also that any procedure solving the 5 problem also solves the saturation

problem. (An element e z E is saturated if and only if 5=0.)

If p is arbitrary and defined only by an explicit listing of

values, i.e. p(A) for each A £ E, we cannot expect to be able to solve

these problems efficiently, unless possibly jEj is small. However, if

p has some special structure, we may be more fortunate. For example, if

p is a function whose value is determined by the cardinality of the set

A£ E. In this case there are numbers s1>s2>...>S|r|.>0 such that

|A|

P(A) -Is..
1=1 1

Both the saturation problem and the-5 problem can be solved in 0(|E| log |Ej)

time, with a sort of the values f(e). This situation arises in the solu

tion of the scheduling problem dealt with in [11,12].

In order to be able to state a general bound on the complexity of

-27-

the maximal flow algorithm, we shall suppose there are black-box subroutines

(or "oracles") to which we can pass on much of the burden of the

computation. For example, we might suppose that there is a subroutine,

operating in time d, to solve the 5 problem for each polymatroid (A,,a,),
w J

(B-,3-), j = !,...,n. Then we have the following result.

Theorem 12.1. Suppose for each capacity function there is a subroutine

for solving the 6 problem in time d. Then a maximal flow can be computed
in time 0(m d), where mis the number of arcs in th# network.

3
Proof: At most m augmentations are needed. Each augmentation requires

that each of the m arcs be scanned at most once. The scanning of an

arc e requires that the saturation problem be solved, in time d, and (in

the worst case) that H(e) or T(e) be found, in time d|A.|" or d|B.|.

Scanning and labeling can thus be seen to require at most 0(m d) time

per augmentation. Determining 5 (P) for each augmenting path P requires

at most 0(md) time. The time for this, and all other operations, is

dominated by the time required for scanning and labeling. G

In the case of matroid optimization algorithms, it is common to

assume the existence of a subroutine which determines whether or not a

given subset of elements is independent in a matroid. A natural

generalization of such a subroutine is one which tests a given function

for feasibility with respect to p. Suppose there exists such a

subroutine and that it runs in time c. Let us also suppose that f and

p are integer-valued. We can then proceed as follows.

To solve the saturation problem, let f be such that f'(e) = f(e) +1

and f'(e') = f(e'), e1 ? e, and apply the feasibility test to f'.

Element e is unsaturated if and only if f is feasible. To solve the

-28-

<5 problem, carry out a bisection search on values of 5 in the interval

[f(e), p(e)]. For each trial value of 6 , test whether f is feasible,

where f'(e) = f(e) +5 , f'(e') = f(e), for e' ^ e. 0(c log2 p(e)) time

is thus sufficient to solve the 6 problem. (Moreover, with proper modifi

cation of the procedure, this bound can be achieved, without prior know

ledge of p(e).) This yields the following theorem.

Theorem 12.2. Suppose for each capacity function there is a subroutine

for testing the feasibility of a flow in time c. If all capacity

functions are integer-valued, then a maximal flow can be computed in

time 0(m c(m+1og r)), where r is the maximum value of any capacity

function for any single arc.

Proof: By analysis similar to that in the proof of Theorem 12.1, given

the observations preceding this theorem. D

13. Concluding Remarks

The polymatroidal network flow model as formulated here was suggested

by research of one of the authors on a machine scheduling problem [11,12].

The authors wish to acknowledge that the same network flow model [gener

alized to accommodate lower bounds and costs on arc flows) was independently

formulated in the doctoral thesis of Rafael Hassin [6], supervised by Alan

Hoffman. Hassin's thesis concerns rather different questions than those

dealt with in the present paper and we believe there is wery little over

lap. The polymatroidal network flow model also bears at least some simi

larity to a model of Edmonds and Giles [4] in which submodular set func

tions are assigned to nodes instead of arcs. However, there appears to

be very little, if any, relationship between the network flow model

studied in this paper and the notion of "flows" in matroids. (Except

-29-

that both provide generaltzattons of the classical network flow model J

Cf, Welsh [14].

-30-

References

[1] M. Aigner, T. A. Dowling, "Matching Theory for Combinatorial

Geometries," Trans. Amer. Math. Soc, 158 (1971) 231-245.

[2] J. Edmonds, "Minimum Partition of a Matroid into Independent

Subsets," J. Res. Nat'l Bureau Standards, 69B (1965) 67-72.

[3] J. Edmonds and R. M. Karp, "Theoretical Improvements in Algorithmic

Efficiency for Network Flow Problems," J. ACM, 19 (1972) 248-264,

[4] J. Edmonds and R. Giles, "A Min-Max Relation for Submodular

Functions on Graphs," in Studies in Integer Programming (Proc,

Workshop on Programming Bonn, 1975, P. L. Hammer, E. L. Johnson

and B. H. Korte, eds.), Annals Discrete Math, 1 (1977) 185-204.

[5] S. Fujishige, "Algorithms for Solving the Independent Flow

Problem," J. Opns. Res. Soc. Japan, 21 (1978) 189-204.

[6] R. Hassin, "On Network Flows," PhD Dissertation, Yale University,

1978.

[7] M. Iri and N. Tomigawa, "An Algorithm for Finding an Optimal

Independent Assignment Set," J. Opns. Res. Soc. Japan, 19 (1976)

32-57.

[8] S. Krogdahl, "A Combinatorial Proof of Lawler's Matroid Inter

section Algorithm," unpublished. 1975.

[9] E. L. Lawler, "Matroid Intersection Algorithms," Math. Programming

9 (1975) 31-56.

[10] E. L. Lawler, Combinatorial Optimization: Networks and Matroids,

Holt, Rinehart and Winston, 1976.

[11] C. U. Martel, "Generalized Network Flows with an Application to

Multiprocessor Scheduling," PhD Thesis, University of California,

Berkeley, 1980.

-31-

[12] C. U. Martel, "Scheduling Uniform Machines.with Release Times,

Deadlines and Due Times," to appear in J. ACM.

[13] P. Schonsleben, "Ganzzahlige Polymatroid-Intersektions -

Algorithmen," thesis, ETH, Zurich, 1980.

[14] D. J. A. Welsh, Matroid Theory, Academic Press, 1976.

-32-

	Copyright notice 1980
	ERL-80-52

