Copyright © 1980, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

QUERY PROCESSING TECHNIQUES

FOR DISTRIBUTED, RELATIONAL DATA BASE SYSTEMS

by

Robert Samuel Epstein

Memorandum No. UCB/ERL M80/9

15 March 1980

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

QUERY PROCESSING TECHNIQUES FOR
DISTRIBUTED, RELATIONAL DATA BASE SYSTEMS

Robert S. Epstein

ABSTRACT

The principle goal of this thesis is to develop and
analyze algorithms for processing queries on distributed,
relational data bases. Specifically, this thesis
addresses the question: how does one determine an effi-
cient sequence of processing steps for a query written in

a non-procedural, high level query language?

A distributed data base has relations that are frag-
mented across one or more computer sites. The computer
sites are connected by a communications network. This
thesis considers two types of networks: site-to-site net-
works such as the ARPANET, and broadcast networks such as

the ETHERNET.

There are two fundamental issues present in distri-
buted data bases that are not found in centralized data

bases. One 1is the communications network. As the time

Research Sponsored by the Army Research Office Grant #DAAG29-79-C-0182
and by the Air Force Office of Scientific Research Grant #78-3596

) A

9,

required to communicate between computer sites increases,
it becomes more important to minimize the amount of infor-
mation transmitted. Secondly, total processing time can
bg reduced by distributing the processing to many computer
sites. This increases the amount of work that can be per-
formed in parallel. These two goals, minimizing communi-
cations and maximizing parallelism sometimes conflict;
that 1is, increasing communication costs can increase
parallelism. Each of the tactics presented in this thesis
are examined with respect to minimizing both the amount of

network communication and total processing time.
-

Two fundamental tactics are developed: (1) the Frag-
mented Processing technique (FP technique) which is a gen-
eral strategy for processing any query, and (2) the Query
Splitting technique which divides a query into a sequence
of subqueries. Each subquery is processed by the FP tech-
nique. The two techniques raise many important questions
" including: (1) How well do "locally optimal" or "greedy"
algorithms compare to exhaustively examining every possi-
ble strategy? (2) How much information should be kept
about each relation? (3) What method should be used for
estimating the number of tuples that will qualify from a
query? (4) What are the trade-offs between choosing a
processing strategy once at compile time (static decision

making) compared with continually reevaluating the pro-

cessing strategy during execution time (dynamic decision
making)? (5) What role does a relation's physical struc-

ture play in choosing strategies?

The processing tactics are studied using both analyt-
ical techniques and a simulation program. The simulation
program computes the performance of the algorithms under a

variety of assumptions.

Among the conclusions are (1) "greedy" algorithms
perform poorly, (2) dynamic decision making is slightly
better that static decision making but potentially has a
very large overhead, (3) The physical structure of a rela-
tion fragment is not useful if the fragment is moved, and
(4) processing strategies are very sensitive to the accu-

racy of estimation,.

The results of this thesis provide a framework for
designing a distributed data base management system, and
help to identify the many interrelated decisions that must
be made when deciding how to process a query on a distri-

buted data base.

“

WNIT Y.
v

14
A

TABLE OF CONTENTS

1. INTRODUCTION et e et ettt ea et aaeessanas

1.

10

1

1

1.

4.

.5.
.6.

Problems in Processing Queriescece...

1. Centralized Data Bases s e et e s es e

Survey of Previous Resultsoeeeuuenn.

Overview Bt et et eetec ettt s s e

2. PROCESSING MODELS tvvvvemenenenennnmen e,

2.

2.

2.5.3. Minimizing the Response Time cesreenn

2.6. Conclusions

1.

2.

. 3.

.U,

.5.

2. Minimizing the Number of Bytes

Transmitted ...v.ieiiitinneeeneeoneoeonnonnnns

3. PROCESSING STRATEGIES AND ESTIMATING RESULT

oooooooooooooooooooooooooooooooo

10
11
14
14
15
16
18
20

21

22
22

23

21

3.

1. One Variable Detachment and Distribution

Criteria ce e ot e acnacas et et et s eecnesen

3.2. Fragmented Processing Technique

3.

3. Splitting a Queryceeee.. ceesecaas s

3.4, Transmission of Fragmentseeeeeeees. .

3.5. Join Encoding Techniquesceeeeeeeecnenns

3.6. Movement of Result Relationeeeeeeceocees

3.7. Shuffling Strategies for Updatescce...

3.8. Static Versus Dynamic Decision Making

3.9. Estimating Result Sizescieeeeecennannnn

3.

10. SumMmMary ..ceeeeceeeees ceeierees s s s ereacnans

4. ANALYSIS OF PROCESSING STRATEGIESecvveveenn.

n

y

y

mn

4,

.1. Analysis of One Variable Detachment

2. Analysis of the Fragmented Processing

Technique ceseeee ceeesscess s saanaan

.2.1. Minimizing Communication Cost for the

Broadcast Model ® 6 0 0 0 2 0 5 0 0 0 900 PN 0 e e

2.2. Minimum Communication Cost for Site-

tO-Site MOdEl © 0 6 ¢ 0 0 00 000 0000 e e e 00 0000 e

.2.3. Minimizing Response Timeceeeeeveccens

3. Analysis of Split Tactic .ieveeeeecececcas .o
3.1. Overview of Query Splitting Analysis

3.2. Graphic Query Representation

ii

24
26
28
29
31
33
34
37
58
41
42

y2

U5

47

52
58
61
61
63

4.

3.

iii

4.3.3. Split Algorithm Using Limited Search 66

4. Optimality of Split Tactic with Limited

Search S e e et eseaens e recesecesnens 72

4.3.5. Splitting Technique with Exhaustive

Search .v.viiiineennee e et e s e e s s e eveceenansean 73

4.3.6. Comparison Between Limited and Exhaus-

Live Search tiviiieineieieeneeeoenennnnnenaan 75

4.3.7. Simulation Program ee.eeveeeeeeeeoonnnnnns 77

4.3.8. Exhaustive Versus Limited Search with

Perfect Information Gttt e e ceeceenessnn . 81

4.3.9. Comparison Usf%g Limited Statistics and

Dynamic Decision Makingovevveunnn.. ‘88

4.3.10. Comparison Using Limited Statistics

qnd Static Decision MaKing «.eeeeeeeveennenn. 93

4.3.11. Comparision Between Perfeet Informa-

tion and Crude Estimationveveeueennnnnn. 95

4.3.12. Comparision Between Static and Dynamic

Decision MaKing cvvevennneenneeneenneennennnn 99
4.3.13. Summary of resultst 101
4.4, Transmission of Physical Structure 105
4.4.1. Equi-join Cost Functions for Local Re-

lations ... it i i it i i e e 106

4.4.2. Equi-join Cost Function for Distributed

Relations ..iiiiiiiii et eeeeeeeonnnnnnnnes 109

iv

4.4.3. Effectiveness of Transmitting a

Relation's Structureccceeeecvecnnnccsn 113
4.5. Analysis of Join Encoding Techniques 121 :
4.6. Analysis of Shuffling Strategieseec.. 124)
4.7. Decision Making and Estimationccecee... 128)

4.8. Comparison to Other Proposed Algorithms

® & 6 0.0 0 00 0 00 0 0O T OGO PSSO LN O GO E LSOO S0 132

4,8.1. Comparison to Algorithm Gcecceeeues 136
5. CONCLUSIONS AND FUTURE RESEARCH; 142
5.1. Conclusions Ceteseserans Cecereeseane 142
5.2. Future Research et ecee et teenbaens 144

6. REFERENCES ..t uuiiiiiirernnnnnenenssonenenonnnsans 147

CHAPTER 1

INTRODUCTION

1.1. Distributed Data Bases

This thesis describes a variety of techniques to pro-
cess queries, written in a high level query language, on
distributed, relational data bases. The word "query" will
refer to both retrieval and updates. By "distributed", it
is meant that portions of the data base may reside on dif-
ferent computer systems igi a manner that is transparent to

the user of the data base system.

1.2. Motivations

Recently, considerable attention has been paid to

distributed data bases [LBL76, LBL77, LBL78]. One of the

advantages of distributed data bases is sharing of data
across different sites. For example, some computer appli-
cations are by their very nature geographically distri-
buted. Consider a bank with many branches, or a manufac-
turer with many similar plants. Some personnel are con-
cerned only with data that directly relates to their loca-
tion; others are concerned with the data base as a whole.
Distributed data bases allow data to be moved closer to

the people most likely to need it, and allow for distri-

buted administration of the data base.

Another advantage of distributed data bases is
increased reliability due to redundancy. Failure of a
single site need not affect people performing interactions

local to other sites.

Still another advantage is incremental growth. A new
site can be added to the system as necessary. The comput-
ing capacity at a site can be increased as required. It
is even possible to split a site into two-sites to accom-

modate growth.,

Distributed data bases have the potential for
increased speed. One large data base can be divided into
N pieces on N computer systems. If the data base can be
designed correctly, then all N systems can cooperate in
solving a query in parallel. An example of such a system

can be found in [STON79].

1.3. Relational Distributed Data Bases

We will only consider data bases where each site is
organized wusing the relational [CODD70] model of data. A
relation is a collection of records (called tuples in
relatiénal systems) . For example, the user's view of
employee data might be expressed in a relation called

"employee:"

"

o)
i\

inumber | name :salary:managera
B e e L L L L L L et i
157)Jones, Tim 120001 199
1110iSmith, Paul 6000 331

129 Thomas, Tom 10000} 199
4901}Bailey, Chas M 83771 321

| = o 20 > = = o2 " = = = - - - - - - - - - - - - 1

!]

? !

! i

| 35/Evans, Michael ! 5000! 32!
d]

! 1

i :

1

A user or an application program will query the data
base wusing a non-procedural query language such as QUEL
[HELD75a]. For example, the user might ask for the names
of all personnel who earn more than $10,000 and are
managed by either manager number 199 or 33. This query

can be expressed in QUEL as:
-

range of e is employee
retrieve (e.name)
where

e.salary > 10000
and

(e.manager = 199 or e.manager = 33)

The query illustrates two common operations performed on
relations: restriction and projection. Their meaning can

easily be explained using the above example. The state-

ment
e.salary > 10000

restricts the employee relation to those employees whose

Salary is greater than 10000. The statement

retrieve (e.name)

projects the "name" domain out of the employee relation.

To project means to select those domains of interest. The

list of domains being retrieved or being changed is also
referred to as the target list. The terms "restriction"
and "projection" will be used throughout this work. A
fgrmal definition of these two operations can be found in

[DATE77].

Another example query would be to give a ten percent

raise to all people who work for manager 199.

range of e is employee
replace e(salary = 1.1 * e.salary)
where
e.manager = 199

To the user entering the two queries above, the employee
relation appears as if it were one, single relation. 1In a
distributed data base environment, the employee relation
might actually be fragmented into several employee rela-
tions located at different sites. For example, if the
data base was distributed at three locations, Berkeley,
Tahiti, and Paris, then the distribution of the employee

relation tuples might be

i number | name 1 salaryimanager| location
R TS !

i 1571Jones, Tim I 12000} 199} Tahiti

i 1110iSmith, Paul i 6000} 331 Berkeley
d 351Evans, Michael i 5000, 32} Paris

' 129 Thomas, Tom i 10000} 199 Tahiti

| 4901|Bailey, Chas M. H

[}

83771 325 Paris
|

To the user entering the two queries, the physical 1loca-

tion of the tuples 1is transparent. While there may be

other models that merit consideration this view of the

data base is the only one that will be considered for this

thesis.

1.4. Problems in Processing Queries

Finding an efficient sequence of local processing and
data movement 1is the key to processing a query on a dis-
tributed data base. In the preceding examples, the prob-
lem was trivial because the query involved only one rela-
tion. For example, the retrieval could be processed as
follows: The sites where data are stored are determined
and the query is broadca;% to those sites. Next, each
site executes the query in parallel and transmits the
results back to the site where the query originated. As
data arrives at the originating site, it is accumulated

and returned to the user.

Processing a query 1is very complex when multiple
relations are involved and each relation is split up into
fragments and stored on different sites. One obvious
solution 1is to move all data to one site and process the
query using centralized processing techniques. It is
unlikely that this tactic would be optimal because it
would tend to move the maximum amount of data and data
transmission across a network can be slow. Furthermore,
once all the data is assembled processing time can be

lengthy. " It is crucial to reduce the amount of data that

must be transmitted and to involve as many of the computer
sites as possible in order to process the query with
greater parallelism. This thesis explores techniques that
will minimize data communications and increase parallel
processing. It will also examine the trade-offs between
the time required to communicate across a network and the -
"local" processing time where 1local processing time is
defined as the time required by a site to process the
query once all the data is assembled. Sometimes an
increase in communication time can result in a significant

decrease in the local processing time and vice-versa.

Familiarity with the techniques used on centralized
data bases 1is important as background for understanding
processing on distributed data bases. We will briefly

describe the techniques used in centralized data bases.

1.4.1. Centralized Data Bases

Data base management systems utilize access methods
to reduce the amount of data that must be examined to pro-
cess a query on a relation. (For an introduction to
access methods see [DATE77].) An access method takes a key
(say the "name" field in the employee relation) and deter-
mines from the key the physical location of the tuples in
the relation. If cne wishes to minimize the processing
time for performing a local query, then the distributed

query processing tactics must consider access methods when

choosing strategies. Access methods are roughly divided
into “hashing" techniques and '"indexing" techniques.
Hashing [KNUT73] works by taking the key value, applying a
randomizing funetion to it, and generating an address
where the tuple physically belongs on secondary storage.
Index techniques ([KNUT73] determine where the tuple
belongs by looking up the key in an index. For a thorough
treatment of the use and implementation of access '‘methods
for relational systems see [HELD75b]. This thesis will
consider hashing [HELD75b], and two indexing techniques
ISAM [IBM66], and B-tg;es [BAYE70]. Throughout this
thesis, we shall call a relation well structured if it has
a useful access path for the specific query under con-

sideration; otherwise, it will be called unstructured.

Processing queries on centralized data bases has been
studied at 1length. A study of various processing tech-
niques can be found in [YOUS78a, BLAS76, GRIF79]. One of
the most difficult problems is that of computing a "join"
between two. or more relations. A join is one of the three
common operations performed on relations. The other two,
projection and restriction, have already been introduced.
Two relations with a common domain can be joined on that
domain. The result is a new relation in which each tuple
consists of a tuple from the first relation and the second

relation which satisfy the "join predicate”. For example,

consider a query expressed in QUEL involving the employee

relation and department relations:

employee(number, name, salary, manager)
dept(number, name, store, floor, manager)

range of e is employee
range of d is dept
retrieve (e.name, d.name)

where
e.manager = d.manager

This'quggy asks for a list of each employee and their
department. In this example the "employee" relation is
being joined with the "dept" relation on the "manager"

domain. The join predicate is
€.manager = d.manager

When the join predicate uses equality ("="), the join is
sometimes refered to as an "equi-join". A reader not fam-
iliar with joins is referred to [DATE77] for an introduc-

tion.

For the purpose of this thesis we shall be concerned
with three methods for computing joins: (1) sort-merge
Join [BLAS76], (2) tuple substitution [WONG76, STON761],
(3) reformatting [STON76, YOUST78bl. In the previous exam-
ple, the join between the two relations on the "manager"
domain might be computed using any of the above three
techniques depending on which was the most cost effective.
The sort-merge join would first sort both relations on the

"manager" field (if they were not already sorted). Then

R

one of the relations would be read sequentially and for
each tuple the other relation would be incrementally
searched for a matching manager. With a minor amount of
bookkeeping it is usually possible to compute the join by

réading each relation only once.

Tuple substitution chooses one of the two relations
for substitution. Then, one at a time, each tuple is read
from the chosen” relation and its value substituted into
the original query. After substituting, the remaining
query in this example involves only one relation. The
technique differs from,ithe sort-merge because the rela-
tions do not have to be sorted. Tuple substitution per-
forms best when one relation is chosen for substitution
and the other relation is well structured on the joining
domain. If the second relation is not well structured,

however, it can perform poorly.

Reformatting is a technique used in addition to tuple
substitution. If the relation not chosen for substitution
is not well structured, it may be more effective to refor-
mat that relation to a useful structure before starting

the substitution process.

The usefulness of the three techniques and the manner
in which they apply to distributed data bases will be
examined at length in chapter 4. These three techniques

have been studied 1in great depth [YOUS78b, GRIF79] and

10

represent effective, general purpose techniques for com-
puting joins. There are other techniques but for the pur-
pose of this thesis, we shall limit the analyses to sort-

merge, tuple substitution, and reformatting.

1.5. Survey of Previous Results

A survey of the significant research in distributed
data bases can be found in [ROTH77b]l]. Four main areas of
research particular to distributed data bases are (1) dis-
tributed concurrency control, crash recovery and multiple
copies, (2) query processing, (3) network communications'
handling, and (4) data base design. This thesis is con-
cerned only with how to process a query on a distributed
data Dbase. Research on distributed concurrency control,
crash recovery and multiple copies can be found in
(RIES79, STON78, ELLI77, THOM75, LAMP76, ROTH7T7a, CHU76].
Network communications for distributed data bases is dis-
cussed in [ROWE79, LBL76, LBL77, LBL78]. Some issues
related to distributed data base design are discussed in

[LEVI75, ROTHT77b].

Query processing on distributed data bases has been
examined by [WONG77], [STON77], [EPST78], [HEVN78al, and
[HEVN78b]. 1In [STON77], Stonebraker proposes an extension
to tuple substitution which can be used to process an
arbitrary query on a distributed' relational data base.

The extension was for a distributed data base version of

11

INGRES.

An algorithm for use on the ARPANET [ROBE70] for the
SDD-1 distributed data base system build by Computer Cor-
poration of America fROTH??a] is proposed in [WONGT77].
The algorithm considered minimizing the amount of data
moved over the communication network as the primary optim-

ization criterion.

2

Hevner and Yao proposed éa)algorithm (HEVN78al which
optimized processing for a distributed data base on an
ARPANET type network with one relation per computer site
and one joining domain. 'ét was basically a limited exten-
sion of Wong's work. They later extended the algorithm
[HEVN78b] to handle arbitrary queries but assumed that

relations did not span more than one site.

Epstein, Stonebraker and Wong proposed algorithms
[EPST78] for processing queries on two different models of
computer networks - ARPANET types and broadcast networks.
It also specifically dealt with relations fragmented
ac}oss multiple sites. This thesis includes the work

presented in [EPST78] and is a continuation of that work.

1.6. Overview

This thesis will examine a variety of techniques
which are important for processing queries on distributed

data bases. In the next four chapters, we shall present a

12

model of the distributed data base environment, the pro-
posed tactics for processing queries, the analysis of the
tacties, and finally conclusions and suggestions for

further research.

Models for network communication and data organiza-
tion are presented in chapter two. Only the relational
model of data is considered. A user defined distribution
criterion specifies the distribution of relations into
fragments across the computer sites. Two models of net-
work communication, broadcast model and site-to-site
model, are considered., At the end of chapter two, the
optimization criteria are presented. These include minim-‘
izing the number of messages sent on the network, minimiz-
ing the number of bytes transmitted on the network, and

minimizing response time.

