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ABSTRACT

The principle goal of this thesis is to develop and

analyze algorithms for processing queries on distributed,

relational data bases. Specifically, this thesis

addresses the question: how does one determine an effi

cient sequence of processing steps for a query written in

a non-procedural, high level query language?

A distributed data base has relations that are frag

mented across one or more computer sites. The computer

sites are connected by a communications network. This

thesis considers two types of networks: site-to-site net

works such as the ARPANET, and broadcast networks such as

the ETHERNET.

There are two fundamental issues present in distri

buted data bases that are not found in centralized data

bases. One is the communications network. As the time
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required to communicate between computer sites increases,

it becomes more important to minimize the amount of infor

mation transmitted. Secondly, total processing time can

be reduced by distributing the processing to many computer

sites. This increases the amount of work that can be per

formed in parallel. These two goals, minimizing communi

cations and maximizing parallelism sometimes conflict;

that is, increasing communication costs can increase

parallelism. Each of the tactics presented in this thesis

are examined with respect to minimizing both the amount of

network communication and total processing time.

Two fundamental tactics are developed: (1) the Frag

mented Processing technique (FP technique) which is a gen

eral strategy for processing any query, and (2) the Query

Splitting technique which divides a query into a sequence

of subqueries. Each subquery is processed by the FP tech

nique. The two techniques raise many important questions

including: (1) How well do "locally optimal" or "greedy"

algorithms compare to exhaustively examining every possi

ble strategy? (2) How much information should be kept

about each relation? (3) What method should be used for

estimating the number of tuples that will qualify from a

query? (4) What are the trade-offs between choosing a

processing strategy once at compile time (static decision

making) compared with continually reevaluating the pro-



cessing strategy during execution time (dynamic decision

making)? (5) What role does a relation's physical struc

ture play in choosing strategies?

The processing tactics are studied using both analyt

ical techniques and a simulation program. The simulation

program computes the performance of the algorithms under a

variety of assumptions.

Among the conclusions are (1) "greedy" algorithms

perform poorly, (2) dynamic decision making is slightly

better that static decision making but potentially has a

very large overhead, (3) The physical structure of a rela

tion fragment is not useful if the fragment is moved, and

(4) processing strategies are very sensitive to the accu

racy of estimation.

The results of this thesis provide a framework for

designing a distributed data base management system, and

help to identify the many interrelated decisions that must

be made when deciding how to process a query on a distri

buted data base.
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CHAPTER 1

INTRODUCTION

J_.J_. Distributed Data Bases

This thesis describes a variety of techniques to pro

cess queries, written in a high level query language, on

distributed, relational data bases. The word "query" will

refer to both retrieval and updates. By "distributed", it

is meant that portions of the data base may reside on dif

ferent computer systems irfi a manner that is transparent to

the user of the data base system.

J_.2. Motivations

Recently, considerable attention has been paid to

distributed data bases [LBL76, LBL77, LBL78]. One of the

advantages of distributed data bases is sharing of data

across different sites. For example, some computer appli

cations are by their very nature geographically distri

buted. Consider a bank with many branches, or a manufac

turer with many similar plants. Some personnel are con

cerned only with data that directly relates to their loca

tion; others are concerned with the data base as a whole.

Distributed data bases allow data to be moved closer to

the people most likely to need it, and allow for distri

buted administration of the data base.
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Another advantage of distributed data bases is

increased reliability due to redundancy. Failure of a

single site need not affect people performing interactions

local to other sites.

Still another advantage is incremental growth. A new

site can be added to the system as necessary. The comput

ing capacity at a site can be increased as required. It

is even possible to split a site into two sites to accom

modate growth.

Distributed data bases have the potential for

increased speed. One large data base can be divided into

N pieces on N computer systems. If the data base can be

designed correctly, then all N systems can cooperate in

solving a query in parallel. An example of such a system

can be found in [STON79].

J_«3. Relational Distributed Data Bases

We will only consider data bases where each site is

organized using the relational [C0DD70] model of data. A

relation is a collection of records (called tuples in

relational systems). For example, the user's view of

employee data might be expressed in a relation called

"employee:"



number 1name

157!Jones, Tim
1110iSmith, Paul

35!Evans, Michael
1291 Thomas, Tom

4901IBailey, Chas M

isalary[manager

120001
6000 1
5000!
10000 1

8377!

199

33
32

199
32

A user or an application program will query the data

base using a non-procedural query language such as QUEL

[HELD75a]. For example, the user might ask for the names

of all personnel who earn more than $10,000 and are

managed by either manager number 199 or 33. This query

can be expressed in QUEL as:

range of e is employee
retrieve (e.name)

where

e.salary > 10000
and

(e.manager = 199 or e.manager = 33)

The query illustrates two common operations performed on

relations: restriction and projection. Their meaning can

easily be explained using the above example. The state

ment

e.salary > 10000

restricts the employee relation to those employees whose

salary is greater than 10000. The statement

retrieve (e.name)

projects the "name" domain out of the employee relation.

To project means to select those domains of interest. The



list of domains being retrieved or being changed is also

referred to as the target list. The terms "restriction"

and "projection" will be used throughout this work. A

formal definition of these two operations can be found in

[DATE77].

Another example query would be to give a ten percent

raise to all people who work for manager 199.

range of e is employee
replace e(salary = 1.1 * e.salary)

where

e.manager = 199

To the user entering the two queries above, the employee

relation appears as if it were one, single relation. In a

distributed data base environment, the employee relation

might actually be fragmented into several employee rela

tions located at different sites. For example, if the

data base was distributed at three locations, Berkeley,

Tahiti, and Paris, then the distribution of the employee

relation tuples might be

number!name

157!Jones, Tim
1110iSmith, Paul

35!Evans, Michael
129!Thomas, Tom

4901iBailey, Chas M,

salary!manager

12000!
6000!
5000!

10000!

8377!

199
33
32

199
32

location

Tahiti

Berkeley
Paris

Tahiti

Paris

To the user entering the two queries, the physical loca

tion of the tuples is transparent. While there may be



other models that merit consideration this view of the

data base is the only one that will be considered for this

thesis.

2.4.• Problems in Processing Queries

Finding an efficient sequence of local processing and

data movement is the key to processing a query on a dis

tributed data base. In the preceding examples, the prob

lem was trivial because the query involved only one rela

tion. For example, the retrieval could be processed as

follows: The sites where data are stored are determined

and the query is broadcast to those sites. Next, each

site executes the query in parallel and transmits the

results back to the site where the query originated. As

data arrives at the originating site, it is accumulated

and returned to the user.

Processing a query is very complex when multiple

relations are involved and each relation is split up into

fragments and stored on different sites. One obvious

solution is to move all data to one site and process the

query using centralized processing techniques. It is

unlikely that this tactic would be optimal because it

would tend to move the maximum amount of data and data

transmission across a network can be slow. Furthermore,

once all the data is assembled processing time can be

lengthy. It is crucial to reduce the amount of data that



must be transmitted and to involve as many of the computer

sites as possible in order to process the query with

greater parallelism. This thesis explores techniques that

will minimize data communications and increase parallel

processing. It will also examine the trade-offs between

the time required to communicate across a network and the

"local" processing time where local processing time is

defined as the time required by a site to process the

query once all the data is assembled. Sometimes an

increase in communication time can result in a significant

decrease in the local processing time and vice-versa.

Familiarity with the techniques used on centralized

data bases is important as background for understanding

processing on distributed data bases. We will briefly

describe the techniques used in centralized data bases.

J..4.K Centralized Data Bases

Data base management systems utilize access methods

to reduce the amount of data that must be examined to pro

cess a query on a relation. (For an introduction to

access methods see [DATE77].) An access method takes a key %

(say the "name" field in the employee relation) and deter

mines from the key the physical location of the tuples in

the relation. If one wishes to minimize the processing

time for performing a local query, then the distributed

query processing tactics must consider access methods when



choosing strategies. Access methods are roughly divided

into "hashing" techniques and "indexing" techniques.

Hashing [KNUT731 works by taking the key value, applying a

randomizing function to it, and generating an address

where the tuple physically belongs on secondary storage.

Index techniques [KNUT73] determine where the tuple

belongs by looking up the key in an index. For a thorough

treatment of the use and implementation of access methods

for relational systems see [HELD75b]. This thesis will

consider hashing [HELD75b], and two indexing techniques

ISAM [IBM66], and B-tr^ees [BAYE70]. Throughout this

thesis, we shall call a relation well structured if it has

a useful access path for the specific query under con

sideration; otherwise, it will be called unstructured.

Processing queries on centralized data bases has been

studied at length. A study of various processing tech

niques can be found in [YOUS78a, BLAS76, GRIF79]. One of

the most difficult problems is that of computing a "join"

between two. or more relations. A join is one of the three

common operations performed on relations. The other two,

projection and restriction, have already been introduced.

Two relations with a common domain can be joined on that

domain. The result is a new relation in which each tuple

consists of a tuple from the first relation and the second

relation which satisfy the "join predicate". For example,
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consider a query expressed in QUEL involving the employee

relation and department relations:

employee(number , name, salary, manager)
dept(number, name, store, floor, manager)

range of e is employee
range of d is dept
retrieve (e.name, d.name)

where

e.manager = d.manager

This query asks for a list of each employee and their

department. In this example the "employee" relation is

being joined with the "dept" relation on the "manager"

domain. The join predicate is

e.manager = d.manager

When the join predicate uses equality ("="), the join is

sometimes refered to as an "equi-join". A reader not fam

iliar with joins is referred to [DATE77] for an introduc

tion .

For the purpose of this thesis we shall be concerned

with three methods for computing joins: (1) sort-merge

join [BLAS76], (2) tuple substitution [W0NG76, STON76],

(3) reformatting [STON76, YOUS78b]. In the previous exam

ple, the join between the two relations on the "manager"

domain might be computed using any of the above three

techniques depending on which was the most cost effective.

The sort-merge join would first sort both relations on the

"manager" field (if they were not already sorted). Then



one of the relations would be read sequentially and for

each tuple the other relation would be incrementally

searched for a matching manager. With a minor amount of

bookkeeping it is usually possible to compute the join by

reading each relation only once.

Tuple substitution chooses one of the two relations

for substitution. Then, one at a time, each tuple is read

from the chosen" relation and its value substituted into

the original query. After substituting, the remaining

query in this example involves only one relation. The

technique differs from ^,'the sort-merge because the rela

tions do not have to be sorted. Tuple substitution per

forms best when one relation is chosen for substitution

and the other relation is well structured on the joining

domain. If. the second relation is not well structured,

however, it can perform poorly.

Reformatting is a technique used in addition to tuple

substitution. If the relation not chosen for substitution

is not well structured, it may be more effective to refor

mat that relation to a useful structure before starting

the substitution process.

The usefulness of the three techniques and the manner

in which they apply to distributed data bases will be

examined at length in chapter 4. These three techniques

have been studied in great depth [YOUS78b, GRIF79] and
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represent effective, general purpose techniques for com

puting joins. There are other techniques but for the pur

pose of this thesis, we shall limit the analyses to sort-

merge, tuple substitution, and reformatting.

J[.5. Survey of Previous Results

A survey of the significant research in distributed

data bases can be found in [ROTH77b]. Four main areas of

research particular to distributed data bases are (1) dis

tributed concurrency control, crash recovery and multiple

copies, (2) query processing, (3) network communications'

handling, and (4) data base design. This thesis is con

cerned only with how to process a query on a distributed

data base. Research on distributed concurrency control,

crash recovery and multiple copies can be found in

[RIES79, STON78, ELLI77, THOM75, LAMP76, R0TH77a, CHU76].

Network communications for distributed data bases is dis

cussed in [ROWE79, LBL76, LBL77, LBL78]. Some issues

related to distributed data base design are discussed in

CLEVI75, ROTH77b].

Query processing on distributed data bases has been

examined by [W0NG77], [STON77], [EPST78], [HEVN78a], and

[HEVN78b]. In [ST0N77], Stonebraker proposes an extension

to tuple substitution which can be used to process an

arbitrary query on a distributed" relational data base.

The extension was for a distributed data base version of
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INGRES.

An algorithm for use on the ARPANET [ROBE70] for the

SDD-1 distributed data base system build by Computer Cor

poration of America [ROTH77a] is proposed in [WONG77].

The algorithm considered minimizing the amount of data

moved over the communication network as the primary optim

ization criterion.

Hevner and Yao proposed an algorithm [HEVN78a] which

optimized processing for a distributed data base on an

ARPANET type network with one relation per computer site

and one joining domain. \t was basically a limited exten

sion of Wong's work. They later extended the algorithm

[HEVN78b] to handle arbitrary queries but assumed that

relations did not span more than one site.

Epstein, Stonebraker and Wong proposed algorithms

[EPST78] for processing queries on two different models of

computer networks - ARPANET types and broadcast networks.

It also specifically dealt with relations fragmented

across multiple sites. This thesis includes the work

presented in [EPST78] and is a continuation of that work.

J_«6. Overview

This thesis will examine a variety of techniques

which are important for processing queries on distributed

data bases. In the next four chapters, we shall present a
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model of the distributed data base environment, the pro

posed tactics for processing queries, the analysis of the

tactics, and finally conclusions and suggestions for

further research.

Models for network communication and data organiza

tion are presented in chapter two. Only the relational

model of data is considered. A user defined distribution

criterion specifies the distribution of relations into

fragments across the computer sites. Two models of net

work communication, broadcast model and site-to-site

model, are considered., At the end of chapter two, the

optimization criteria are presented. These include minim

izing the number of messages sent on the network, minimiz

ing the number of bytes transmitted on the network, and

minimizing response time.

In chapter three, the processing strategies and esti

mation methods are presented. Some of the tactics are

extensions of algorithms used on centralized data bases.

Others are new tactics that specifically apply to distri

buted data bases. We will concentrate on those issues

which apply specifically to distributed data bases.

Several of the techniques make decisions based on esti

mates of how much data will result from a specific query.

Chapter three describes several estimation procedures.
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Chapter four presents the analysis of the tactics

described in chapter three. When analyzing a query, it is

frequently beneficial to break the query into subqueries

to be executed in a particular order. Chapter four begins

by examining subqueries which involve only one relation.

Next a general algorithm (called the FP technique) is

presented that can process an arbitrary query on a distri

buted data base. The next processing tactic determines

when a query involving three or more relations should be

divided into subqueries. The three tactics just described

comprise the major strategies proposed for processing

queries on distributed data bases. There are many

specific details which are particularly important for dis

tributed data bases. These include determining what

information to transmit, how to encode joins during

transmission, the movement of the result relation, and

static verses dynamic decision making. Finally in chapter

four, we compare the proposal of this thesis to those of

[WONG77] and [HEVN78b]. Lastly, chapter 5 contains con

clusions and suggestions for future research.



CHAPTER 2

PROCESSING MODELS

This chapter introduces the framework for the pro

cessing tactics. The distributed relational model is

presented and the notation which will be used throughout

this thesis is defined. The notion of distribution cri

teria is presented and the specific distribution criteria

model is explained. Next two communication models are

discussed and the processing model is presented. Finally,

three optimization criterion are discussed.

2.J_. Distributed Relational Model

The data base model consists of a data base on a

known number of sites called S„ S~ . ...S . The index "j"
1, 2, n

will be used when referring to a collection of sites (e.g.

S.). The data base contains a collection of relations

R- R« ...,R . The index "i" will be used when referring
1, 2, n

to a collection of relations (e.g. R.) . To the user of a

distributed data base system relations are divided into

two classes: local and distributed. A "local" relation is

known only to the site where it was created and is acces

sible only at that site. The query processing strategy,

however, treats a local relation like a distributed rela

tion which exists at only one site. A "distributed" rela-

14
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tion is known to all sites in the data base and can be

accessed by any site. For distributed relations, the

instance of relation R at site S. shall be referred to

notationally as RJ. We shall call it the fragment of

relation i at site j. The syntax for creating local and

distributed relations for a distributed version of the

INGRES system is shown in the examples below:

create local supplier (snum = i2, sname = c10,
address = c30)

create distributed employee (enum = i2,
ename = c20, salary = i2, manager = i2)

The first example creates,a local relation called "sup-

plier" with domains snum, sname, and address. "Snum" is a

two byte integer; "sname" is a ten byte character; and ""

address is a thirty byte character. The second example is

a distributed relation called "employee" with domains

enum, ename, salary and manager.

