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ABSTRACT

A special class of acyclic digraphs has been considered. It contains

those acyclic digraphs whose transitive reduction is a directed rooted

tree. Alternative characterizations have also been given, including one

by forbidden subgraph containment of its transitive closure. For digraphs

belonging to the mentioned class, linear time algorithms have been

described for the following problems: recognition, transitive

reduction and closure, isomorphism, minimal chain decomposition,

dimension of the induced poset. The ideas of the isomorphism algorithm

were further extended to include a larger class of digraphs, leading to

an algorithm whose time bound is the same as that for recognizing

reducible digraphs. Based on the characterizations of the considered

class, the problem of verifying isomorphism of DFS of undirected graphs

has also been solved in linear time.



1. Introduction

Looking for special classes of graphs possessing some particular

characteristics is generally common in graph theory. In what concerns

graph algorithms, we suppose that the interest in any such special class

would increase depending on the following factors: (i) the importance

and quantity of different general algorithmic problems that can be solved

simpler and more efficiently, if the input instance is a graph of the

class in consideration; (ii) the capacity of the class to generate its

own "interesting" algorithmic problems; (iii) the capacity of the class

to be used as an intermediate step in solving problems for larger or

different classes and Civ) the size of the class.

Among others, we can mention the following classes of graphs, which

have been introduced in recent years: chordal graphs (Gavril [6]),

comparability graphs (Even,Pnueli and Lempel [4]), interval graphs

CBooth and Lueker [2]), reducible digraphs (Hecht and Ullman [7]),

series parallel digraphs (Valdes, Tarjan and Lawler [13]).

In the present paper, we present a special class of acyclic digraphs,

named tree structured digraphs« This class is defined and characterized

in. some different ways, in the next section. The recognition of whether

a graph belongs to that class is discussed in Section 3. Most of the

following sections contain different applications of tree structured

digraphs, i.e. a discussion of some general problems, when the input

is restricted to the class in consideration. In Section 4 is the

problem of transitive reduction and closure. An isomorphism algorithm

is described in the following section. The problem of verifying whether

or not two DFS of an undirected graph are isomorphic, is solved

subsequently based on characterizations and isomorphism of tree structured
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digraphs. Finding a minimal chain decomposition and the dimension of

the induced poset are problems considered in Sections 7 and 8,

respectively. The isomorphism of tree structured digraphs is extended

in Section 9, to include also digraphs (possibly with cycles) that

constitute a defined subclass of reducible digraphs. A proposal of a

problem related to the class in consideration is presented in Section

10 and some additional remarks form the last section.

The algorithms described through the paper have all linear time

bounds, except that of Section 9 which is almost linear, but not linear.

A graph (V,E) is a finite non-empty set V together with a set E of

pairs of distinct elements of V. The elements of V and E are the

vertices and edges of the graph, respectively. We denote n = |v|and

m = |e|. A graph can be undirected or directed (digraph) according to

whether its edges are unordered or ordered pairs, respectively. A

vertex v is adjacent to vertex w if (v, w) S e. The adjacency list A(v)

of vertex v is the set of vertices w of the graph, such that v is

adjacent to w. A sequence of vertices v-, ..., v, such that for

1 £ i < k Cv.,v. .) Se is called a path from v. to v, and v- is said to

reach vfc. The length of such a path is defined as k - 1. A cycle is a

path v., ..., v, with v- = v. and containing at least two different

edges. A graph with no cycles is acyclic. A graph G.(V..,E..) is a

subgraph of graph G2(V2>E2) when V Cv and E- C -g if additionally

V. = V« then G. is called a spanning subgraph of G«. An undirected

graph is connected if there is a path between every pair of its vertices.

A tree is an undirected graph which is connected and acyclic. In a digraph the

indegree and outdegree of a vertex v are the number of vertices w such

that (w,v) € E and (v,w) £ E respectively. If indegree (v) = 0 then
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vertex v is called a source, if outdegree (v) - 0 then v is a sink. A

digraph is rooted if there is a vertex called root of the digraph, that

reaches all its vertices.

