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ABSTRACT
This paper presents a complete stability analysis of a new power
system model which was presented in [BER2]. The essential feature of the
model is the assumption of frequency dependent loads. This facilitates
a dynamic representation-directly in terms of the network structure.
Consequently, concepts and results from circuit theory can play a §trong
role in the stability analysis of the model. The multivariable Popov
criterion is used to obtain general Lure-Postnikov type Lyapunov functions
which rigorously allow for the presence of real loads. This has not been

possible with the previously uéed model. Results are given for both local

(dynamic) stability and for determination of regions of asymptotic (transient)

stabiiity.
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1. Introduction

The direct stability assessment of electric power systems has been
largely founded on the use of énergy functions to estiﬁate the stability
boundaries. The practical usefulness of this approach has been demonstrated
in recent years [GUP1, RIB2, ATH1]. For a discussion of the literature on
this subject, refer to the survey paper by Fouad [FOU1]. The energy
functions are Lyapuhdv functions of the Lure-Postnikov form. It is well-
known that the optimal Lyabunov'functions of this form are associated with
satisfaction of the Popov stability criterion [AIZ1]. The systemmatic
search for general functions for power systems based on this result was
developed by Willems [WIL16, WIL10, WIL11]. A1l of this work uses the
so-called classical model for multi-machine power systems [FOU1]. This
model is based on several'a;sumptions which Timit the practicai useful-
ness of energy function methods. The present paper extends the results
given by the authors in [BER2] to remove completely the least reasonable
of these assumptions: the transfer conductances are zero.

A iongstanding difficulty in power system stability theory has been
to allow for nonzero transfer conductances in the derivation of Lyapunov
functions of Lure-Postnikov.form. The associated power flow equations are
nonreciprocal and it has not been possible to find a well-defined energy
function. These difficulties have been documented; see for instance
[HEN1, FOUT, WIL11]. In [BER2], it is shown that the problem can be
avoided by using simple dynamic models for the loads and preserving the
network structure. In the usual model, loads are represented by impedances
which are absorbed into a reduced network. The real power loads give the
transfer conductanées in this reduced network. The stability analysis
in [BER2] was not fullv develooed: the usefulness of the model was

{1lustracted with a simple energy function.
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In this paper, the model ip [BER2] is subjected to a complete
stability analysis along the lines of that given by Willems for the
classical modet. For this, it has been found necessary to reformulate
the state-space model used in [BER2]. This change corresponds merely to
selecting a generator as the reference rather than a load bus. Results
are given for 16ca1 stability (or dynamic stability in power systems
terminology) and instabi]ity.of an equilibrium point. These sharpen
considerably a result given in [BER2]. The main contribution is the
Lyapunov function which will be derived for checking transient stability.
This is the first fully general Lure-Postnikov type Lyapunov fdnction
which regorously accounts for real loads. )

The structure of the paper is as follows. Section II gives a summary
of the structure perserving model which was presented in [BER2]. The state-
spacé model using a generator reférence is derived. Section III gives
results on local stability and,instabi1ity. The general Lyapunov. function
for study of transient stability is derived in Section IV. Se;tion V looks
at an example and Section VI gives some conclusions. Some background

material and certain calculations have been relegated to the Appendices.

II. Structure Preserving Dynamic Model of a Power System

In thislsection, the model which was developed in [BER2] will be
described. An improved formulation will be used. This is based on using
a generator as the reference.

We consider a network of m generators and g buses connected by
transmission lines. There afe Ng = m buses which have loads, but no
generation. We augment the original network to introduce fictitious buses
which repfesent the internal generation voltages. These are connected to

the generator buses via the transient reactances. A1l the transmission
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lines are modelled as series reactances. Hence, all the buses in the
augmented network model are connected by a network of series reactances.
The augmented network has n = m + g buses. We number the buseslwith no
generation 1, 2, ..., ng=ms the remaining buses from the original network
ng-mEl, ., nd; and the fictitious generator buses n0+1, ...» n. (In [BER2],
the load buses were numbered last.) The nth bus will be used as a reference.
Let 51 and PDi be the bus angle and real power drawn by the load at
bus i respectively. The key observation made in [BER2] is that for constant
voltage magnitudes and small frequency variations around the operating

point PD}, it is reasonable to assume
i .