2.2. Distribution Criteria

Distribution criteria allow the data base administra

tor to assign tuples to specific sites based on one or

more domain values. For example, the employee relation

and its distribution from chapter 1 can be expressed as:

range of e is employee
distributed e at

berkeley where e.manager = 32,
paris where e.manager = 199,
tahiti where e.manager = 33
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For this thesis, we shall assume that a distribution cri

terion applies only to a single relation and that it unam

biguously maps tuples onto a single unique site. The rea

soning behind such a choice can be found in [RIES78].

2.^. Communication Model

A communication model will be used to determine the

cost measured in time required to send a specific number

of bytes of data to one or more sites. The delay in gen

eral is a linear function such as

DELAY = CQ + c.,X

where X is the number of bytes to be sent and C0 and C-

are network dependent constants. Most computer communica

tions networks split a stream of bytes into a set of fixed

size, packets or messages. Thus C..X might be better

modeled as a step function but for the purpose of this

thesis we will approximate its value using the above for

mula.

It will be shown throughout this thesis that distri

buted data bases frequently require the same information

to be sent to multiple sites. Because of the usefulness

of broadcasting to multiple sites, we will use two dif

ferent models of communication costs. The models will be

called "site-to-site" and "broadcast" models.
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Let Cfi(X) be the cost to send X bytes of data to n

sites. Using the "site-to-site" model, it is assumed that

the cost to send a message to n sites is equal to n times

the cost to send to one site.

Cn(X) = nC^X)

This model resembles the ARPANET [ROBE70]. The

ARPANET consists of a large collection of computer sites

which are connected from point to point by communication

lines. If site A wishes to communicate with site B, there

exists either a communications line directly connecting A

and B, or A must route the message through one or more

other sites to get to B. The time delay to send a message

between two sites on the ARPANET depends on the route the

message must take. We make the simplifying assumption

that to communicate between any two arbitrary sites in the

network is the same cost. A further simplification

involves messages sent to multiple sites. It is assumed

that the delay is linear, that is,

Cn(X) = nCjCX)

Our model assumes that messages are not transmitted in

parallel. In fact, if transmissions can occur in paral

lel, there are many algorithms [DALA78] for which

Cn(X) < nC^X)
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Our second model is the broadcast model. Every site

on the network listens to every message. A message can be

addressed to a single site or a set of sites. The cost of

communication is independent of the number of sites, thus:

Cn(X) = CjCX)

This model resembles the ETHERNET [METC76]. An ETHERNET

consists of a single common line to which all sites are

connected in parallel. It is used for local networks and

can handle a one kilometer network at a speed of three

megabits per second [METC76]. Our model is dissimilar

from the ETHERNET in that the ETHERNET does not allow

arbitrary subsets of sites to be addressed. COCANET

[ROWE79], is an example of a broadcast network which also

allows broadcasting to arbitrary subsets of sites.

Using the site-to-site and broadcast models we will

develop algorithms that minimize the transmission cost

measured in delay time. In both models we ignore the real

network problems of transmission errors and retransmis

sions .

2.4. Processing Model

The logical organization of the processing model is

illustrated, below. The "master" process is a program run

ning at the site where the "user" logs in. A "slave" pro

cess runs on each site in the data base involved in the
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User at Site 1

MASTER PROCESS
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SLAVE PROCESS
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query. The physical communications network can be any

configuration that allows all data base sites to communi

cate with all other data base sites. The master process

directs all activity in the slaves. The slaves do not

initiate any activity on their own.

The master process has two high level commands which

it can give to slaves or execute itself:

(1) Execute the local query Q on sites S1fS2l...,S

(2) Move the fragment of relation R«? on site S. to
w

Sk '*'•'Sn *
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This is the process view that will be used for this

thesis. There are other possible processing models. The

choice of processing model is important because it pre

cludes some algorithms. For example, one might consider

an algorithm which gives a query to a slave for which the

slave then becomes the master. This would evolve into a

complicated tree control structure potentially with multi

ple processes on each site. Such a proposal was made in

[STON77]. The motivation for this master-slave model is

its simplicity for implementation and debugging. The flow

of control is centralized and bookkeeping is simplified.

Only the master needs to know the distribution of data and

what each slave is doing.

2.J5. Optimization Criterion

As stated in the previous section there are two com

mands that the master process can issue: execute a local

query or move a fragment of a relation. We must choose a

sequence of these commands which satisfy some optimization

criterion. We will look at optimizing

(1) the total number of messages,

(2) the number of bytes transmitted across the net

work,

(3) the response time (wall clock time).

For each user, one QUEL statement is optimized at a time.

We are not trying to optimize multiple statements from
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multiple users because the usefulness of doing so is

strongly application dependent. We shall assume that each

query is unique and different from the previous queries;

therefore, no attention will be paid to keeping partial

results from previous queries in anticipation that they

will be reused .

We shall frequently refer to the "cost" to perform

some 'operation. Cost should always be equated with time.

The cost to perform a query is the time elapsed when the

query is received until the query is complete.

2.5..JN Minimizing the Number of Messages

The cost to send a message includes passing the mes

sage through the various software layers on the sending

and receiving machines. In addition the transmission

method may induce its own delay. For example, a satellite

communication may have a several hundred millisecond delay

until the message begins but it may have an extremely high

bandwidth This implies that if the cost is a linear func

tion

r *n

co+ ciLxJ
r -i

and CQ is large compared to C^Xl, it will be important to

minimize the number of messages.
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2.5.2. Minimizing the Number of Bytes Transmitted

Minimizing the amount of data transmitted makes sense

in a majority of cases. If the transmission speed is very

slow it will make sense to reduce the amount of data that

must be transmitted. Transmitted data has some hidden

costs; that is, the receiving sites must store the data,

presumably on disk. Assuming an infinite speed network,

the transfer of data looks very much like a disk to disk

transfer. This is a non-negligible local cost. It can be

minimized by reducing the amount of data moved. Networks

such as the ARPANET traajsfer data at a rate of roughly 6K

bytes/sec. This is about 25 times slower than a local

disk to memory transfer which is roughly 30 milliseconds

for a 4k byte transfer or 130K bytes/sec. Thus the time

delay for network communication is significantly greater

than for local processing.

2.5.^3* Minimizing the Response Time

The response time is the sum of the processing delay

and the communication delay. Minimizing just one does not

necessarily yield an overall minimization. On high speed

networks (such as the ETHERNET) transmission time is sig

nificantly shorter than the time required to transfer data

from a local disk to memory (roughly three times faster if

the ETHERNET operates at three megabits per second).

Careful attention must be paid to local processing delay.
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2.6. Conclusions

. This chapter has presented a model of a distributed

data base environment. Relations consist of fragments

with are distributed across a network of computer sites.

The sites are connected either by a broadcast network or a

site-to-site network. The processing tactics must make

efficient use of the communication network and the pro

cessing sites . Specifically they must consider the*number

of messages, the amount of data transmitted and the

response time. The processing tactics will be presented

in chapter three.



CHAPTER 3

PROCESSING STRATEGIES AND ESTIMATING RESULT SIZES

A variety of processing strategies are presented in ,

this chapter. Each tactic is based on the models

presented in chapter two. The tactics are presented here

and then in chapter four, they are analyzed with respect

to the optimization criteria presented in section 2.5.

3'X' Qne Variable Detachment and Distribution Criteria

On multi-variable qtferies, a decision must be made

whether to detach and separately execute one variable

subqueries. As an example, consider the query:

range of e is employee
range of d is dept
retrieve (e.name)

where

e.manager > 15
and

e.dept = d.dept
and

d.floor = 1
and

e.salary > 8000.

There are one variable clauses on both e and d. The

clauses are:

e.manager > 15 and e.salary > 8000

d.floor = 1

These clauses can be compared with the distribution cri-

24
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terion using a simple propositional calculus theorem

prover. For each fragment, it can be determined that:

(1) no tuples in the fragment satisfy the user's

query,

(2) all tuples in the fragment satisfy the user's

query,

(3) Those tuples in the fragment that satisfy the

user's quer.y cannot be .determined in. advance.

For example, given the distribution criterion:

range of e is employee
distribute e at

berkeley where e.manager <= 10,
tahiti where e.manager > 10

and e.manager <= 20,
paris where e.manager > 20

and the one variable subquery

range of e is employee
retrieve (e.name,e.dept)

where

e .manager > 15

it is possible to detect that no tuples from Berkeley will

satisfy the query, some tuples from Tahiti will satisfy,

and all tuples from Paris will satisfy. Thus the distri

bution criterion can immediately eliminate the fragment at

Berkeley and can eliminate the need to check the tuples at

Paris.

A separate decision must be made concerning whether

to detach and execute the one variable subqueries:
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(1) retrieve into e'(e.name,e.dept)
where

e.manager > 15
and

e.salary > 8000

(2) retrieve into d'(d.dept)
where

d.floor = 1

Executing the subqueries separately from the main query

will restrict the size of e and d. The remaining query

would then be

retrieve (e'.name)
where

e' .dept = d1.dept

The cost to detach and execute one variable restrictions

is the cost to transmit the command plus the local cost of

executing the restriction.

3.2. Fragmented Processing Technique

.The Fragmented Processing (FP) technique applies to

all queries involving two or more relations. Suppose we

have a join between relations R,j and R2. On a distributed

data base this requires the join of every fragment of R

with every fragment of R? or

R*(i=1,n) JOIN R^(k=1,m)
The FP technique is a method for performing n times m

joins. Rather than viewing the problem as nm joins, it

can be viewed as h or m joins. Make one of the two rela

tions fully redundant at each site S. holding a fragment
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of the other relation. If R1 is made fully redundant,

each site S will compute

R1 JOIN R^
If ^2 is made fully redundant, each site S. will compute

R"j JOIN R2

To generalize this technique to N variables, the

algorithm is to fully replicate N - 1 variables; however,'

one variable, call it R , is not moved. Then each site,
P

S ., will have

R1, R2, '••' Rp' ••"' Rn
This tactic can be further extended by allowing complete

freedom in selecting processing sites. Then two interre

lated decisions must be made, choosing R , the relation to

remain fragmented, and choosing the number of processing

sites K, where K is less than or equal to the number of

data base sites.

In summary, the FP technique chooses the set of

sites, K, and a relation to be left fragmented, R . The
P

remaining relations, Ri,i/p, are replicated at all K pro

cessing sites. In chapter four we will discuss choosing

R and K.
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3/1* Splitting a Query

Queries with three or more variables can be processed

in "pieces", For example,

range of e is employee
range of d is dept
range of s is supply

' retrieve (e.name, d.dname, s.item)
where

e.manager = d.manager
and

e. number = s.number

can be processed in two pieces, each involving two vari

ables :

(1) retrieve into temp(e.name, e.number, d.dname)
where

e.manager = d.manager

followed by

(2) range of t is temp
retrieve (t.name, t.dname, s.item)

where

t.number = s.number

Intuitively, such a split is advantageous because it

delays the transmission of one or more relations. For

example, to process query (1) above, either "e" or "d" has

to be moved. To process query (2) either "t" or "s" has

to be moved. Processing the three variables all at once

would require moving either "e" and "d", or "e" and "s",

or "d" and "s". Instead of moving "e" and "d", move "e"

process the first piece, then move "t" and process the

second piece. That split will be cost effective if "t" is
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smaller than "d".

This approach can be extended to any query of three

or more variables. Given a query involving variables

v.vv2 ...,vn

Q(V1, V2, •••• V
the query can be split into two queries, the first involv

ing x variables:

Q'(V, ..., V) x>2
i, x —

This produces a new result variable which shall be called

V . The remaining queryinvolves V and the remaining n -

x variables:

0''(V V V )w Ky, vx+1'•••, vn;
This technique can be applied recursively to Q» and Q'' if

either has three or more variables. Query splitting is a

generalization of a technique called reduction, proposed

by Wong and Youssefi [WONG76], [YOUS78a]. In reduction,

the variable V is composed of domains from at most one

relation. Query splitting relaxes this requirement.

3.4. Transmission of Fragments

The FP technique described in section 3.2 requires

fragments to be moved between sites. As described in sec

tion 1.4.1, a fragment commonly has some keyed structures.

For example, a fragment may have a primary ISAM structure
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on domain one and a hashed secondary structure on domain

two. These structures exist for performance reasons. A

mechanism exists [STON76, GRIF79] for examining a query

and choosing whether to access a relation through a pri

mary or secondary structure, or to sequentially read the

relation. The optimal choice, will depend on a variety of

factors including the distribution of key values, the size

of the relation (measured_both in pages'and in number of

tuples), which keys are specified in the qualification of

the query, etc. The access path selection mechanism for

distributed databases must be expanded to include

transmission cost and other factors which arise when

several fragments of the same relation are brought

together. The access path selection will determine what

is transmitted when a fragment is moved. We will examine

three choices for transmitting a fragment:

(1) projecting only the needed domains, sorting to

remove duplicates, and then sending the fragment.

(2) sending the complete relation with its primary

structure (ISAM, Btree or Hash).

(3) sending the relation and a useful secondary struc

ture.

The choice depends on the optimization criterion. If one

is optimizing for minimum transmission cost then clearly



31

choice (1) is always better than (2) or (3). If one is

optimizing for response time, then transmitting the rela

tion structure might make the local processing more effi

cient. The increased efficiency must be compared with the

additional transmission cost of sending the structure.

This is an example of trading increased communication cost

for reduced local processing cost.

3.5. Join Encoding Techniques

In section 3-3, we explained that splitting a query

into pieces can improve overall performance. The example

in that section included creating a new relation from the

equi-join of two existing relations.

retrieve into temp (e.name, e.number, d.dname)
where

e.manager = d.manager

The new relation "temp", might then be transmitted to

other sites. Whenever the target list has more than one

variable, the result can potentially be as large as the

cross product of the relations in the target list. There

are several join encoding techniques which can be used to

reduce the cost of transmitting the new relation. The

problem is basically a coding problem and we will examine

three techniques for encoding a join. The three tech

niques are:

1) Physically form the join.
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2) Encode the join as one tuple from relation R. fol

lowed by one or more tuples from relation R. which

match the R. tuple.

3) Evaluate the join and form two new relations R '

and R ». R » will contain those tuples from R-

which are part of the'join, and similarly for R '

The two new relations are then transmitted and the

join is recreated at the destination site.

In all three cases, only the domains which are needed

in subsequent processing are kept. Cases 1 and 2 are

relatively straight forward. Case 3 can be clarified with

an example. If the example presented at the beginning of

this section were processed using case 3, the following

steps would occur:

step 1:
retrieve into e' (e.name, e.number, e.manager)

where e.manager = d.manager

retrieve into d' (d.dname, d.manager)
where e.manager = d.manager

step 2:
move e' and d' to the required site(s)

step 3:
retrieve into temp (e'.name, e'.number, d'.dname)

where e'.manager r d'.manager

Relations e' and d' are guaranteed to have only tuples

which are part of the join. Note that is not difficult to

compute e' and d' concurrently in step 1. This technique
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can reduce the transmission cost if there is a many-to-

many relationship between the two relations, but it also

involves non-trivial processing in step 3 to reconstruct

the join at the destination site. (This idea is similar

to what Bernstein refers to as a "semi-join" [BERN79]).

The three codings represent trade-offs between pro

cessing costs and transmission costs. The best choice

depends.on the optimization criterion. These issues will

be examined in section 4.5.