Let D be an acyclic digraph. Its minimum spanning subgraph and

maximum spanning supergraph which preserve the reachability of D are the

transitive reduction and transitive closure of D, respectively. The

transitive closure of D is also called the partially ordered set (poset)

induced by D. We also write v < w to denote that v reaches w in D, forv ^ w.

In this case we say that v, w are comparable. If neither v / w nor

w { v then v, w are incomparable. Observe that since v is acyclic if

v < w = >w j£ v. A topological ordering of D is a sequence v_, v_,

..., v of all its vertices, such that if v. < v - > i <:j. Clearly,

if an acyclic digraph D is rooted then there is one vertex which is both .

the unique root and unique source of D.

A directed rooted tree T is a (acyclic) rooted digraph such that

all its vertices except the root, have indegree one. If v < w in T then

v is an ancestor of w and w a descendant of v. If additionally

Cv,w) £ E then v is a father of w and w a son of v. It can be shown

that there is a unique path from the root r of T to any of its vertices.

The level of a vertex v in T is equal to one plus the length of the path

from r to v (the level of r is therefore equal to 1). A forest is a set

of directed rooted trees.

The vertices of a graph can be traversed according to predefined

rules, such as those of depth first search (DFS). A DFS of an undirected

graph, divides its edges into two disjoint subsets, the tree edges and

fronds. A DFS of a digraph divides its edges into four disjoint subsets,

the tree edges, forward edges, back edges and cross edges. See [1] for

instance, for a description of DFS.
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2. Characterization

We say that a directed acyclic graph is tree structured (TS)

when its transitive reduction is a directed rooted tree. Figure 1 (a)

is an example of such a digraph. Its transitive reduction is the tree

of figure of 1 (b).

The following lemma presents some alternative ways of characterizing ,

the class of tree structured digraphs.

Lemma 2.1

Let D (V,E) be an acyclic rooted digraph. The following statements

are then equivalent:

CI) The transitive reduction of D is a directed rooted tree.

(2) There exists a spanning directed rooted tree T of D, such

that for every edge (v,w) 6 E, v is an ancestor of w in T.

(3) There exists a DFS of D with no cross edges.

(4) For any pair of edges (y,w), (z,w) £ E, v and z are comparable (v ^ z).

(5) For any pair of vertices v, w £ V, with v < w, the vertices of

any path from v to w are a subset of the vertices of the longest

from v to w.

Proof:

CD = > (2):

Let T' be the transitive reduction of D, which according to (1) is

a directed rooted tree. Let (v,w) be an edge of D. If v is not an ,

ancestor of w in T', this means that v 4 w in D, a contradiction with

(y,w) being an edge of D. Therefore, T = T' .

C2) = > C3):

Consider the spanning tree T. Order the adjacency lists of D in
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(a)

(b)

Fig. 1: A tree structured digraph and its transitive reduction
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such a way that for every vertex v of D, if w, z <= A(v) but (v,w) is in

T and (v,z) is not in T, then w precedes z in A(v). Let r be the root

of T. Starting with r, perform a DFS of D. Because of the considered

ordering, it can be shown by an inductive argument that the DFS forest

so obtained is exactly tree T. Finally, we also conclude that no cross

edge (v,w) can exist in the DFS, otherwise v would not be an ancestor

of w in T, a contradiction.

(3) = > (4) :

Consider a DFS of D, with no cross edges. Let (y,w) and (z,w) be

edges of D. If w is reached before v in the mentioned DFS, since v / z

edge (v,w) would be a cross edge, a contradiction. Therefore, v is reached

before w in the DFS. Similarly we conclude that z is reached before w.

Therefore these vertices are reached in the order v,z,w or z,v,w. In

the first case, there exists a path from v to z. In the second, from

z to v. Hence v and z are comparable.