0 L ' i
D'i PDi+Diw,i 1= ],2,...,n-m had no (])

g
]

where w; = éi and Di > 0 is the load-frequency coefficient. The generator
dynamics are modelled by the swing equation with the usual assumptions of
constant voltage (magnitude) behfnd transient reactance, constant mechanical

power and so on [FOUT]. Thus, we are led to

- ., n 0,04 .0
J#
where
Mi =0 i= l,...,no
Mi >0 is= n0+],...,n (generator inertia constants)
Di >0 is= 1,...,n0 (load frequency coefficient)
D; >0 is= Ngtls...,n (generator damping coefficient)
0 _ ¢ =
PMi =0 is= 1,.¢.,n0
0 _ -
PD =0 i= n0+1,...,n



It is convenient to assume that ’El P? = 0. For situations where this is
not the case, a shift of speed.r;;erence can be chosen to make it true in
the new coordinates. |

- There are various ways to describe the angle variables in the network.

We define the internodal angles,

- A - i = -]
a.i 51 Gn 1 ],...,n ],

the line angle differences,

Gk‘=6i"6j k=]’°“$£.

for the kth line joining buses i and j where there are g lines in the

augmented network; and the tree branch angles,

e =5 p=],...,n"1

p i~Sp

for the pth 1ine joining buses i and r in a chosen tree. The angle vectors

i= [6]; esey Gn]T, ﬁ-= [a-'s sesy an_]]T, g = [O'-ls cses Oz]T: and

6= [e], cees en_.‘]T are related by various transformations

a=T3§ (3a)
g=Ag (3b)
=08 (3¢)

Matrix T is given by

T

n
=
3
-
]
[¢]
?
| -

‘where ln-l is the (n-1) identity matrix and &1 is the (n-1) vector with

unity entries. Matrices A and Q are the reduced incidence matrix and
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fundamental cutset matrix of the augmented networkresgective]y [DES2].

We deﬁote the real power flow in line k by P gk(°k)’ Then
gk(ok) = b,sin g

where b, = bjj > 0 and it is assumed that branch k connects buses i and j.

o_ nl o . 0 _
Now P = - J P, so there are n-1 independent bus powers. Let P~ =

i=1

[P?, cevs Pg_]]T. Then from éqn (3b) and nodal analysis, the 1oéd flow

equations can be written as

P = Ag(A'a) & f(a) | (42)
Note that
n-1 . ‘ ] .
fi(g) = jZ]bijsm(ai-aj)-l-binsm o i=1,...,n-1 (4b)
J#i

Now define the diagonal matrices

Mg-= diag{Mn0+], cees Mn}
Q£ = diag{D], cees Dno}
Qg = diag{Dn0+1? cees Dn}

It is also convenient to partition T according to

1.
g 12 &
T 0 [ar
I= ; “1h 12] (5)
LU S "N

From the results of [BER2], with minor changes to accomodate the use of a

generator reference, we get that a state-space representation for the
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power system is

PR, FR I ST
g ﬂg 2929 ﬂg T0f(a)-P"] (6a)
g = Tpu - 1]9;‘1{[1(_)-_03 (6b)

Further, the equilibria ére given by ‘”g = 0 and the solutions of

f(a®) = PO (7)

Eqn.(7) typically has numerous solutions. Some indication of what is
known about the nature of thesé so]utions is helpful.