In chapter three, the processing strategies and esti-
mation methods are presented. Some of the tactics are
extensions of algorithms used on centralized data bases.
Others are new tactics that specifically apply to distri-
buted data bases. We will concentrate on those issues
which apply specifically to distributed data bases.
Several of the techniques make decisions based on esti=-
mates of how much data will result from a specific query.

Chapter three describes several estimation procedures.

13

Chapter four presents the analysis of the tacties
described in chapter three. When analyzing a query, it is
frequently beneficial to break the query into subqueries
to be executed in a particular order. Chapter four begins
by examining subqueries which involve only one relation.
Next a general algorithm (called the FP technique) is
presented that can process an arbitrary query on a distri-
buted data base. The next processing tactic determines
when a query involving three or more relations should be
divided into subqueries. The three tactics just described
comprise the major strigegies proposed for processing
queries on distributed data bases. There are many
specific details which are particularly important for dis-
tributed data Dbases. These include determining what
information to transmit, how to encode joins during
transmission, the movement of the result relation, and
static verses dynamic decision making. Finally in chapter
four, we compare the proposal of this thesis to those of
[WONG77] and [HEVN78b]. Lastly, chapter 5 contains con-

clusions and suggestions for future research.

CHAPTER 2

PROCESSING MODELS

This chapter introduces the framework for the pro-
cessing tactics. The distributed relational model is
presented and the notation which will be used throughout
this thesis 1is defined. The notion of distribution ecri-
teria is presented and the specific distribution criteria
model is explained. Next two communication models are
discussed and the processing model is presented. Finally,

three optimization criterion are discussed.

2.1. Distributed Relational Model

The data base model consists of a data base on a
known number of sites called S1’ 2,""Sn' The index "j"
will be used when referring to a collection of sites (e.g.
SJ). The data base contains a collection of relations
R1,R2,...,Rn. The index "i" will be used when referring
to a collection of relations (e.g. R;). To the user of a
distributed data base system relations are divided into
two classes: local and distributed. A "local" relation is
known only to the site where it was created and is acces-
sible only at that site. The query processing strategy,

however, treats a local relation like a distributed rela-

tion which exists at only one site. A "distributed" rela-

14

15

tion is known to all sites in the data base and can be
accessed by any site. For distributed relations, the
instance of relation Ri at site Sj shall be referred to
notationally as Rg. We shall call it the fragment of
rélation i at site j. The syntax for creating 1local and
distributed relations for a distributed version of the

INGRES system is shown in the examples below:

create local supplier (snum = i2, sname = ¢10,
address = ¢30)

create distributed employee (enum = i2,
ename = c¢20, salary = i2, manager = i2)

The first example create%;a local relation called "sup-
plier" with domains snum,.sname, and address. "Snum" is a
two byte integer; "sname" is a ten byte character; and """
address is a thirty byte character. The second example is

a distributed relation called "employee" with domains

enum, ename, salary and manager.

2.2. Distribution Criteria

Distribution criteria allow the data base administra-
tor to assign tuples to specific sites based on one or
more domain values. For example, the employee relation

and its distribution from chapter 1 can be expressed as:

range of e is employee

distributed e at
berkeley where e.manager = 32,
paris where e.manager = 199,
tahiti where e.manager = 33

16

For this thesis, we shall assume that a distribution cri-
terion applies only to a single relation and that it unam-
biguously maps tuples onto a single unique site. The rea-

soning behind such a choice can be found in [RIES78].

g.;. Communication Model

A communication model will be used to determine the
cost measured in time required to send a specific number
of bytes of data to one or more sites. The delay in gen-

eral is a linear function such as

DELAY = CO + C1X

where X is the number of bytes to be sent and C0 and C1
are network dependent constants. Most computer communica-

tions networks split a stream of bytes into a set of fixed
size packets or messages. Thus C1X might be better
modeled as a step function but for the purpose of this
thesis we will approximate its value using the above for-

mula.

It will be shown throughout this thesis that distri-
buted data bases frequently require the same information
to be sent to multiple sites. Because of the usefulness

of broadcasting to multiple sites, we will use two dif-

ferent models of communication costs. The models will be

called "site-to-site" and "broadcast" models.

17

Let Cn(X) be the cost to send X bytes of data to n
sites. Using the "site-to-site" model, it is assumed that
the cost to send a message to n sites is equal to n times

" the cost to send to one site.

Cn(X) = nC1(X)

This model resembles the ARPANET [ROBE70]. The
ARPANET consists of a large collection of computer sites
which are connected from point to point by communication
lines. 1If site A wishes to communicate with site B, there
exists either a communications line directly connecting A
and B, or A mustvroute the message through one or more
other sites to get to B. The time delay to send a message
between two sites on the ARPANET depends on the route the
message must take. We make the simplifying assumption
that to communicate between any two arbitrary sites in the
network is the same cost. A further simplification
involves messages sent to multiple sites. It is assumed

that the delay is linear, that is,

Cn(X) = nC,(x)
Our model assumes that messages are not transmitted in

parallel. In fact, if transmissions can occur in paral-

lel, there are many algorithms [DALA78] for which

C,H(X) < nC,(X)

18

Our second model is the broadcast model. Every site
on the network listens to every message. A message can be
addressed to a single site or a set of sites. The cost of

communication is independent of the number of sites, thus:

Cn(X) = C1(X)
This model resembles the ETHERNET [METC76]. An ETHERNET
consists of a single common line to which all sites are
connected in parallel. It is used for local networks and
can handle a one kilometer network at abspeed of three
megabits per second [METC76]. Our model 1is dissimilar
from the ETHERNET in that the ETHERNET does not allow
arbitrary subsets of sites to be addressed. COCANET
[ROWE79], 1is an example of a broadcast network which also

allows broadcasting to arbitrary subsets of sites.

Using the site-to-site and broadcast models we will
develop algorithms that minimize the transmission cost
measured in delay time. In both models we ignore the real

network problems of transmission errors and retransmis-

sions.

2.4. Processing Model

The logical organization of the processing model is
illustrated below. The "master" process is a program run-
ning at the site where the "user™ logs in. A "slave" pro-

cess runs on each site in the data base involved in the

19

User at Site 1

!
|
1
|
v

MASTER PROCESS
(Site 1)

SLAVE PROCESS

:

i SLAVE PROCESS
i (Site 2)

l

(Site N)

query. The physical communications network can be any
configuration that allows all data base sites to communi-
cate with all other data base sites. The master process
directs all activity in the slaves. The slaves do not

initiate any activity on their own.

The master process has two high level commands which

it can give to slaves or execute itself:

(1) Execute the local query Q on sites S1,82,...,Sn

(2) Move the fragment of relation Rg on site Sj to .

SpreeesSy-

20

This is the process view that will be used for this
thesis. There are other possible processing models. The
choice of processing model is important because it pre-
cludes some algorithms. For example, one might consider
ah algorithm which gives a query to a slave for which the
slave then becomes the master. This would evolve into a
complicated tree control structure potentially with multi-
ple processes on each site. Such a proposal was made in
[STON77]. The motivation for this master-slave model is
its simplicity for implementation and debugging. The flow
of control is centralized and bookkeeping is simplified.
Only the master needs to know the distribution of data and

what each slave is doing.

2.5. Optimization Criterion

As stated in the previous section there are two com-
mands that the master process can issue: execute a local
query or move a fragment of a relation. We must choose a
sequence of these commands which satisfy some optimization
criterion. We will look at optimizing

(1) the total number of messages,

(2) the number of bytes transmitted across the net-

work,

(3) the response time (wall clock time).

For each user, one QUEL statement is optimized at a time.

We are not ¢trying to optimize multiple statements from

21

multiple users because the usefulness of doing so is
strongly application dependent. We shall assume that each
query is unique and different from the previous queries;
therefore, no attention will be paid to keeping partial
Eesults from previous queries in anticipation that they

will ‘be reused.

We shall frequently refer to the ™"cost" to perform
somé ‘operation. ~Cost should always be equated with time.
The cost to perform a query is the time elapsed 'when the

query is received until the query is complete.

2.5.1. Minimizing the Number of Messages

The cost to send a message includes passing the mes-
sage through the various software layers on the sending
and receiving machines. In addition the transmission
method may induce its own delay. For example, a satellite
communication may have a several hundred millisecond delay
until the message begins but it may have an extremely high

bandwidth This implies that if the cost is a linear func-

tion
fy
C0 + C1£ﬁ
~ A
and C0 is large compared to C1L{j, it will be important to

minimize the number of messages.

22

2.5.2. Minimizing the Number of Bytes Transmitted

Minimizing the amount of data transmitted makes sense
in a majority of cases. If the transmission speed is very
slow it will make sense to reduce the amount of data that
must be transmitted. Transmitted data has some hidden
costs; that is, the Eeceiving sites must store the data,
presumably on disk. Assuming an infinite speed network,
the transfer of data looks very much like a disk to disk
transfer. This is a non-negligible local cost. It can be
minimized by reducing the amount of data moved. Networks
such as the ARPANET tramsfer data at a rate of roughly 6K
bytes/sec. This is about 25 times slower than a local
disk to memory transfer which is roughly 30 milliseconds
for a U4k byte transfer or 130K bytes/sec. Thus the time
delay for network communication is significantly greater

than for local processing.

2.5.3. Minimizing the Response Time

The response time is the sum of the processing delay
and the communication delay. Minimizing just one does not
necessarily yield an overall minimization. On high speed
networks (such as the ETHERNET) transmission time is sig-
nificantly shorter than the time required to transfer data
from a local disk to memory (roughly three times faster if
the ETHERNET operates at three megabits per second).

Careful attention must be paid to local processing delay.

23

2.6. Conclusions

. This chapter has presented a model of a distributed
data base environment. Relations consist of fragments
with are distributed across a network of computer sites.
The sites are connected either by a broadcast network or a
site-to-site network. The processing tactics must make
efficient use of the communication network and the pro-
cessing 'sité€s. Specifically they must consider the number
of messages, the amount of data transmitted and the

response time. The processing tactics will be presented

in chapter three.

CHAPTER 3

PROCESSING STRATEGIES AND ESTIMATING RESULT SIZES

A variety of processing strategies are presented in
this chapter. Each tactic is based on the models
presented in chapter two. The tactics are presented here
and then in chapter four, they are analyzed with respect

to the optimization criteria presented in section 2.5.

3.1. One Variable Detachment and Distribution Criteria

On multi-variable qd%ries, a decision must be made
whether to detach and separately execute one variable

subqueries. As an example, consider the query:

range of e is employee
range of d is dept
retrieve (e.name)

where

e.manager > 15
and

e.dept = d.dept
and

d.floor = 1
and

e.salary > 8000.

There are one variable clauses on both e and d. The

clauses are:

e.manager > 15 and e.salary > 8000
d.floor = 1

These clauses can be compared with the distribution ecri-

24

25

terion wusing a simple propositional calculus theorem
prover. For each fragment, it can be determined that:
(1) no tuples in the fragment satisfy the user's
query,
(2) all tuples in the fragment satisfy the user's
query,
(3) Those tuples in the fragment that satisfy the
user's query cannot be .determined in. advance.

For example, given the distribution criterion:

range of e is employee
distribute e at
berkeley where e.manager <= 10,
tahiti where e.manager > 10
and e.manager <= 20,
paris where e.manager > 20

and the one variable subquery

range of e is employee
retrieve (e.name,e.dept)
where
e.manager > 15

it is possible to detect that no tuples from Berkeley will
satisfy the query, some tuples from Tahiti will satisfy,
and all tuples from Paris will satisfy. Thus the distri-
bution criterion can immediately eliminate the fragment at

Berkeley and can eliminate the need to check the tuples at

Paris.

A separate decision must be made concerning whether

to detach and execute the one variable subqueries:

-

lw
n

26

(1) retrieve into e'(e.name,e.dept)
where
e.manager > 15
and
e.salary > 8000

(2) retrieve into d'(d.dept)
where
d.floor = 1

Executing the subqueries separately from the main query
will restrict the size of e and d. The remaining query

would then be

retrieve (e'.name)
where
e'.dept = d'.dept

The cost to detach and execute one variable restrictions
is the cost to transmit the command plus the local cost of

executing the restriction.

Fragmented Processing Technique

.The Fragmented Processing (FP) technique applies to
all queries involving two or more relations. Suppose we

have a join between relations R, and R,. On a distributed

1 2

data Dbase this requires the join of every fragment of R1

Wwith every fragment of R2 or

RI(i=1,n) JOIN R¥(k=1,m)
The FP technique is a method for performing n times m
joins. Rather than viewing the problem as nm joins, it
can be viewed as n or m joins. Make one of the two rela-

tions fully redundant at each site Sj holding a fragment

27

of the other relation. 1If R1 is made fully redundant,

each site Sj will compute

J
R1 JOIN RZ

If R2 is made fully redundant, each site Sj will compute

J
Ry JOIN R,

To generalize this technique to N variables, the
algorithm 1is to fully replicate N ~ 1‘'variables; however,
one variable, call it Rp, is not moved. Then each site,
Sj’ will have
2, e Rg, oy R
This tactic can be further extended by allowing complete
freedom 1in selecting processing sites. Then two iﬂterre-
lated decisions must be made, choosing Rp, the relation to
remain fragmented, and choosing the number of processing

sites K, where K is less than or equal to the number of

data base sites.

In summary, the FP technique chooses the set of
sites, K, and a relation to be left fragmented, Rp. The
remaining relations, Ri,ifp, are replicated at all K pro-
cessing sites. In chapter four we will discuss choosing

Rp and K.

28

3.3. Splitting a Query

Queries with three or more variables can be processed

in "pieces", For example,

range of e is employee

range of d is dept

range of s is supply

retrieve (e.ﬁame, d.dname, s.item)

where

e.manager = d.manager
and

e.number = s.number

can be processed in two pieces, each involving two vari-

ables:

(1) retrieve into temp(e.name, e.number, d.dname)
where
e.manager = d.manager
followed by
(2) range of t is temp
retrieve (t.name, t.dname, s.item)

where
t.number = s.number

Intuitively, such a split is advantageous because it
delays the transmission of one or more relations. For
example, to process query (1) above, either "e" or "d" has
to be moved. To process query (2) either "t" or "s" has
to be moved. Processing the three variables all at once
would require moving either "e" and "d", or "e" and s,
or "d" and "s". Instead of moving "e" and "d", move "e"
process the first piece, then move "t" and process the

second piece. That split will be cost effective if "t" is

29

smaller than "d",.

This approach can be extended to any query of three
or more variables. Given a query involving variables

V1’ 2’.'.’Vn

UV, Uy e, V)

the query can be split into two queries, the first involv-

?
ing x variables:

QUYL L, V) w2

This produces a new result variable which shall be called
Vy. The remaining querysinvolves Vy and the remaining n -
X variables:

Q"(Vy’ Vepprooer V)
This technique can be applied recursively to Q' and Q'' if
either has three or more variables. Query splitting is a
generalization of a technique called reduction, proposed
by Wong and Youssefi [WONG761, [YOUS78al. 1In reduction,
the variable V_ is composed of domains from at most one

y
relation. Query splitting relaxes this requirement.

3.4. Transmission of Fragments

The FP technique described in section 3.2 requires
fragments to be moved between sites. As described in sec-
tion 1.4.1, a fragment commonly has some keyed structures.

For example, a fragment may have a primary ISAM structure

30

on domain one and a hashed secondary structure on domain
two. These structures exist for performance reasons. A
mechanism exists [STON76, GRIF79] for examining a query
and choosing whether to access a relation through a pri-
mary or secondary structure, or to sequentially read the
relation. The optimal choice will depend on a variety of
factors includiég the distribution of key values, the size
of the relation (measured both in pages and in number of
tuples), which keys are specified in the qualification of
the query, etc. The access path selection mechanism for
distributed databases must be expanded to include
transmission cost and other factors which arise when
several fragments of the same relation are brought
togethgr. The access path selection will determine what
is transmitted when a fragment is moved. We will examine.
three choices for transmitting a fragment:

(1) projecting only the needed domains, sorting to

remove duplicates, and then sending the fragment.

(2) sending the complete relation with its primary

structure (ISAM, Btree or Hash).

(3) sending the relation and a useful secondary struc-

ture.

The choice depends on the optimization criterion. If one

is optimizing for minimum transmission cost then clearly

31

choice (1) is always better than (2) or (3). If one 1is
optimizing for response time, then transmitting the rela-
tion structure might make the local processing more effi-
cient. The increased efficiency must be compared with the
additional transmission cost of sending the structure.
This is an example of trading increased communication cost

for reduced local processing cost.

3.5. Join Encoding Technigues

In section 3.3, we explained that splitting a query

into pieces can improve overall performance. The example
P

in that section included creating a new relation from the

equi-join of two existing relations.

retrieve into temp (e.name, e.number, d.dname)
where

e.manager = d.manager

The new relation "temp", might then be transmitted to
other sites. Whenever the target l1ist has more than one
variable, the result can potentially be as 1large as the
cross product of the relations in the target list. There
are several join encoding techniques which can be used to
reduce the cost of transmitting the new relation. The
problem is basically a coding problem and we will examine
three techniques for encoding a join. The three tech-
niques are:

1) Physically form the join.

32

2) Encode the join as one tuple from relation Ri fol=-
lowed by one or more tuples from relation Rj which

match the R; tuple.

3) Evaluate the join and form two new relations R,

and R2'. R1' will contain those tuples from R1

which are part of the join, and similarly for R,'.
The two new relations are then transmitted and the

A

join is recreated at the destination site.

In all three cases, only the domains which are needed
in subsequent processing are kept. Cases 1 and 2 are
relatively straight forward. Case 3 can be clarified with
an example. If the example presented at the beginning of
this section were prpcessed using case 3, the following

steps would occur:

step 1:
retrieve into e' (e.name, e.number, e.manager)
where e.manager = d.manager

retrieve into d' (d.dname, d.manager)
where e.manager = d.manager

step 2: .
move e' and d' to the required site(s)

step 3:

retrieve into temp (e'.name, e'.number, d'.dname)
where e' .manager = d'.manager

Relations e' and 4! ére guaranteed to have only tuples
which are part of the join. Note that is not difficult to

compute e' and d' concurrently in step 1. This ﬁechnique

33

can reduce the transmission cost if there is a many-to-
many relationship between the two relations, but it also
involves non-trivial processing in step 3 to reconstruct
the join at the destination site. (This idea is similar

to what Bernstein refers to as a "semi-join" [BERN79]).

The three codings represent trade-offs between pro=-
cessing costs and transmission costs. The best choice
depends on the optimization ecriterion. These issues will
be examined in section 4.5.