3.6. Movement of Result Relation

Typically there is a required location for the result

of a query. For a "retrieve" the results must ultimately

end up at the user's site. For updates (append, delete,

replace) the tuples must first be identified and then

changed. The change must be reflected at the site where

the tuples reside. Suppose there is a query:

replace e(salary = 1.1 * e.salary)
where

e.manager = d.manager
and

d.dname = "toy"
and

e.salary < 1000

Solving this query using the FP technique requires moving

either e or d. Suppose e is moved. Each processing site

S. will have a complete copy of R (composed of all frag

ments RJ J=1»2,..n) and its Qwn fragment Rj^ Now each
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processing site will find some tuples from R which must
e

be updated. To update a tuple from R , the chance must be
e7 °

performed at the site S. where the tuple originated.

Additional network communication will be required to

direct the non-local updates to their correct sites.

Now suppose d is moved instead of e. Each processing

site S. will have its own fragment of R^ and a complete

copy of Rd (composed' of the fragments R;j J=1»2»---n)#
Since only R is being updated and each processing site

has only its own local R^ fragment, no additional communi

cations are required.

The FP technique will favor moving the smaller rela

tion in order to reduce communication costs. If the

smaller relation is the relation being updated, the addi

tional cost of the non-local updates must be considered.

3.7. Shuffling Strategies for Updates

There are several cases when all the processing sites

will have to distribute data to other processing sites.

This can happen

(1) on updates (append, delete, replace) when the

result relation is moved by the FP technique,

(2) on a "replace" when a domain is changed which

occurs in the distribution criterion.

(3) when the distribution criterion itself is changed,
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(4) on an "append" when appending to a relation from

one or more other relations.

An example of (1) was given in section 3.6 when "e"

was moved. For examples of the other cases, suppose, the

distribution criterion is

distribute e at

berkeley where e.salary < 10000,
paris where e.salary >= 10000

and e.salary < 20000,
tahiti where e.salary >= 20000

and there is a relation

salchange(number, newsalary)

Case (2) would occur with the query

range of s is salchange
range of e is employee
replace e (salary = s.newsalary)

where

e. number = s.number

Each employee identified in "s" would get a new salary and

might have to be moved to another site in order to satisfy

the distribution criterion. Case (3) would happen if the

distribution criterion on the employee relation were

changed, for example,

range of e is employee
distribute e at

berkeley where e.manager = 13,
paris where e.manager = 27,
tahiti where e.manager != 27

and e.manager != 13

As an example of case (4), suppose we want to create a
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relation with a distribution based on age.

create oldemp(name=c20, salary=i4, age=i2)
range of o is oldemp
distribute o at

berkeley where o.age < 40
paris where o.age >= 40 and o.age < 60
tahiti where o.age >= 60

If we appended to the "oldemp" relation from the

"employee" relation, the qualifying tuples from "employee"

would have to be distributed based pn the "age" domain.

range of e is employee
append oldemp (e.name, e.salary, e.age)

where e.age > 25

In each case an efficient way must be determined to

redistribute or "shuffle" the data. We will consider two

methods for shuffling: centralized control and decentral

ized control. In centralized control all sites identify

and process tuples which belong to their own site. Next

they transmit their remaining tuples to one centralized

site. The centralized site partitions and transmits the

remaining tuples to the sites where they belong. Using

decentralized control each site processes its own data,

partitions the remaining data, and then transmits it

directly to the correct site.

Decentralized control requires less data movement and

achieves greater parallelism; however, it generates sub

stantially more message traffic on the network. These

issues are examined in section 4.6.
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_3.£. Static Versus Dynamic Decision Making

In static decision making the processing strategy,

i.e., the tactics and their order of execution, is decided

in advance of any actual query processing. Dynamic deci

sion making, on the other hand, makes only one decision at

a time. It decides what the tactic should be, performs it

and only then chooses the next tactic. Both methods base

decisions on estimates of the result sizes. Static deci

sion making has the undesirable property that errors from

bad estimates accumulate. For example, consider the query

retrieve (p.pname) *-
where

p.pnum = s.pnum
and

s.snum = 475
and

s.shipdate = "79-10-21"

Two decisions must be made:

(1) whether to detach and execute the one variable

subquery on s

(2) whether to move s or p.

Suppose detaching and executing the one variable subquery

is a good tactic. In static decision making, the choice

between moving p and s must be decided based on the size

of p and the estimated size of the restricted s. In

dynamic decision making, the decision of whether to move s

or p is deferred until after the subquery on s has been

run. Thus dynamic decision making will determine what to
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do based on two known values while static decision making

must decide based on one known value and one estimate.

The advantage of dynamic decision making is that it

has more information and therefore, can potentially make a

better sequence of decisions. The benefits of dynamic

decision making are analyzed in section 4.3.

In distributed systems, dynamic decision making can

require increased communication cost since the status of

each tactic must be returned to the master site before the

next tactic can be determined. This information might

otherwise be unnecessary. Static decision making gen

erally requires less communication since all sites can

know all processing steps in advance. Static decision

making has the property that decisions are made at "com

pile time" and thus there is no run time overhead. The

extra overhead associated with dynamic decision making is

examined in section 4.7.

.3..9. Estimating Result Sizes

The ability to estimate the'number of tuples which

will satisfy a query is crucial in deciding whether to

split a query (section 3.3), in deciding whether to move a

result relation (section 3.6), and in choosing between

static and dynamic decision making (section 3.8). Many

researchers [YA077, HAMM76, DUHN78] have studied the prob-
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lem of estimating the size of a result from a given query

based on statistical information. It is a very difficult

problem which is typically solved by using a simplified

model of the problem. Such models are inevitably based on

assumptions about the distribution of data values within a

domain, and assumptions about the independence between

domains. Reasonable results can be obtained if the model

is an accurate representation of the data.

The accuracy of an estimate depends on the amount of

statistics kept about the relations and their attributes.

There can be a significant overhead in maintaining accu

rate statistics. Thus one is motivated to keep as little

information as possible yet still allow reasonably accu

rate estimates. We will consider maintaining three levels

of statistics

case 1: relation cardinality (number of tuples in the

relation)

case 2: relation cardinality plus 1 bit of information

per domain

case 3: relation cardinality plus more than 1 bit

per domain

We will show how estimates can be computed for each

of the three cases. For example, assume we maintain case

one, that is, the cardinality of relations e and d. What

is the estimated number of tuples which satisfy the query:
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retrieve (e.name)
where

e.dept = d.dept
and

e.salary > 10000

Although this query might examine the cross product of e

and d, we know the cardinality of the result can not

exceed the cardinality of e. Now suppose the query were

retrieve (e.name,d.dname)
where

e.dept = d.dept
and

e.salary > 10000

Knowing only the cardinalities without knowing any seman

tic or statistical information about the domains being

joined, it is impossible to estimate the size of the

result. The minimum result size is zero and the maximum

is the product of the two cardinalities. Consider case 2.

We have 1 bit of information per domain and that bit, if

set, tells us that every value in the domain is unique.

If the bit is clear it means that two or more values in

the domain are the same. For example, a domain holding

unique numbers such as employee numbers or social security

numbers would have its bit set. If both e.dept and d.dept

had their "bits set" then we know the result from either

query can not exceed the cardinality of the smaller rela

tion. If only one domain had its bit set then the result

size could not exceed the cardinality of the larger rela

tion. In addition to one bit of information, the target
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list plays an important role. If only one variable is in

the target list, then the result cannot exceed the cardi

nality of the relation in the target list.

If more than one bit of information is available

about each domain (case 3) the estimates could be computed

with greater accuracy. The role of the estimation pro

cedure is examined in section 4.3. Also included in that

section is an examination of the sensitivity of the split

ting algorithm to the accuracy of the estimation pro

cedure. Note that the techniques presented in this thesis

are independent of the actual method of estimating result

sizes.

j[._H). Summary

In this chapter we have presented a variety of tech

niques which can be applied to queries on distributed data

bases. The effectiveness of each tactic depends on

trade-offs which can be very difficult to analyze. The

goal of this thesis is to develop algorithms which perform

well for a large class of applications. Chapter 4 con

tains an analysis of each technique.
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ANALYSIS OF PROCESSING STRATEGIES

In this chapter we will analyze how each of the tac

tics presented in chapter 3 satisfy the optimization cri

teria identified in chapter 2. One goal of this chapter

is to prove, whenever possible, how a tactic will perform.

A second goal is to provide intuitive insight into the

properties of each tactic. Most of the tactics have been

implemented, or are being implemented as part of the dis

tributed data base version of INGRES.

The chapter begins with the analysis of one variable

restrictions, followed by an analysis of the FP technique.

Next the query splitting technique is examined. In par

ticular, we examine the relationships between the search

strategy for finding the optimal split, the estimation

procedure, and static and dynamic decision making. The

remaining sections analyze moving a relation's structure,

encodings of joins, shuffling strategies, estimating

result sizes and decision making. Lastly we compare the

results of this thesis and other published works.

4.K Analysis of One Variable Detachment

The examination of one variable restrictions is logi

cally broken into the use of distribution criteria and the

42
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detachment of one variable restrictions.

A distribution criterion functions exactly like a

coarse, top level index; breaking a relation into disjoint

fragments by specifying physical locations for tuples. As

such, it improves performance in two ways. First, it can

limit the amount of data which must be examined and second

it can reduce the number of sites required for processing

the query. If the query can be done locally, it is rea

sonable to assume that it will be faster than if network

communications are required. This strongly suggests that

the distribution criteria should be quickly accessible at

each site.

The distribution criteria should be used as follows:

When a query is first received, each of the variables

should be examined for restrictive clauses involving only

that variable. For those variables with one variable

clauses, get their distribution criteria (if any). Use

the distribution criteria to eliminate those fragments for

which no tuples satisfy the restriction. Identify those

fragments for which all tuples satisfy.

The next step is to consider detaching and performing

the one variable restrictions. In nearly all cases, doing

so will reduce communication costs. Each variable will be

restricted in size or at worst, remain the same size. The

overall communication cost will be reduced if the cost to
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transmit the restriction command is less than the cost to

transmit the data that would be eliminated by the restric

tion. Whether this is true in practice is application

dependent. It is quite likely that the command can be

"piggy backed" to another command (for example it can be

sent with the command to move the fragment). In that

case, detaching one variable restrictions.never increases

communication costs. If the optimization criterion is to

minimize communication costs then the restrictions should

be detached and performed.

If one considers response time then there are cases

when performing the restriction will be detrimental. Such

cases are identical to those in centralized data bases.

An analysis of one variable detachment on a centralized

data base can be found in [YOUS78b]. The major argument

against detachment is as follows. If the restriction is

performed as described in [STON76], then the result'of the

restriction is saved in a new, temporary relation. There

are cases when the original physical structure of a rela

tion would be valuable for subsequent processing and the

loss of the structure (caused by the restriction to a tem

porary) is not offset by the reduced size of the res

tricted relation. In such a case the local processing

time can be adversely affected by considering only commun

ication costs. Further examples will be identified in
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section 4.4.

In summary, the use of distribution criteria to res

trict a relation is an effective technique provided the

cost to access the distribution criteria is low. This can

be achieved by replicating the distribution criteria at

all,sites or caching the distribution criteria whenever it

is accessed. Detaching and executing one variable res

trictions is frequently a good idea. It is not a good

idea when the loss of the physical structure degrades sub

sequent processing which could have used the structure.

4.2. Analysis of the Fragmented Processing Technique

The Fragmented Processing (FP) Technique can process

any query with two or more variables. As mentioned in

chapter three, the technique consists of choosing one

relation which is not moved (R ) and choosing K processing

sites. The remaining relations, R. . , are moved to the
i ,l?p

K processing sites. Processing then begins on all K sites

and the result is the union of results on the K sites.

The analysis will show how to choose R and K with regard
P

to the optimization criteria.

The analysis will proceed as follows. First a gen

eral formula is developed to measure communication cost.

Next we present the solution for choosing R and K to

minimize communications costs on broadcast and site-to-
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site networks. Next we consider choosing R and K to

minimize response time. Finally a heuristic is presented

which balances communication cost with response time.

We begin by reviewing the notation that will be used

throughout this chapter:

N = number of sites in the data base
n = number of relations, from 1 to n.
i = always used to index a relation (e.g. R.)
j = always used to* index a site (e.g. S.) lv

R:? = fragment of R. at S.

Mi = number of sites holding a fragment of R.

•R.j = the sum total in bytes of all fragments of R.
II !

i -j i •
!Rj! = the size in bytes of R?

The general formula for the number of bytes to be

transmitted before processing can begin is derived from

the following two facts:

(1) For each processing site, S R^ must be moved

to all other K - 1 processing sites.

(2) For each non-processing site, S., R^ . , must be
j i ,i*p

moved to the K processing sites and RJ must be

moved to one processing site.

To simplify the discussion, the processing sites will

always be renumbered to be sites S1,S2,•••,Sk. K is an

integer which represents the number of sites chosen. The

formula for the number of bytes which must be moved is

then :
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N r_ . <f!
+ 2 C„; 2 {R:?! | (4.1)

J=K+1 K[irfp' X,j

+ 2 c !!rJ|!
jsK+1 l4"' p,J

The first term conies from (1) above. It is the cost to

transmit the relations from a processing site to the other

processing sites. The second and third terms come from

(2) above. It is the cost to transmit relations from the

N - K non-processing sites.

We will first examine minimizing equation (4.1).

This will be done for both the broadcast model and the

site-to-site model.

4.2.2- Minimizing Communication Cost for the Broadcast

Model

For the broadcast model, communication cost will be

minimized by either doing all the processing at one site,

or processing at all sites which have a fragment of the

largest relation. Theorem 1 will prove this.

Intuitively, the situation is as follows. If one

site has more data than the largest relation, then the

data distribution is skewed heavily towards that site. In

such a case, communication costs are minimized by choosing

K = 1 and moving all data to the site with the most data.
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Note that when K = 1, there is no R since no relation is
P

left fragmented. If no site has more data than the larg

est relation, then R should be chosen to be the largest

relation. This is because all relations except R will
P

have to be moved once. Thus one wants to avoid moving the

largest relation. Furthermore, all sites which have a

fragment of R , no matter what size, should be chosen as

processing sites. If a site, S which had a fragment of

R were not a processing site, the fragment RJ would have
y P

to be moved. This cost is avoided if S. is allowed to be
w

a processing site. As long as there is more than one pro

cessing site, all R^^ have to be moved, they can be

moved to all sites for the same network cost as one site.

This is true on a broadcast network because C. (x) = C.(x).
• • K I

Thus there is no incentive to exclude a site.

THEOREM 1:

For a broadcast model, communication cost will be

minimized by either choosing:

(1) K = 1 and choose as a processing site, the site with

(2) or else choose

and choose K = M .
P

r , . (-»
max . Is} R>? JI

Rrt = max. J iR. • |
P 11\ i jJ
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PROOF:

r "i r -\
i « iFor the broadcast model C. |xJ = C-lxJ, therefore for-

mula 4.1 can be written as:

K r , ,,«!

2 C j 2
j=1 *UU?
2 C,! 2 !R^i j

N r
i _ ! i !