C4) = > (5) :

Let v = z., ... , z., z. -, ..., z - w be the longest path. P from

v to w, in D. Suppose that there exists another path from v to w that

contains a vertex t, t f- P. Clearly, z- < t<z . Let z. be the right

most vertex of P such that t ^ z (such a vertex exists because t ^ z_).

Because t < z ., there exists a path from t to z. ^. This means that

we can locate a vertex s, s £ P such that t < s and (s,z. .,)€E.
j+l

Applying (4) to the pair of edges Cz.,z,+1) and (s,z.+-), we conclude

that z and s are comparable. If s < z. then by transitivity t < z.,

a contradiction. Therefore, z. < s, which means that there exists a

path P z , y>, ..., y,, s from z. to s. Pf cannot contain vertices of

P except z,, otherwise D would contain a cycle. Hence, the path
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ZV "°z13 yl' —' yk* S' 21+1' •-•»• z0 from v to w> is longer than P, •

a contradiction. Thus there can be no path from v to w containing

vertices not belonging to P.

(5) - > (1):

Let us consider the subset S of edges of D which are part of some

longest path from v to w, for all pairs of vertices v, w v < w. Because

of (5), we can delete all edges of E-S, without altering the transitive

reduction of D. Therefore, the digraph D'(V,S) is the transitive

reduction of D. It follows that DT is a directed rooted tree.

It is also possible to formulate a characterization of the present

class of digraphs, by means of a specific forbidden subgraph of its

transitive closure. The following is a direct consequence of lemma 2.1.

Lemma 2.2

An acyclic digraph D is tree structured if and only if its transitive

closure does not contain the digraph of figure (2), as an induced subgraph.

We can also verify the existence of a relationship between the class of
tree structured digraphs and a class of acyclic digraphs known as

series parallel digraphs. The latter has been shown useful when solving

some problems of scheduling under constraints. If the constraints

correspond to a digraph of this class, it can be shown that more

efficient algorithms can be devised (Lawler [11], for instance). Some

graph theoretic properties of series parallel digraphs have been

presented by Valdes [14] and Valdes, Tarjan and Lawler [15].

A minimal series parallel digraph (MSP) is defined recursively by

(i) a digraph with one vertex is MSP
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(ii) if \(yv\) and D2(V2,E2) are MSP digraphs, so are the

digraphs (V1Uv2,E1UE2) and- (V1UV2,E1UE2U(Ai;XB2)), where

Aj.j, B^ are the set of sinks of D and sources of D9, respectively,

A general series parallel digraph (GSP) is then defined as being

a digraph whose transitive reduction is MSP. GSP digraphs can also be

characterized by the fact that a digraph is GSP if its transitive

closure does not contain figure (3) as an induced subgraph ([14], [15]).

The following lemma relates the classes TS and GSP.

Lemma 2.3

Let D be a TS digraph. Then D is GSP.

Proof:

It follows immediately from the forbidden subgraphs of figures

2 and 3.

An alternative simple argument for the above lemma is the fact that

if D is TS then its transitive reduction is a directed rooted tree, which

is a MSP digraph. Then D is also GSP. The next lemma states that no

such similar relation exists between the classes TS and MSP.

Lemma 2.4

The classes of tree structured and minimal series parallel digraphs

are not contained one in the other.

*

Proof:

The digraph of figure 2 is MSP, but not TS. The digraph of figure

4 is TS, but not MSP.

Finally, it is also possible to relate the class of tree structured

digraphs and the class of general undirected graphs. This can be done
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Fig. 2:

Fig. 3:

The forbidden subgraph for
the transitive closure of

TS digraphs

The forbidden subgraph for
the transitive closure of

GSP digraphs

4: A digraph which is TS but
not MSP
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through the concept of depth first search, as follows. Let G be an

undirected graph, in which a DFS has been performed. The DFS-n^ber

for a vertex v of G is simply the number corresponding to the order in

which v has been first reached in the DFS. We can now formulate the

mentioned relationship.