3.6. Movement of Result Relation
=

Typically there is a required location for the result
of a query. For a "retrieve" the results must ultimately
end up at the user's site. For updates (append, delete,
replace) the tuples must first be identified and then
changed. The change must be reflected at the site where

the tuples reside. Suppose there is a query:

replace e(salary = 1.1 ¥ e.salary)

where

e.manager = d.manager
and

d.dname = "toy"
and

e.salary < 1000

Solving this query using the FP technique requires moving
either e or d. Suppose e is moved. Each processing site
Sj will have a complete copy of Re (composed of all frag-

ments Rg 3=1,2,..0y nd its own fragment Rg. Now each

34

processing site will find some tuples from Re which must
be updated. To update a tuple from Re, the change must be
performed at the site Sj where the tuple originated.
Additional network communication will be required to

direct the non-local updates to their correct sites.

Now suppose d is moved instead of e. Each processing'
site Sj will have its own fragment of Rg and a complete
copy of Rd‘ (composed’ of the fragments Rg j=1,2,...0y
Since only Re is being updated and each processing site

has only its own local Rg fragment, no additional communi-

cations are required.

The FP technique will favor moving the smaller rela-
tion in order to reduce communication costs. If the
smaller relation is the relation being updated, the addi-

tional cost of the non-ldcal updates must be considered.

3.7. Shuffling Strategies for Updates

There are several cases when all the processing sites
will have to distribute data to other processing sites.
This can happen

(1) on updates (append, delete, replace) when the
result relation is moved by the FP technique,

(2) on a "replace" when a domain is changed which
occurs in the distribution criterion.

(3) when the distribution criterion itself is changed,

35

(4) on an "append" when appending to a relation from

one or more other relations.

An example of (1) was given in section 3.6 when 1'"ev"
was moved. For examples of the other cases, suppose the

distribution criterion is

distribute e at
berkeley where e.salary < 10000,
paris where e.salary >= 10000
and e.salary < 20000,
tahiti where e.salary >= 20000

and there is a relation
salchange(number, ne¥§alary)
Case (2) would occur with the query

range of s is salchange
range of e is employee
replace e (salary = s.newsalary)
where
e.number = s.number

Each employee identified in "s" would get a new salary and
might have to be moved to another site in order to satisfy
the distribution criterion. Case (3) would happen if the
distribution c¢riterion on the employee relation were

changed, for example,

range of e is employee
distribute e at
berkeley where e.manager = 13,
paris where e.manager = 27,
tahiti where e.manager !'= 27
and e.manager != 13

As an example of case (4), suppose we want to create a

36

relation with a distribution based on age.

create oldemp(name=c20, salary=iY4, age=i2)
range of o is oldemp
distribute o at

berkeley where o.age < 40

paris where o.age >z 40 and o.age < 60
tahiti where o.age >z 60

If we appended to the "oldemp" relation from thq

"employee" relation, the qualifying tuples from "employee"

would have to be distributed based on the "age" domain.

range of e is employee
append oldemp (e.name, e.salary, e.age)
where e.age > 25

In each case an efficient way must be determined to
redistribute or "shuffle" the data. We will consider two
methods for shuffling: centralized controlvand decentral-
ized control. In centralized control all sites identify
and process tuples which belong to thei; own site. Next
they transmit their remaining tuples to one centralized
site. The centralized site partitions and transmits the
remaining tuples to the sites where they belong. Using
decentralized control each site processes its own data,
partitions the remaining data, and then transmits it

directly to the correct site.

Decentralized control requires less data movement and
achieves greater parallelism; however, it generates sub-
stantially more message traffic on the network. These

issues are examined in section 4.6.

37

3.8. Static Versus Dynamic Decision Making

In static decision making the processing strategy,
i.e., the tactics and their order of execution, is decided
in advance of any actual query processing. Dynamic deci-
sion making, on the other hand, makes only one decision at
a time. It decides what the tactic should be, performs it
and only then chooses the next tactic. Both methods base
decisions on estimates of the result sizes. Static deci-
sion making has the undesirable property that errors from

bad estimates accumulate. For example, consider the query

retrieve (p.pname) %

where

p.pnum = s.pnum
and

s.snum = 475
and

s.shipdate = "79-10-21"

Two decisions must be made:

(1) whether to detach and execute the one variable

subquery on s

(2) whether to move s or p.
Suppose detaching and executing the one variable subquery
is a good tactic. In static decision making, the choice
between moving p and s must be decided based on the size
of p and the estimated size of the restricted s. 1In
dynamic decision making, the decision of whether to move s
or p 1is deferred until after the subquery on s has been

run. Thus dynamic decision making will determine what to

38

do based on two known values while static decision making

must decide based on one known value and one estimate.

The advantage of dynamic decision making is that it
has more information and therefore, can potentially make a
better sequence of decisions. The benefits of dynamic

decision making are analyzed in section 4.3.

In distributed systems, dynamic decision making can
require increésed communication éost‘since the éﬁétus of
each tactic must be returned to the master site before the
next tactic can be determined. This information might
otherwise be unnecessary. Static decision making gen-
erally requires 1less communication since all sites can
know all processing steps in advance. Static decision
making has the property that decisions are made at "coﬁ-
pile time" and thus there is no run time overhead. The
extra overhead associated with dynamic decision making is

examined in section 4.7.

3.9. Estimating Result Sizes

The ability to estimate the number of tuples .which
will satisfy a query is crucial in deciding whether to
split a query (section 3.3), in deciding whether to move a
result relation (section 3.6), and in choosing between
static and dynamic decision making (section 3.8). Many

researchers [YAO77, HAMM76, DUHNT78] have studied the prob-

-~

39

lem of estimating the size of a result from a given query
based on statistical information. It is a very difficult
problem which is typically solved by using a simplified
model of the problem. Such models are inevitably based on
assumptions about the distribution of data values within a
domain, and assumptions about the independence between
domains. Reasonable results can be obtained if the model

is an accurate representation of the data.

The accuracy of an estimate depends on the amount of -
statistics kept about the relations and their attributes.
There can be a significant overhead in maintaining accu-
rate statistics. Thus one is motivated to keep as little
information as possible yet still allow reasonably accu-
rate estimates. We will consider maintaining three levels
of statistics

case 1: relation cardinality (number of tuples in the
relation)

case 2: relation cardinality plus 1 bit of information
per domain

case 3: relation cardinality plus more than 1 bit

per domain

We will show how estimates can be computed for each
of the three cases. For example, assume we maintain case
one, that is, the cardinality of relations e and d. What

is the estimated number of tuples which satisfy the query:

40

retrieve (e.name)
where

e.dept = d.dept
and

e.salary > 10000

Although this query might examine the cross product of e
and d, we know the cardinality of the result can not

exceed the cardinality of e. Now suppose the query were

retrieve (e.name,d.dname)
where :

e.dept = d.dept
and

e.salary > 10000

Knowing only the cardinalities without knowing any seman-
tic or statistical information about the domains being
joined, it is impossible to estimate the size of the
result. The minimum result size is zero and the maximum
is the product of the two cardinalities. Consider case 2.
We have 1 bit of information per domain and that bit, if
set, tells us that every value in the domain is unique.
If the bit 1is clear it means that two or more values in
the domain are the same. For example, a domain holding
unique numbers such as employee numbers or social security
numbers would have its bit set. If both e.dept and d.dept
had their "bits set" then we know the result from either
query can not exceed the'cardinality of the smaller rela-
tion. If only one domain had its bit set then the result
sizé could not exceed the cardinality of the larger rela-

tion. In addition to one bit of information, the target

41

list plays an important role. If only one variable is 1in
the target list, then the result cannot exceed the cardi-

nality of the relation in the target list.

If more than one bit of information is available
about each domain (case 3) the estimates could be computed
with greater accuracy. The role of the estimation pro-
cedure 1is examined in section 4.3. Also in§1uded in that
section is an examination of the sensitivity of the split-
ting algorithm to the accuracy of the estimation pro-
cedure. Note that the techniques presented in this thesis

are 1independent of the actual method of estimating result

sizes.

3.10. Summary

In this chapter we have presented a variety of tech-
niques which can be applied to queries on distributed data
bases. The effectiveness of each tactic depends on
trade-offs which can be very difficult to analyze. The
goal of this thesis is to develop algorithms which perform
well for a 1large class of applications. Chapter 4 con-

tains an analysis of each technique.

CHAPTER 4

ANALYSIS OF PROCESSING STRATEGIES

In this chapter we will analyze how each of the tac-
tics presented in chapter 3 satisfy the optimization cri-
teria identified in chapter 2. One goal of this chapter
is to prove, whenev%r possibie, how a tact;c will perform.
A second goal is to provide intuitive insight into the
properties of each tactic. Most of the tactics have been

implemented, or are being implemented as part of the dis-

tributed data base version of INGRES.

The chapter begins with the analysis of one variable
restrictions, followed by an analysis of the FP technique.
Next the query splitting technique is examined. In par-
ticular, we examine the relationships between the search
strategy for finding the optimal split, the estimation
procedure, and static and dynamic decision making. The
remaining sections analyze moving a relation's structure,
encodings of Jjoins, shuffling strategies, estimating
result sizes and decision making. Lastly we compare the

results of this thesis and other published works.

4.1. Analysis of One Variable Detachment

The examination of one variable restrictions is logi-

cally broken into the use of distribution criteria and the

42

43

detachment of one variable restrictions.

A distribution criterion functions exactly 1like a
coérse, top level index; breaking a relation into disjoint
fragments by specifying physical locations for tuples. As
such, it improves performance in two ways. First, it can
limit the amount of data which must be examined and second
it can reduce the number of sites required for processing
the query. If the query can be done locally, it is rea-
sonable to assume that it will be faster than if network
communications are required. This strongly suggests that
the distribution criteria should be quickly accessible at

each site.

The distribution criteria should be used as follows:
When a query 1is first received, each of the variables
should be examined for restrictive clauses involving only
that variable. For those variables with one variable
clauses, get their distribution criteria (if any). Use
the distribution criteria to eliminate those fragments for
which no tuples satisfy the restriction. Identify those

fragments for which all tuples satisfy.

The next step is to consider detaching and performing
the one variable restrictions. In nearly all cases, doing
so will reduce communication costs. Each variable will be
restricted in size -or at worst, remain the same size. The

overall communication cost will be reduced if the cost to

- -

4y

transmit the restriction command is less than the cost to
transmit the data that would be eliminated by the restric-
tion. Whether this is true in practice is application
dependent. It is quite likely that the command can be
"piggy backed" to another command (for example it can be
sent with the command to move the fragment). In that
case, detaching one variable restrictions.never increases
communication costs. If the optimization criterion is to
minimize communication costs then the restrictions should

be detached and performed.

If one considers response time then there are cases
when performing the restriction Qill be detrimental. Such
cases are identical to those in centralized data bases.
An analysis of one variable detachment on a centralized
data base can be found in [YOUS78b]. The major argument
against detachment 1is as follows. If the restriction is
performed as described in [STON76], then the result of the
restriction is saved in a new, temporary relation. There
are cases when the original physical structure of a rela-
tion would be valuable for subsequent processing and the
loss of the structure (caused by the restriction to a tem-
porary) is not offset by the reduced size of the res-
tricted relation. 1In such a case the 1local processing
time can be adversely affected by considering only commun-

ication costs. Further examples will be identified in

us

section 4.4.

In summary, the use of distribution criteria to res-
triect a relation is an effective technique provided the
cost to access the distribution criteria is low. This can
be achieved by replicating the distribution eriteria at
all,sites or caching the distribution criteria whenever it
is accessed. Detaching and executing one variable res-
trictions is frequently a good idea. It is not a good
idea when the loss of the physical structure degrades sub-

sequent processing which could have used the structure.

4.2. Analysis of the Fragmented Processing Technique

The Fragmented Processing (FP) Technique can process
any query with two or more variables. As mentioned in
chapter three, the technique consists of choosing one
relation which is not moved (Rp) and choosing K processing

sites. The remaining relations, R p? are moved to the

i,i#
K processing sites. Processing then begins on all K sites
and the result is the union of results on the K sites.
The analysis will show how to choose Rp and K with regard

to the optimization eriteria.

The analysis will proceed as follows. First a gen-
eral formula 1is developed to measure communication cost.
Next we present the solution for choosing R and K to

p
minimize communications costs on broadcast and site-to-

46

Site networks. Next we consider choosing Rp and K to
minimize response time. Finally a heuristic is presented

which balances communication cost with response time.

We begin by reviewing the notation that will be used

throughout this chapter:

N = number of sites in the data base

n = number of relations, from 1 to n.

i = always used to index a relation (e.g. Ri)
+J = always used to-index a site (e.g. Sj) ¥

J _

Ri = fragment of Ri at Sj

Mi = number of sites holding a fragment of Ri
iRiE = the sum total in bytes of all fragments of Ry

| |

Ppdl _ ; ; J

'Ri' = the size in bytes of Ri

1 4+

The general formula for the number of bytes to be
transmitted before processing can begin is derived from
the following two facts:

' A . j

(1) For each processing site, Sj, Ri,iip
to all other K - 1 processing sites.

must be moved

(2) For each non-processing site, Sj’ RY must be

i,i#€p
moved to the K processing sites and Rg must be
moved to one processing site.

To simplify the discussion, the processing sites will

always be renumbered to be sites S1,52,...,Sk. K is an

integer which represents the number of sites chosen. The

formula for the number of bytes which must be moved is

then:

47

K r bosa
comm = 3 Cp ;i 3 {Rg::
J=1 Lifp' l_:
N = Posi)
+ 3 Cpi 3 IRYL (4.1)
J=K+1 Liip' 'J
N ~ jl'\
+ 2 C11:R b
Jj=K+1 et Pid

The first term comes from (1) above. It is the cost to
transmit the relations from a processing site to the other
processing sites.. The second and third terms come from
(2) above. It is the cost to transmit relations from the

N - K non-processing sites.

We will first examine minimizing equation (4.1).
This will be done for both the broadcast model and the

site-to-site model.

-4.2.1. Minimizing Communication Cost for the Broadcast

Model

For the broadcast model, communication cost will be
minimized by either doing all the processing at one site,
or processing at all sites which have a fragment of the

largest relation. Theorem 1 will prove this.

Intuitively, the situation is as follows. If one
site has more data than the largest relation, then the
data distribution is skewed heavily towards that site. 1In
such a case, communication costs are minimized by choosing

K = 1 and moving all data to the site with the most data.

48

Note that when K = 1, there is no Rp since no relation is
left fragmented. If no site has more data than the larg-
est relation, then Rp should be chosen to be the largest
relation. This is because all relations except Rp will
have to be moved once. Thus one wants to avoid moving the
largest relation. Fhrthermore, all sites which have a
fragment of Rp, no matter what size, should be chosen as
processing sites.- If a‘'site, Sj’ which had a fragment of

P
to be moved. This cost is avoided if Sj is allowed to be

R were not a processing site, the fragment Rg would have

a processing site. As long as there is more than one pro-
cessing site, all Ri,izp have to be moved, they can be
moved to all sites for the same network‘cost as one site.
This is true on a broadcast network because_Ck(x) = C1(x).

Thus there is no incentive to exclude a site.

THEOREM 1:

For a broadcast model, communication cost will be
minimized by either choosing:

(1) K = 1 and choose as a processing site, the site with

(2) or else choose

and choose K = M_.

49

PROOF :
N r=
For the broadcast model C_,;x, = C,,x,, therefore for-
kl--l 11--]
mula 4.1 can be written as:
K r .7
3c,i 3 il
j=1 "1i#p' '_;
N R
+ 3 C.1 3 IRYlY (4.2)
j=K+1 "1igp' "0
’ N P; jlﬁ
+ 2 CiniRyyy
jeK+1 'EPI

The first and second terms can now be combined giving:

Q

s IRjl
. i
l?fpl !
Now assume that K > 1. The first term is independent

+ 3 c.ligdh (4.3)
1LiRp 1 .

N
comm = 3 C1

Lo-_J

r----

of the value of K. The second term is zero when

K

Mp. Hence if K > 1, equation 4.3 is minimized by

K

Mp. Any other solution would make the second term

non-zero. With the second term zero, the communica-

tion cost from 4.3 becomes:

|

N

2 C1 (4.4)
J=1 "1ip

Since equation 4.4 iterates over all possible sites,

|
z iR

[

S,

j? it can be simplified to

-
|
]
1
]

c Ry |
]

; (4.5)

1

| R

.2
1i#p
This can be rewritten as

L

-

50

rl]] Iﬁ' u 6)
C1i2iRs} = Rpld (4.
L]_l | i IJ
Since all relations must be moved except Rp, equation
4.6 is minimized by choosing Rp to be:
max r‘R B (4.7)
iL-i;J ‘

At this point it has been proven that if K > 1, K must

-
be M_ and R_ should be maxi:ER.E If K = 1, only one
IS

p p b
site will be a processing site. Thus the first term

L._J

of equation 4.1 is =zero, since the cost to send X

bytes to K - 1, or zero sites, is obviously zero. The
communication cost is then

N r

]

3 C,t
J=K+1 "1i#p J

Since no relations have to be moved from the process-

ind S
2 R; + 2 C.,.RI, (4.8)
1 1L Il

N N
L
)

j=K+1

ing site, only to it, there is no Rp. This simplifies

equation 4.8 to

N
2 C,i2 Ry,
j=2 Lil 'J

1
! (4.9)

[N
Equation 4.9 is minimized if the second term as large

as possible, that is, by choosing Sj to be

3
o
x
l'; M—-'
v
.
L3

51

QED

Theorem 1 proves that there must either be one pro-
cessing site or all sites which have a fragment of Rp must
be processing sites. We will now show how to decide
between the two cases. 1If one site holds more data than

the largest relation, then K = 1, otherwise K = Mp.

THEOREM 2: ' a

To minimize communication costs on a broadcast net-

work, K should be 1 if

L)
v
(@]

r;;w
(V)]
>

==
T

and otherwise,

PROOF :
If K = 1, then by theorem 1 the communication cost is
expressed by equation 4.9. If K > 1, then by theorem
1, the communication cost is expressed by equation

4.6. Compare equations 4.9 and 4.6

3 i ! ! 1:1 r. | | ! |1 u
Cqi2iRyt = ZyRy) < Cpi2iR;Y - IR, (4.11)

11 ! 1 | 11! | [L'

- - - -

-

'
]
¢, f:Ri

Lo -_J
v
O

r

52

1

Replacing Rp and R by their values gives:

] R r -
! Jity i ! 'y
C1:max.;2:R.,;. > Coimax ;iR 1y (4.12)
L JLil ll-:-: = J Jia
If the inequality holds, then K = 1, otherwise K = Mp
by theorem 1.
QED

In summary, to minimize communication cost for the
broadcast model, choose K = 1 if one site has more data
than the largest relation, otherwise, choose Rp to be the
relation containing the most data and choose K to be all

sites holding a fragment of R

.

h.2.2. Minimum Communication Cost for Site-to-Site

The minimization of network traffic on a site-to-site
modei is very sensitive to the distribution of data among
the sites. The general procedure for a site-to-site net-
work is to order the sites according to the amount of data
they have. The largest relation is chosen as Rp. Since
there must be at least one processing site, the site with
the most data is always chosen as a processing site. Each
additional site 1is examined to see whether it would

receive less data as a processing site than it would have

to transmit as a non-processing site.