2 C-j 2 IR^I J (4.2)
j=K+1 Mwp' X|' i( .

N r, ,,-.
+ 2 C/.jRJ',!

jsK+1 1l-' P,J
The first and second terms can now be combined giving

comm = 2 C-j 2 \R?\ | + 2 C ','R^! \ (4.3)
j=1 ^p' 1,j jsK+1 1ul P,J

Now assume that K > 1. The first term is independent

of the value of K. The second term is zero when

K = M . Hence if K > 1, equation 4.3 is minimized by

K = M . Any other solution would make the second term

non-zero. With the second term zero, the communica

tion cost from 4.3 becomes:

N r , .,->
2 C-j 2 |R:?! | (4.4)

Since equation 4.4 iterates over all possible sites,

S., it can be simplified to

cj 2 JRj] (4.5)
This can be rewritten as
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Cl!?!Ri! " iRP!i ^-6)
Since all relations must be moved except R , equation

4.6 is minimized by choosing R to be:
P

r, ,-»
max '.R ij (4.7)

At this point it has been proven that if K > 1, K must

be M and R should be max ';R. j|. If K r 1, only one

site will be a processing site, thus the first term

of equation 4.1 is zero, since the cost to send X

bytes to K - 1, or zero sites, is obviously zero. The

communication cost is then

2 C j 2 !R?!| + 2 C'IrJ' ! (4.8)
j=K+1 \irfp' 1|j j-K+1 1|-' p,J

Since no relations have to be moved from the process

ing site, only to it, there is no R . This simplifies
— P

equation 4.8 to

N r ! vl
*Cll? Ri'|lj =2 ' Li- • 11

which can be rewritten as

'jli x 1 i' x ' ,

Equation 4.9 is minimized if the second term as large

as possible, that is, by choosing S. to be

r 1 • i"»
max . J2!R^!j

J Jt. 11 J
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QED

Theorem 1 proves that there must either be one pro

cessing site or all sites which have a fragment of R must
P

be processing sites. We will now show how to decide

between the two cases. If one site holds more data than
i

the largest relation, then K = 1, otherwise K = M .
P

THEOREM 2:

To minimize communication costs on a broadcast net

work, K should be 1 if

CjImax.jsiR:?! j >C-fmax A**\)
to U -J

and otherwise,

K.= Mp

PROOF:

If K = 1, then by theorem 1 the communication cost is

expressed by equation 4.9. If K > 1, then by theorem

1, the communication cost is expressed by equation

4.6. Compare equations 4.9 and 4.6

ciif!Ri!-f!Riii<ci[f!Ri!-!Rp!i »•">
Subtracting common terms and multiplying by -1 yields:

s^ifi >ci[jRP|]
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Replacing R and R1 by their values gives:

C- !max . ;2,!R^ !}! >C-fmaxjRjl (4.12)

If the inequality holds, then K = 1, otherwise K r M

by theorem 1.

QED

In summary, to minimize communication cost for the

broadcast model, choose K = 1 if one site has more data

than the largest relation, otherwise, choose R to be the

relation containing the most data and choose K to be all

sites holding a fragment of R .
P

.4.2.2. Minimum Communication Cost for Site-to-Site

Model

The minimization of network traffic on a site-to-site

model is very sensitive to the distribution of data among

the sites. The general procedure for a site-to-site net

work is to order the sites according to the amount of data

they have. The largest relation is chosen as R . Since
P

there must be at least one processing site, the site with

the most data is always chosen as a processing site. Each

additional site is examined to see whether it would

receive less data as a processing site than it would have

to transmit as a non-processing site.
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The proof is again divided into two steps. Theorem

three proves that communication cost is minimized by

choosing K = 1, or else choosing R to be the largest

relation and making a site a processing site only if the

amount of data it would have to receive as a processing

site is less than the amount of data it would have to

transmit as a non processing site.

THEOREM 3:

For a site-to-site network model, communication cost

will be minimized by either

(1) choosing R to be max.JR.j and choosing K to
P i j i j

include every site, S., for which

2 JR.; < 2iR^i
i/pi xi i' 1|

(2) choosing one site, S. where j is

r

ma
I ' -i ''- IpJ I J

Ixji?!Ri
L1

PROOF:

The definition of the site-to-site model, states that

CK(x) = KC|(x). Since we assume that the cost to

transmit x bytes is linear in the number of bytes, we

need only minimize the number of bytes transmitted.

This allows us to drop the cost function C(x), since

minimizing x will also minimize C(x). Equation 4.1

can then be rewritten as
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(K-1) 2 2 !R^I + (K) 2 2 !R^I + 2 !R^!(4.13)
j=1 irfp' ' j=K+1 Up1 ll j=K+1' Pl

Multiplying out terms and observing that:

N , ., K , .,

2 !rd! = iRoi - 2 \R3n\jsK+1' Pl i p! j=1' Pl
yields:

K . 4. K , ., N , .,
(K) 2 2 |Rf, - 2 2 !Rj! + (K) 2 2 !R?!

j=1 Up1 1| J=1 Up1 x« j-K+1 Up1 1»

i Pi j=1' Pl

Combining the first and third terms yields:

N K K

(K) 2 Z JR^i - 2 2 !R^i + ;Rn; - 2 !r^
j=1 Up* li j=i up* ll i p! j=i' Pl

Observe that

N . K

(K) 2 2 \r(\ = 2 2 JR,i
j=1 Up1 1( j=i i^pi xi

K
Substituting the above and factoring out the 2

j = 1
gives:

K r
2 2 |R, j - 2 ,'R^! - .' RJSj + iRJ

J=1Li/p! xi up1 1( ' p'j i p!
Combining terms gives:

K r
!dJ !2 i 2 Rt - 2!RV|j + R

j=1Li*p! xi i' 1,j i p!
(4.14)

If K=1, then only one site, S., is a processing site

and there is no R . Equation 4.14 then becomes



•B1!
?:Ri! - ? Ri
1' • 1' '

This is minimized by choosing j to be the site S. with

' ! .j! !max .;2!RJ}
U -J

We must now evaluate the case when K > 1. Equation

4.14 can be rewritten as

(K) 2 !R,i + lRJ - 2 2!R^!
l/pi i i *i J=1 i1 x '

Any IrJ Up will be multiplied by K (K > 1) but "R j
ii i P i

is a singular term and is not multiplied by any con

stant. Thus the equation is minimized by chosing R

to be the max.iR.i. K is then chosen to minimize

2 !Ri| " ?jRJji/p! •"•' i

by choosing only those values of j for which the term

is zero or negative. Thus we want only those S. for

which
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P

2 iRii <?iFii (i.i5)
l^p' ' l1 '

K is then the count of those sites S..
%J

QED

Theorem 3 proves that communication on a site-to-site

network is minimized either by having one processing site

which has the most data, or by choosing R to be the larg

est relation and choosing a site as a processing site only
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if the amount of data the site would have to receive as a

processing site is less than the additional data that it

would have to send as a nonprocessing site (that is, the

amount it receives is less than R^). Theorem 4 will dif

ferentiate between the two cases identified by theorem 3.

THEOREM 4:

If for every site S., j = 1 to N

then choose K=1.

PROOF

.1 iRii >?!Ril/pi i i' x

IF K= 1 then all sites except one, S^ must transmit
their fragments to Sr The number of bytes transmit
ted can be written as:

or simply

! i ! ' 1 '2 2 !R^i - 2,'Ri!
i j=T ll i' x'

?!Ri!. " ?!Ri|11 x i i ' i '

It is sufficient to show that if we include any other

site as a processing site, the number of bytes

transmitted will increase. If another processing

site, S2 is added, the formula 4.14 becomes

li • 1 ' I Ol ,. I "\ I

2\*,\ - 2,'RJ: - ,'Rf! + 2 R, - 2 ,'R?,'
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This was derived as follows. The original cost

includes moving all fragments from sites S.,j/1 to

2
site S.. R is subtracted since it does not have to

be moved if S2 is a processing site. Additionally,

all sites S.,j/2 would have to send their relation

Ri,i^p fragments to site S2« Now combining terms 3

and 5 gives:

2\*±\ - zIr?: + z jr±| - z!rf:
li Xi i' ll i*pi Xi i1 ll

We were given that

2 JR±- - 2!Rf! > 0
i*pi xi i' ll

thus including another site increases the number of

bytes transmitted.

QED

In summary, theorem 4 determines if K = 1. If K s 1,

then theorem 3 states that the processing site should be

the site with the most data. If K > 1, then by theorem 3,

R should be chosen to be the largest relation and the

processing sites should be those sites for which

ldJ I
2 :Ri! - ? Ri < o

1^P' I l1 '

The above equation compares the amount of data the site

would have to receive as a processing site with the amount

of data it would have to send as a non-processing site.
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4.2.^. Minimizing Response Time

If the optimization criterion is to minimize response

time, then the choices for R and K must take local pro

cessing time into consideration. Response time depends on

the time required to process the query at the local sites,

as well as the time required to transmit relation frag

ments between sites. As K increases, more sites become

processing sites and there is an increase in parallelism,

potentially decreasing processing time; however, as

theorems 1-4 have shown, increasing K can increase the

communication traffic on either network model. Processing

time can also be reduced if R has a useful physical

structure. When a relation fragment is moved, it loses

its physical structure. Only R will retain its original

structure since it is the only relation that isn't moved.

This issue is examined further in section 4.4

Before examining the trade-offs involved between

local processing and communication traffic, we will

describe the problems involved in estimating the time

required to process a local query. The processing time

depends on the access paths used (accessing through a.

clustered or non-clustered index, using a hash key,

sequentially reading the relation, etc.), the processing

strategies used (tuple substitution, sort-merge join,

reformatting, etc.), and the physical location of the
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relation on disk (whether relation pages are clustered

together, etc.). Moreover, the situation will be dif

ferent on every processing site. To more fully appreciate

what is involved in predicting the processing time, the

interested reader is referred to [GRIF79, HAWT79]. The

paper by [GRIF79] describes the complexity of estimating

access path and join techniques for System R on a single

site data base. The problem is compounded by the fact

that there are multiple sites and a strategy must be found

that is optimal for all sites. Additionally, the neces

sary statistical information may or may not be present and

up to date at the master site.

At least one case exists for which the best choices

for R and K can be determined for optimizing response

time. If no relation is structured usefully, then R
P

should be chosen to minimize the amount of data at each

processing site. Since each processing site must have a

copy of all fragments of each R^i^p, the choice for R

should be the largest relation. This will process the

minimum amount of data at each site. As was demonstrated

in section 4.2.2, this will also minimize communication

traffic.

There is a heuristic which can be employed to improve

response time by increasing parallelism. On a broadcast

network, if there are several candidates for R of a com-
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parable size (we will say within "T" percent), then R
P

should be chosen to be the relation with the most frag

ments, eg. maxi(Mi). This will maximize the value of K,

improving local processing time.

For a site-to-site network, equation 4.15 can be

changed to be:

.... T 2 JRj <2iR^i
i*pi 1i i' ll

where T is a heuristic value between 0 and 1. When T = 1,

communication costs are minimized as was proven in section

4.2.2. When T = 0, all sites will be chosen as processing

sites. When T is slightly less than 1 then communication

costs may not be minimized but more sites may become pro

cessing sites, increasing parallelism. We are relaxing

the requirements for being a processing site in the hopes

that the increased parallelism will improve response time.

This will allow more sites to qualify as processing sites,

increasing parallelism and reducing local processing time.

This approach represents a compromise based on rea

sonable assumptions. Experimentation should determine

good values of T for a particular application environment.

In summary, exact formulas developed in theorems 1-4

can be used to choose R and K based on minimizing the

cost formula for communications. It may be desirable to

examine alternate choices of R„ and K which, while not
P
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optimal for communication costs, will increase parallelism

and improve overall response time.

4.^3. Analysis of Split Tactic

As was explained in section 3.3, a query involving

three or more relations can always be split into at least

two pieces. Splitting the query may be more cost effec

tive than processing the query all at once. Splitting a

query delays the transmission of one or more relations in

the hopes that the size of the relation will be reduced by

some intermediate processing. We will examine the effec

tiveness of the query splitting technique only in terms of

minimizing the number of bytes transmitted since that is

its primary usefulness.

4.3.2- Overview of Query Splitting Analysis

When splitting a query it is always possible to

exhaustively examine every combination of variables, look

ing for the best strategy. The computational complexity

is reduced and the implementation simplified if a limited

search can be used to find the best way to split a query.

It is of primary concern in this section to compare

exhaustive and limited search techniques.

Estimating the number of tuples which will satisfy a

query is another important issue. The ideal is "perfect

information"; that is, the size of the result of any query
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is accurately known in advance. On the other hand, know

ing the cardinality of each relation and one bit of infor

mation about each domain in each relation is a reasonable

minimum requirement. The performance of the query split

ting algorithms will be analyzed based on these two

extremes of information.

In this section we will also examine dynamic .decision

making. Since estimates are never perfect, the size of

the result from a processing step may be different than

its estimated size. If so, the remaining processing stra

tegy might need to be reevaluated. Dynamic decision mak

ing evaluates the processing strategy after each process

ing step.

There is a fixed overhead associated with running a

remote query. Splitting one query into two doubles the

fixed overhead. Thus the amount of data movement saved

must be sufficient to offset the additional message

traffic. As will be discussed in section 4.7, the over

head is strongly dependent on whether dynamic or static

decision making is being used. If synchronization is

required after each processing step, the overhead is the

transmission of the query to the K processing sites, and

the subsequent completion response from each processing

site. For a broadcast model the overhead is 1 + K mes

sages and for a site-to-site model the overhead is 2K mes-
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sages

The analysis will proceed as follows. A graph struc

ture [W0NG77] is introduced for expressing the interrela

tionships between the variables in the query in a concise

manner. Two search strategies are presented - limited and

exhaustive. They differ in the number of cases which they

consider. The algorithms were coded and the performance

of both algorithms were measured on a variety of test

cases using an analysis program. This program tested:

(1) limited versus exhaustive search given perfect

information.

(2) limited versus exhaustive search given 1 bit of

information per domain and assuming a worst case

estimate. This will be explained in detail in sec

tion 4.3.9.

(3) limited versus exhaustive search using either

static or dynamic decision making.

(4) limited versus exhaustive search given 1 bit of

information per domain and assuming less than a

worst case estimate.

Finally, general figures of merit are given for each case

and some general conclusions are drawn.

4..3*.2. Graphic Query Representation

A graphic technique is useful for expressing the

interrelationships of the variables in a query. Once all
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single variable restrictions have been performed, the

important structural information about a query is

expressed by identifying the variables in the target list,

and the variables in each conjunctive clause in the qual

ification. Let each variable in a query be represented by

a single node in a graph. If the variable occurs in the

target list then place an asterisk ("*") next to it. An

edge connecting two nodes represents, .the fact that one or

more conjunctive terms connect the two variables. For

example, the query

retrieve (e.name)
where

and

is represented as

e.dept = d.dept

d.location = i.location

e*

/
/

d i

For the sake of this discussion, any greater detail (such

as the names of the joining domains, etc.) will not be

necessary. The above query could be split into two

pieces:
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d*.

followed by

e*

/
/

/

df

where d' is the result from the first query. In QUEL this

split is expressed by the query:

retrieve into df(d.dept)
where

d.location = i.location

followed by the query

retrieve (e.name)
where

e.dept = d' .dept

Another possible candidate for splitting the query is

e*

/

/

/

d*

followed by

d«* i

In QUEL, this split is expressed as:

retrieve into d'(e.name,d.location)
where

e.dept = d.dept

retrieve (d'.name)
where

d1.location = i.location
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A query can be split on any edge provided that the two

subgraphs created both contain at least two variables.

For example, since there is no edge between "e" and "i",

there are no other choices for splitting the original

query.

4^3.3. Split Algorithm Using Limited Search

Given an n variable query (n >_ 1), section 4.2 showed

how to compute the communication cost required to process

the query. Call this cost MAXP.

MAXP = PROCrR r ...,r"!
L 1» 2, nj

Consider processing the query by doing a two variable

query followed by the remaining n - 1 variables. This is

always possible although not always cost effective.

Splitting the query reduces the problem to two queries and

the cost becomes

procTr1 r"I + PROC|r' R~ ...,RM!

Examine all meaningful combinations of two variables fol

lowed by the remaining n - 1 variables. Meaningful combi

nations means those variables which are immediately con

nected in the query graph. Choose the minimum cost. If

the minimum cost is less than MAXP, then assign MAXP to

the new value and save the names of the two variables

which should be processed first. Next consider processing

the query by doing a three variable query followed by the
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remaining n - 2 variables. The cost would become:

PROCrR1,R2,R3"| +PROc[R3,R4, ...,RR]
Once again, look at all meaningful combinations of 3 vari

ables followed by n - 2. If the minimum cost is less than

MAXP, then assign MAXP to it and remember the names of the

variables involved. This procedure continues until the

case of doing n - 1 variables followed by 2 variables is

considered. This limited search requires considering at

most

r -i
n i n'

2 i J
i =2L y

choices. The maximum number of choices occurs only if the

user's query contained a join between every variable and

every other variable.