Lemma 2.5

Let a DFS be performed in an undirected connected graph G(V,E).

Let D be the directed graph obtained from G by directing each edge of

G from lower to higher DFS-numbers of its vertices. Then D is a tree

structured digraph.

Proof:

Because all edges go from lower to higher numbers of its vertices,

D is necessarily acyclic. Because a DFS of an undirected graph has no

cross edges, all edges in D are from ancestors to descendants in the

DFS spanning tree.

3. Recognition

Clearly, when handling special classes of graphs, a basic problem

is to recognize whether or not a given graph is one that belongs to the

class in consideration. The recognition of tree structured digraphs is

a simple problem that can be solved efficiently using the following lemma.

Lemma 3.1

Let D(V,E) be a rooted digraph such that for every v € V, A(v) has

been topologically sorted. Then a DFS starting from the root of D has no

cross edges if and only if D is tree structured.
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Proof:

If the DFS has no cross edges then according to lemma 2.1, D is TS.

Conversely, suppose D is TS and assume that a cross edge (v,w) has been

detected. This means that during the DFS, vertex w has been reached

before v. Let z be the lowest common ancestor of v and w, in the DFS

(vertex z exists necessarily because the DFS is from the root of D).

Let z, Zp ..., w and z, z', ...,v be the paths from z to w and v,

respectively explored during the DFS. Because w has been reached before

t

v, path z, z_, .. .w has been explored before path z, z_%,- ,.'.w Also,

v-< w, z.^< w.and therefore, we conclude that v and z are comparable,

otherwise the forbidden subgraph of lemma 2.2 would have been found.

Because z is the lowest common ancestor of v and w, we have z i v. Hence,

v < z1 which implies z' < z-. Since A(z) is topologically sorted, z*

must preceed z1 in A(z), which contradicts the fact that path z,

z^, ..., w has been explored before z, zj, ..., v. Hence no cross

edges can be found in the DFS.

It should be noted that lemma 2.1 stated solely that if a digraph

is tree structured, then there exists a DFS in which no cross edges

exist, while lemma 3.1 specifies precisely which one is that DFS.

As a consequence of the above lemma, the recognition of tree

structured digraphs can be done straightforwardly. Given digraph

D(V,E) rooted at vertex r, we first topologically sort its adjacency

lists. Afterwards, starting from vertex r, we perform a DFS of D.

Digraph D is in class TS if the DFS has no cross edges. Deciding

whether or not a given edge is a cross edge within a DFS can be done in

constant time. Therefore, it is immediate to verify that the whole

above process is completed in 0(n+m) time.
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4. Transitive Reduction and Closure

Given a digraph D(V,E) supposedly belonging to class TS we wish to

obtain its transitive reduction and closure. It can easily be verified

that if D is indeed a tree structured digraph then the DFS tree obtained

from lemma 3.1 is precisely the transitive reduction of D. This means

that this problem can also be solved in 0(n+m) time. For finding the

transitive closure digraph of D, we need just to observe that for each

v 6 v the adjacency list A(v) of the transitive closure of D is formed

exactly by the set of descendants of v, in the transitive reduction

(directed rooted tree) of D. Consequently, the transitive closure can

be obtained in time proportional to its size.

It should be noted that the computation of the transitive reduction

and closure of GSP digraphs can be done also in linear time [15]. In

particular the method by Valdes, Lawler and Tarjan would find the

transitive reduction and closure of TS digraphs obviously in linear

time. It might be mentioned however, that for tree structured digraphs

the above described method is perhaps conceptually simpler.

5. Isomorphism

Determining the complexity of the general graph isomorphism problem

is a well-known classical open problem. Polynomially bounded algorithms

have been found for the isomorphism of some specific classes of graphs,

as planar graphs [10], interval graphs [2], MSP digraphs [14,15]. The

isomorphism of general series parallel digraphs however has been shown to

be polynomially equivalent to the general graph isomorphism problem

[14,15].