53

The proof is again divided into two steps. Theorem
three proves that communication cost is mirimized by
choosing K = 1, or else choosing Rp to be the 1largest
relation and making a site a processing site only if the
amount of data it would have to receive as a processing
site 1is 1less than the amount of data it would have to

transmit as a non processing site.

THEOREM 3:

For a site-to-site network model, communication cost

will be minimized by either

(1) choosing Rp to be maxiiRiE and choosing K to
[} |
include every site, Sj, for which
;) H J 1
iszRiE ¢ g:Ri=

(2) choosing one site, Sj where j is

3
o
=
LI
=]
e
Lo

PROOF :
The definition of the site-to-site model, states that
Cg(x) = KC,(x). Since we assume that the cost to
transmit x bytes is linear in the number of bytes, we
need only minimize the number of bytes transmitted.
This allows us to drop the cost function C(x), since
minimizing x will also minimize C(x). Equation 4.1

can then be rewritten as

54

K 1 j, N] N | N [} 3 1
(K-1) 2 3 4Ryy + (K) 2 2 yRY} + 3 [RIN4.13)
j=1 i#p' 11 j=K+1 i#p' ' jzK+1' P!
Multiplying out terms and observing that:
N) | K [} 3 1
3 IRIL = IR P - 3 iR
j=K+1' PU P g1 P
yields:
K 1 J'l K | jl N ! jl
(K) 2 2 iRy} - 2 Z Ry, + (K) 2 2 IR{
j=1 i#p' *! j=1 i#p' ™! j=K+1 i#p' *!
e IRl - 3 lgd!
| Pl 52qi P
Combining the first and third terms yields:
N . K Vs K .
K) 3 3 I - 3 3 igdi 4 dg o 3 igdi
j=1 igp' M1 =1 idp' B0 U PL o goqi P
Observe that
N 1oJ K | '
(K) 2 2 Ry = 2 Z IRy
j=1 i#p! ! j=1 i#p! !
K
Substituting the above and factoring out the ps
- .y
gives:
K r o3 s
' in |V _ igdi _ tpdi) ip !
j31Li§piRii isp:R” IRNJ MY
Combining terms gives:
K r 1 ; ! J'-} 1 '
2 1 2 IRyl - giRii; + :Rp: (4.14)
J=1pifpt 7 i J P

If K=1, then only one site, Sj, is a processing site

and there is no Rp. Equation 4.14 then becomes

55

SiRgd - ZiR]|
Y - il if
This is minimized by choosing j to be the site Sj with
l'| .I‘l
ax . :E'R Ly
jr{iind
l- -l
We must now evaluate the case when K > 1. Equation
4.14 can be rewritten as
i 1 1 | K N
(K) 3 IR,i + iR i - 3 3IRY!
igpt 1l i P j=1 i! 1
Any iR,i i#p will be multiplied by K (K > 1) but iR
1 1 |

i
i
is a singular term and is not multiplied by any con-

stant. Thus the equation is minimized by chosing R

1

to be the max.aR1
|

[} N N . .
E K is then chosen to minimize
]

by choosing only those values of j for which the term

is zero or negative. Thus we want only those Sj for

which
3 iR 4 < iR}
K is then the count of those sites S

jo

QED

Theorem 3 proves that communication on a site-to-site
network is minimized either by having one processing site
which has the most data, or by choosing Rp to be the larg-

est relation and choosing a site as a processing site only

56

if the amount of data the site would have to receive as a

processing site is less than the additional data that it

would have to send as a nonprocessing site (that 1is, the
amount it receives is less than Rg). Theorem 4 will dif-

ferentiate between the two cases identified by theorem 3.

THEOREM 4:

If for every site Sj’ jJ=1toN

2 iRt > ziRd ’.
iZpi 11 it

then choose K=1.

PROOF

IF K = 1 then all sites except one, 81, must transmit

their fragments to S1. The number of bytes transmit-

ted can be written as:

[\Y]
nM=
1
M
=]

[LY

or simply

|
|
Rl - Z:R.

11
i1

p3
i

It is sufficient to show that if we include any other
site as a processing site, the number of bytes
transmitted will increase. If another processing
site, 82 is added, the formula 4.14 becomes

]
3R, - zER.: - IR2i .
it ! i! 1, 1 P

2
i i

| - 3 IR

57

This was derived as follows. The original cost
includes moving all fragments from sites Sj,j£1 to

. 2
site S1. Rp
be moved if 32 is a processing site. Additionally,

is subtracted since it does not have to

all sites Sj,jiz would have to send their relation

Ri,ifp fragments to site 32. Now combining terms 3

and 5 gives:

st - sir}M 4 3 IRt - 3ig2i
& 5 ! 3 i 2 !
e R ¥ L L
We were given that
]
3 IRgL - 2RED > 0
iZpt i it !

thus including another site increases the number of

bytes transmitted.

QED

In summary, theorem 4 determines if K = 1. If K = 1,
then theorem 3 states that the processing site should be
the site with the most data. If K > 1, then by theorem 3,
Rp should be chosen to be the largest relation and the

processing sites should be those sites for which

s IR. rRIL ¢ 0
iZpi t b

The above equation compares the amount of data the site

b -3
l i

-

would have to receive as a processing site with the amount

of data it would have to send as a non-processing site.

58

4.2.3. Minimizing Response Time

If the optimization criterion is to minimize response
time, then the choices for Rp and K must take local pro-
cessing time into consideration. Response time depends on
the time required to process the query at the local sites,
as well as the time required to transmit relation frag-
ments between sites. As K increases, more sites become
processing sites and there is .an increase in parallelism,
potentially decreasing processing time; however, as
theorems 1-4 have shown, increasing K can increase the
communication traffic on either network model. Processing
time can also be reduced if Rp has a wuseful physical
structure. When a relation fragment is moved, it loses
its physical structure. Only Rp will retain its original
structure since it is the only relation that isn't moved.

This issue is examined further in section 4.4

Before examining the trade-offs involved between
local processing and communication traffic, we will
describe the problems involved in estimating the time

required to process a local query. The processing time

depends on the access paths used (accessing through a.

clustered or non-clustered index, wusing a hash key,
sequentially reading the relation, etc.), the processing
strategies wused (tuple substitution, sort-merge join,

reformatting, etc.), and the physical 1location of the

e

59

relation on disk (whether relation pages are clustered
together, etc.). Moreover, the situation will be dif-
ferent on every processing site. To more fully appreciate
what is involved in predicting the processing time, the
interested reader 1is referred to [GRIFT79, HAWT79]. The
paper by [GRIF79] describes the complexity of estimating
access path and join techniques for System R on a single
site data base. The problem is compounded by the fact
that there are multiple sites and a strategy must be found
that is optimal for all sites. Additionally, the neces-
sary statistical information may or may not be present and

up to date at the master site.

At least one case exists for which the best choices
for Rp and K can be determined for optimizing response

time. If no relation is structured usefully, then Rp
should be chosen to minimize the amount of data at each
processing site. Since each processing site must have a
copy of all fragments of each Ri,iip, the choice for Rp
should be the largest relation. This will process the
minimum amount of data at each site. As was demonstrated
in section 4.2.2, this will also minimize communication

traffic.

There is a heuristic which can be employed to improve
response time by increasing parallelism. On a broadcast

network, if there are several candidates for Rp of a com-

60

parable size (we will say within "T" percent), then R
should be chosen to be the relation with the most frag-
ments, eg. maxi(Mi). This will maximize the value of K,

improving local processing time.

For a site-to-site network, equation 4.15 can be

changed to be:

T3 iIR,1 <3
SR igpt Y1 g

where T is a heuristic value between 0 and 1. When T =1,

e

Ji
Ry |

communication costs are minimized as was proven in section
4.2.2. When T = 0, all sites will be chosen as processing
sites. When T is slightly less than 1 then communication
costs may not be minimized but more sites may become pro-
cessing sites, increasing parallelism. We are relaxing
the requirements for being a processing site in the hopes
that the increased pa}allelism will improve response time.
This.will allow more sites to qualify as processing sites,

increasing parallelism and reducing local processing time.

This approach represents a compromise based on rea-
sonable assumptions. Experimentation should determine

good values of T for a particular application environment.

In summary, exact formulas developed in theorems 1-4
can be wused to choose Rp and K based on minimizing the
cost formula for communications. It may be desirablé to

examine alternate choices of Rp and K which, while not

o

61

optimal for communication costs, will increase parallelism

and improve overall response time.

4.3. Analysis of Split Tactic

As was explained in section 3.3, a query involving
three or more relations can always be split into at least
two pieces. Splitting the query may be more cost effec-
tive than processing the query all at once. Splitting a
query delays the transmission of one or more relations in
the hopes that the size of the relation will be reduced by .
some intermediate processing. We will examine the effec-
tiveness of the query splitting technique only in terms of
minimizing the number of bytes transmitted since that is

its primary usefulness.

4.3.1. Overview of Query Splitting Analysis

When splitting a query it is always possible to
exhaustively examine every combination of variables, look-
ing for the best strategy. The computational complexity
is reduced and the implementation simplified if a limited
search can be used to find the best way to split a query.
It is of primary concern in this section to compare

exhaustive and limited search techniques.

Estimating the number of tuples which will satisfy a
query 1is another important issue. The ideal is "perfect

information"; that is, the size of the result of any query

62

is accurately known in advance. On the other hand, know-
ing the cardinality of each relation and one bit of infor-
mation about each domain in each relation is a reasonable
minimum requirement. The performance of the query split-
ting algorithms will be analyzed 'based on these two

extremes of information.

In this section.ngyill also examine dynamic.decision.
making. Since estimates are never perfect, the size of
the result from a processing step may be different than
its estimated size. If so, the remaining processing stra-
tegy might need to be reevaluated. Dynamic decision mak-
ing evaluates the processing strategy after each process-

ing step.

There is a fixed overhead associated with running a
remote query. Splitting one query into two doubles the
fixed overhead. Thus the amount of data movement saved
must be sufficient to offset the additional message
traffic. As will be discussed in section 4.7, the over-
head 1is strongly dependent on whether dynamic or static
decision making is being used. If synchronization is
required after each processing step, the overhead is the
transmission of the query to the K processing sites, and
the subsequent completion response from each processing
site. For a broadcast model the overhead is 1 + K mes-

sages and for a site-to-site model the overhead is 2K mes-

63

sages.

The analysis will proceed as follows. A graph struc-
ture [WONGT77] is introduced for expressing the interrela-
tionships between the variables in the query in a concise
manner. Two search strategies are presented - limited and
exhaustive. They differ in the number of cases which they
consider. The algorithms were coded and the performance
of both algorithms were measured on a variety of test
cases uéing an analysis program. This program tested:

(1) limited versus exhaustive search given perfect

information.

(2) limited versus exhaustive search given 1 bit of
information per domain and assuming a worst case
estimate. This will be explained in detail in sec-
tion 4.3.9.

(3) limited versus exhaustive search using either
static or dynamic decision making.

(4) limited versus exhaustive search given 1 bit of
information per domain and assuming less than a
worst case estimate.

Finally, general figures of merit are given for each case

and some general conclusions are drawn.

ﬂ.3.g. Graphic Query Representation

A graphic technique 1is useful for expressing the

interrelationships of the variables in a query. Once all

64

single variable restrictions have been performed, the
important structural information about a query 1is
expressed by identifying the variables in the target 1list,
and the variables in each conjunctive clause in the qual-
ification. Let each variable in a query be represented by
a single node in a graph. If the variable occurs in the
target list then place an asterisk ("*") next to it. An
edge connecting two nodes represents. the fact that one or
more conjunctive terms connect the two variables. For

example, the query

retrieve (e.name)
where
e.dept = d.dept
and
d.location = i.location

is represented as

For the sake of this discussion, any greater detail (such
as the names of the joining domains, etc.) will not be
necessary. The above query could be split into two

pieces:

~

65

followed by

where d' is the result from the first query. 1In QUEL this

split is expressed by the query:

retrieve into d'(d.dept)
where

d.location = i.location

followed by the query

retrieve (e.name)
where
e.dept = d'.dept

Another possible candidate for splitting the query is

followed by

In QUEL, this split is expressed as:

retrieve into d'(e.name,d.location)
where

e.dept = d.dept

retrieve (d'.name)
where
d'.location = i.location

66

A query can be split on any edge provided that the two
subgraphs created both contain at least two variables.
For example, since there is no edge between "e" and "i",

there are no other choices for splitting the original

query.

4.3.3. Split Algorithm Using Limited Search

Given an n variable query (n > 1), section 4.2 showed
how to compute the communication cost required to process

the query. Call this cost MAXP.

Jd

MAXP = PROCIR. R .,R
Ll

2,
Consider processing the query by doing a two variable

n

L

query followed by the remaining n - 1 variables. This is
always possible although' not always cost effective.
Splitting the query reduces the problem to two queries and

the cost becomes

-
PROCIR. R.1 + PROC'R.,R LR
1,2 L2''3, *nd

Examine all meaningful combinations of two variables fol-
lowed by the remaining n - 1 variables. Meaningful combi-
nations means those variables which are immediately con-
nected in the query graph. Choose the minimum cost. If
the minimum cost is less than MAXP, then assign MAXP to
the new value and save the names of the two variables
which should be processed first. Next consider processing

the query by doing a three variable query followed by the

67
remaining n - 2 variables. The cost would become:

PROC{R.,R,,R,} + PROC!R.,R |

L1,2,R3J + P LR3’ u’ ooo,Rnd'
Once again, look at all meaningful combinations of 3 vari-
ables followed by n - 2. If the minimum cost is less than
MAXP, then assign MAXP to it and remember the names of the
variables involved. This procedure continues until the

case of doing n - 1 variables followed by 2 variables is

considered. This 1limited search requires considering at

most

[\V Re)
N
r-="="
. 3
et |

[

choices, The maximum number of choices occurs only if the
user's query contained a join between every variable and

every other variable.

Suppose we had a five variable query. Limited search

would consider four cases:

Case Notation
Perform all 5 variables at once 5

2 variable followed by 4 variable 2-4

3 variable followed by a 3 variable 3-3

4 variable followed by a 2 variable 4.2

Now suppose the query were

Theoretically, the maximum possible number of choices is

68

n rn-} 5 rs-l
p R . 2 T 26
izob 0 ool U

but in fact the number of choices is limited by the inter-
connections of the variables in the graph. The two vari-

able choices would be:

PROC(a, b) + PROC(b', ¢, d, e)
PROC(a, c¢) + PROC(ec', b, d, e)
PROC(b, ¢) + PROC(c', a, d, e)
PROC(b, d) + PROC(d', a, ¢, e)
PROC(d, e) + PROC(e', a, b, e¢)

The three variable choices would be:

PROC(a, b, c¢) + PROC(e', d, e)
PROC(b, ¢, d) + PROC(d', a, e)
PROC(a, b, d) + PROC(d', c, e)
PROC(b, d, e) + PROC(e', a, b)

The four variable choices would be

PROC(a, b, ¢, d) + PROC(d', e)
PROC(b, ¢, d, e) + PROC(e', a)

In this example, the number of possibilities was 11. Once
the minimum cost choice has been sélected, the first piece
of the two can be immediately executed using the FP tech-
nique. The result relation from the first piece will be a
single relation (although it may be encoded in any of ways
discussed in section 3.5). Next the second piece of the
query is adjusted to make any domain references to vari-
ables 1in the first piece refer to the result relation of
the first piece. The bookkeeping process of maintaining
domain references is straightforward and is similar to the

one variable restriction algorithm found in [STONT76].

69

Once the first piece of the query 1is complete, the
second .piece can be processed. This is done by abplying
the query splitting algorithm to it recursively. In this
manner all possible combinations of query spiitting can be
éenerated. The search strategy is "limited" in how it

makes its decision - not in what decisions are possible.

The limited search algorithm is shown in figure 1.
The algorithm is written in a stylized version of the "C"
language [KERN78]. Figure 1 shows the flow of control for
the algorithm but 1little of the bookkeeping required.
SPLIT(q) is the name of the query splitting routine.
Trans_cost(q) 1is the <cost to transmit the relations in
order to process the query q. Variable_count(q) returns
the number of variables in the query q.
Estimate_result_size(q) computes an estimate of the result
size of q using any desired estimation procedure.
Process(q) actually performs the FP technique on the query

q and updates all necessary information.

An example of the algorithm is now presented . Given

the original query:

the split algorithm might decide to split the query into

two, three variable pieces:

70

SPLIT(q)
{

Algorithm for limited search

maxp = trans cost(q)
split = FALSE;
for (i = 2; i < variable count(q); i = i + 1)
(_
for (each combination of i variables in q)
{
form q' and q'!
'ecost = trans_cost(q')
estimate_result_size(q')
cost = cost + trans_cost(q'')
if (cost < maxp)

{
maxp = cost
save q' and q''
split = TRUE

}

}
}
if (split is TRUE)
{

process(q')
adjust(q'")

SPLIT(q'"')
}
else
{
process(q)
}
}
Figure 1.
e b#*
\ / piece 1
\ /
c
followed by the remaining piece

B! ¥ e o PEpEp e¥ piece 2

71

Piece 1 will be processed using the FP technique. The
splitting algorithm is then applied to piece 2. To con-
tinue the example, suppose the splitting technique decided

@o split piece 2 into:

d¥ e e¥ piece 2
followed by

D' ¥ d! piece 3

At this point the query splitting tactic 1is complete.
Note that two decisions were made. The first was to split
the five variable query into a three variable query fol-
lowed by another three variable query. The second deci-
sion was to split the three variable query into a two

variable query followed by another two variable query.

In certain rarely expressed queries the first query
may only return true or false. This happens only if the
original user's query was disjoint. For example the

query:

is in two disjoint pieces. The semantics of the query are
if any "d" matches any "e" then process tﬁe remaining
query on "a", "b"™, and "c¢". The splitting algorithm will

find such a query and recognize that a result relation

72
from the "deeacaaaa e" piece is not necessary.

4.3.4. Optimality of Split Tactic with Limited Search

The splitting algorithm with limited search attempts
to find the optimal sequence in which to process a query.
It will optimize for minimum network communications but
the algorithm is a "greedy" [WONG77] algorithm, performing
a "}?ca} optig;zation" andhnot a ‘"g;obal optimization®.
This‘ section explains the characteristics of a limited
search. 1In the following section (4.3.5), the algorithm

will be extended to perform an exhaustive search.