Suppose we had a five variable query. Limited search

would consider four cases:

Case Notation

Perform all 5 variables at once 5
2 variable followed by 4 variable 2-4
3 variable followed by a 3 variable 3-3
4 variable followed by a 2 variable 4-2

Now suppose the query were

a b* d e*
\ /

\ /
c

Theoretically, the maximum possible number of choices is
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r 1 _ r ri
n i n • 5 ' 5'
•* ' ' iii ^,
2 ! i! = 2 • ^ = 26

i=2«- ^ i=2«- x-j

but in fact the number of choices is limited by the inter

connections of the variables in the graph. The two vari

able choices would be:

PROC(a, b) + PROC(b', c, d, e)
PROC(a, c) + PROC(c», b, d, e)
PROC(b, c) + PROC(c», a, d, e)
PROC(b, d) + PROC(d», a, c, e)
PROC(d, e) + PROC(e', a, b, c)

The three variable choices would be:

PROC(a, b, c) + PROC(c», d, e)
PROC(b, c, d) +'PROC(d«, a, e)
PROC(a, b, d) + PROC(d', c, e)
PROC(b, d, e) + PROC(e», a, b)

The four variable choices would be

PROC(a, b, c, d) + PR0C(d', e)
PROC(b, c, d, e) + PROC(e', a)

In this example, the number of possibilities was 11. Once

the minimum cost choice has been selected, the first piece

of the two can be immediately executed using the FP tech

nique. The result relation from the first piece will be a

single relation (although it may be encoded in any of ways

discussed in section 3-5). Next the second piece of the

query is adjusted to make any domain references to vari

ables in the first piece refer to the result relation of

the first piece. The bookkeeping process of maintaining

domain references is straightforward and is similar to the

one variable restriction algorithm found in [STON76].
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Once the first piece of the query is complete, the

second piece can be processed. This is done by applying

the query splitting algorithm to it recursively. In this

manner all possible combinations of query splitting can be

generated. The search strategy is "limited" in how it

makes its decision - not in what decisions are possible.

The limited search algorithm is shown in figure 1.

The algorithm is written in a stylized version of the "C"

language [KERN78]. Figure 1 shows the flow of control for

the algorithm but little of the bookkeeping required.

SPLIT(q) is the name of the query splitting routine.

Trans_cost(q) is the cost to transmit the relations in

order to process the query q. Variable_count(q) returns

the number of variables in the query q.

Estimate_result_size(q) computes an estimate of the result

size of q using any desired estimation procedure.

Process(q) actually performs the FP technique on the query

q and updates all necessary information.

An example of the algorithm is now presented . Given

the original query:

a b* d e*

\ /
\ /

c

the split algorithm might decide to split the query into

two, three variable pieces:



SPLIT(q)
{

Algorithm for limited search
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maxp = trans cost(q)
split = FALSI;
for (i = 2; i < variable count(q); i = i + 1)
{

for (each combination of i variables in q)

form q' and q''
'cost = trans_cost(q')
estimate__result_size(q' )
cost = cost + trans_cost(q'»)
if (cost < maxp)
{

maxp = cost
save q' and q''
split = TRUE

}
}

}
if (split is TRUE)
{

process(q')
adjust(q'')
SPLIT(q'')

}
else

{

}
process(q)

Figure 1.

a b*

\ / piece 1
\ /

c

followed by the remaining piece

b ' *---—d-----e* piece 2
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Piece 1 will be processed using the FP technique. The

splitting algorithm is then applied to piece 2. To con

tinue the example, suppose the splitting technique decided

to split piece 2 into:

d* e* piece 2

followed by

b»* d1 piece 3

At this point the query splitting tactic is complete.

Note that two decisions were made. The first was to split

the five v.ariable query into a three variable query fol

lowed by another three variable query. The second deci

sion was to split the three variable query into a two

variable query followed by another two variable query.

In certain rarely expressed queries the first query

may only return true or false. This happens only if the

original user's query was disjoint. For example the

query:

a* d e
/ \

/ \
/ \

b c

is in two disjoint pieces. The semantics of the query are

if any "d" matches any "e" then process the remaining

query on "a", "b", and "c". The splitting algorithm will

find such a query and recognize that a result relation
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from the "d e" piece is not necessary.

4-3.4. Optimality of Split Tactic with Limited Search

The splitting algorithm with limited search attempts

to find the optimal sequence in which to process a query.

It will optimize for minimum network communications but

the algorithm is a "greedy" [W0NG77] algorithm, performing

a "local optimization" and not a "global optimization".

This section explains the characteristics of a limited

search. In the following section (4.3.5), the algorithm

will be extended to perform an exhaustive search.

The split tactic using limited search bases the cost

estimate of performing the second piece of a query on the

assumption that the piece will be processed without

further splitting. In a four variable query, for example,

it does not explicitly consider processing the query as

three two variable subqueries (2-2-2). Instead, it exam

ines the cost of doing a two variable followed by a three

variable query (2-3). If it decides to split the query as

2-3 then the next processing step will consider splitting

the three variable into 2-2, thus achieving the end effect

of performing 2-2-2. Limited search works well only if

what is best for the current processing step will be best

overall. If the optimal strategy is 2-2-2 then it is not

unreasonable to assume that the split 2-3 is going to be

better than either the 4 or 3-2 splits. Thus, by doing
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only a limited search it should be possible to find the

optimal processing strategy. The advantage of limited

search is that it considers fewer total cases at each

decision point and is therefore computationally more effi

cient. The next section describes query splitting with

exhaustive search. Following that, the two methods are

compared in detail.

>

4.3.5. Splitting Technique with Exhaustive Search

The splitting tactic with exhaustive search will

examine all possible cases before deciding what the next

piece will be. Define e(n) to be the number of cases

which exhaustive search must consider for an "n" variable

query. E(n) can be expressed recursively as:

e(1) = 1

r n (4.16)
n j nj

e(n) = 2 • *' * e(n-i+1)
U2l XJ

This formula is an extension of the limited search for

mula. For each case, the number of variables in the first

piece, i, is chosen and then the remaining query requires

exhaustively examining all combinations of the remaining n

- i + 1 variables. Once again the number of actual

choices is limited by the user's query, i.e. by the

interconnections of the variables in the graph.
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The algorithm for exhaustive search is shown in fig

ure 2. The major difference between figure 2 and figure 1

(limited search) is that instead of computing the cost of

executing q1' assuming it will be done in one piece,

Algorithm for query splitting using exhaustive search

ESPLIT(q, execute)
{

cost = maxp = trans cost(q)
split = -FALSE;" " •
for (i = 2; i < variable count(q); i = i + 1)
{

for (each combination of i variables in q)
{

form q' and q''
cost = trans_cost(q')
estimate__result size(q')
cost = cost + El>PLIT(q'», FALSE)
if (cost < maxp)
{

maxp = cost
save q' and q''
split = TRUE

}
}

}
if (execute is TRUE)
{

if (split is TRUE)
{

process(q' )
adjust(q»')
ESPLIT(q'•, TRUE)

}
else

{

}
}
return (cost)

process(q)

Figure 2.
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exhaustive search calls itself recursively on q'' in order

to determine the least expensive cost for processing q''.

The additional parameter to ESPLIT(q, execute) is a flag

which states whether to actually execute the query or just

compute the cost of executing the query. This is neces

sary since the recursive call is for measurement reasons

and not for executing the query.

As an example, consider again the case of a five

variable query. Exhaustive search will examine the cases:

Case Notation

Perform all 5 variables at once 5
2 var followed by 4 var 2-4
2 var followed by 2 var followed by 3 var 2-2-3
2 var followed by 2 var followed by 2 var

followed by 2 var 2-2-2-2
2 var followed by 3 var followed by 2 var 2-3-2
3 var followed by a 3 var 3-3
3 var followed by 2 var followed by 2 var 3-2-2
4 var followed by a 2 var 4-2

4.^3.6. Comparison Between Limited and Exhaustive Search

The differences between limited and exhaustive search

are the number of cases explicitly considered. Given an n

variable query, limited search examines

r -1
n ' n'

2 I .1
U2l XJ

while exhaustive search examines

r -1

n ; n|
e(n) = 2 ; ,; * e(n-i+1)

i=2«- x-«
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When n = 3, both searches examine the same cases. The

first difference arrises when n = 4. In that case,

exhaustive search examines the 2-2-2 case explicitly but

limited search does not. As n grows, the number of addi

tional cases which exhaustive search must consider grows

exponentially compared to limited search. For example,

the maximum number of cases for values of n from 2 to 9

are:

n limited exhaustive

2 1 1

3 4 4

4 11 29
5 26 336
6 57 5687
7 120 132294
8 247 4047969
9 502 157601068

These numbers assume that every variable is connected to

every other variable. It is much more likely that each

variable is connected to only one or two other variables.

For example, a query such as

"* ————R^————R«———— ... R
12 3 n

would have to examine:

n limited exhaustive

2 1 1

3 3 3
4 6 12

5 10 60

6 15 360
7 21 2520

8 28 20160



77

36 181440

In practice most queries involve relatively few variables.

Conventional wisdom on "greedy" algorithms states

they are not optimal but are used because they come close

to optimality. If this is true, they represent good

trade-offs because they examine fewer cases. To verify

the merits of the limited search, the algorithm was coded

and compared to exhaustive search using a program which is

described in the next section.

4,-3.7. Simulation Program

A program was written to compare the performance of

the limited and exhaustive search algorithms under a large

variety of situations. This section describes the condi

tions the program models and provides an overview of how

the program works. The processing algorithms were coded

and the program was used to measure a large number of

cases under a variety of initial conditions. The issues

of interest are:

(1) Number of variables.

(2) The interconnection of the variables. This is the

graph of the query.

(3) The number of sites in the network.

(4) The distribution of data among the sites.

(5) The network model (broadcast or site-to-site).
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(6) How result sizes are estimated.

(7) The cardinality of each variable.

(8) The size of the target list of each variable. If

the size is zero then the variable is not in the

target list.

The number of possible combinations is, of course,

enormous and therefore several simplifying assumptions

must be made in order to make the problem manageable.

Joining domains. It is assumed that each pair of

relations is joined on different, unique domains. For

simplicity, all joining domains are assumed to be 4 bytes

in length. For example, if there is a term such as R...A =

R2.B, it is assumed that domains A and B are used only for

that join and nowhere else in the query. This assumption

simplifies keeping track of the size of each relation.

Independence between variables. The input to each

test case includes the number of tuples which will satisfy

the join between each pair of relations. To reduce the

amount of data supplied for each test case, it is assumed

that the result size of each join is independent of the

order in which the joins are performed. This assumption

does not limit the capability of the analysis; rather, it

simplifies the amount of data which must be supplied for

each case. By supplying different result sizes for the

joins, it is possible to examine any case.
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FP technique. Since the primary purpose of query

splitting is to reduce communications costs, the FP tech

nique was coded using Theorems 1-4. This means R is
. P

always the largest relation.

The choices for cardinalities for each relation were

10, 100, and 1000 tuples. This represents a two order of

magnitude range for the cardinalities and is sufficient to

show the effects of the algorithms under a wide variety of

cases. The cardinalities can be scaled to represent

larger relations (say 1000, 10000, or 100000 tuples) with

identical results. It's the relative differences between

the cardinalities that is important — not the absolute

values.

The size of the target list for each relation was

either 0 or 10 bytes. For each input case, the program

ran all possible combinations of relation cardinalities

and target list sizes. This means that each variable

takes on six cases - three different cardinalities, and

two different target list sizes. For example, in a four

variable query, the number of combinations would be

(3)(2)(3)(2)(3)(2)(3)(2) = 6n = 1296

or in general 6 combinations where n = number of vari

ables. Since the case of having a completely empty target

list (that is no variable in the target list) is not very

common or interesting, it is omitted. This reduces the
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number of cases to

6U - 34 = 1215

for the four variable case, and in general

6n - 3n

for the n variable case.

To further simplify the study, only the broadcast
»'.-•»- - >

model was analyzed. The results then become independent

of the number of sites in the network and relatively

independent of the distribution of data among the sites.

This is a direct result of theorems 1 and 2 which state

that the number of processing sites for a broadcast net

work must be either 1 or M . By assuming that the number

of processing sites is always M , the results are com

pletely independent of the distribution of data.

The program accepts as input:

(1) The graph of the query

(2) The true result size of each join

The algorithms are then run on all 6n-3n different combi

nations of cardinalities and target lists. The output for

each case is

(1) The cost to run the query without splitting

(2) The cost using exhaustive search

(3) The cost using limited search

(4) A list of the processing steps made.
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With the above information, we can compute the true cost

of exhaustive and limited search query splitting based on

exact information. In other words, as each possible split

is considered, the algorithms have available the exact

result size which would occur if the query were actually

run. We shall call this having "perfect information". By

doing this we eliminate all other factors and examine only

the .^difference caused by the algorithms themselves. Note

that under these conditions, exhaustive search will always

find the optimal strategy.

4.^.8. Exhaustive Versus Limited Search with Perfect

Information

The results of running the query:

A B C D QUERY 1.
10 20 5

are shown in figure 3. The numbers above represent the

cardinality of the result of the corresponding join. For

example, the join between variables A and B will have 10

tuples in the result regardless of the sizes of A and B.

The graph in figure 3 represents the cost to solve query 1

in 100 of the 1215 combinations measured. The results are

ordered in decreasing difference between limited search

and exhaustive search, and the first 100 cases are shown.

Each case is independent from every other case. The

points are connected by lines only for visual clarity.
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The lower line is the cost of running the query using

exhaustive search and the upper line is the cost using

limited search.

Unexpectedly, exhaustive search does dramatically

better than limited search. The peaks and valleys on the

graph are not important. Since each data point is

independent, axnd they have been arranged in decreasing

difference, the lines are not smooth. The worst case

difference is the case corresponding to variables A, C,

and D having cardinalities of 1000 and target list sizes

of 10; and variable B having a cardinality of 10 and no

target list. In that case, the cost to perform the query

using exhaustive search was 380 bytes. The cost for lim

ited search was 14,200 bytes. Exhaustive search broke the

query into three two variable pieces - BC followed by BD

followed by AB. Limited search broke the query in to two

pieces, CD followed by ABC.

Another way to view the comparison between exhaustive

and limited search is shown in figure 4. The X-axis is

the percentage of the cost of limited search over exhaus

tive search. In other words, 50% means limited search

moved 1.5 times the amount of data that exhaustive search

moved. The Y-axis is the percentage of total cases. The

graph shows that for 59% of the cases, limited search per

formed exactly the same as exhaustive search. For 70% of
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the cases, limited search was within 160% of exhaustive

search, etc. The line grows very slowly. One would

expect limited search to do badly in a few cases but per

form within 10% of exhaustive search in most cases. Fig

ure 4 shows clearly that this is not the case.

Further examination of the worst case for limited

search from figure 3 shows why limited search does not

per form.\as well as exhaustive search. In that case the

optimal strategy was

step procedure cost in bytes

BC move B 80

B'D move B' 180

AB» move B' 120

JEo

In order for limited search to find the optimal strategy,

it would have to find that BC followed by AB'D was the

best strategy. The cost for that split would be

step procedure cost in bytes

BC move B 80

AB'D move B' & A 180 + 14000

14260

However, the strategy it chose was



step procedure cost in bytes

CD move D 14000

ABC move C & B 80 + 120

14200

86

The lowest cost 2-3 split begins with the CD piece. Thus

limited search chooses to first move an expensive piece

(14000 bytes) and leave an inexpensive move (200 bytes)

for the second piece. This shows why1 limited search does

not do as well as one might expect.