In the present section we present a solution to the isomorphism of

a tree structured digraphs. The proposed method is based on the

following lemma.
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Lemma 5.1

Let D1(V1,E1) and D2(V2*V be TS digraphs, \0fx ET ) and

T2(V2,E ) their transitive reduction trees, respectively. For

i = 1, 2 let h(w ) represent the level of vertex w. in tree T.. Suppose

that a set s(w.) of labels is assigned to each vertex w. of T., such

that:

if wA is the root of T then s(w ) = <J>, otherwise

s(w±) =(h(v±) |(v^) e E±}

Then D1 and D2 are isomorphic iff T and T2 are isomorphic labelled

rooted trees.

Proof:

Suppose D^ and D2 are isomorphic. Then T- and T« are necessarily

isomorphic directed trees. It remains to show that they are isomorphic

also as labelled trees. The isomorphism of D , D» means that there

exists abijection f: V^^ =V2 s.t. (v^w^ e E^iff (ffr^, ffc^)) e *^m
Consider now a fixed vertex wx G v^ Then h(w ) = h(f(w )) and h(v-)

»h(f(V;L)) for all vx 6^ s.t. (v^w.^ e E±. Because D is TS, v is

an ancestor of w1 in T^. Hence v- is uniquely determined by h(v ).

We conclude then that s(w1) = s(f(w )) and the same is true for all

wie vr
From this last equality, we conclude that for each w_ G V , the

levels in ^ of the vertices vx s.t. (v^w^ € E. are respectively the •

same as the levels in T£ of the vertices v£ s.t. (v2>f(w )) € e,. Since

D1 and D2 are TS digraphs, v1 and v2 are uniquely determined by their

levels in Tx, T2 and by w^ w2 respectively. We conclude that
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necessarily v2 =f(V;L). Hence (v^) € El iff (f(V;L) ,f(w )) S E2 and
D-, D are isomorphic.

From the above lemma, we then specify the actual algorithm. Given

two tree structured digraphs D1(V1,E1) and D2(V2,E2) we first obtain

their transitive reduction trees T and T2> respectively. Next for each

Wl € Vl we find the set s^wi^» as indicated in lemma 5.1. Similarly,
we find the label sets for all w2 in T«. Observe that each label set

s(w±) is composed by elements h(v ) (levels), within the range

1 <_ h(vi) < n. Next we apply for instance an algorithm by Hopcroft

and Tarjan [9] for labelled tree isomorphism and decide whether T , T-

are isomorphic labelled rooted trees. From lemma 5.1 we know that D-

and D„ are isomorphic iff are T and T„.
1 1 2

An example of the labelled tree corresponding.to the digraph of

figure 1(a) is shown in figure 5. Obtaining the running time of the

above method is also straightforward. From sections 3 and 4, we know

that T^ and T2 can be constructed in 0(n+m) time. Computing all sets

of labels would require also 0(n+m) operations. The algorithm by

Hopcroft and Tarjan for labelled tree isomorphism is bounded by 0(n+L),

where n is the number of vertices of each tree and L is the sum of the

lengths of all label sets. Clearly, L = m for each tree. Therefore, the

entire process is bounded by 0(n+m).

As a consequence of the presented method for isomorphism, we can •

verify that any TS digraph is uniquely determined by its transitive

reduction tree, together with the sets s(w) of labels, one set of labels

per vertex of the tree, as defined by lemma 5.1.

Also for each vertex w of the transitive reduction tree T, w $ root

of T, we can eliminate from s(w) its largest element h(v). Note that
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s(v3) = {1}

v6* S(V - {3}

v8 s(V = {1,3}

Fig. 5: A labelled tree representing the digraph of Fig. 1(a)
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max {h(v) |h(v) € s(w)} => h(w) - 1, for w f root of T.

6. Isomorphism of DFS

Suppose we perform a depth first search S- of an undirected graph

G, starting from vertex r . Next, after perhaps changing the order in

which the vertices of G appear in the adjacency lists and perhaps changing

the start vertex to r2, we perform another depth first search S- of G.