The split tactic using limited search bases the cost
estimate of performing the second piece of a query on the
assumption that the piece will be processed without
further splitting. In a four variable query, for example,
it does not explicitly consider processing the query as
three two variable subqueries (2-2-2). Instead, it exam- .
ines the cost of doing a two variable followed by a three
variable query (2-3). If it decides to split the query as
2-3 then the next processing step will consider splitting
the three variable into 2-2, thus achieving the end effect
of performing 2-2-é. Limited search works well only if
what 1is best for the current processing step will be best
overall. If the optimal strategy is 2-2-2 then it is not
unreasonable to assume that the split 2-3 is going to be

better than either the 4 or 3-2 splits. Thus, by doing

73

only a 1limited search it should be possible to find the
optimal processing strategy. The advantage of 1limited
search is that it considers fewer total cases at each
decision point and is therefore computationally more effi-
éient. The next section describes query splitting with
exhaustive search. Following that, the two methods are

compared in detail.

4.3.5. Splitting Technique with Exhaustive Search

The splitting tactic with exhaustive search will
examine all possible cases before deciding what the next
piece will be. Define e(n) to be the number of cases
which exhaustive search must consider for an "n" variable

query. E(n) can be expressed recursively as:

e(1) = 1
e(2) = 2
r o= (4.16)
n| n
e(n) = 3 t 1 % e(n-i+1)
i:ZL 1]

This formula is an extension of the 1limited search for-
mula. For each case, the number of variables in the first
piece, i, is chosen and then the remaining query requires
exhaustively examining all combinations of the remaining n
- i1+ 1 wvariables. Once again the number of actual
choices is 1limited by the wuser's query, i.e. by the

interconnections of the variables in the graph.

e

o

T4

The algorithm for exhaustive search is shown in fig-
ure 2. The major difference between figure 2 and figure 1
(limited search) is that instead of computing the cost of

executing q'' assuming it will be done 1in one piece,

Algorithm for query splitting using exhaustive search

ESPLIT(q, execute)
{

cost = maxp = trans_cost(q)
split =~FALSE;" b .
for (1 = 2; 1 < variable_count(q); i = i + 1)

]

for (each combination of i variables in q)

{
form q' and q'!
cost = trans_cost(q')
estimate_result size(q')
cost = cost + ESPLIT(q'', FALSE)
if (cost < maxp)
{ .
maxp = cost
save q' and q'!
split = TRUE
}
}
}
if (execute is TRUE)
{
if (split is TRUE)
{
process(q')
adjust(q'!')
ESPLIT(q'', TRUE)
}
else
{
process(q)
}
}

return (cost)

Figure 2.

75

exhaustive search calls itself recursively on q'' in order
to determine the least expensive cost for processing q'"'.
The additional parameter to ESPLIT(q, execute) is a flag
which states whether to actually execute the query or just
compute the cost of executing the query. This is neces-
sary since the recursive call is for measurement reasons

and not for executing the query.

As an example, consider again the <case of a five

variable query. Exhaustive search will examine the cases:

Case Notation
Perform all 5 variables at once 5
2 var followed by 4 var 2=-4

. 2 var followed by 2 var followed by 3 var 2-2-3
2 var followed by 2 var followed by 2 var

followed by 2 var 2=2=2=2

2 var followed by 3 var followed by 2 var 2-3=2
3 var followed by a 3 var 3=-3
3 var followed by 2 var followed by 2 var 3=-2-2
4 var followed by a 2 var 4.2

4.3.6. Comparison Between Limited and Exhaustive Search

The differences between limited and exhaustive search
are the number of cases explicitly considered. Given an n

variable query, limited search examines

4

n

F=="=1

L

n
2
i=2
while exhaustive search examines

i

J

3

e(n) = ¥ e(n=-1i+1)

[N

r~—"=
L

[e

76

When n = 3, both searches examine the same cases. The
first difference arrises when n = 4, In that case,
exhaustive search examines the 2-2-2 case explicitly but
1imited search does not. As n grows, the number of addi-
tional cases which exhaustive search must consider grows
exponentially compaked to limited search. For example,

the maximum number of cases for values of n from 2 ¢to 9

- are: : : e T,
n limited exhaustive
2 1 1
3 y y
4 11 29
5 26 336
6 57 5687
7 120 132294
8 247 4ou7969
9 502 157601068

These numbers assume that every variable is connected to
every other variable. It is much more likely that each
variable is connected to only one or two other variables.

For example, a query such as

R1----R2----R3---- ««+ R

would have to examine:

o]

limited exhaustive

1

3

12

60
360
2520
20160

O30 W
0 =UtO O =

NN — —

7

9 36 181440
In practice most queries involve relatively few variables.

Conventional wisdom on ‘“greedy" algorithms states
they are not optimal but are used because they come close
to optimality. If this is true, they represent good
trade-offs because they examine fewer cases. To verify
the merits of the limited search, the'algorithm was coded
and compared to exhaustive search using_a program which is

described in the next section.

4.3.7. Simulation Program

A program was written to compare the performance of
the limited and exhaustive search algorithms under a large
variety of situations. This section describes the condi-
tions the program models and provides an overview of how
the program works. The processing algorithms were coded
and the program was used to measure a large number of
cases under a variety of initial conditions. The 1issues
of interest are:

(1) Number of variables.

(2) The interconnection of the variables. This is the
graph of the query.

(3) The number of sites in the network.

(4) The distribution of data among the sites.

(5) The network model (broadcast or site-to-site).

T

78

(6) How result sizes are estimated.

(7) The cardinality of each variable.

(8) The size of the target list of each variable. If
the size 1is zero then the variable is not in the

target list.

The number of possible combinations is, of course,
enormous and therefore several simplifying assumptions

must be made in order to make the problem manageable.

Joining domains. It is assumed that each pair of

relations 1is joined on different, unique domains. For
simplicity, all joining domains are assumed to be 4 bytes

in length. For example, if there is a term such as R,.A =

1
R2.B, it is assumed that domains A and B are used only for
that join and nowhere else in the query. This assumption

simplifies keeping track of the size of each relation.

Independence between Qariables. The input to each

test case includes the number of tuples which will satisfy
the join between each pair of relations. To reduce the
amount of data supplied for each test case, it is assumed
that the result size of each join is‘ independent of the
order in which the joins are performed. This assumption
does not limit the capability of the analysis; rather, it
simplifies the amount of data which must be supplied for
each case. By supplying different result sizes for the

Joins, it is possible to examine any case.

79

FP technique. Since the primary purpose of query
splitting 1is to reduce communications costs, the FP tech-
nique was coded using Theorems 1-4. This means Rp is

always the largest relation.

The choices for cardinalities for each relation were
10, 100, and 1000 tuples. This repfesents a two order of
magnitude range for the cardinalities and is sufficient to
show the effects of the algorithms under a wide variety of
cases. The cardinalities c¢an be scaled to represent
larger relations (say 1000, 10000, or 100000 tuples) with
identical results. 1It's the relative differences between
the cardinalities that 1is important -- not the absolute

values.

The size of the target list for each relation was
either 0 or 10 bytes. For each input case, the program
ran all possible combinations of relation cardinalities
and target 1list sizes. This means that each variable
takes on six cases - three different cardinalities, and
two different target list sizes. For example, in a four
variable query, the number of combinations would be

(3)(2)(3)(2)(3)(2)(3)(2) = 6% = 1296

or in general 6" combinations where n = number of vari-
ables. Since the case of having a completely empty target
list (that is no variable in the target list) is not very

common or interesting, it is omitted. This reduces the

80

number of cases to

614 - 3“ = 1215

for the four variable case, and in general

6N - 3N
for the n variable case.

To further simplify the study, only the broadcast
" "model 'wés analyzed. The resuits then become independent
of the number of sites in the network and relatively
independent of the distribution of data among the sites.
This is a direct result of theorems 1 and 2 which state
that the number of processing sites for a broadcast net-
work must be either 1 or Mp. By assuming that the number
of processing sites is always Mp, the results are com-

pletely independent of the distribution of data.

The program accepts as input:

(1) The graph of the query

(2) The true result size of each join
The algorithms are then run on all 6"-3n different combi-
nations of cardinalities and target lists. The output for
each case is

(1) The cost to run the query without splitting

(2) The cost using exhaustive search

(3) The cost using limited search

(4) A list of the processing steps made.

81

With the above information, we can compute the true cost
of exhaustive and limited search query splitting based on
exact information. 1In other words, as each possible split
is considered, the algorithms have available the exact
result size which would occur if the query were actually
run. We shall call this having "perfect information". By
doing this we eliminate all other factors and examine only
the difference caused by the algorithms themselves. Note
that under thése conditions, exhaustive search will always

find the optimal strategy.

4.3.8. Exhaustive Versus Limited Search with Perfect

Information

The results of running the query:

Ammeeem Bommeme—-e Commmmnm D QUERY 1.
10 20 5

are shown in figure 3. The numbers above represent the
cardinality of the result of the corresponding join. For
example, the join between variables A and B will have 10
tuples in the result regardless of the sizes of A and B.
The graph in figure 3 represents the cost to solve query 1
in 100 of the 1215 combinations measured. The results are
ordered in decreasing difference between 1limited search
and exhaustive search, and the first 100 cases are shown.
Each case is independent from every other case. The

points are connected by 1lines only for visual clarity.

82

W3ANNN 3SVYD

00l 06 08 oL . 09 ﬁwm

oy O
) 1

YyoI1Deg BAISNDYX]

y240aS pajIwi

*uotTjewuaojuy 309349d saunssy
*L Aadnb 403y aaqunu ased 4q
paztuedso ‘youeas aATISNEYXD
pue pajTuil 40J 3so0d Aaany

£ J4n914

"

83

The lower line is the cost of running the query using

exhaustive search and the upper line is the cost using

limited search.

Unexpectedly, exhaustive search does dramatically
better than limited search. The peaks and valleys on the
graph are not important. Since each data point 1is
independent, and they have been arranged in decreasing
- difference, the lines are not smooth. The worst case
difference 1is the case corresponding to variables A, C,
and D having cardinalities of 1000 and target 1list sizes
of 10; and variable B having a cardinality of 10 and no
target list. 1In that case, the cost to perform the query
using exhaustive search was 380 bytes. The cost for lim-
ited search was 14,200 bytes. Exhaustive search broke the
query into three two variable pieces - BC followed by BD
followed by AB. Limited search broke the query in to two
pieces, CD followed by ABC.

Another way to view the comparison between exhaustive
and limited search is shown in figure 4. The X-axis is
the percentage of the cost of limited search over exhaus-
tive search. In other words, 50% means limited search
moved 1.5 times the amount of data that exhaustive search
moved. The Y-axis is the percentage of total cases. The
graph shows that for 59% of the cases, limited search per-

formed exactly the same as exhaustive search. For 70% of

Percentage of Cases

1007
90"
807
70"
60"
50]
40"
30"

207

‘FIGURE 4

Relative performance of limited
search compared with exhaustive
search for. query 1. Assumes
perfect information.

J

t L

| | I 1 v I I ¥ ||
50 I00 150 200 250 300 350 400 450 500
Relative Performoncg

ng

85

the cases, limited search was within 160% of exhaustive
search, etc. The 1line grows very slowly. One would
expect limited search to do badly in a few cases but per-
form within 10% of exhaustive search in most cases. Fig-

ure 4 shows clearly that this is not the case.

Further examination of the worst case for 1limited
search from figure 3 shows why limited search does not
perform.as. well as exhaustive search. In .that case the

optimal strategy was

step procedure cost in bytes
BC move B 80
B'D move B! 180
AB' move B! 120
380

In order for limited search to find the optimal strategy,
it would have to find that BC followed by AB'D was the

best strategy. The cost for that split would be

step procedure cost in bytes

BC move B 80

AB'D move B' & A 180 + 14000
14260

However, the strategy it chose was

86

step procedure cost in bytes

CD move D 14000

ABC' move C' & B 80 + 120
14200

The lowest cost 2-3 split begins with the CD piece. Thus
limited search chooses to first move an expensive piece
(14000 bytes) and leave an inexpensive move (200 bytes)
for the second piece. This shows why limitéd search does

not do as well as one might expect.

To verify that the results are not due to the small

result sizes of the join, another case was tried where the

result sizes were:

| P P Commmmn D QUERY 2.

The results for query 2 are shown in figure 5, The
results are similar to case 1. The limited search per-
formed much worse than the exhaustive search for a 1large
number of cases. Figure 5 shows 100 points, again sorted
according to decreasing difference between exhaustive and
limited search. Based on the cases shown here and other
cases examined, limited search was dramatically worse than

exhaustive search under a wide range of cases.

The results from this section assumed "perfect infor-
mation". They do not . necessarily predict where crude

estimation procedures are used. In the next section, a

87

. ¥38NNN 3SVD
00l 06 08 0l 09 0§ ov (0}% 0¢é 0] 0
[[1 |

1]] 1 1 1 0

i

_ 0046 |

| . 000¢€

006Gt
. | 0009
~ 491098 ,

QAlSNDYX :
l{snoyx3 000G 2

sajhq u
1509

-
\
Yyoioag pajiwyT) L0006 2
*UOT3EWLOJUT 303Ju4od SouNSSY . 0060l
*2 Aasnb uo0J usdqunu ased Aq
pazTue8Ja0 YoueasS SATISNEYXD
pue pajrwil 40J 3s02 £Lasnd 00021
S J¥N9I4
| 00G¢|

| 00065 |

88

crude estimation procedure is described and the results

are given.

4.3.9. Comparison Using Limited Statisties and Dynamic

Decision Making

For making estimates with 1limited information we
shall assume we know a relation's cardinality and one bit
of imformation per domain. This is case 2 from section
3.9. We shall make "worst case" estimates, that is, what
is the maximum number of tuples that can satisfy a given

query?

In the worst case the size of the result from any
query is 1limited by the product of the cardinalities of
the relations in the target list. In addition the result
size of each join 1is limited according to whether each
Joining domain has its bit set or not. We shall modify
the graphic representations to include a '#' character if

the domain has its bit set. the worst case cardinality

is:
R,f#ommmmm R.# = min(C.,C.)
J— R.7 - max(C1,C3)
R Mpeommmae g = max(C., C2)
S = 12
1======R, = 1%Co

If the joining domains for both R1andR2 are unique,
the maximum number of tuples in the result is limited to

the number of tuples in the smaller relation. If only one

89

joining domain is unique, the maximum number of tuples in
the result cannot exceed the number of tuples in the
larger relation. Finally, 1if neither joining domain is
unique, the worst case happens when all joining domains
have the same value. 1In that case the cardinality of the

result is the product of the cardinalities of the two

relations.

The simulétions were rerun using crude'Statistics to
determine how limited search performed compared to exhaus-

tive search. Query 1 was rerun with:

Affemcees #Bftemmmmm #CH#eemmme #D QUERY 1

All joins are on unique domains. The "split"™ algorithm
used worse case estimates to decide the best splitting
strategy. Dynamic decision making was used. After each
piece of the query was executed, the results from the
query were collected and the remaining strategy was recom-
puted based on the updated cardinalities of the relations.

The results are shown in figure 6.

The differences between limited and exhaustive search
are not as dramatic as they were for the perfect informa-
tion case but they are still conclusive. Limited search
does not do well when compared to exhaustive search --

even with very crude statistics.

90

438WNN 3SVI
001 06 08 0. 09 O0S ob 0e 02 Ol

0
. 0

49109g a>=m=o:qu\

4ouneg pajywi—

*Suriew uoIsIoap
otweudp pue UOTJEWT]Sd SSED JSUOM
‘SO0T3STlElS PpPOTIWIT saunssy °| Aaanb
10J s3qunu ased Aq psztueduo youess
3ATISNEYXd pue pajTwIl 40J 3S00 AaanQ

9 J4NnOId

L0001
| 0002
| 000€
| 000¢
| 0006
| 0009

0002
_ 0008

1 0006

. 00001

(sajhq ui)

1509

91

A somewhat surprising result is that without perfect
information, 1limited search can do better than exhaustive
search! For the case shown in figure 6, exhaustive search
did better or the same as limited search in 1083 out of
1215 cases. The cases where 1limited search did better
than exhaustive search are shown in figure 7. If all
estimates are accurate, exhaustive search will always find
""the 'best strategy. If estimates are imprecise, however,
the best strategy may have a higher estimate than some
other strategy. Exhaustive search will choose the stra-
tegy with the lowest estimate and thus may miss the best
strategy 1if estimates are imprecise. Limited search may
still find the best strategy or a better strategy because
it may not examine the particular case or cases which

misled exhaustive search.

A number of other cases were tried to verify that the
results using crude statistics are not sensitive to the
sizes of the results of the joins. Figure 8 shows the

results of:

Affeeeeee #BllemccaffCmmmmmes #D QUERY 2
100 200 2

Once again exhaustive search did much better overall than
limited search. There were cases where limited search did
better than exhaustive search but the differences were

small.

15000 7

13500

12000

10500

—~ 9000

COST
in byte

*

(

4500

3000

1500

7500

6000 |

FIGURE 7

Query cost for 1limited and
exhaustive search organized
by case number for query 1.
Assumes limited statistics,
worst case estimation and
dynamic decision making.

Search

xhaustive Limited

Search

o
1055

1071 1087 NO3 19

1135

e——

1 ' !

ns5t 1167 1183

CASE NUMBER

1199

A
! O
1215 ©

93

For query 2, each joining domain was unique. Queries
were also run where one or more joining domains were not
unique. In each case, limited search performed signifi-

cantly worse than exhaustive search.

The queries compared so far have been based on either
perfect information, or one bit of information per domain
with worst case estimation and dynamic decision making.

The next section will compare 1limited and exhaustive

search using static decision making and crude estimation.

4.3.10. Comparison Using Limited Statisties and Static

Decision Making

As mentioned in section 3.8, static decision making
requires less execution time overhead than dynamic deci-
sion making. For static decision making, processing algo-
rithms had to be modified slightly. The processing was
divided into one decision making phase and one execution
phase. After each decision was made during the decision
making phase, the relation cardinalities were updated with
the estimated result sizes of the queries. Then the next
decision was made. Once all decisions are made the execu-
tion phase began. During the execution phase, each piece
of the query was processed and its actual cost for pro-
cessing was accumulated. The simulation program kept both
the estimated cost for running the query and the actual

cost. All graphs of cases using static decision making

YIGWNN ISV

02 o 9
00¢lI
- 00t e
42100g .009¢
oAlISNDYX J
<L L0081 ~
20
o
N - 0009 o o
’ o =
421008 vc:E_.._\‘ .00¢L &
. 00v8
*8
otweudp pue :oﬂamsﬁuwmﬁxwmmuoﬁmwwwn 10000
‘s0T9sT3E3S pajTWIT sawnssy °g Aaanb
10J Jaqunu ased Aq paziueduao Youeass
9AT3SNeyxa pue pajIwiy 40J 34S00 AaanQ lOOOO_
8 J4NOIA |
0002 |

95

show the actual costs.

With perfect information static decision making per-
forms the same as dynamic decision making. Thus the test
cases for static decision making use the crude estimation
procedure. If perfect information was used, the results
would necessarily bevidentical to figures 3 through 5.