We call the function f(-) the flow function. Due to the periodic

dependence of f(a) on a, we write f: 1 LR where 1 is the n-1
dimensional torus. To study the properties of solutions of egn.(7), we
make extensive use of the Jacobian matm'x‘of the flow function, which is

- denoted by F(a). We note thatie C'. From eqn.(4), it follows that

F(a) 2 2L - 4 g(aTa)A" (8)

and

Gk(ak) = bycos o

The (i,j)th term of F(q) is given by

n-1
bin°°s a; + kz]bikCOS(ai-a])’ i=j
of . .
30;1 (a) = s
J - - ¢ 2 »
bij°°s(°‘1‘ aj), i#J



It is clear that F(a) has full normal rankf Using some terminology from
the theory of nonlinear mabping, we call g? regular if det F(a) # O for

all a such that (7) is satisfied: ~(Note that any EP for which (7) has no
solution automatically qualifies as being regular.) Sard's Theorem [ORT1]
says that almost all _l':‘_o GIR"'] are regular values. Further, on choosing

a regu]ar value of g?, we are guaranteed that (7) has a finite number of
solutions (which includes the possibility of no solutions, of course). In
fact, it is easy to show that there must be an even number of solutions [ARA5].
Comments

(1) The important feature of this model is that it explicitly preserves
the original network structure. That is, on substituting eqn.(4a) into
eqn.(6), the system dynamics caﬁ‘be studied as a function of the parameter
values, network topology, and bus powers. Further, the model is still
simple enough to undertake direct analytical studies using the tools of
system theory. The previously used model did not have structural integriéy
- due to the absorption of loads into an effective admittance matrix. The
loads were modelled as impedances§ this does not appear suitable for bulk

power systems. For further discussion along these lines, refer to [BER2].

(2) The dimension of the state-space in the above model ism+n -1 =
(2m - 1) + ny- Using the classical model, the dimension would be 2m - 1.
Clearly, we have merely added one extra state for each load. It is implicit

in the above formulation that damping is nonuniform.

(3) Note the model depends on the assumption that all Di > 0. This is
certainly physically reasonable so not very limiting on the scope of the
results given here. On setting Qg = 0 (or if damping is uniform) the
obvious extension of the classical case applies. That is, the state-space -

dimension is reduced tom + n. If ga = 0, eqn.(6) is replaced by a set
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of algebraic and differential equations. It turns out that a state-space

can be defined by setting _D£ = €l and taking the 1limit ¢ - 0+ [SAS1].

(4) F(a) can be interpreted as the nodal admittance matrix of a linear
resistive network. The conductance of branch k connecting nodes i and j
is Gk. Later we will have cause to look at the possibility of Gk =0,

i.e. |ok| = %-(mod 2m). Such branches are called zero-valued.

III. Local Stability and Instability

We have seen that eqn.(7) typically has numerous solutions. In this
section, we study the local stability properties of the state-space
model (6) about each of these as a dynamic equilibrium point.
| For the study of local stability, we ]inéarize eqns.(6) about the

equilibrium point (a e, g) to obtain differential equations in variables

o I - o
Ay =g - o and Agg Wy = Wy = Yge This gives
Ab = - MDA - MIVTTF(of) A (9a)
YT g g T g R
o . _ 1T/ €
o = Tolw, = T30, 'TiF(a) An (9b)

It is convenient to define thé polytope
@ =(geR: og] < Hmod 2r), i =1,...,0)

Lemma 1 [TAV1,ARA5]. Consider a solution g? to (7) and suppose that
g? = A?g? egb. Then E(g?) > 0. Fur£her, det Eﬂg?) = 0 iff there is a
cutset of zero-valued lines.

The following result for stable ‘equilibrium points was given in [BER2].
An outline proof is given here since the details are instructive as a

lead-up to deriving the instability result.
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Theorem 1. Consider an equilibrium point for the power system satisfying (7).
Suppose that g? € 92 and the augmented network has no cutsets of zero-valued
lines.. Then the equilibrium point is asymptotically stable.

Qutline Proof: Choose as a Lyapunov function candidate

Moy + ga'F(o%)ha (10)

Differentiating along the solutions of (6) gives

20) = ~aibou - 4aTF(e)T0; TTE ()00

u =9-979

(_t_.)g
wﬁich is at least negative semi-definite in the wg and Ao, variables. It

is straightforward to show V(gb,AQL)s 0 implies that IT f(g?) Ao = 0.

Since T has full rank and, from Lemma 1, F(a®) is nonsingular, standard
Lyapunov stability theory [HAH1] predicts that the equilibrium point (0, g?)
is asymptotically stable.