To verify that the results are not due to the small

result sizes of the join, another case was tried where the

result sizes were:

A B C D QUERY 2.
100 200 2

The results for query 2 are shown in figure 5. The

results are similar to case 1. The limited search per

formed much worse than the exhaustive search for a large

number of cases. Figure 5 shows 100 points, again sorted

according to decreasing difference between exhaustive and

limited search. Based on the cases shown here and other

cases examined, limited search was dramatically worse than

exhaustive search under a wide range of cases.

The results from this section assumed "perfect infor

mation". They do not . necessarily predict where crude

estimation procedures are used. In the next section, a
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crude estimation procedure is described and the results

are given.

jt.J3.2- Comparison Using Limited Statistics and Dynamic

Decision Making

For making estimates with limited information we

shall assume we know a relation's cardinality and one bit

of imformation per domain. This is case 2 from section

3-9. We shall make "worst case" estimates, that is, what

is the maximum number of tuples that can satisfy a given

query?

In the worst case the size of the result from any

query is limited by the product of the cardinalities of

the relations in the target list. In addition the result

size of each join is limited according to whether each

joining domain has its bit set or not. We shall modify

the graphic representations to include a '//f character if

the domain has its bit set. the worst case cardinality

is:

R # r # = minCC-jCO
R r % = maxCc'c^)
R'# ft = maxCC' C3)
R1 R2 = C1*C2

If the joining domains for both R-andR- are unique,

the maximum number of tuples in the result is limited to

the number of tuples in the smaller relation. If only one
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joining domain is unique, the maximum number of tuples in

the result cannot exceed the number of tuples in the

larger relation. Finally, if neither joining domain is

unique, the worst case happens when all joining domains

have the same value. In that case the cardinality of the

result is the product of the cardinalities of the two

relations.

The simulations were rerun using crude statistics to

determine how limited search performed compared to exhaus

tive search. Query 1 was rerun with:

A// #B# #C# #D QUERY 1
10 20 5

All joins are on unique domains. The "split" algorithm

used worse case estimates to decide the best splitting

strategy. Dynamic decision making was used. After each

piece of the query was executed, the results from the

query were collected and the remaining strategy was recom

puted based on the updated cardinalities of the relations.

The results are shown in figure 6.

The differences between limited and exhaustive search

are not as dramatic as they were for the perfect informa

tion case but they are still conclusive. Limited search

does not do well when compared to exhaustive search —

even with very crude statistics.
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A somewhat surprising result is that without perfect

information, limited search can do better than exhaustive

search! For the case shown in figure 6, exhaustive search

did better or the same as limited search in 1083 out of

1215 cases. The cases where limited search did better

than exhaustive search are shown in figure 7. If all

estimates are accurate, exhaustive search will always find

the 'best strategy. If estimates are imprecise, however,

the best strategy may have a higher estimate than some

other strategy. Exhaustive search will choose the stra

tegy with the lowest estimate and thus may miss the best

strategy if estimates are imprecise. Limited search may

still find the best strategy or a better strategy because

it may not examine the particular case or cases which

misled exhaustive search.

A number of other cases were tried to verify that the

results using crude statistics are not sensitive to the

sizes of the results of the joins. Figure 8 shows the

results of:

A# #B# #C# #D QUERY 2
100 200 2

Once again exhaustive search did much better overall than

limited search. There were cases where limited search did

better than exhaustive search but the differences were

small.
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For query 2, each joining domain was unique. Queries

were also run where one or more joining domains were not

unique. In each case, limited search performed signifi

cantly worse than exhaustive search.

The queries compared so far have been based on either

perfect information, or one bit of information per domain

with worst case estimation and dynamic decision making.

The next section will compare limited and exhaustive

search using static decision making and crude estimation.

1-1'lSL- Comparison Using Limited Statistics and Static

Decision Making

As mentioned in section 3.8, static decision making

requires less execution time overhead than dynamic deci

sion making. For static decision making, processing algo

rithms had to be modified slightly. The processing was

divided into one decision making phase and one execution

phase. After each decision was made during the decision

making phase, the relation cardinalities were updated with

the estimated result sizes of the queries. Then the next

decision was made. Once all decisions are made the execu

tion phase began. During the execution phase, each piece

of the query was processed and its actual cost for pro

cessing was accumulated. The simulation program kept both

the estimated cost for running the query and the actual

cost. All graphs of cases using static decision making
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show the actual costs.

With perfect information static decision making per

forms the same as dynamic decision making. Thus the test

cases for static decision making use the crude estimation

procedure. If perfect information was used, the results

would necessarily be identical to figures 3 through 5.

The results for query 1 are shown in figure 9

A# #B# #C# #D QUERY 1
10 20 5

Once again, exhaustive search does markedly better than

limited search but the differences are not as dramatic as

in other cases. Other test cases were run which varied

the result sizes and the number of unique joining domains.

The results were all similar to figure 9. For all the

static decision cases, there were times when limited

search did better than exhaustive search but once again

they were small differences compared to the cases when

exhaustive search did better than limited search.

The remainder of this section compares the relative

performances of crude estimation versus perfect informa

tion and static versus dynamic decision making.

it-l«JJL« Comparision Between Perfect Information and Crude

Estimation
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We have now compared limited versus exhaustive search

under a variety of conditions. Those results can be used

to see how crude estimation compares to perfect informa

tion. The results of such a comparison for query 1 are

shown in figure 10. The two cases shown are exhaustive

search with perfect information, and exhaustive search

with worst case estimation and dynamic decision making.

Figure 10 shows that even with a small...amount of informa

tion, worst case estimation performs poorly in some cases

but well overall.

So far estimates have been done assuming worst case.

That is, it has been assumed that the maximum number of

tuples possible would satisfy a query. What would be the

effect of assuming only half the possible tuples would

satisfy? Such an assumption is closer to what one might

expect in a real environment. Notationally we shall call

worst case estimation "WC" and worst case estimation

divided by 2 !,WC/2M. The results of rerunning query 1

with estimates based on WC/2 are shown in figure 10. The

two solid lines represent perfect information and WC esti

mation. *The dashed line shows the results using WC/2

estimation. Overall WC/2 performs much better than WC.

It was noted that WC estimates did better than WC/2

in 62 out of 1215 cases. This is not surprising since the

estimates are so imprecise. It seems reasonable, however,
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that since all of the result sizes for case 1 are small,

the smaller the estimate, the better the results. Using

WC/10 produced slightly better results than WC/2 estimates

for case 1. There are situations where WC/2 is better

than WC/10. One can conclude that the better the estima

tion procedure, the better the final results. However,

knowing the relation cardinalities, having one bit of

information per domain and performing a WC/2 estimate

tends to produce good results in many situations. As

final evidence, figure 11 plots the relative performance

of perfect information versus WC/2 estimation with dynamic

decision making. Note that 75% of the cases are the same

and 100% are within a factor of 1.5.

it'1'12. Comparision Between Static and Dynamic Decision

Making

The relative performance of static and dynamic deci

sion making is shown in figure 12. There are cases when

dynamic decision making does significantly better than

static decision making. The overall difference, however,

is not very large. It is interesting to note that there

are cases when static decision making performs better than

dynamic. This is true because the decisions are based on

imprecise information. Both static and dynamic decision

making always make the same first decision, but dynamic

decision making will reevaluate its decisions. It
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happened on several occasions that static performed better

by accident, and dynamic decision making reevaluated

itself out of the good decision into one which wasn't as

good.

4. 3. J_3. Summary of results

To assign an overall rating to each of the combina

tions of strategies presented in this section, a single

number was derived for each case. This was done by

averaging the cost for all test cases for each query.

This is a very crude performance measure since it assumes

that each test case is equally likely to occur. Figure 13

shows the average performance for queries 1 and 2. The

results indicate that exhaustive search performs con

sistently better than limited search. They also show that

the. performance of exhaustive search is 30% better when

WC/2 estimation is used instead of WC estimation. Using

WC/2 and WC/10 estimation made limited search perform

worse. For most cases the best strategy was to split the

query into three two variable pieces (2-2-2). WC/2 and

WC/10 tended to make too small an estimate for three vari

able pieces. As a result, limited search had a greater

tendency to perform 2-3 splitting. The results from query

2 are similar to query 1. In general WC/2 estimation is

better than WC estimation.
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Average performance (in bytes).

10 20 5
QUERY 1 A# #B# #C# #D

perfect information
worst case, dynamic
worst case/2, dynamic
worst case/10, dynamic
worst case, static
worst case/2, static
worst case/10, static

exhaustive limited

508 1086
755 927
537 1252

532 1053
860 1070

545 1257
536 1058

100 200 2
QUERY 2 A// #B* #C# #D

perfect information
worst case, dynamic
worst case/2, dynamic
worst case/10, dynamic
worst case, static
worst case/2, static
worst case/.10, static

exhaustive limited

551 1036
995 1128

746 1403
740 1207
1017 1210

781 1420

774 1229

Figure 13
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The average results for two other queries are shown

in figure 14. Query 3 differs from queries 1 and 2

because every variable is joined to two other variables.

Query 4 is similar to query 2 except that no domains have

their "unique bits" set. This is equivalent to knowing

only the relation cardinality (case 1 of section 3.9).

Therefore the estimated number of tuples for WC estimation

is always the product of the two cardinalities.



Average Performance (in bytes)

10 20 5
QUERY 3 A# #B# #C# #D

# #

perfect information
worst case, dynamic .
worst case/2, dynamic
worst case/10, dynamic
worst case, static
worst case/2, static
worst case/10, static

100 200

QUERY 4 A B

perfect information
worst case, dynamic
worst case/2, dynamic
worst case/10, dynamic
worst case/1000, dynamic
worst case, static
worst case/2, static
worst case/10, static
worst case/1000, static

20

exhaustive limited

631 13^0
1185 1183
721 2128
721 1471
1259 1289
724 2128
724 1475

exhaustive limited

508 1086

3581 4008
3372 3541

3307 3179
852 1240

3466 4008
3300 3549
3206 3319
876 1290

Figure 14
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Dynamic decision making performs somewhat better than

static decision making but the differences tended to be in

the 1% to 30% range. If the overhead for performing

dynamic decision making is low, then it is a good tactic

to use. If it is expensive to perform dynamic decision

making, then static decision making appears to perform
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well. The costs of dynamic and static decision making are

examined in more detail in section 4.7.

.4.4. Transmission of Physical Structure

Once the FP technique has chosen a fragment to be

transmitted, the choice remains as to what to transmit.

It may be possible to improve local processing by

transmitting additional information such as a relation's

index. Three choices will be analysed:

(1) moving a projected, sorted, duplicate free copy of

the fragment,

(2) moving the complete fragment together with its

primary structure (clustered index [GRIF79], isam

directory [IBM66], hash division for modulo hash

ing CKNUT733),

(3) moving the complete fragment together with a

secondary structure (non-clustered index [GRIF79],

secondary index [HELD75b]).

Our goal is to determine when any of these options will

minimize either the response time or communications

traffic.

The analysis will proceed as follows: First, cost

functions will be derived for performing equi-joins on

local, two variable queries. The joins will be computed

using tuple substitution [STON76], tuple substitution with

reformatting [STON76], and sort-merge substitution
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[BLAS76]. The two variable equi-join case was chosen for

analysis because it is the simplest case which illustrates

the effects of moving a relation's structure. Later in

this section the solution for more general joins will be

discussed. The cost functions for equi-joins will then be

extended to include fragmented relations. The degree to

which the primary and secondary structures aid local pro

cessing will then be determined. The cost functions will

be measured in disk pages accessed, as this reasonably

models the relative performance of the three choices.

4.4.J_. Equi-join Cost Functions for Local Relations

Given two complete relations, R1 and Rp, the equi-

join can be computed by iteratiyely substituting each

tuple of either relation. Suppose R1 is chosen. A ^tuple

is read from R and all corresponding references to R- are

replaced by their values. The remaining query references

only R-. In the most optimistic case, Rp has a primary

structure on the joining domains, and only one page has to

be read from R for each tuple in R-. The cost formula

measured in pages in this case would be

C0SWs=P1 ♦ 1 <m
where

1
See chapter 1 for a discussion of tuple substitution,

sort-merge join and reformatting.
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P. = number of pages occupied by R.

C. = cardinality of R..

If the structure used to access R« is a secondary struc

ture, then the most optimistic cost estimate would be

COST flac = P. + 2 C,
pages 1 1

based on one access to the secondary structure and one to

the corresponding primary data page. The formula is

optimistic. Both these formulas ignore the cost of

searching a directory when necessary.

If R2 has no useful structure, then the cost would be

COST = P„ + C„P„
pages 1 WV2

since each page of Rp would have to be read for every

tuple in Rr Alternatively, R2 could be reformatted to a

hash structure on the joining domain. In that case the

total cost (again measured in pages) would be

COST = P1 + 1 C1 + F2

where

Fi = cost to reformat R. to hash.

Assuming uniform distribution of keys, the cost to refor

mat is approximately

P.L0G„rtP.
l 10 l

To reformat a relation, the tuples are first sorted

according to their hash value and then inserted into the
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relation. Since the tuples are in hash order, insertion

into the relation is a linear cost. The cost for sorting

depends on the amount of main memory available for sorting

and the number of files which can be merged simultane

ously. If there is enough memory to sort B pages, then in

one pass through the relation, P. pages will be sorted

into 2P. / B pieces at a cost of

^B

The constant 2 represents the fact that each page must be

read and then written back. The P. / B pieces can be

merged back together in an "n" way merge at a cost of:

H L0Gn [Pij
The INGRES system is capable of using n = 10. Since this

is a reasonable number, *-0Gin will be used throughout.

The reformat cost is:

•P. «

2!-r, LOGiolpi!
U mi U ml

For the purposes of simplifying the analysis, the reformat

cost will be simplified to

PiLOG10Pi
Since the above formula is greater than the actual cost,

it will favor moving a relation's structure. The total

cost for tuple substitution with reformatting is
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COST = P1 + 1 C1 + P2L0G1QP2

The sort-merge join strategy [BLAS76] requires that

each relation be sorted on the joining domains. The join

can typically be computed by reading each relation once.

The cost for such a technique (assuming both relations are

already sorted) is

COST = p + P2

If only one relation (say R^ is already sorted on the

joining domain(s) then the cost is

COST = P1+P2+P2L0GlQP2

=P1+P2[L0G10P2 +1]
If both relations need to be sorted then the cost is

COST = P1+P2+PlLOGl0P1+P2LOG10P2

=P^LOG^P^!] +P2rL0G10P2+l]

4..4.2. Equi-join Cost Function for Distributed Rela

tions

The cost estimates will now be extended for distri

buted relations. If the FP technique is applied to a two

variable query on R1 and R2, each site S. will have:
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Ri

JOINED WITH

Rp R- ... R ... R«

At each processing site S., there is a logical, complete

relation referred to above as R " and a fragment of the

relation R^. The physical relation Rp might be stored as
1, 2, or n separate relations. If the fragment r! is the

original user relation, tarfien the other fragments, Ri,i^J,

could be assembled into one relation or kept as separate

relations. If R^ is already a copy of the original Ri (as
would happen if a one variable restriction had previously

been performed on R^), then the other fragments of Rp
could be appended directly to Rp1 or left as separate rela
tions. ^If the physical structure of the relation frag

ments _is ^to be preserved, they must be left as n separate

relations. Access methods, by necessity, must place phy

sical restrictions on the locations of tuples based on

their key values. The author knows of no way to combine

two relation fragments, maintained separately, and still

preserve the physical structure of the individual frag

ments. For this reason, if the structure is to be

preserved, the R.,i^p, relations must be left in their
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composite pieces.

The cost for tuple substitution assuming that the

composite relation is not the relation being substituted

is

COST = P1 + (C1)(n)

where

n = M2 = the number of fragments of Rp.