The results for query 1 are shown in figure 9

AffccceciiBffccnmea #CHemmmam #D QUERY 1
10 20 5

Once again, exhaustive search does markedly better than
limited search but the differences are not as dramatic as
in other cases. Other test cases were run which varied
the result sizes and the number of unique joining domains.
The results were all similar to figure 9. For all the
static decision cases, there were times when limited
search did better than exhaustive search but once again
they were small differences compared to the cases when

exhaustive search did better than limited search.

The remainder of this section compares the relative
performances of crude estimation versus perfect informa-

tion and static versus dynamic decision making.

4.3.11. Comparision Between Perfect Information and Crude

Estimation

. 00

N {

4IEWNN 3SV D

06 08 0L 09 05 O Of
|

91D3S BALSNDYXJ

491085 pojwi]

*8uriew UOISIO
-ap D013E9S pue UOIJBWIJSd ISBD JSJIO0M
‘sdoT19sT19E89S pAjTWUIT sawnssy °| Aaanb
403 Jaqunu assed £q paziueBuo Youaeas
SATISNEYXD pue pajJIWIT 40 3500 Aaany

6 34noId

0004
_000¢

0009

00081

.0000¢

97

We have now compared limited versus exhaustive search
under a variety of conditions. Those results can be used
to see how crude estimation compares to perfect informa-
tion. The results of such a comparison for query 1 are
shown in figure 10. The two cases shown are exhaustive
search with perfect information, and exhaustive search
with worst case estimation and dynamic decision making.
Figure 10 shows that even. with a small..amount of informa-
tion, worst case estimation performs poorly in some cases

but well overall.

So far estimates have been done assuming worst case.
That 1is, it has been assumed that the maximum number of
tuples possible would satisfy a query. What would be the
effect of assuming only half the possible tuples would
satisfy? Such an assumption is closer to what one might
expect in a real environment. Notationally we shall call
worst case estimation "WC" and worst case estimation
divided by 2 "WC/2". The results of rerunning query 1
with estimates based on WC/2 are shown in figure 10. The
two solid lines represent perfect information and WC esti-
mation. ' The dashed line shows the results wusing WC/2

estimation. Overall WC/2 performs much better than WC.

It was noted that WC estimates did better than WC/2
in 62 out of 1215 cases. This is not surprising since the

estimates are so imprecise. It seems reasonable, however,

98

0]0]
L

Y3GNNN 3SVI

06 08 0L 09 0§ o 0 02 Ol 0
] L 1 1 N I 1 i 1 0
M 00§
— _ 2 _000lI
nil | 006!
. m\ AL b ; 0002
m . 006¢
uoijpwJojug $39}48d
. (2/950) is10M) -000¢
Uo1}DWJIOJU] PpajIwIT
(8sD) siom) . 006G¢
UOHDWIOJU] PAYIWY T xEnp
10J uofTjewWJAOJUT 309ju40d pue ‘uoijewilse ¢ 000V
43A0 9SED 3SJ4OM JUISN UOTJBWJIOJUT PAJTWTY
‘uotjewilse ased 93sa0M Julsn UOTJEWUIOJUT
paj3Twi(ButJedwod Buryew uolSTIOS9p OTweudp L 00G¢d
pue youeas aargysneyxa 3Juisn 3500 Auaand
Ol HYNDIA L 000§

(sa44q ur)

1S09

99

that since all of the result sizes for case 1 are small,
the smaller the estimate, the better the results. Using
WC/10 produced slightly better results than WC/2 estimates
for case 1. There are situations where WC/2 is better
than WC/10. One can conclude that the better the estima-
tion procedure, the better the final results. However,
knowing the relation cardinalities, having one bit of
information per domain and performing a WC/2 estimate:
tends to produce good results in many situations. As
final evidence, figure 11 plots the relative performance
of perfect information versus WC/2 estimation with dynamic
decision making. Note that 75% of the cases are the same

and 100% are within a factor of 1.5.

4.3.12. Comparision Between Static and Dynamic Decision

Making

The relative performance of static and dynamic deci-
sion - making is shown in figure 12. There are cases when
dynamic decision making does significantly better than
static decision making. The overall difference, however,
is not very large. It is interesting to note that there
are cases when static decision making performs better than
dynamic. This is true because the decisions are based on
imprecise information. Both static and dynamic decision
making always make the same first decision, but dynamic

decision making Wwill reevaluate its decisions. It

100

9JuDwi0ji8d dAI|D|RY
00l 06 08 0. 09 0S5 OF Of

*L Asanb ao03j youeas aatrasney
-X3 Buisn uofjewuaoJur 930538348d
03 paaedwod g J43A0 UuOTjEBWIISd
988D 9sua0M Bulsn uofjewUOJUT
pPa3TWIT Jo douewsojsadad aaTleray

LL J4n9I4

ol
- 0¢
L 0¢
0 b

0§

09
- 0L
08

_06

L 00|

sasp) jo abojuadiagd

101

happened on several occasions that static performed better
by accident, and dynamic decision making reevaluated
itself out of the good decision into one which wasn't as

good.

4.3.13. Summary of results

To assign an overall rating to each of the combina-
tions of strategies presented in this section, a single
number was derived for each case. This was done by
averagiﬁg the cost for all test cases for each query.
This is a very crude performance measure since it assumes
that each test case is equally likely to occur. Figure 13
shows the average performance for queries 1 and 2. The
results indicate that exhaustive search performs con-
sistently better than limited search. They also show that
the, performance of exhaustive search is 30% better when
WC/2 estimation is used instead of WC estimation. Using
WC/2 and WC/10 estimation made 1limited search perform
worse. For most cases the best strategy was to split the
query 1into three two variable pieces (2-2-2). WC/2 and
WC/10 tended to make too small an estimate for three vari-
able pieces. As a result, limited search had a greater
tendency to perform 2-3 splitting. The results from query

2 are similar to query 1. 1In general WC/2 estimation is

better than WC estimation.

102

4IGWAN ISV

00l 06 08 oL 09 06 ov o¢ 0¢ Ol 0
L 1 1 1 | i i i | 1 | O
. A\ / \/\
A /A : 10002
jooo_v
5o
o O
< w
© —
<

J1WwDuAQ
0008
) 0000l
*youeas
9ATISNEBYXd pue uorjewilsa ased .000¢1
4SJ40M Y3 TM UOTJBWJIOJUT PIJTUIT
saunssy °| Laanb a0J Buijew
UOTsSTIOap OruweudAp pue Burjeuw L 000vI
UOTSTO3p dT3els J0J 3800 Kaanp .
2L 3unord - , ﬁooow_
: .00081

. 0000¢

103

Average performance (in bytes).

10 20 5
QUERY 1 Affemmaa #Bffmm = #ClHmmem- #D
exhaustive 1limited
perfect information 508 1086
worst case, dynamic 755 927
worst case/2, dynamic 537 1252
worst case/10, dynamic 532 1053
worst case, static 860 1070
worst case/2, static 545 1257
worst case/10, static 536 1058
100 200 2
QUERY 2 Affecmw- #Bffmm——— #Cffe===4#D
exhaustive limited
perfect information 551 1036
worst case, dynamic 995 1128
worst case/2, dynamic 746 1403
worst case/10, dynamic 740 1207
worst case, static 1017 1210
worst case/2, static 781 1420
worst case/10, static 774 1229
Figure 13

The average results for two other queries are shown
in figure 14. Query 3 differs from queries 1 and 2
because every variable is joined to two other wvariables.
Query U4 is similar to query 2 except that no domains have
their "unique bits" set. This is equivalent to knowing
only the relation cardinality (case 1 of section 3.9).
Therefore the estimated number of tuples for WC estimation

is always the product of the two cardinalities.

104

Average Performance (in bytes)

. 10 20 5
QUERY 3 AffeceefiBllecccee—— #CHemmm= #D
i #
i |

20

exhaustive limited
perfect information 631 1340
worst case, .dynamic . 1185 - 1183
worst case/2, dynamiec 721 2128
worst case/10, dynamic 721 1471
worst case, static 1259 1289
worst case/2, static 724 2128
worst case/10, static 724 1475

100 200 2

QUERY 4 Acecceeaa Bececaea Come- D

exhaustive limited
perfect information - 508 1086
worst case, dynamic 3581 4008
worst case/2, dynamic 3372 3541
worst case/10, dynamic 3307 3179
worst case/1000, dynamic 852 1240
worst case, static 3466 4008
worst case/2, static 3300 3549
worst case/10, static 3206 3319
worst case/1000, static 876 1290

Figure 14

Dynamic decision making performs somewhat better than
static decision making but the differences tended to be in
the 1% to 30% range. If the overhead for performing
dynamic decision making is low, then it is a good tactic
to use. If it is expensive to perform dynamic decision

making, then static decision making appears to perform

105

well. The costs of dynamic and static decision making are

examined in more detail in section 4.7.

4.4. Transmission of Physical Structure

Once the FP technique has chosen a fragment to be
transmitted, the choice remains as to what to transmit.
It may be possible to improve 1local processing by
transmitting additional information such as a relation's
index. Three choices will be analysed:

(1) moving a projected, sorted, duplicate free copy of
the fragment,

(2) moving the complete fragment together with its
primary structure (clustered index [GRIF79], isam
directory [IBM661], ﬁash division for modulo hash-
ing [KNUT731),

(3) moving the complete fragment together with a
secondary structure (non-clustered index [GRIF79],
secondary index {HELD?Sb]).

Our goal is to determine when any of these options will

minimize either the response time or communications

traffic.

The analysis will proceed as follows: First, cost
functions will be derived for performing equi-joins on
local, two variable queries. The joins will be computed
using tuple substitution [STON76], tuple substitution with

reformatting [STONT761, and sort-merge substitution

106

[BLAST76]. The two variable equi-join case was chosen for
analysis because it is the simplest case which illustrates
the effects of moving a relation's struecture. Later in
this section the solution for more general joins will be
discussed. The cost functions for equi-joins will then be
extended to include fragmented relations. The degree to
which the primary and secondary structures aid local pro-
cessing will then be determined. The cosg.functions will
be measured in disk pages accessed, as this reasonably

models the relative performance of the three choices.

4.4.1. Egui-join Cost F@nctions for Local Relations

Given two complete relations, R1 and R

join can be computed by iteratively substituting each

29 the equi-

tuple of either relation.1 Suppose R1 is chosen. A ‘tuple

is read from R1 and all corresponding references to R, are

1
replaced by their values. The remaining query references
only R2. In the most optimistic case, R2 has a primary
structure on the joining domains, and only one page has to
be read from R2 for each tuple in R1. The cost formula

measured in pages in this case would be

COST zes=Pq + 1 Cy

where

1 See chapter 1 for a discussion of tuple substitution,
sort-merge join and reformatting.

107

P

i number of pages occupied by Ri

¢

cardinality of Ri'
If the structure used to access R2 is a secondary struc-

ture, then the most optimistic cost estimate would be

COSTpages = P1 + 2 C1
based on one access to the secondary structure and one to
the corresponding primary data page. The formula is
optimistic. Both these formulas ignore the cost of

searching a directory when necessary.

If R2 has no useful structure, then the cost would be

COSTpages = P1 + C1P2
Since each page of R2 would have to be read for every
tuple in RT' Alternatively, R2 could be reformatted to a
hash structure on the joining domain. In that case the

total cost (again measured in pages) would be

COST = P1 + 1 C1 + F2

where

Fi = cost to reformat Ri to hash.

Assuming uniform distribution of keys, the cost to refor-

mat is approximately

To reformat a relation, the tuples are first sorted

according to their hash value and then inserted into the

108

relation. Since the tuples are in hash order, insertion
into the relation is a linear cost. The cost for sorting
depends on the amount of main memory available for sorting
and the number of files which can be merged simultane-
ously. If there is enough memory to sort B pages, then in
one pass through the relation, Pi pages will be sorted

into 2Pi / B pieces at a cost of

P.

i

B

The constant 2 represents the fact that each page must be
read and then written back. The Pi / B pieces can be

-
merged back together in an "n" way merge at a cost of:

Pi r
ZTT LOGn'P

1}
[

The INGRES system is capable of using n = 10. Since this

1
i

is a reasonable number, LOG will be used throughout.

10
The reformat cost is:
:rPi-E .=
2L_B-..a: LOG10LPi-i

For the purposes of simplifying the analysis, the reformat

cost will be simplified to

PiLOG10Pi
Since the above formula is greater than the actual cost,
it will favor moving a relation's structure. The total

cost for tuple substitution with reformatting is

109

COST = P, + 1 C, + P,LOG,,P

1 1 2 10" 2

The sort-merge join strategy [BLAS76] requires that
each relation be sorted on the joining domains. The join
can typically be computed by reading each relation once.

The cost for such a technique (assuming both relations are

already sorted) is

COST = P1 + P2

If only one relation (say R1) is already sorted on the

joining domain(s) then the cost is

COST

P1+P2+P2LOG1OP2

r A
P,+P,ILOG, P, + 1]

-
If both relations need to be sorted then the cost is

L.

P1+P2+P1LOG10P1+P2LOG1OP2

r] r |
P LLOG1OP1+1: + P2LLOG10P2+1-E

1 -l

COST

4.4.2. Equi-join Cost Function for Distributed Rela-

tions

The cost estimates will now be extended for distri-
buted relations. If the FP technique is applied to a two

variable query on R1 and R2, each site Sj will have:

110

JOINED WITH

At each processing site S., there is a 1logical, complete
relation referred to above as R2,'and a fragment of the
relation Rq. The physical relation R2 might be stored as
1, 2, or n separate relations. If the fragment Rg is the
original user relation, tshen the other fragments, Ré,ifj,
could be assembled into one relation or kept as separate
relations. If Rg is already a copy of the original Rg (as
would happen if a one variable restriction had previously
been performed on Rg), then the other fragments of R

2

could be appended directly to Rg or left as separate rela-

tions. If the physical structure of the relation frag-

ments is to be preserved, they must be left as n separate

relations. Access methods, by necessity, must place phy-
sical restrictions on the 1locations of tuples based on
their key values. The author knows of no way to combine
two relation fragments, maintained separately, and still
preserve the physical structure of ¢the individual frag-
ments. For this reason, if +the structure 1is to be

preserved, the Ri,iip, relations must be 1left in their

~~N

111

composite pieces.

The cost for tuple substitution assuming that the
composite relation 1is not the relation being substituted

is

COST = P1 + (C1)(n)
where
n = M2 = the number of fragments of R2.
This again assumes hashing on the joining vdomain. For
each tuple in R1, one page of each of the n }elation frag-
ments must be accessed. gThroughout this section whenever

- . .
assumptions are made, they will be made in favor of moving

a relation's structure.)

If the relation fragments R;,i=1,...,n were put into
one unstructured relation, then tuple substitution could

either sequentially scan R2 at a cost of
P1 + C1P2
or R2 could first be reformatted making the total cost

P1 + C1 + P2L0G10P2

Therefore the cost for tuple substitution is

COST=MIN{P, + C,P,, P, + C, + P,LOG,,P,!
=

1 12 1 1 10" 2}
The sort-merge join requires that both relations be
sorted on the joining domains. Thus, in general, the

fragments of Ré will have to be one sorted relation. The

112

cost for performing the sort-merge on a relation which is
composed of a collection of fragments is the same as for a

local relation.

The formulas developed in this section are summarized

below:

Summary of query processing formulas
P1+(n)C1

Tuple substitution for R,
R2 has useful primary structure

P1+2(n)C1

Tuple substitution for R,,
R2 has useful seéondary structure

P1+C1P2

Tuple substitution for R.,
R2 has no useful 'structure
P1+C1+P2LOG1OP2
Tuple substitution for R1,reformat R

2
P1+P2
Sort merge with both relations already sorted
P1+P2(LOG10P2+1)

Sort-merge with R1 already sorted

P1(L0G P1+1)+P2(LOG P,+1)

10 10" 2
Sort-merge with neither relation sorted

113

4.4.3. Effectiveness of Transmitting a Relation's Struc-

ct

ure

The formulas for estimating the costs of processing
two wvariable queries on distributed data bases have now
been identified; Note carefully that any assumptions have
been made in favor of moving a relatibn's structure. We
will now analyze the effectiveness of moving a relation's
structure; first assuming tuple substitution will be used,
and second assuming the sort-merge join will be used.
Formulas which show the cost effectiveness of moving a
relation's physical structure will be developed. Finally,
all combinations of the processing tactiecs will be com-

pared.

Observe that transmitting a projected, duplicate free
fragment minimizes communication traffic. Any domains
unnecessary for processing the query will have been elim-
inated. The removal of duplicates at an early stage helps
subsequent processing. This is clearly the best tactic

for minimizing communication traffiec.

Any tactic which sends more than the minimum amount
of data must improve local processing time by at least the

time required to transmit the extra data.

If tuple substitution is used as the join tactic, the
transmission of the fragment's structure is useful only if

the relation is not the one chosen for substitution. The

114

relation being substituted is read sequentially and its
structure, if any, is ignored. If the relation is the
"inner relation", i.e., the one not chosen for substitu-

tion, and the primary structure is transmitted, then the

cost formula is

COST = P1 + (C1)(n)

If the relation fragments R; are transmitted without
structure " and reformatting is done then the cost formula
is

COST = P1 + C1 + P2LOG1OP2
In practice, reformatting is nearly always effective
except in cases of small relations [YOUS78b]; thus it is

reasonable to assume reformatting takes place. Comparing

the two costs we have:

P1 +Cn<P. +C, +« P,LOG,.P

1 1 1 2 10" 2
P,LOG,,P
n<1 o+ 2 . 1072

1
Ignoring the constant 1, our final result is

P2L0G10P2

n < C

(4.16)
1

If the inequality holds, it may be cost effective to
transmit a primary structure (it must improve performance
by at least the added overhead of transmitting the struc-
ture). If the choice is to transmit a secondary struc-

ture, then the most optimistic assumptions would be that

115

P1 + 2C1n < P1

P2L0G1OP2

2C1

+ P_LOG,.P

+ G 2L0G 4P

n <

The case for the sort-merge join is entirely dif-
ferent. For such a tactic both relations must be sorted.
The relation fragments should be transmitted already
sorted so that they need oﬁly be merged at the processing
site. Thus for the sort-merge join tactic, the minimum
communication cost and the minimum local processing cost
will both occur by transmitting the projected, duplicate

free, sorted fragments.

We have shown that moving a relation's structure is
not an effective tactic for sort-merge. Theorem 5 will
prove that assuming a reasonable number of sites, and a
reasonable number of tuples per page, equation 4.16 is
never satisfied. This means that moving a relation's
structure is not an effective tactic. To prove this we
will make the assumption that moving the structure must be
cost effective on a majority of sites. This allows us to

reasonably assume that on each site,

nP, > P

1 2

where
R1 = the relation left fragmented
R2 is the composite relation at each site.

This is true because the FP technique will only choose R

116

to remain fragmented if it is larger than R Once the

>-
fragments of R2 have been moved, then each site that has

the complete copy of R2 has on the average 1/n of R1.