The question that we would like to consider is whether or not S_ and

S2 correspond to "similar" searches. More formally, we would say that

"similar" DFS are isomporphic DFS, which are defined as below.

Two depth first searches S. and S2 starting respectively from

vertices r^ and r2 of an undirected graph G(V,E) are isomorphic when

there exists a permutation f such that

(i) r2 - f(r;L) and

(ii) for every edge (v,w) £ E:

(v,w) is a tree edge in S1 iff (f(v),f(w)) is a tree edge in S2>

(v,w) is a frond edge in ^iff (f(v),f(w)) is a frond edge in S2<

Clearly, tree edges of S- are mapped into tree edges of S« and fronds

of S- are mapped into fronds of S„. If two DFS are isomorphic their

corresponding DFS trees are also, but this condition is not sufficient.

An example is shown in figure 6. Figure 6(a) is an undirected

graph G, 6(b), 6(c) and 6(d) are three distinct depth first searches

of G, with the tree edges corresponding to straight lines and fronds

to curved ones. Clearly, the DFS of 6(b) and 6(c) are not isomorphic,

while those of 6(b) and 6(d) are.

A solution to the problem of finding isomorphism of DFS can be

based on the following lemma.
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(a) v (b)

(c) (d)

Fig. 6: An undirected graph and three possible DFS
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Lemma 6.1

Let G be an undirected graph, S and S2 two depth first searches

performed in G. Let D]L and D be the TS digraphs obtained by directing

each edge of G from lower to higher DFS-numbers of its vertices,

respectively. Then S and S are isomorphic DFS of G iff D and D are

isomorphic (TS) digraphs.

The proof of the above lemma is straightforward and the actual

algorithm is just an implementation of it. Given G and the two DFS

S^ and S2, obtain the tree structured digraphs D. and D_ as above, by

directing each edge of G from low to high DFS-numbers, respectively.

It should be noted that in this way, tree edges of S. are mapped into

edges that belong to the transitive reduction of D_, while fronds of

S^ are mapped into edges that are redundant under transitive reduction.

This means that the DFS tree of S- corresponds precisely to the

transitive reduction of D_. The same of course, applies to S« and D_,

respectively. After obtaining D. and D2 apply the method of section

5 to decide the isomorphism of these digraphs. Finally, S- and S« are

isomorphic iff D. and D2 are so. The running time of the algorithm can

be clearly shown also to be bounded by 0(n+m).

As a consequence of the above fact, we can establish a further

relation between undirected graphs and tree structured digraphs, as

follows. Let a be the set of all (pairwise non-isomorphoric) undirected

graphs. For each G S a perform all possible DFS. Consider now a

relation R such that for every pair S-, S2 of DFS of G, S-R S2 iff S-, S„

are isomorphic. Clearly R is an equivalence relation and its

equivalence classes have the following property:
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Lemma 6.2

There exists a one-to-one correspondence between tree structured

digraphs and the equivalence classes of relation R.

Now we say that an undirected graph G generates an equivalence class

C of relation R, when there exists a DFS of G which is a member of C.

We can then conclude that the number of distinct equivalence classes

C of R generated by a fixed graph G equals the number of distinct tree

structured digraphs whose underlying undirected graphs are all isomorphic

to G.

7. Minimal Chain Decomposition

Let D(V,E) be an acyclic digraph. A chain of D is a sequence of

vertices which is a path in the transitive closure of D. The m-fTrfmal

chain decomposition problem consists of finding a minimal set of chains

which covers the vertices of D. It is known that this problem can be

solved by reducing it to a network flow problem. The basis of a solution

for it is the well-known theorem by Dilworth [3], which states that the

minimum number of chains that cover D equals the maytminn number of

incomparable vertices of D.

We now restrict our attention to cases in which D is a tree

structured digraph.

Lettima 7.1

Let D be a TS digraph. Then the maximum number of incomparable

vertices of D equals the number of sinks of D.