This again assumes hashing on the joining domain. For

each tuple in R^ one page of each of the n relation frag

ments must be accessed. (Throughout this section whenever

assumptions are made, they will be made in favor of moving

a relation's structure.)

If the relation fragments R2,i=1,...,n were put into

one unstructured relation, then tuple substitution could

either sequentially scan Rp at a cost of

P1 + C1P2
or R2 could first be reformatted making the total cost

P1 + C1 + P2L0G10P2
Therefore the cost for tuple substitution is

C0ST=MIN|P1 + C<lP2, P1 + C1 + P2L0G1QP2]

The sort-merge join requires that both relations be

sorted on the joining domains. Thus, in general, the

fragments of R* will have to be one sorted relation. The
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cost for performing the sort-merge on a relation which is

composed of a collection of fragments is the same as for a

local relation.

The formulas developed in this section are summarized

below:

Summary of query processing formulas

P1+(n)C

Tuple substitution for R ,
R2 has useful primary structure

P1+2(n)C1

Tuple substitution for R..,
RQ has useful secondary structure

P1+C1P2
Tuple substitution for R..,

R2 has no useful structure

P1+C1+P2LOG10P2

Tuple substitution for R.,reformat Rp

p1+p2

Sort merge with both relations already sorted

P1+P2(L0G1QP2+1)

Sort-merge with R. already sorted

P1(LOG10P1+1)+P2(LOG10P2+1)

Sort-merge with neither relation sorted
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4.4.3- Effectiveness of Transmitting a Relation's Struc

ture

The formulas for estimating the costs of processing

two variable queries on distributed data bases have now

been identified. Note carefully that any assumptions have

been made in favor of moving a relation's structure. We

will now analyze the effectiveness of moving a relation's

structure; first assuming tuple substitution will be used,

and second assuming the sort-merge join will be used.

Formulas which show the cost effectiveness of moving a

relation's physical structure will be developed. Finally,

all combinations of the processing tactics will be com

pared .

Observe that transmitting a projected, duplicate free

fragment minimizes communication traffic. Any domains

unnecessary for processing the query will have been elim

inated. The removal of duplicates at an early stage helps

subsequent processing. This is clearly the best tactic

for minimizing communication traffic.

Any tactic which sends more than the minimum amount

of data must improve local processing time by at least the

time required to transmit the extra data.

If tuple substitution is used as the join tactic, the

transmission of the fragment's structure is useful only if

the relation is not the one chosen for substitution. The
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relation being substituted is read sequentially and its

structure, if any, is ignored. If the relation is the

"inner relation", i.e., the one not chosen for substitu

tion, and the primary structure is transmitted, then the

cost formula is

COST = P1 + (C1)(n)

If the relation fragments R* are transmitted without

strudture and reformatting is done then the cost formula

is

COST = P1 + C1 + P2L0G10P2
In practice, reformatting is nearly always effective

except in cases of small relations [YOUS78b]; thus it is

reasonable to assume reformatting takes place. Comparing

the two costs we have:

P1 + Cjn < P.J + C1 + P2L0G1QP2
P2L0G1QP2

n < 1 + d lu d
c1

Ignoring the constant 1, our final result is

P2LOG P2
n < d . 1U d (4.16)

L1

If the inequality holds, it may be cost effective to

transmit a primary structure (it must improve performance

by at least the added overhead of transmitting the struc

ture) . If the choice is to transmit a secondary struc

ture, then the most optimistic assumptions would be that
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P1 + 20^ < P1 + C1 + P2LOG1QP2

n . P2LQG10P2
2C1

The case for the sort-merge join is entirely dif

ferent. For such a tactic both relations must be sorted.

The relation fragments should be transmitted already

sorted so that they need only be merged at the processing

site. Thus for the sort-merge join tactic, the minimum

communication cost and the minimum local processing cost

will both occur by transmitting the projected, duplicate

free, sorted fragments.

We have shown that moving a relation's structure is

not an effective tactic for- sort-merge. Theorem 5 will

prove that assuming a reasonable number of sites, and a

reasonable number of tuples per page, equation 4.16 is

never satisfied. This means that moving a relation's

structure is not an effective tactic. To prove this we

will make the assumption that moving the structure must be

cost effective on a majority of sites. This allows us to

reasonably assume that on each site,

nP1 > P2
where

R1 = the relation left fragmented

R2 is the composite relation at each site.

This is true because the FP technique will only choose R1
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to remain fragmented if it is larger than Rp. Once the

fragments of R2 have been moved, then each site that has

the complete copy of R2 has on the average 1/n of Rv

THEOREM 5:

Suppose R1 is left fragmented and Rp is the relation which

is duplicated on all processing sites. Given that R- has

at least 10 tuples per page and that there are at least

two fragments of Rp, then moving the structure of Rp is

better than reformatting Rp only if P.. > 105.

PROOF:

We must show that

P1 + Cjn > P1 + C1 + P2L0G1QP2

Subtracting P from both sides gives:

C.,n > C1 + P2L0G1QP2

The number of tuples in R.. is equal to the number of

pages P., times the number of tuples per page, which

we shall refer to as 'x':

S = xPi
Subtracting C. from both sides and substituting for C.

gives

xP.jn - xP- > P2L0G1QP2

It is known that
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nP1 < P2
otherwise the FP technique would not have chosen R- as

the relation to remain fragmented. Substitute nP- for

P2. This substitution can only increase the right

hand side. Thus this substitution favors moving the

structure.

xP.jn - xP1 >nPlLOG10[~nP1~j
Dividing by P gives

xn - x > nLOG^inP, •10L 1j
Dividing all terms by n gives:

* -i >LoGi0rnpii
L, -J

Factoring out x from the left side and dividing

yields:

LOGin!"np "I
V 10' 1 'X > " L „ 'ml

1 -1
n

We were given that x, the number of tuples per page,

is 10. Since there are at least two fragments of R

the number of sites, n, must be > 2. With two sites

we have

5>LOGio[2Pi]
103 > P

QED
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It should be noted that n = 2 and 10 tuples per page

are both very low numbers and they can reasonably be

expected to be larger. If they are larger it makes moving

a relation's structure even less effective. Even so, R-

(and correspondingly R2) must be enormous, e.g. over

100,000 blocks or with 4096 bytes/block, 400 megabytes,

before moving the structure could be effective! At n = 2,

P1 would have to be over 10° pages! Even then, the addi-

tional data which must be transmitted to move the struc

ture has not been considered. Doing so would only make it

less favorable to transmit a relation's structure.

It has now been demonstrated that moving the struc

ture of a relation is very rarely (if ever) a cost-

effective tactic. To illustrate the meaning of theorem 5,

the various processing strategies are plotted in figure

15. The lines represent:

(1) Tuple substitute for R^ R2 is unstructured

(2) Tuple substitute for Rp, R is unstructured

(3) Tuple substitute for Rp, R. is well structured

(4) Tuple substitute for R R is reformatted to be

well structured

(5) Tuple substitute for Rp R2 is reformatted to be

well structured

(6) Sort-merge join with R- already sorted

(7) Sort-merge join with neither relation initially
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sorted

(A) Tuple substitute for R transfer primary struc

ture of R2, assume 5 sites in the network

(B) Tuple substitute for R move the primary struc

ture along with R2, assume 10 sites in the network

(C) Tuple substitute for R move the primary struc

ture along with R2, assume 50 sites in the network

Figure 1'5 plots the various strategies for one sample

case. For figure 15, R., is the relation left fragmented

and R2 is a composite of the n fragments of Rsj. The
number of pages of R1 is fixed at 1000. The number of

tuples per page is fixed at 100 for both R and Rp. Note

carefully that R2 must be smaller in total bytes than n

times R.J, since the relation left fragmented must always

be the largest relation (section 4.2). The limits where

iRi| - jR2j
for cases A, B, and C are indicated by vertical lines.

From the graph it can be seen that moving the struc

ture (choices A,B,C) is never better than reformatting R

(choice 5). The result of Theorem 5 proved this.

In conclusion, moving the structure of a relation can

only be an effective strategy if there are very few tuples

per page in R1# Figure 15 shows that for a variety of

parameters, the best processing strategy is either 3, 4,
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5, 6, or 7.

4^.5. Analysis of Join Encoding Techniques

When two relations are joined and the result

transmitted to other sites, network communication costs

may be lower if the join is transmitted in some encoded

form. The three transmission techniques which will be

evaluated are

(1) transmitting the actual computed join,

(2) encoding the join as a tuple from relation R. fol

lowed by the tuples from R. which are to be joined
w

to the tuples from R..,

(3) storing the tuples which belong to the join as two

separate relations, .transmitting the relations

separately, and recombining the relations at the

destination.

The three techniques model, respectively, a 1:1 relation

ship, a 1:n relationship, and an n:m relationship.

This analysis will be concerned only with minimizing

the amount of data which must be transmitted. Once tuples

reach their destination the three cases have different

impacts on local processing time. Case 1 requires no

extra local processing time since the join has already

been completely formed. Case 2 requires only a minimum of

extra processing since the tuples are transmitted in the

order that makes it trivial to reconstruct the join. Case
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3 can have a major impact on local processing time since

the join must be recomputed from scratch.

The analysis will consider only equi-joins. Exten

sions to other joins will be considered later in this sec

tion. For simplicity, if the join is on two or more

domains, then the term "joining domain" should be under

stood as the concatenation of the domains. The three

encoding techniques will be evaluated assuming:

(1) the joining domains from both relations contain

only unique values,

(2) the joining domain from only one relation contains

only unique values,

(3) the joining domains from both relations contain

duplicate values.

If the values in each of the joining domains are

unique, then a tuple can match at most one other tuple.

In such a situation, actually forming the join is always

the best tactic. This is because the other encodings

require additional information to be transmitted in order

to reconstruct the join. The joining domain itself does

not have to be saved unless it is referenced in a subse

quent query.

If only one of the relations has unique values in its

joining domain, then each tuple from that relation can

match multiple tuples in the other relation. This is a
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one-to-many relationship. Forming the join will generate

redundant information since domains in the first tuple

will be repeated for each of the tuples in the second

relation which satisfy the equality. Case 2 of the encod

ing techniques will be the optimum since the tuple would

actually be stored in the non-redundant, one-to-many

fashion. Case 3 would not be as efficient as case 2

because the joining domains from both relations would have

to be saved in order to reconstruct the join.

If neither joining domain contains unique values,

then an n-to-m relationship can exist. In such a situa

tion, both cases 1 and 2 could have tuples stored redun

dantly but case 3 would not. Case 3, however, must store

the joining domain value twice, once in each output rela

tion. Cases 1 and 2 store the joining domain once but

only if it is needed in subsequent queries. As an example

of this case, consider the query from section 3.5:

retrieve into temp (e.name, e.number, e.dname)
where

e.manager = d.manager

If encoding technique 1 were used, the join would be com

puted and stored in one relation:

temp (e.name, e.number, e.dname)

If encoding technique 3 were used, the join would be com

puted using two separate relations:
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e' (e.name, e.number, e.manager)
d' (d.dname, d.manager)

Case 1 would be better than case 3 if:

[temp! < Je'\ + jd'j
i i i i i i

In this example, the correct choice between cases 1 and 3

is not obvious since e* and d' must include the "manager"

domain but temp does not.

So far we have considered only equi-joins. If rela

tions are not being joined with an equi-join it is the

same situation as the case where neither joining domain

was unique.

In summary, there are at least three encoding tech

niques for transmitting joins, case 1 which models the

case of a 1:1 relationship, case 2 which models a 1:n

relationship, and case 3 which models an n:m relationship.

If the relationship between the two joining domains is

known in advance then the appropriate encoding technique

can be chosen with the exception of the n:m case. In the

n:m case, the decision depends on whether the joining

domains need to be included in the transmission.

4.6. Analysis of Shuffling Strategies

As was discussed in section 3.7, when performing

update queries several sites may have tuples which must be

moved to one or more different sites. Each processing

*s
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site has a relation holding result tuples from the query.

The tuples either have a domain that states which site

each tuple belongs to, or the distribution criterion has

to be used to determine which site the tuple belongs to.

Shuffling strategies determine how to move all tuples to

their destination site. We will examine which of two

"shuffle" strategies, centralized or decentralized, is

better regarding minimization of communication traffic, of

local processing time, and of the number of messages to be

transmitted.

The analysis will proceed as follows. There are K

sites which processed the very last piece of the query.

Mr is the number of sites where the original result rela

tion resides. For simplicity, we will assume that all

messages are to remote sites. This means that even if the

master sends a message to itself, it is counted as a net

work message.

Case (a): Centralized shuffling

The master begins by telling each of the K sites to

examine their solution relation for tuples which are

already at the correct site, process those tuples and then

send the remaining tuples to the master site. This

requires one message on a broadcast network and K messages

on a site-to-site network. To return the results requires
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K messages on either network. Next the master site sorts

the tuples, determining the destination for each tuple.

The tuples are then sent to their correct sites and the

sites told to process the updates. This requires M mes

sages and another complete transmission of the result

tuples. Finally each site that received tuples ack

nowledges completion of processing requiring M messages.

Therefore, a site-to-site model requires 2k + 2M messages

and a broadcast model requires K + 2M +1 messages. The

size of the result is reduced by the number of tuples

already at their correct site. The remaining tuples are

transmitted twice. Each of the K sites must scan the

solution relation once to determine the tuples that belong

to it.

Case (b): Decentralized shuffling

Each site is told to begin processing, requiring one

message on a broadcast model and K messages on a site-to-

site model. Each site examines which tuples belong to it.

Next, every processing site K transmits to every site in

Mr, the tuples that belong to them. This requires KM

messages. Each site in M acknowledges completion of pro

cessing requiring an additional M messages.

Both techniques take the shuffle process to the same

stage of completion. For recovery and consistency rea-



127

sons, a special synchronization (a two-phase commit

[ESWA76, ST0N78]) will occur after the shuffle to actually

commit the updates. The shuffle's function is only to

distribute result tuples to their correct destinations.

Table 4.2 summarizes the two cases.

Centralized Decentralized

Messages 1+K+2M 1+M+KM
r

(broadcast)

Messages 2K + 2M K + kM + M
(site-to-site) r r

Data local data processed, local data
movement remaining data moved processed,

twice. remaining data
moved once.

Processing one query in M queries
parallel at K at K sites
sites, followed
by processing at
master site.

Table 4.2: Summary of Shuffle Strategies

Table 4.2 shows that the minimum data movement will

occur with decentralized control. The minimum number of

messages occurs with centralized control. The least

amount of parallel processing occurs with centralized con

trol .

The choice between centralized and decentralized

shuffling depends primarily on the communication network.

Decentralized control requires that each site be able to

concurrently open a channel to all other sites. Further-
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more, decentralized control requires the communication

bandwidth to be larger than the sum of the local proces

sors' ability to supply data; otherwise, the processing

sites will contend with each other for access to the net

work. The trade-off between the two choices depends on

which will better utilize the network. If messages are

insignificant in cost and the network is fast enough to

minimize the possibility of contention, then decentralized

shuffling is the best choice. Otherwise, centralized

shuffling should be chosen.

4.7. Decision Making ang^ Estimation

The aspects of decision making and strategy selection

which are particular to distributed data bases are dis

cussed in this section. Emphasis will be placed on

estimating result sizes, dynamic decision making, and the

movement of the result relation. We will begin with some

general comments concerning the relationships between

these three concepts. Then we will discuss those aspects

which require particular attention on distributed data

bases.

The advantage of dynamic decision making, as demon

strated in section 4.3, is the ability to use results from

the current processing step for choosing the next process

ing step. This is particularly important if the estima

tion procedure is crude. As the accuracy of estimation
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improves, dynamic decision making is no longer important

since with accurate estimates, both static and dynamic

decision making will generate the same strategy.

A similar situation exists for determining whether to

move the result relation. With limited estimation capa

bility, there is no way to determine whether to move the

result relation. With accurate estimation the cost func

tions for-the FP technique can takevinto account the addi

tional costs associated with moving the result relation.