This result accomodates the intuitive idea that if all lines satisfy
|o$| < %3 then the equilibrium is stable. Observations of the results of
power system analysis also lead us to associate unstable equilibrium points
with some branches satisfying‘%—< lc?l < %;. The instability result
clarifies this idea. First, we establish the following.

Lemma 2. Consider a solution g? to (7) and suppose that g? = AF g? satisfies
[Ui
E‘g?) has a negative eigenvalue.

-7 < %-on a cutset C, of branches in the augmented network. Then

Proof: Choose a tree for the network such that the cutset CS corresponds

to a fundamental cutset [DES2]. From eqn. (3c), we have

Ao = QTAQ



. T _
Write Q' = [gq, Gos «ees gﬂ_]]; then the designated cutset corresponds to
9q- Setting A8 = 0 for all i # s gives

Agg = 45A8

The corresponding internodal angles satisfy

AT
bo = Alta
Now
2alF(a®)aa = aaTAG (0%)AThn,
I P -
Ao G(a7)Ao,
= 2T., e
(40,)"q G(a")a
= (80_)%Y 6, (%)
S g 'k
S

where the summation is over branches in the cutset CS. The given conditions
on g? jmply that Gk(gf) < 0 for branches in Cs. It is then clear that

‘ggie) has a negative eigenvalue. u

Theorem 2. Consider an equilibrium point for the power system satisfying (7).
Suppose that g? satisfies |°i -7 < %-on a cutset of branches in the aug-
mented network and det Eﬂg?) # 0. Then the equilibrium point is unstable.
Proof: As in the stability result, we use standard Lyapunov stability/
instability results. Now V(Eb’ Aa) in egn.(10) takes negative values
arbitrarily close to (0, 0). Again we have that V(yg, Ax) = 0 implies that
(gb, Aa) = (0, 0). A straightforward application of a standard instability

theorem proves the stated result. i}
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Comments

(1) The restriction that det Eﬂg?) # 0 is used in Theorems 1 and 2 to
ensure that V # 0 except for the trivial trajectory. Removing it from
Theorem 1, no conclusion can be made directly about the stability of (0, gf).
However, in Theorem 2 the absence of this condition leaves the conclusion
that (0, g?) is not asymptotically stable.

(2) When all G, > 0, Lemma 1 gives a simple characterization of the
condition det E(g?) # 0. We should note, of course, that in the usual case.
of regular EP this condition is automatically satisfied.

(3) Typically, there is one stable solution to (7) and numerous unstable
solutions. Precise statements on this issue are only recently beginning

to emerge [ARAS5]. In [ARA5], geometrical arguments on (7) are used to

show that for regular g? there are ﬁore unstable solutions than stable ones.
There can be multiple stable solutions and, most surprisingly, there can

be unstable solutions without stable ones.

IV. Lyapunov Functions for Transient Stability

After establishing that the equilibrium point (0, gf) is asymptotically
~stable, the next step is to estimate the region of stability for large
disturbances. In power systemé terminology, this is called the transient
stability region. A powerful approach is based on using Lyapunov functions
for the nonlinear model. Suppose V(:) has been established as a Lyapunov
function. A critical value Vg is defined which represents the maximum
amount of transient energy which can be injected into the faulted system
without causing instability. This is obtained by examining the unstable
equilibrium points.. The stability region is then defined by the inequality
V(x(0)) < V.

The most general systemmatic method of producing Lyapunov functions
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for nonlinear systems is via use of Popov's stability criterion. The
application of this technique to the classical model of power systems has
been developed by Willems [WIL16,WIL10,WIL11]. In this section, we consider
the corresponding results for the model given by eqn. (6). A summary of
the results needed on the Popov criterion is given in Appendix A.