The proof is obvious. For actually finding a minimal chain

decomposition set {c^ ..., c, } of D we initially determine the transitive
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reduction tree T of D. The first chain c. in the set is a path from

the root of T to any of its sinks. Next we delete from T the vertices

of c-. This may turn T-c. into a forest. Choose any tree T* of T-c.

and chain c_ is a path from the root of T' to any of its sinks. Delete

c2 from T-c. and apply the same operation to (T-c-)-c-. Proceed so

until the forest becomes empty. Since the deletion of those chains

cannot create new sinks, the total number of chains obtained by the

above process equals the number of sinks of D, which means that

{c_, ..., c, } is indeed minimal.

It is also immediate to verify that the set of chains can be obtained

from T in 0(n) time and therefore the entire process is bounded by 0(n+m).

It should be also observed that the chains obtained by the above

method are in fact paths of D. This means that for TS digraphs D the

problem of obtaining a minimal set of chains that covers the vertices

of D is equivalent to the problem of finding a minimal set of disjoint

paths whose vertices cover D. These two problems are clearly the same

when D is its own transitive closure, but otherwise may have different

solutions*

As an example, we can see that a solution of the minimal chain

decomposition problem obtained by the described process for the digraph

of figure 1(a) is

Uvl9v2,v4), (v3), (v5,vfi), (vy), (Vg)}.

8. The Dimension of the Induced Poset

Let D(V,E) be an acyclic digraph. We can characterize the poset

induced by D (i.e. the transitive closure of D) through a set of k

topological orderings of D, such that v < w iff v precedes w in all of
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the k orderings, for all v, w 6 V. In other words, v and w are not

comparable in D iff there are two orderings t ,t2 such that v precedes

w in t^ and w precedes v in t^. The minimum value of such k is the

dimension of the poset. It is an open problem determining the complexity

of finding the dimension of a poset [5]. In this section we consider

the problem of finding a minimum set of topological orderings which define

a poset induced by a TS digraph.

Let T be a rooted tree. In a preorder traversal of T we visit the

root of T and afterwards, recursively visit the sons of T. If those

sons are visited in order left to right, we call it a left preorder;

if the visits are from right to left, we have a right preorder.

Lemma 8.1

Let D(V,E) be a TS digraph and T its transitive reduction tree. If

Pj^ P2 are tna left and right preorder traversals of T respectively,

then {p1,p2> is a set of topological orderings that completely characterizes

the poset induced by D.

Proof

Clearly p, p2 are topological orderings of D, since any preorder

traversal of T has this property. Now let v, w S v. If v < w, then v

is an ancestor of w in T and therefore v precedes w in both p , p .

If v, w are incomparable, a simple inductive argument shows that v, w

appear in different relative positions in p. and p«.

A consequence of the above lemma is the fact that a poset specified

by a TS digraph is necessarily two-dimensional (except of course, the

case p1 = p2 which corresponds to the poset being a total ordering).
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And the actual topological orderings {p1,p2> can be obtained in linear

time. However, similar results have been obtained also for the more

general class of GSP digraphs [15]. As for the previous case of

transitive reduction and closure (Section 4), we mention that the above

solution restricted to TS digraphs is perhaps simpler than that for the

GSP class.

9. An Extension

In the present section, we show that it is possible to enlarge the

class of digraphs for which the isomorphism problem may be solved using

essentially the ideas of Section 5. Some introductory definitions are

needed.

Let D be a digraph (possibly with cycles) rooted at r. Let S be a

DFS of D, starting from r. Denote by B the set of back edges obtained

from S. Digraph D is then called reducible when Bc is always the same,

independent of S. Reducible digraphs have been characterized by Hecht

and Ullman [7, 8] and they can be recognized in time slightly more than

linear (Tarjan [12, 13]). Now denote by D(S) the acyclic digraph

obtained from D by deleting the edges of B , i.e. D(S) is the digraph

(V,E-Bg). A reducible digraph D will then be called tree reducible

when D(S) is a tree structured digraph. An example of a tree reducible

digraph is shown in figure 7.