THEOREM 5:

Suppose R1 is left fragmented and R2 is the relation which
is duplicated on all processing sites. Given that R1 has
at least 10 tuples per page and that there are at leas§

two fragments of R2, then moving the structure of R, is

2
better than reformatting R, only if P. > 10°.
PROOF :
We must show that
P1 + C1n > P1 + C.l + P2LOG1OP2

Subtracting P.I from both sides gives:

C.n > C, + P2LOG P

1 10" 2
The number of tuples in R1 is equal to the number of

pages P1, times the number of tuples per page, which

we shall refer to as 'x':

C1 = XP1

Subtracting C1 from both sides and substituting for C1

gives

xP1n - xP, > PZLOG1OP

1 2

It is known that

17

nP1 < P2

otherwise the FP technique would not have chosen R. as

1

the relation to remain fragmented. Substitute nP1 for

P2. This substitution can only increase the right

hand side. Thus this substitution favors moving the

structure.

r A
xP1n - xP1 > nP1LOG1OLnPLE
Dividing by P, gives
~ A
Xn - x > nLOG10LnP[j
Dividing all terms by n gives:
X ~ =
X = 3 > LOG10LnP1J
Factoring out x from the 1left side and dividing
yields:
~ |
LOG10:nP1:

We were given that x, the number of tuples per page,

is 10. Since there are at least two fragments of R2,

the number of sites, n, must be 2 2. With two sites

we have
r b |
5 > LOG10§_2P1_E
102 > p

QED

118

It should be noted that n = 2 and 10 tuples per page
are both very 1low numbers and they can reasonably be
expected to be larger. If they are larger it makes moving
a relation's structure even less effective. Even so, R1
(and correspondingly R2) must be enormous, e.g. over
100,000 blocks or with 4096 bytes/block, 400 megabytes,
before moving the structure could be effective! At n = 2,
P1 would have to be over’108 pages! Even then, the addi-
tional data which must be transmitted to move the struc-

ture has not been considered. Doing so would only make it

less favorable to transmit a relation's structure.

It has now been demonstrated that moving the struc-
ture of a relation is very rarely (if ever) a cost-
effective tactic. To illustrate the meaning of theorem 5,
the various processing strategies are plotted in figure
15. The lines repfesent:

(1) Tuple substitute for Rys R, is unstructured

(2) Tuple substitute for R2, R

(3) Tuple substitute for Ry» Ry is well structured

(4) Tuple substitute for R2, R

is unstructured

is reforﬁatted to be
well structured

(5) Tuple substitute for Ry, R, is reformatted to be
well struétured

(6) Sort-merge join with R1 already sorted

(7) Sort-merge join with neither relation initially

119

sorted

(A) Tuple substitute for R1, transfer primary struc-
ture of R,, assume 5 sites in the network

(B) Tuple substitute for R1, move the primary struc-
ture along with R2, assume 10 sites in the network

(C) Tuple substitute for R1, move the primary strue-

ture along with R2, assume 50 sites in the network

" Figure 15 plots 'the various strategies for one sample
case. For figure 15, R1 is the relation left fragmented

and R2 is a composite of the n fragments of Rg.
number of pages of R1 is fixed at 1000. The number of

tuples per page is fixed at 100 for both R

The

1 and RZ‘ Note
carefully that R2 must be smaller in total bytes than n
times R1, since the relation left fragmented must always

be the largest relation (section 4.2). The limits where

| 1 1
R.'E = ERei

i
i
for cases A, B, and C are indicated by vertical lines.
From the graph it can be seen that moving the struc-
ture (choices A,B,C) is never better than reformatting R2
(choice 5). The result of Theorem 5 proved this.
In conclusion, moving the structure of a relation can
only be an effective strategy if there are very few tuples
per page in R1. Figure 15 shows that for a variety of

parameters, the best processing strategy is either 3, 4,

120

*paaou

2q j0ou prNoOM 2y yodTum uad3je
JTWF] Juasaudaa saull Teo134a)p

*ed00lL = 20 Pue (400l = 1D
‘0001 = 1d U3aTM satdajeugs Buts
-s900ud QUIUBIJTP Ol 40J 24 Jo
uotjounj B sSe 9S00 Burssaosoudd

Gl J4nOId

107

To) << "M N -
(,O1)

S39Vd NI 1S0J -

SIZE OF P2

(10"

121
5, 6, or 7.

4.5. Analysis of Join Encoding Techniques

When two relations are joined and the result
transmitted to other sites, network communication costs
may be lower if the join is transmitted in some encoded
form. The three transmission techniques which will Be
~evaluated are _

(1) transmitting the actual computed join,

(2) encoding the join as a tuple from relation Ri fol-
lowed by the tuples from Rj which are to be joined
to the tuples from R1,

(3) storing the tuples which belong to the join as two
separate relations, . transmitting the relations
separately, and recombining the relations at the
destination. |

The three techniques model, respectively, a 1:1 relation-

ship, a 1:n relationship, and an n:m relationship.

This analysis will be concerned only with minimizing
the amount of data which must be transmitted. Once tuples
reach their destination the three cases have different
impacts on 1local processing time. Case 1 requires no
extra local processing time since the join has already
been completely formed. Case 2 requires only a minimum of
extra processing since the tuples are transmitted in the-

order that makes it trivial to reconstruct the join. Case

122

3 can have a major impact on local processing time since

the join must be recomputed from scratch.

The analysis will consider only equi-joins. Exten-
sions to other joins will be considered later in this sec-
tion. For simplicity, if the join is on two or more
domains, then the term "joining domain" should be under-
stood as the concatenation of the domains. The three
encoding techniques will be evaluated assuming:
(1) the joining domains from both relations contain
only unique values,

(2) the joining domain from only 6ne relation contains
only unique values,

(3) the joining domains from both relations contain

duplicate values.

If the value; in each of the Jjoining domains are
unique, then a tuple can match at most one other tuple.
In such a situation, actually forming the join is always
the best tactic. This 1is because the other encodings
require additional information to be transmitted in order
to reconstruct the join. The joining domain itself does

not have to be saved unless it is referenced in a subse-

quent query.

If only one of the relations has unique values in its
joining domain, then each tuple from that relation can

match multiple tuples in the other relation. This 1is a

]

123

one-to-many relationship. Forming the join will generate
redundant information since domains in the first tuple
will be repeated for each of the tuples in the second
relation which satisfy the equality. Case 2 of the encod-
ing techniques will be the optimum since the tuple would
actually be stored in the non-redundant, one-to-many
fashion. Case 3 would not be as efficient as case 2
because the joining domains from both relations wogld have

A

to be saved in order to reconstruct the join.

If neither joining domain contains wunique values,
then an n-to-m relationship can exist. 1In such a situa-
tion, both cases 1 and 2 could have tuples stored redun=-
dantly but case 3 would not. Case 3, however, must store
the joining domain value twice, once in each output rela-
tion. Cases 1 and 2 store the joining domain once but
only if it is needed in subsequent queries. As an example

of this case, consider the query from section 3.5:

retrieve into temp (e.name, e.number, e.dname)
where

e.manager = d.manager

If encoding technique 1 were used, the join would be com-

puted and stored in one relation:
temp (e.name, e.number, e.dname)

If encoding technique 3 were used, the join would be com-

puted using two separate relations:

124

e' (e.name, e.number, e.manager)
d' (d.dname, d.manager)

Case 1 would be better than case 31if:

:] [}] {]

ytemp] < le'! + 14!

1 | [} | ! 1
In this example, the correct choice between cases 1 and 3
is not obvious since e' and d' must include the "manager"

domain but temp does not.

So far we have considered only equi-joins. If rela-
tions are not being joined with an equi-join it is the
same situation as the case where neither joining domain

was unique.

In summary, there are at least three encoding tech-
niques for transmitting joins, case 1 which models the
case of a 1:1 relationship, case 2 which models a 1:n
relationship, and case 3 which models an n:m relationship.
If the relationship between the two joining domains is
known in advance then the appropriate encoding technique
can be chosen with the exception of the n:m case. In the
n:m case, the decision depends on whether the joining

domains need to be included in the transmission.

4.6. Analysis of Shuffling Strategies

As was discussed in section 3.7, when performing
update queries several sites may have tuples which must be

moved to one or more different sites. Each processing

125

site has a relation holding result tuples from the query.
The tuples either have a domain that states which site
each tuple belongs to, or the distribution criterion has
to be used to determine which site the tuple belongs to.
Shuffling strategies determine how to move all tuples to
their destination site. We will examine which of two
"shuffle” strategies, centralized or decentralized, is
better regarding minimization of communication traffic, of
local processing time, and of the number of messages to be

transmitted.

The analysis will proceed as follows. There are K
sites which processed the very last piece of the query.
Mr is the number of sites where the original result rela-
tion resides. For simplicity, ﬁe will assume that all
messages are to remote sites. This means that even if the

master sends a message to itself, it is counted as a net-

work message.

Case (a): Centralized shuffling

The master begins by telling each of the K sites to
examine théir solution relation for tuples which are
already at the correct site, process those tuples and then
send the remaining tuples to the master site. This
requires one message on a broadcast network and K messages

on a site-to-site network. To return the results requires

126

K messages on either network. Next the master site sorts
the tuples, determining the destination for each tuple.
The tuples are then sent to their correct sites and the
sites told to process the updates. This requires Mr mes-
sages and another complete transmission of the result
tuples. Finally each site that received tuples ack-
nowledges completion of processing requiring Mr messages.
Therefore, a site-to-site model requires 2k + 2Mr messages
and a broadcast model requires K + 2Mr + 1 messages. The
size of the result is reduced by the number of tuples
already at their correct site. The remaining tuples are
transmitted twice. Each of the K sites must scan the

solution relation once to determine the tuples that belong

to it.

Case (b): Decentralized shuffling

Each site is told to begin processing, requiring one
message on a broadcast model and K messages on a site-to-
site model. Each site examines which tuples belong to it.
Next, every processing site K transmits to every site in

M the tuples that belong to them. This requires KMr

r ’
messages. Each site in Mr acknowledges completion of pro-

cessing requiring an additional Mr messages.

Both techniques take the shuffle process to the same

stage of completion. For recovery and consistency rea-

127

sons, a special synchronization (a two-phase commit
[(ESWA76, STON78]) will occur after the shuffle to actually
commit the updates. The shuffle's function is only to
distribute result tuples to their correct destinations.

Table 4.2 summarizes the two cases.

Centralized Decentralized
Messages 1T +K + 2M. T+ M+ KM
(broadcast)
Messages 2K + 2Mr K + kMr + Mr
(site-to-site)
Data local data processed, local data
movement remaining data moved processed,

: twice. remaining data

)

moved once.
Processing one query in M_. queries
parallel at K at K sites
sites, followed
by processing at
master site.

Table 4.2: Summary of Shuffle Strategies

Table 4.2 shows that the minimum data movement will
occur with decentralized control. The minimum number of
messages occurs WwWith centralized control. The 1least
amount of parallel processing occurs with centralized con-

trol.

The choice between centralized and decentralized
shuffling depends primarily on the communication network.
Decentralized control requires that each site be able to

concurrently open a channel to all other sites. Further-

128

more, decentralized control requires the communication
bandwidth to be larger than the sum of the local proces-
sors' ability to supply data; otherwise, the processing
sites will contend with each other for access to the net-
work. The trade-off between the two choices depends on
which will better utilize the network. If messages are
insignificant in cost and the network is fast enough to
minimize the possibility of contention, then decentralized

shuffling is the best choice. Otherwise, centralized

shuffling should be chosen.

4.7. Decision Making and;Estimation

The aspects of decision making and strategy selection
which are particular to distributed data bases are dis-
cussed in this section. Emphasis will be placed on
estimating result sizes, dynamic decision making, and the
movement of the result relation. We will begin with some
general cémments concerning the relationships between
these three concepts. Then we will discuss those aspects

which require particular attention on distributed data

bases.

The advantage of dynamic decision making, as demon-
strated in section 4.3, is the ability to use results from
the current processing step for choosing the next process-
ing step. This is particularly important if the estima-

tion procedure is crude. As the accuracy of estimation

U]

129

improves, dynamic decision making is no longer important
since with accurate estimates, both statiec and dynamic

decision making will generate the same strategy.

A similar situation exists for determining whether to
move the result relation. With limited estimation capa-
bility, there is no way to determine whether to move the
result relation. With accurate estimation the cost func-
tions for-the FP technique can takevinto account the addi--
tional costs associated with moving the result relation.
As mentioned in section 3.6, if the result relation is
moved, additional network communication will be necessary
to transmit the result tuples (or deletions) back to their
correct sites. If the result relation is not moved, then
there is no additional network communication. Without a
good estimate of how many tuples in the result relation
will be changed, there is no way to include the additional
cost resulting from moving the result relation. Accu-
rately determining the cost-effectiveness of moving the
result relation 1is beyond the scope of this thesis. It
is, however, an important problem and well worth further

investigation.

On a centralized data base, the "cost" of doing
dynamic verses static decision making is the extra pro-
cessing required at runtime to make the decisions. This

cost 1is, of course, highly dependent on the specific

130

implementation. There have been no studies made which
examine the cost of dynamic decision making during "decom-
position" or query strategy selection. Based on coding
the query processing strategies for INGRES, it is the
opinion of this author that the cost on a centralized data
base for dynamic decision making can be made small. On a
distributed data base, the cost for dynamic decision mak-
ing may be quite 1large due to the additional message
traffic. As an example, we repeat the query from section
3.8. Suppose every site has a fragment of the two rela-

tions, parts and supply, and the query is issued:

retrieve (p.pname)

where

p.pnum = s.pnum
and

s.snum = 475
and

s.shipdate = "79-07=01"

The processing strategy is to detach and execute the one
variable restriction on supply and then, using the FP
technique, process the join. The FP technique will move
either p or s to all sites. Using both dynamic and static
decision making, we will count the number of messages

needed to control the processing of the query.

Beginning with static decision making, suppose s 1is
chosen as the relation to be moved, leaving p as the rela-
tion left fragmented. In one message the master can issue

the set of commands to all N processing sites: restrict

]

131

supply, move the restriction of supply to all other sites,
when all fragments of supply have been received from the
other sites perform the join and return a "done"™ signal.
This execution strategy requires one message on a broad-

cast network and N messages on a site-to-site network.

Now consider the case of dynamic decision making.

The decision whether it is better to move p or s is not -

‘made until after the restriction on s is performed. The

master will issue the command to do the one variable res-
triction. This will require one message on a broadcast
network and N messages on a site-to-site network. The
processing sites then send back the sizes of the res-
tricted supply relation, requiring N messages on either
network. Now the master chooses p or s to be moved and
issues the command to move either p or s, perform the
join, and send a "done" when complete. This requires one

message on a broadcast network and N messages on a site-

to-site network.

For this example, there is a major difference in the

number of messages between the two cases:

broadcast site-to-site

static 1 N

dynamic 2 + N 3N

132

Conceivably thé best choice was to move p and not s.
In that case the estimate of the result size of the res-
triction on s was incorrect (possibly the data in s did
not fit the estimation model.) Potentially, the savings
resulting from moving p instead of s were greater than the
overhead of using dynamic decision making. This strongly
depended on whether messages on the actual communication
network were a significant cost. The choice between
dynamic and static decision making is strongly influenced
by the tremendous additional network overhead that results
from using dynamic decision making. Ultimately one must
consider the cost to send messages and the expected accu-

racy of the estimation procedure.

4.8. Comparison to Other Proposed Algorithms

This section compares the tactics proposed in this
thesis to tactics proposed by others. Wong has suggested
an algorithm which is used by SDD-1 [ROTH77al. The algo-
rithm is described in EWONG77]. Hevner and Yao have pro-
posed an algorithm which 1is based on Wong's work

[HEVN78b].

The comparison will proceed as follows. Both Wong's
and Hevner's algorithms will be described. Since Hevner's
algorithm encompasses the tactics suggested by Wong, only
Hevner's algorithm will be compared to the tactics dis-

cussed in this thesis. Finally the salient differences

/3

133

between the two approaches will be discussed.

Wong's algorithm [WONG77] is based on the site-to-
site network model and does not consider a broadcast model
at all. The sole optimization criterion is minimizing the
number of bytes transmitted. Only retrieval 1is con-
sidered. Moreover, it is assumed that relations do not
span more than one site. It is not clear how the algo-
rithm will be extended to éllow multiplé fragments of a

relation on multiple sites.

Wong's algorithm begins by performing all possible
local processing. This includes all one variable restric-
tions, and all other 1local processing including joins
between two relations which are completely contained at

the same site.

Next an initial sequence of moves is determined that
will move all remaining fragments to one site for process-
ing. The site chosen is the one with the most data.
After processing, the results are moved to the final des-
tination site. Wong represents the sequence of moves by
nodes in a tree. If the query involves less than three
relations, then the optimization is complete. If there
are three or more relations then a "node splitting" tactic
is used to break the data movement into pieces. The node
splitting tactic 1is applied recursively until no further

splitting is possible.

134

If splitting a node into two pieces results in an
immediate reduction in network communication costs then
the split is always included in the processing strategy.

Once a node is split, it is never recombined.

When moving relations, fragments are not combined.
If a Jjoin 1is performed the join-restrict technique dis-
cussed in sections 3.5 and 4.5 is employed. When a join
is executed, all relations are restricted by the join and
later transmitted as separate relations. When all rela-
tions reach the final processing site, they are finally

Joined into the one result relation.

Hevner's algorithm is based on a network model simi-
lar to Wong's. A site-to-site model is the only one con-
sidered. Furthermore, it is assumed that 'parallel
transmissions are possible, that is, any set of sites can
concurrently communicate with each other. This includes
one .site sending to two different sites and one site
receiving from two sending sites. Two different optimiza-
tions are considered: (1) minimum transmission cost and
(2) minimum network delay. Transmission cost is assumed
to be a linear function of the number of bytes transmit-
ted. The two criteria differ if two or more transmissions
occur in parallel. The minimum delay will always be less
than or equal to the minimum transmission cost. The algo-

rithm ignores any 1local processing costs and it assumes

(X
A

135

that relations cannot span more than one site.

The algorithm begins by doing all the local process-
ing that can be done - exactly like Wong's algorithm.
Next an initial strategy (called a schedule by Hevner &
Yao) is set up to move all relations to the site where the
result is required, again exactly as in Wong's algorithm.
An "improved exhaustive search" 1looks for a st?ategy
better than the initial strategy. It differs from Wong's
node splitting tactic in that more combinations of moves
are considered. This is a fundamental difference between
Wong's and Hevner's algorithms. For computational effi-
ciency, the search space is limited by first ordering the
relations from smallest to largest (measured by their size
in bytes). Then the search begins by considering moving
the smallest relation to one or more of the other rela-
tions. The authors claim that by ordering the relations

according to size and then examining the possible moves,

"data transmissions are quickly eliminated from
consideration if they cannot possibly be part of a
minimum time solution." [HEVN78b]

When minimizing total network traffic, Hevner exam-
ines more alternatives than Wong. As a result, Hevner
will find an equal or better solution than Wong. This 1is
because Wong's algorithm 1looks only at splitting a

sequence of moves in two and -once the decision to split is

made, it 1is never rescinded. Wong's node splitting

136

algorithm is a "greedy" algorithm that optimizes for the
current processing step without regard to "global" optimi-
zation. Hevner claims [HEVN78b] that he will find solu-
tions that Wong will not find when optimizing for minimum
network delay. This claim is reasonable since his model
of a site-to-site .network allows parallel transmissions

and Wong chooses to minimize only total transmission cost.