Putting eqns.(6) into the form (A.1), we have

-1 1.7

A ' 0
_F_= g: T t[_:

I, & DT Ia-1

¥(a) = f(a)-p"

First, we look at the necessary positive realness condition to insure a

solution of egns.(A.2). The transfer function gL(s) of the linear part

is given by
_ ] -1 \=1,,-1-T -1.T
G (s) = ST, (sI#My D)™ My Ty + 1403 T4

Note that 1im s QL(S) = IqD'] T. This contrasts with the classical case

PRt
S
where s §L(s) is a strictly proper transfer function matrix. Now consider

Z(s) = (p+as)g, (s)

where p > 0, q > 0. It is not hard to see that Z(s) is positive real if
M,
i .
qu'D—i', 1= n0+]’ ceey n.
To obtain the general Lyapunov function it remains to solve eqns.(A.2).
It is useful to introduce the following notation. For r x r diagonal matrix
J = diag {Jy, ..., J.}, we define the (r-1) x (r-1) diagonal matrix -

J = diag {3y, ..., dpq}.
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Let P, L and W be partitioned as

T T W
L2 L Ly Lt

P= L= =
P, B L Lo Y,

-1 Ay o Te LT ST T T T T
Bylly DD My By-Polo-ToPy DMy BotToPs| | bmbarthaskiz  Lipkortbioly
P M VD +p.T 0 Tt Lol
PoM 'Dy*PaT, 0 Lorbiitiaolys  Lotboytipolos
It follows that
Ly=20 Lp=20
-1 _
22!5 Qg = P,T, (11a)
-1 S, T T, T T
Byl Dg*D My Py -PoTo-ToPy = Lytkythyolys (11b)

Now note that

ﬂTg = T] D-]

__g'l]

Egn.(A.2c) gives

-1.T

T
i

T, .
Wyl #oH, = 2qT,D,

Eqn. A2 has an infinite number of solutions in general and thus we may

expect some freedom in the choice of ﬂl and W,. It is convenient to take
-1

- 2
Wy = /290, T
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ILZ

Then _ _
T
2qL1¢0, I

-
=
1]

We can now express eqn. (A.2b) as

“1:TpTr p=14T = 77 2T

By To*BoTyDy Ty = -/ Ly O Ty (11¢)
T,y ¢ ploT

PoMy Tp*P3T3Dy g = Py, (11d)

Thus, the solution of eqns.(A.2) is equivalent to solution of eqn.(11).
For the general case, the details are quite cumbersome and have been relegated
to Appendix B. A useful result is obtained, and the main calculations are
illustrated, for the special case of p = 0. For the rest of this section,
we assume that p = 0.

Eqns.(11a) and (11d) give

-2
1 (12)

o
o+
e
3

Now observe that K has rank of n-1. Thus P5 = 0, and from (11a), we

further conclude that P, = 0. Eqns.(11b) and (11c) are simplified to
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-1 Ay oy 4 Ty T
BiMy DD My Py = -L-nLl]P‘Hlez (13a)
LT _ T 2.T
Py Tp = aTp/2q LyiD, Ty (13b)

It is convenient to rewrite Iz in the form

where from (5) clearly Ig

is easy to see that egn.(13b) becomes

has the same general structure as T. Then it

0 -l 0
-1l & va 0
f_]ﬂg . = -/23!-_”02 +q (14a)
-e -e ‘
o L™
T T
Eqﬂg Ig QIg (14b)

A solution to (14b) is

= + 1
Py = QMM 1 (15)

where 1 is a scalar constant and lmm is an m x m matrix with all elements
equal to 1. In verifying the result we note that lmmI; = 0. Substituting

into eqn.(14a) gives

1
L, =XM1 p?
where lmn is the m x o matrix with all elements equal to 1.

0
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Finally, we note that the solution to eqns.(11) is achieved if
P, > 0 and eqn.(13a) is satisfied. Regarding this second coﬁdition it
is to be noted that the required L may be found if Py is such that the
left hand side of (13a) is positive definite (or positive semi-definite).
This then requires that p is chosen to ensure the fol]owfng inequalities

are satisfied:

1
qu+pM| M >0 (16a)‘
2 1 Tgw
+ D + - =M .
D * 1yl Dg*De T ity) gl o tn oty 2 0 -~ (16b)
The Lyapunov function in A-4 reduces to
V) = fulm + Bl M e+ () (17)

where

-
Wie.o®) = [ [f(z)-PO17de.
2”) f;s[_(g) Pldg

Refer to Appendix B for the results in the general case of p # O.
Comments ’

(1) Although the situation treated by Willems [WIL16] is not a special

case of the present model, it isreassuring that on putting gﬁ = 0, eqns.(16)
correspond to those obtained in [WIL16]. It is the extra term in eqn.(17)

which effectively solves the so-called transfer conductances problem.