As mentioned in section 3.6, if the result relation is

moved, additional network communication will be necessary

to transmit the result tuples (or deletions) back to their

correct sites. If the result relation is not moved, then

there is no additional network communication. Without a

good estimate of how many tuples in the result relation

will be changed, there is no way to include the additional

cost resulting from moving the result relation. Accu

rately determining the cost-effectiveness of moving the

result relation is beyond the scope of this thesis. It

is, however, an important problem and well worth further

investigation.

On a centralized data base, the "cost" of doing

dynamic verses static decision making is the extra pro

cessing required at runtime to make the decisions. This

cost is, of course, highly dependent on the specific
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implementation. There have been no studies made which

examine the cost of dynamic decision .making during "decom

position" or query strategy selection. Based on coding

the query processing strategies for INGRES, it is the

opinion of this author that the cost on a centralized data

base for dynamic decision making can be made small. On a

distributed data base, the cost for dynamic decision mak

ing may be quite large due to the additional message

traffic. As an example, we repeat the query from section

3.8. Suppose every site has a fragment of the two rela

tions, parts and supply, and the query is issued:

retrieve (p.pname)
where

p.pnum = s.pnum
and

s.snum = 475
and

s.shipdate = "79-07-01"

The processing strategy is to detach and execute the one

variable restriction on supply and then, using the FP

technique, process the join. The FP technique will move

either p or s to all sites. Using both dynamic and static

decision making, we will count the number of messages

needed to control the processing of the query.

Beginning with static decision making, suppose s is

chosen as the relation to be moved, leaving p as the rela

tion left fragmented. In one message the master can issue

the set of commands to all N processing sites: restrict
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supply, move the restriction of supply to all other sites,

when all fragments of supply have been received from the

other sites perform the join and return a "done" signal.

This execution strategy requires one message on a broad

cast network and N messages on a site-to-site network.

Now consider the case of dynamic decision making.

The decision whether it is better to move p or s is not

made until after the restriction on s is performed. The

master will issue the command to do the one variable res

triction. This will require one message on a broadcast

network and N messages on a site-to-site network. The

processing sites then send back the sizes of the res

tricted supply relation, requiring N messages on either

network. Now the master chooses p or s to be moved and

issues the command to move either p or s, perform the

join, and send a "done" when complete. This requires one

message on a broadcast network and N messages on a site-

to-site network.

For this example, there is a major difference in the

number of messages between the two cases:

site-to-site

N

3N

broadcast

static 1

dynamic 2 + N
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Conceivably the best choice was to move p and not s.

In that case the estimate of the result size of the res

triction on s was incorrect (possibly the data in s did

not fit the estimation model.) Potentially, the savings

resulting from moving p instead of s were greater than the

overhead of using dynamic decision making. This strongly

depended on whether messages on the actual communication

network were a significant cost. The choice between

dynamic and static decision making is strongly influenced

by the tremendous additional network overhead that results

from using dynamic decision making. Ultimately one must

consider the cost to send messages and the expected accu

racy of the estimation procedure.

4,..8. Comparison to Other Proposed Algorithms

This section compares the tactics proposed in this

thesis to tactics proposed by others. Wong has suggested

an algorithm which is used by SDD-1 [ROTH77a]. The algo

rithm is described in [WONG773. Hevner and Yao have pro

posed an algorithm which is based on Wong's work

[HEVN78b].

The comparison will proceed as follows. Both Wong's

and Hevner's algorithms will be described. Since Hevner's

algorithm encompasses the tactics suggested by Wong, only

Hevner's algorithm will be compared to the tactics dis

cussed in this thesis. Finally the salient differences
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between the two approaches will be discussed.

Wong's algorithm [WONG77] is based on the site-to-

site network model and does not consider a broadcast model

at all. The sole optimization criterion is minimizing the

number of bytes transmitted. Only retrieval is con

sidered. Moreover, it is assumed that relations do not

span more than one site. It is not clear how the algo

rithm will be extended to allow multiple fragments of a

relation on multiple sites.

Wong's algorithm begins by performing all possible

local processing. This includes all one variable restric

tions, and all other local processing including joins

between two relations which are completely contained at

the same site.

Next an initial sequence of moves is determined that

will move all remaining fragments to one site for process

ing. The site chosen is the one with the most data.

After processing, the results are moved to the final des

tination site. Wong represents the sequence of moves by

nodes in a tree. If the query involves less than three

relations, then the optimization is complete. If there

are three or more relations then a "node splitting" tactic

is used to break the data movement into pieces. The node

splitting tactic is applied recursively until no further

splitting is possible.
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If splitting a node into two pieces results in an

immediate reduction in network communication costs then

the split is always included in the processing strategy.

Once a node is split, it is never recombined.

When moving relations, fragments are not combined.

If a join is performed the join-restrict technique dis

cussed in sections 3.5 and 4.5 is employed. When a join

is executed, all relations are restricted by the join and

later transmitted as separate relations. When all rela

tions reach the final processing site, they are finally

joined into the one result relation.

Hevner's algorithm is based on a network model simi

lar to Wong's. A site-to-site model is the only one con

sidered. Furthermore, it is assumed that parallel

transmissions are possible, that is, any set of sites can

concurrently communicate with each other. This includes

one site sending to two different sites and one site

receiving from two sending sites. Two different optimiza

tions are considered: (1) minimum transmission cost and

(2) minimum network delay. Transmission cost is assumed

to be a linear function of the number of bytes transmit

ted. The two criteria differ if two or more transmissions

occur in parallel. The minimum delay will always be less

than or equal to the minimum transmission cost. The algo

rithm ignores any local processing costs and it assumes
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that relations cannot span more than one site.

The algorithm begins by doing all the local process

ing that can be done - exactly like Wong's algorithm.

Next an initial strategy (called a schedule by Hevner &

Yao) is set up to move all relations to the site where the

result is required, again exactly as in Wong's algorithm.

An "improved exhaustive search" looks for a strategy

better than the- initial strategy. It differs from Wong's-

node splitting tactic in that more combinations of moves

are considered. This is a fundamental difference between

Wong's and Hevner's algorithms. For computational effi

ciency, the search space is limited by first ordering the

relations from smallest to largest (measured by their size

in bytes). Then the search begins by considering moving

the smallest relation to one or more of the other rela

tions. The authors claim that by ordering the relations

according to size and then examining the possible moves,

"data transmissions are quickly eliminated from
consideration if they cannot possibly be part of a
minimum time solution." [HEVN78b]

When minimizing total network traffic, Hevner exam

ines more alternatives than Wong. As a result, Hevner

will find an equal or better solution than Wong. This is

because Wong's algorithm looks only at splitting a

sequence of moves in two and once the decision to split is

made, it is never rescinded. Wong's node splitting
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algorithm is a "greedy" algorithm that optimizes for the

current processing step without regard to "global" optimi

zation. Hevner claims [HEVN78b] that he will find solu

tions that Wong will not find when optimizing for minimum

network delay. This claim is reasonable since his model

of a site-to-site network allows parallel transmissions

and Wong chooses to minimize only total transmission cost.

In summary, it is sufficient to compare our algorithm

to Hevner's since it encompasses Wong's algorithm.

4.8.K Comparison to Algorithm G

We will now compare the tactics presented in this

thesis with those of Hevner & Yao's "Algorithm G"

[HEVN78b]. First, the processing and network models the

two proposal use are compared. It is shown that Algorithm

G considers only a subset of the issues that this thesis

considers. Next portions of the two sets of algorithms

are compared assuming the site-to-site model and assuming

one relation per site.

The network models of algorithm G and this thesis

differ greatly. Algorithm G considers only a site-to-site

model. Thus we cannot compare special tactics and ana

lyses which are used on broadcast networks. The site-to-

site models use the same cost formula but Hevner assumes

that sites can communicate in parallel. The cost to com-
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municate, measured in bytes, will be identical in both

algorithms but the time required to communicate will be

different. To the extent that parallel communication

exists in the actual network and can be taken advantage

of, this is an important distinction.

Algorithm G assumes that local processing costs are

insignificant compared to network communication costs. It

makes no attempt to reduce the demands on local process

ing. This is most apparent in the use of the join-

restrict technique. Explicitly integrated into algorithm

G is the fact that the join-restrict technique will always

be employed and that two different relations will never be

joined for transmission. Recomputing the join at the des

tination requires a substantial amount of local process

ing. As shown in section 4.5, the join-restrict technique

is not always optimal for minimizing communication costs.

This thesis treats the join-restrict technique indepen

dently from the other processing tactics and uses it only

when it is optimal.

Algorithm G does not consider relations spanning more

than one site. It is not at all clear how to extend the

cost formula to include multiple site relations. It was

shown in section 4.2 that for relations spanning multiple

sites, the choice of processing sites, K, is critical for

minimizing the communication cost and for maximizing
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parallelism. Those trade-offs cannot be compared since

Algorithm G does not consider fragmented relations.

Since Algorithm G uses exhaustive search for deter

mining its strategies, it can find better solutions than

the query splitting technique using limited search of this

thesis but it will find the same solutions as the query

splitting technique with exhaustive search presented in

section 4.3.

An example will be used to illustrate the important

differences between the two algorithms. For comparison we

must restrict ourselves to one relation per site. For

convenience, we will name the sites with the same name as

the variable which resides on that site. Consider the

query:

retrieve (p.pname, s.sname, j.jname)
where

p.pnum = s.pnum
and

s.snum = j.snum

Assume that minimum network delay is the sole objective.

Depending on the transmission cost estimates, Hevner's

algorithm might do the following:

(1) Simultaneously move S to J and S to P

(2) Run two separate queries on sites P and J. On site P:

retrieve into p' and s'(p.pname, p.pnum,
s .snum,s,sname,s.pnum)

where p.pnum = s.pnum



and site J:

retrieve into j'(j.snum, j.jname)
where j.snum = s.snum

(3) Move J' to P' and run the final query

retrieve (p'.pname, s'.sname, j'.jname)
where

p' .pnum = s'.pnum
and

s' .snum = j' .snum

The query splitting tactic would:

(1) Move S to J

(2) Execute the query:

retrieve into J'(j.jname, s.sname, s.pnum)
where j.snum = s.snum

(3) Move J' to P and run the final query:

retrieve (p.pname, j'.sname, j'.jname)
where

p'.pnum = j'.pnum
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The difference between the two strategies is that in

step 1, Algorithm G moves S to two different sites in

parallel. Since this is done in parallel, the delay time

is the same as moving S to only one site. Then in step 3,

J' is moved to the site where P is located. Using our

technique, J' would be necessarily larger since it must

include part of the relation S. For algorithm G, S was

moved in Step 1. Algorithm G would have a shortened
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network delay and would be faster by the time required to

transmit the difference between the sizes of the two J's

in step 3.

If minimizing total communications was the optimiza

tion criterion, then our technique would remain the same

but Algorithm G would:

(1) Move S to J.

(2) Execute the query:

retrieve into J' and S'(j.jname,j.snum,
s .sname,s.snum,s.pnum)

where s.snum = j.snum

(3) Move J' and S' to P

Both algorithms would perform the same steps except for

deciding if J» is a composite of J and S or J' and S* are

transmitted separately. Our algorithm would determine the

most beneficial way to encode and transmit the join.

Hevner»s algorithm would always transmit J' and S' as two

separate fragments and recompute the join. Thus depending

on the specific cost estimates of the query, both algo

rithms would perform the same or the algorithms from this

thesis would do better if chooses a more efficient encod

ing of J' .

This example illustrates that the primary difference

between the two techniques is the decision to trade extra

network communications traffic in exchange for less
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network delay. This would always be cost effective if

local processing time were insignificant compared with

communications time, and if parallel transmissions were

possible on the communication's network.

Distributed processing algorithms are also strongly

influenced by one's model of a typical data base design.

Does one views relations as residing completely at one

site or spanning many sites? Hevner's view leans strongly

towards one relation residing completely at one site while

our view is one of relations fragmented across most sites.

If one assumes complete relations on a site, it becomes

very important to look for subqueries that can be pro

cessed in parallel; otherwise, computer sites would sit

idle. If one assumes relations are fragmented across most

sites, then most sites will participate as processing

sites in all queries.



CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

5.J_. Conclusions

This thesis has presented a general framework for

processing queries on distributed, relational data bases.

The distributed environment was modeled on two different

communication networks, broadcast (modeled after the ETH

ERNET), and site-to-site (modeled after the ARPANET).

Each of the tactics presented in this thesis were analyzed

for both network models.

A relational model was presented which allowed rela

tions to be fragmented across any number of processing

sites and.a distribution criterion was used to distinguish

which site a tuple belongs to.

Both communication network delay and local processing

delay were considered for optimization criterion. If

minimization of response time is the primary goal, then it

was shown that both network delay and local processing

delay must be taken into account.

The Fragmented Processing (FP) technique can be used

to process any query on a distributed data base. It can

be used to minimize network communications and to maximize

parallelism in processing. The increased parallelism is

142
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important in reducing the time delay for local processing.

It was shown that a high degree of parallelism is possible

* in particular on a broadcast network.

The query splitting tactic can be used to reduce net

work communications on queries involving three or more

relations. It can use either a limited or an exhaustive

search for deciding how to break a query apart. A simula

tion program was used' to compare limited and* exhaustive

search. It was shown that exhaustive search does signifi

cantly better than limited search in nearly all cases.

The simulation program was also used to compare static and

dynamic decision making. It was shown that dynamic deci

sion making performs noticeably better than static deci

sion making. The simulation was further used to compare

perfect information with a simple estimation procedure.

The results indicated that there are many cases where a

simple estimation can perform very well.

Several join encoding tactics were presented. The

join encodings provide a way to trade decreased communica-

, tion costs for increased local processing costs. The

method used to encode a join for transmission is divorced

r from any of the other tactical decisions.

Two shuffling strategies were analyzed. The primary

trade-offs were shown to be the bandwidth of the network

and the cost to send a message.
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It was shown that the transmission of a relation

fragment's physical structure is rarely cost effective.

This greatly simplifies the bookkeeping required in dis

tributed systems. Furthermore, it simplifies estimating

the cost to move a relation fragment since no decision has

to be made concerning whether to move the relation's phy

sical structure(s).

Finally, the relationship of query size estimation,

dynamic decision making, and movement of the result rela

tion were analyzed with respect to the distributed

environment. On a network where the cost to send a mes-

sage is very small, dynamic decision making should be

used. On a network where the message cost is high, static

decision making should be used and the accuracy of size

estimation is much more important.

5.2. Future Research

There are numerous future research areas in the field

of distributed data bases. We will outline a few exten

sions of this thesis which merit further research.

To begin with, there are cases for distribution cri

teria which specify multiple relations. As an example

consider two relations with identical distribution cri

teria. If the joining domains occured in the distribution

criterion, then a very intelligent theorem prover might be



145

able to discover that the join can be completely solved

locally on each site. The job of the theorem prover could

be simplified by allowing multiple relations to be

included in one distribution criterion. The qualification

of such a distribution criterion would apply to all the

identified relations.

There is a close relationship between the function of

the distribution criterion and access method structures.

The distribution criterion serves as a coarse, high level

index for the relation. Further research might develop a

unified concept of physical structure and distribution

criterion. Such a generalization could allow multiple

fragments of a relation on one site. In the same way dis

tribution criteria restrict the number of sites involved

in a query, they can choose among several fragments of a

relation on one site. This could help limit the search

time and also improve concurrency control if primary frag

ment locking [RIES78] is being used.

The network model could be expanded to include a

heterogeneous mixture of broadcast and site-to-site

models. For example, such a situation makes sense in an

environment where all the sites in one building are con

nected with a broadcast network and all the buildings are

connected in a site-to-site network.
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Finally, a great deal could be learned by implement

ing a distributed system. A preliminary system has been

implemented at U.C. Berkeley and is being extended. It

would be invaluable to measure the true performance bene

fits realized by parallel query processing.
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