In summary, it is sufficient to compare our algorithm

to Hevner's since it encompasses Wong's algorithm.

4.8.1. Comparison to Algorithm G

We will now compare the tactics presented in this
thesis with those of Hevner & Yao's "Algorithm G
[HEVN78b]. First, the processing and network models the
two propoéal use are compared. It is shown that Algorithm
G considers only a subset of the issues that this thesis
considers. Next portions of the two sets of algorithms
are compared assuming the site-to-site model and assuming

one relation per site.

The network models of algorithm G and this thesis
differ greatly. Algorithm G considers only a site-to-site
model. Thus we cannot compare special tactics and ana-
lyses ‘which are used on broadcast networks. The site-to-
site models use the same cost formula but Hevner assumes

that sites can communicate in parallel. The cost to com-

e

137

municate, measured in bytes, will be identical in both
algorithms but the time required to communicate will be
different. To the -extent that parallel communication
exists 1in the actual network and can be taken advantage

of, this is an important distinction.

Algorithm G assumes that local processing costs are
insignificant compared to network communication costs. It
makes no attempt to reduce the demands on local process-
ing. This is most apparent in the use of the join-
restrict technique. Explicitly integrated into algorithm
G is the fact that the join-restrict technique will always
be employed and that two different relations will never be
joined for transmission. Recomputing the join at the des-
tination requires a substantial amount of 1local process-
ing. As shown in section 4.5, the join-restrict technique
is not always optimal for minimizing communication costs.
This thesis treats the join-restrict technique indepen-
dently from the other processing tactics and uses it only

when it is optimal.

Algorithm G does not consider relations spanning more
than one site. It is not at all clear how to extend the
cost formula to include multiple site relations. It was
shown in section 4.2 that for relations spanning multiple
sites, the choice of processing sites, K, is critical for

minimizing the communication cost and for max imizing

138

parallelism. Those trade-offs cannot be compared since

Algorithm G does not consider fragmented relations.

Since Algorithm G uses exhaustive search for deter=-
mining its strategies, it can find better solutions than
the query splitt;ng technique using limited search of this
thesis but it will find the same solutions as the query
splitting technique with exhaustive search presented in

section 4.3.

An example will be used to illustrate the important
differences between the two algorithms. For comparison we
must restrict ourselves to one relation per site. For
convenience, we will name the sites with the same name as
the variable which resides on that site. Consider the

query:

retrieve (p.pname, s.sname, j.jname)
where
p.pnum = s.pnum
and
s.snum = j.snum

Assume that minimum network delay is the sole objective.
Depending on the transmission cost estimates, Hevner's
algorithm might do the following:

(1) Simultaneously move S to J and S to P

(2) Run two separate queries on sites P and J. On site P:

retrieve into p' and s'(p.pname, p.pnum,
sS.snum,s.sname,Ss.pnum)
where p.pnum = s.pnum

.
*

139

and site J:

retrieve into j'(j.snum, j.jname)
where j.snum = s.snum

(3) Move J' to P' and run the final query

retrieve (p'.pname, s'.sname, j'.jname)
where ,
p'.pnum = s'.pnum
and
s'.snum = j'.snum

The query splitting tactic would:
(1) Move S to J

(2) Execute the query:

retrieve into J'(j.jname, s.sname, s.pnum)
where j.snum = s.snum

(3) Move J' to P and run the final query:

retrieve (p.pname, j'.sname, j'.jname)
where
p'.pnum = j'.pnum

The difference between the two strategies is that in
step 1, Algorithm G moves S to two different sites in
parallel. Since this is done in parallel, the delay time
is the same as moving S to only one site. Then in step 3,
J' is moved to the site where P 1is 1located. Using our
technique, J' would be necessarily larger since it must
include part of the relation S. For algdrithm G, S was

moved in Step 1. Algorithm G would have a shortened

140

network dela& and would be faster by the time required to
transmit the difference between the sizes of the two J's

in step 3.

If minimizing total communications was the optimiza-
tion criterion, then our technique would remain the same
but Algorithm G would:

(1) Move S to J.

(2) Execute the query:

retrieve into J' and S'(j.jname,j.snum,
S.sname,s.snum,s.pnum)
where s.snum = j.snum

(3) Move J' and S' to P

Both algorithms would perform the same steps except for
deciding if J' is a composite of J and S or J' and S' are
transmitted separately. Our algorithm would determine the
most beneficial way to encode and transmit the join.
Hevner's algorithm would always transmit J' and S' as two
separate fragments and recompute the join. Thus depending
on the specific cost estimates of the query, both algo-
rithms would perform the same or the algorithms from this

thesis would do better if chooses a more efficient encod-

ing of J°'.

This example illustrates that the primary difference
between the two techniques is the decision to trade extra

network communications traffic in exchange for less

W

141

network delay. This would always be cost effective if
local processing time were insignificant compared with
communications time, and if parallel transmissions were

possible on the communication's network.

Distributed processing algorithms are also strongly
influenced by one's model of a typical data base design.
Does one views relations as residing completely at one
site or spanning maﬁy sites? Hevner's view leans strongi§
towards one relation residing completely at one site while
our view is one of relations fragmented across most sites.
If one assumes complete relations on a site, it becomes
very important to 1look for subqueries that can be pro-
cessed in parallel; otherwise, computer sites would sit
idle. If one assumes relations are fragmented across most
sites, then most sites will participate as processing

sites in all queries.

CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

5.1. Conclusions

This thesis has presented a general framework for
processing queries on distributed, relational data bases.
The distributed environment was modeled on two different
communication networks, broadcast (modeled after the ETH-
ERNET), and site-to-site (modeled after the ARPANET).
Each of the tactics presented in this thesis were analyzed

for both network models.

A relational model was presented which allowed rela-
tions to be fragmented across any number of processing
sites and. a distribution criterion was used to distinguish

which site a tuple belongs to.

Both communication network delay and local processing
delay were considered for optimization ecriterion. If
minimization of response time is the primary goal, then it
was shown that both network delay and local processing

delay must be taken into account.

The Fragmented Processing (FP) technique can be wused
to process any query on a distributed data base. It can
be used to minimize network communications and to maximize

parallelism in processing. The increased parallelism is

142

143

important in reducing the time delay for local processing.
It was shown that a high degree of parallelism is possible

in particular on a broadcast network.

The query splitting tactic can be used to reduce net-
work communications on queries involving three or more
relations. It can use either a limited or an exhaustive
search for deciding how to break a query apart. A simula=-
tion program was used' to compare ‘limited and’ exhaustive
search. It was shown that exhaustive search does signifi-
cantly better than limited search in nearly all cases.
The simulation program was also used to compare static and
dynamic decision making. It was shown that dynamic deci-
sion making performs noticeably better than static dec?-
sion making. The simulation was further used to compare
perfect information with a simple estimation procedure.
The results indicated that there are many cases where a

simple estimation can perform very well.

Several join encoding tactics were presented. The
join encodings provide a way to trade decreased communica-
tion costs for increased 1local processing costs. The
method wused to encode a join for transmission is divorced

from any of the other tactical decisions.

Two shuffling strategies were analyzed. The primary
trade-offs were shown to be the bandwidth of the network

and the cost to send a message.

144

It was shown that the transmissio& of a relation
fragment's physical structure is rarely cost effective.
This greatly simplifies the bookkeeping required in dis-
tributed systems. Furthermore, it simplifies estimating
the cost to move a relation fragment since no decision has

to be made concerning whether to move the relation's phy=-

sical structure(s).

Finally, the relationship of query size estimation,
dynamic decision making, and movement of the result rela-
tion were analyzed with respect to the distributed
environment. On a network where the cost to send a mes-
sage is very small, dyn;;ic decision making should be
used. On a network where the message cost is high, static

decision making should be used and the accuracy of size

estimation is much more important.

5.2. Future Research

There are numerous future research areas in the field
of distributed data bases. We will outline a few exten-

sions of this thesis which merit further research.

To begin with, there are cases for distribution ecri-
teria which specify multiple relations. As an example
consider two relations with identical distribution ecri-
teria. 1If the joining domains occured in the distribution

criterion, then a very intelligent theorem prover might be

R

145

able to discover that the join can be completely solved
locally on each site. The job of the theorem prover could
be simplified by allowing multiple relations to be
included in one distribution criterion. The qualification
of such a distribution criterion would apply to all the

identified relations.

There is a close relationship between the function of
the distribution criterion and access method structures.
The distribution criterion serves as a coarse, high level
index for the relation. Further research might develop a
unified concept of pgysical structure and distribution
criterion. Such a generalization could allow multiple
fragments of a relation on one site. 1In the same way dis-
tribution criteria restrict the number of sites involved
in a query, they can choose among several fragments of a
relation on one site. This could help limit the search
time and also improve concurrency control if primary frag-

ment locking [RIES78)] is being used.

The network model could be expanded to include a
heterogeneous mixture of broadcast and site-to-site
models. For example, such a situation makes sense in an
environment where all the sites in one building are con-
nected with a broadcast network and all the buildings are

connected in a site-to-site network.

146

Finally, a great deal could be learned by implement-
ing a distributed system. A preliminary system has been
implemented at U.C. Berkeley and is being extended. It
would be invaluable to measure the true performance bene-

fits realized by parallel query processing.

[BAYE70]

[BERN79]

[BLAS76]

[CHAMT6]

(CHU69]

[CHU76]

REFERENCES

Bayer, R. & McCreight, E., "Organization and
Maintenance of Large Ordered 1Indices", Proc.
1970 ACM-SIGFIDET Workshop on Data Description,

Access, and Control, Houston, Texas, Nov. 1970.

Bernstein, P.A. & Chiu, D.W., "Using Semi-joins
to solve Relational Queries", Unpublished paper,

Harvard University, 1979.

Blasgen, M.W. & Eswaran; K.P., "On the Evalua-
tion of Queries in a Relational Data Base Sys-

tem", IBM Research Report RJ1745, April, 1976.

Chamberlin, D.D.; "Relational Data Base Manage-
ment: A Survey," Computing Survey, Vol. 8, no.

1, March 1976.

Chu, W.W.; "Optimal File Allocation in a Multi-
ple Computer System", IEEE Transactions on Com-

puters, vol. C-18, no. 10 October 1969.

Chu, Wesley W.; "Performance of File Directory
Systems for Data Bases in Star and Distributed

Networks," AFIPS Conference Proceedings, vol.

147

[coDDT70]

[DALAT8]

[DATETT]

[(DUHN78]

[(ELLI77]

[EPST78]

148

45, 1976.

Codd, E.F.; "A Relational Model of Data for
Large Shared Data Banks," CACM vol. 13, no. 6,
June 1970. '

Dalal, Y.K. & Metcalfe, R.M., "Reverse Path For-
warding of Broadcast Packets", Communications of

the ACM, Volume 21, Number 12, December, 1978.

Date, C.J., "An Introduction to Database Sys-

tems", Second Edition, Addison-Wesley, 1977.

Duhne, R.A. & Severance, D.G., "Selection of an
Efficient Combination of Data Files for a Mul-
tiuser Database", Proceedings AFIPS National

Computer Conference, 1978.

Ellis, C.A.; "A Robust Algorithm for \Updating
Duplicate Databases", 1977 Berkeley Workshop on
Distributed Data Management and Computer Net-

works, Lawrence Berkeley Laboratory, May 1977.

Epstein, R.; Stonebraker, M.; Wong, E; "Distri-
buted Query Processing in a Relational Data Base
System"”, SIGMOD Conference Proceedings, May,
1978.

PR

(ESWAT76]

[GRIF79]

[(HAMMT76]

[HAWT79]

[(HELD75a]

[(HELDT75b]

149

Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger,
L.I.; "On the Notions of Consistency and Predi-
cate Locks in a Database System", CACM vol. 19,

no. 11, November, 1976.

Griffiths Selinger, P. et. all., "Access Path
Selection in a Relational Data Base Management
System", IBM Research Laboratory, San Jose, Cal-

ifornia, RJ2429(33240), January, 1979.

Hammer, M. & Chan, A., "Index Selection in a
Self-Adaptive Data Base Management System",
Proc. ACM SIGMOD, 1976.

Hawthorn, P. B., "Evaluation and Enhancement of
the Performance of Relational Database Manage-
ment Systems", Ph.D. Disertation, University of

California, Berkeley, California, 1979.

Held, G.D., M.R. Stonebraker, and E. Wong;
"INGRES - A Relational Data Base System," Proc.
NCC vol. 44, 1975.

Held, G.D., "Storage Structures for Relational
Data Base Management Systems", Ph.D. Disserta-

tion, University of California, Berkeley, ERL

[HEVNT78a]

[HEVN78b]

[IBM66]

[KERN78]

[KNUT73]

[LAMP761

150

Memo No. ERL-M533, 1975.

Hevner, A. & Yao, S.B., "Query Processing on a
Distributed Data Base", Proceedings of the Third
Berkeley Workshop on Distributed Data Management
and Computer Networks, LBL-7953 UC-32, Lawrence
Berkeley Laboratory, Berkeley, California,

August 1978.

Hevnef, A. & Yao, S.B., "Query Processing in a
Distributed System", Dept. of Computer Science,
Purdue Universigpy, August, 1978.

IBM Corporation, "0S ISAM Logic", IBM, White

Kernighan, B.W. & Ritchie, D.M., "The C Program-
ming Language", Prentice~Hall 1Inc., Englewood

Cliffs, New Jersey, 1978.

Knuth, D., "The Art Of Computer Programming",
Vol. 3, Addison-Wesley, Reading, Mass., 1973.

Lamport, L.; "Time, Clocks and Ordering of
Events in a Distributed System," Mass. Computer

Associates Report CA-7603-2911, March 1976.

)

[(LBL76]

(LBL771]

[(LBL78]

[LEVIT75]

[METC761]

[RIEST78]

151

Proceedings of the First Berkeley Workshop on
Distributed Data Management and Computer Net-

works, May 1976, Berkeley, California.

Proceedings of the Second Berkeley Workshop on
Distributed Data Management and Computer Net-

works, May 1977, Berkeley, California.

Proceedings of the Third Berkeley Workshop on
Distributed Data Management and Computer Net-

works, August, 1978, San Francisco, California.

Levin, K.D. & Morgan, H.L., "Optimizing Distri-
buted Databases - A Framework for Research",

Proe. NCC vol. 44, 1975.

Metcalf, R. M. and D. R. Boggs, "Ethernet: Dis-
tributed Packet Switching for Local Computer
Networks," CACM, vol. 19, no. 7, July 1976.

Ries, D.; Epstein, R,. "Evaluation of Distribu-
tion Criteria for Distributed Data Base Sys-
tems", University of California, Electronics
Research Laboratory, UCB/ERL M78/22, May 12,
1978.

[RIEST79]

[ROBET70]

[ROSE77]

(ROTHT7al

[ROTHT77b]

152

Ries, D.R., "The Effects of Concurrency Control
on Data Base Management System Performance",
Ph.D. Disertation, University of California,
Electronics Research Laboratory, UCB/ERL M79/20,
April, 1979.

Roberts, L. and Wessler, B., "Computer Network
Development to Achieve Resource Sharing," Proc.

SJCC, 1970, AFIPS Press.

Rosenkrantz, D.J., Sterns, R.E., Lewis, P.M.; "A
system Level ngcurrency Control for Distributed
Database Systems™, 1977 Berkeley Workshop on
Distributed Data Management and Commputer Net-

works, Lawrence Berkeley Laboratory, May 1977.

Rothnie, J.B. and N. Goodman; "An Overview of
the Preliminary Design of SDD-1: A System for
Distributed Databases," 1977 Berkeley Workshop
on Distributed Data Management and Computer Net-

works, Lawrence Berkeley Laboratory, May 1977.

Rothnie, J.B. and N. Goodman; "A Survey of
Research and Development in Distributed Database
Management", Proceedings Very Large Data Bases,

October, 1977

4

[ROWET9]

[STONT5]

[STONT6]

[STONTT]

[STONT8]

153

Rowe, L.A. & Birman, K.P., "Network Support for
a Distributed Data Base System", Proceedings of
the Fourth Berkeley Workshop on Distributed Data
Management and Computer Networks, August, 1979,

San Francisco, California. (To appear).

Stonebraker, M.R.; "Implementation of Integrity
Constraints and Views by Query Modification",
University of California, Electronics Research

Laboratory, Memorandum ERL-M514, March 1975.

Stonebraker, M.R., E. Wong, P. Kreps and G.D.
Held; "Design and Implementation of INGRES," ACM
Trans. Database Systems, vol. 1, no. 3, Sept.

1976.

Stonebraker; M.R. and E. Neuhold; "A Distributed
Database Version of INGRES," 1977 Berkeley
Workshop on Distributed Data Management and Com-
puter Networks, Lawrence Berkeley Laboratory,

May 1977.

Stonebraker, M.R.; "Concurrency Control and Con-
sistency of Multiple Copies of Data in Distri-
buted INGRES", University of California, Elec-

tronics Research Laboratory,

[STON79]

[THOM75]

[WONG761]

[WONGT7T7]

(YAOT7T]

[YOUST8al

154

Stonebraker, M.R.; "MUFFIN: A Distributed Data-
base Machine", University of California, Elec-
tronics Research Laboratory, UCB/ERL MT79/28,
May, 1979.

Thomas, R.H.; "A Solution to the Update Problem
for Multiple Copy Databases Which Use Distri-
buted Control," BBN Report 3340, Bolt Beranek

and Newman Inc., Cambridge, Mass., July 1975.

Wong, E. and K. Youssefi; "Decomposition - A
Strategy for Query Processing," ACM Trans.

Database Systems, vol. 1, no. 3, Sept. 1976.

Wong, E.; "Retrieving Dispersed Data from SDD-1:
A System for Distributed Databases," 1977 Berke-
ley Workshop on Distributed Data Management and
Computer Networks, Lawrence Berkeley Laboratory,

May 1977.

Yao, S.B., "An Attribute Based Model for Data-
base Access Cost Analysis", ACM Transactions on

Database Systems, Vol 2, No. 1, March 1977.

Youssefi, K. & Wong, E., "Query Processing in a
Relational Data Base Management System", Elec-

tronics Research Laboratory, UCB/ERL M78/17,

. @

PRt

[YOUST8b]

155

University of California, Berkeley, California,

March, 1978.

Youssefi, K.; "Query Processing for a Relational
Database System," Ph.D Dissertation, University
of California, Berkeley, 1978, Electronics
Research Laboratory, Memorandum UCB/ERL M78/3,
January 6, 1978.

	Copyright notice 1980
	ERL-80-9 (1 of 2)
	ERL-80-9 (2 of 2)