(2) The above Lyapunov function can be applied using techniques which are :
described elsewhere [GUP1,RIB2,ATH1]. Usually the critical value Vy is

evaluated according to
Vo (e®) = u(a'a®)
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where g? represents a selected unstable equilibrium point. Then the

stability criterion for large disturbances becomes

quiony + w1 Mo < 20H(g",g) (18)

That is, all states (yg,g) satisfying (18) represent stable post fault

initial conditions.

(3) The calculation of acceptable values of u is very similar to that
employed for the classical model case [WIL16]. We get that V(.) is a

valid Lyapunov function if p satisfies
0>u> max(uO’u])

where the value of Hg and u; are selected to ensure inequalities (16a)

and (16b) are satisfied respectively. We have

and Hy is a negative root of a polynomial in .

(4) The quantity N(gl,gg) can be evaluated as a summation over all the
lines in the network,of single variable integrations [BER2].

U2
k . ]
C’](sm u - sin ck)du

g
W(Q] sﬁz) = X bkj

where o' = Al a., i =1, 2.

(5) In Section III, we used a version of V(x) in eqn.(17) with u = 0. It
is easy to see that these results on local stability cannot be improved with

more elaborate Lyapunov functions derived from setting pu # 0.
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(6) Note that the Lyapunov function (17) has not precisely followed the
recipe given by Theorem A.1. In the above analysis we have P > 0 but

not P > 0. Note that with p=10, s = 0 is a pole of gL(s) so the conditions
of minimality are violated. However, it is easy to check from eqns. (A.4)
and (A.5) that V() is still a valid Lyapunov function if u is chosen so

that Py > 0.

V. Example

To illustrate the results of the previous section, we consider the
simple power system shown in Figure 1. The buses, including fictitious
ones represented by dotted symbols, and lines are numbered according to
the convention given in Section II. Note that m = 2, ng = 3and - -
n=ng+ms= 5. We take bus 5 to be the reference.

The relevant matrices are

— —
D1 0 0
gz— 0 Dz 0 gg"'
0 D5
-P 0 D;J
M4 0
Mg ) 0 M
| 5

First consider the case where p = 0, q = 1. Then

) ‘
WM. MohME
4’5 55
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and it is easy to check that this is positive definite if

1
B> Uy T = oo (19a)
0 M4+M5
Inequality (16b) becomes
i £.12 Y
204+ 2D M- FOMy  uMyDgHigD, )= 5D M M,
>0
2 L? 2 -
| (MgDgHMsDy)- 5D MgMy  2Dg+2iDgMg- HD M |
where
4 D.+D,+
Dy, = Dy#DytD3.
This is equivalent to the scalar inequélities
2 DM
2 (D M2, +D.MZD +(M DD )2-4D,M,D M, )
L o R L ARl 1) 474°5"5

Any negative solution of inequalities (19) can be taken as y.
However, by trial and error the one giving the largest estimated stability
region would be chosen. The stability of a post fault initial condition

(gg(o),QKO)) is determined by (18) which reduces to
My (T, o5 (0) + 210, (0)ug (0) + My (1t )w2(0)

< Z]bk I U (sin u - sin cz)du (20)
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In the general case, we obtain from (B.1) and (B.3) that

—

WhyMg Mghiy - Mi% ‘P&;é 'P%boi 'p&#’-’
'po]_;qi 'P@ le“‘Eol 'PE]DEZ' p@ 'pE'ﬁDi
bPM4(l-DT4) "DMSDﬁ =pD4D; -pn‘})ﬁ - E‘l;.?. pD4(1-DD—4)-

and the stability criterion (20) is modified accordingly. The value of u

is obtained from the inequalities (B.4).