If D is an acyclic digraph then clearly B = <J> and D(S) = D, for

any DFS S. Therefore, the class of reducible digraphs contains all

acyclic digraphs. This means that there is no hope in solving the

isomorphism problem for reducible digraphs, without solving also

isomorphism of general graphs. However, when D is tree reducible, there

is a simple way of verifying it.
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Fig. 7: A tree reducible digraph
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We recall that the isomorphism of TS digraphs described in Section

5, was based essentially in two ideas:

(i) if D is a TS digraph, there is an efficient way of uniquely

finding a special spanning tree T ( the transitive reduction

of D).

(ii) all edges (v,w) of D are such that w is a descendant of v in T.

Now, if D is tree reducible, we can also find unique and efficiently a

special spanning tree T (the transitive reduction of D(S), for some

DFS S). And all edges (v,w) of D are such that one between v, w is a

descendant of the other. In any case, for every edge (v,w) of D if we

fix vertex v, then w can be uniquely determined by its level in T and

by the position of v in T. These ideas lead to the following algorithm

for isomorphism of tree reducible digraphs.

Given digraphs ^(V^E^ and D2(V2,E2) rooted at r and r ,

respectively:

1. Recognize if D^ D2 are in fact both reducible digraphs [13].

Stop in case of negative answer.

2. Perform a DFS S^^ for D^ rooted at r.. Perform aDFS S, for

D2, rooted at r_.

3. Recognize if ^ (S^, D2(S2) are in fact both TS digraphs.

Stop in case of negative answer.

4. Find the transitive reduction tree T of D (S ) and T of

D2(S2), respectively. For i = 1, 2 let h(w.) represent the

level of vertex wi of T±. To each vertex w of T assign a

set of labels s(w.) defined by

s(w±) =(h(v±) | (y±,v±) e e±}
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^l*

5. Verify whether T^ T2 are isomorphic as labelled rooted trees

[9]. D ,D2 are isomorphic iff T ,T so are.

Clearly if an application of the algorithm stops at 1 or 3, then

Dl' D2 are not both tree reducible digraphs. Otherwise, it will produce

the correct answer. The time bound of step 1 is slightly more than

linear. The remaining steps can be performed in linear time.

Finally, we remark that all sets s(w.) of lemma 5.1 contained only

integers (levels) smaller than h(w ), the level of w in T.. In the

present case, the integers of s(w.) may be smaller or greater than h(w ).

Ther greater ones correspond to back edges entering w..

10. A Problem

The following problem is related to the class of tree structured

digraphs:

"Given an acyclic digraph D(V,E) rooted at r and an integer k, is

there a DFS of D having at most k cross edges?"

For the two particular cases below, we can find efficient polynomial

time solutions:

(i) if k = 0 then the problem is equivalent to the recognition of

TS digraphs (Section 3).

(ii) if D is a transitive reduction digraph (i.e. if v < w and

w < z = > (v,z) £ E), then the minimum value of k such that

it is possible to perform a DFS of D with exactly k cross

edges is

k = E (indegree (v) - 1)

v ^ r
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Observe that the problem in consideration can be also described as

"find a maximal spanning subgraph of D, which is tree structured".

11. Conclusions

The class of tree structured digraphs has been presented. It is

formed by all acyclic digraphs whose transitive reduction is a directed

rooted tree. Alternative characterizations have also been discussed and

relationships between the mentioned class and DFS (of both directed and

undirected graphs) have been emphasized, in some different aspects.

Although the isomorphism problem for tree structured digraphs has

been solved in a simple and efficient way, subgraph isomorphism has not

been considered. It would be interesting to know whether remains

NP-complete, the problem of verifying if a digraph D. contains a

subgraph isomorphic to digraph D2, in case where D- is a TS digraph and

D2 a directed rooted tree.
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