VI. Conclusions

The model presented in [BER2] for a bulk powér system is an important
new starting point for direct stability analysis techniques. Here a
complete theoretical study of the stability of this model has been presented.

A longstanding problem has now been completely overcome: how to allow
rigorously for the effect of significant real power loads at load buses.
The major step was taken in [BER2] by formulating a better model than the
classical one. In this paper, the main contribution is the derivation of
the first optimum Lyapunov function (of Lure-Postnikov form) which allows
for such loads. As such, this Lyapunov function holds considerable promise
for improving the accuracy of transient stability analysis. This aspect

will be pursued elsewhere.
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Appendix A

We discuss the computation of Lyapunov functions for the system

(A.1)

The picture of this model representing a linear system with input u and
output y under the influence of nonlinear feedback u = -y(y) is well-

known. The transfer function of the linear system is
= Ul (e1_p)"]
G (s) = H (sI-F)"'8

The following is adapted from the work of Anderson [AND1,AND6]. We

consider the transfer function
Z(s) = (p+as)g, (s)

where p>0andq >0 and s = -g-is not a pole of QL(S).
Theorem A.1. Suppose that (F, G, H) is a minimal state-space representation
of G (s). Then if Z(s) is positive real there exists real matrices P, L

and W with P positive definite symmetric, such that

PE+EP = -LLT (A.2a)
PG = pﬁ’fQE.Tﬂ-ﬂ (A.2b)
W = q(He+e'H). (A.2¢) =
Now suppose that the nonlinear feedback satisfies
¥o) =0
T T
Y (uu >eu'u for all u # 0 (A.3)

where € > 0, and Y(-) is the gradient of a real-value function.
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Theorem A.2. If the transfer function Z(s) is positive-real and y(*)
satisfies the properties (A.3), then the null solution of system (A.1) is
asymptotically stable in the large. n

This result is established using the Lyapunov function.

H
V(x) = 5x Px + QI_ . GKS (A.4)

where P is the solution of egns.(A.2). The derivative along solutions of

(A.1) is
V() = ML) (e WTy) - () (A.5)

Comments

(1) Under the given conditions, the stability property in Theorem A.2 is
global. However, it is more common that property (A.3) is satisfied in
some region of Euclidean space. Then V(-) can be used to estimate the
boundary of the region of asymptotic stability.

(2) Varying the scalars p and q provides some flexibility in the Lynapunov
function. In practice, it is usual to try several combinations until the
size of the predicted stability region has been optimized.

(3) It does not appear to be wideTy recognized that Theorem A.2 is valid
when y(-) is not diagonal in the sense that wi(g) depends on some uss i# 3.
The assumption of diagonal y(-) is usually made. Anderson's paper [AND6] .
is not precise on this issue and a subsequent paper [M001] assumed that

the nonlinearity is diagonal.
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Appendix B

Some further details on the solution of eqné.(]l) are provided for
the case of general p and q.

Firstly, note that eqn.(11a) and (11d) now give

=]
2.3" PK

From egn.(12), we have

K= D lepece
n

The Matrix Inversion Lemma gives

K'=p- %5_@.35
where
n
D= 12101
Hence
Py = p(D-01, ,n-lﬁ) (B.1a)

A straightforward calculation shows that

1
]
i
.g : ~
' -Mngg_ (B.1b)
i
1
i
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Eqns.(14) are replaced by

=g-m-1,n ale -1
$ Ol gty L2 + o (8.22)
, ng-Tn ‘STn T
0 0 "o g
Pl = oty (8.2) °
Hence Eq is still given by
Py MM | (8.3)
From eqn.(B.2a), a fairly tedious calculation gives
1
1 2
L., = —(+2)M 1
11 /2q D —g—mn0
and then the counterpart to inequality (16b) is
| PO B T
2Dg + (Mg lyuyDg*Dglymily) - P(T2D ToMyDy +Dy MeT5D T,)
T OO TS T Sry 1 py2 1M
* BTe0 .1, DTG 0 MToD Loy 0 12T,) - ZgtF) Uyl Dyl o
>0 (B.4)
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- Figure Caption

- Fig. 1. Power system.
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