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ABSTRACT

This paper presents a complete stability analysis of a new power

system model which was presented in [BER2]. The essential feature of the

model is the assumption of frequency dependent loads. This facilitates

a dynamic representation directly in terms of the network structure.

Consequently, concepts and results from circuit theory can play a strong

role in the stability analysis of the model. The multivariable Popov

criterion is used to obtain general Lure-Postnikov type Lyapunov functions

which rigorously allow for the presence of real loads. This has not been

possible with the previously used model. Results are given for both local

(dynamic) stability and for determination of regions of asymptotic (transient)

stability.
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I. Introduction

The direct stability assessment of electric power systems has been

largely founded on the use of energy functions to estimate the stability

boundaries. The practical usefulness of this approach has been demonstrated

in recent years [GUP1, RIB2, ATH1]. For a discussion of the literature on

this subject, refer to the survey paper by Fouad [F0U1]. The energy

functions are Lyapunov functions of the Lure-Postnikov form. It is well-

known that the optimal Lyapunov functions of this form are associated with

satisfaction of the Popqv stability criterion [AIZ1]. The systemmatic

search for general functions for power systems based on this result was

developed by Willems [WIL16, WIL10, WIL11]. All of this work uses the

so-called classical model for multi-machine power systems [F0U1]. This

model is based on several"assumptions which limit the practical useful

ness of energy function methods. The present paper extends the results

given by the authors in [BER2] to remove completely the least reasonable

of these assumptions: the transfer conductances are zero.

A longstanding difficulty in power system stability theory has been

to allow for nonzero transfer conductances in the derivation of Lyapunov

functions of Lure-Postnikov form. The associated power flow equations are

nonreciprocal and it has not been possible to find a well-defined energy

function. These difficulties have been documented; see for instance

[HEN1, F0U1, WIL11]. In [BER2], it is shown that the problem can be

avoided by using simple dynamic models for the loads and preserving the

network structure. In the usual model, loads are represented by impedances

which are absorbed into a reduced network. The real power loads give the

transfer conductances in this reduced network. The stability analysis

in [BER2] was not fullv develoDed: the usefulness of the model was

lllustracted with a simple energy function.
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In this paper, the model in [BER2] is subjected to a complete

stability analysis along the lines of that given by Willems for the

classical model. For this, it has been found necessary to reformulate

the state-space model used in [BER2]. This change corresponds merely to

selecting a generator as the reference rather than a load bus. Results

are given for local stability (or dynamic stability in power systems

terminology) and instability of an equilibrium point. These sharpen

considerably a result given in [BER2]. The main contribution is the

Lyapunov function which will be derived for checking transient stability.

This is the first fully general Lure-Postnikov type Lyapunov function

which regorously accounts for real loads.

The structure of the paper is as follows. Section II gives a summary

of the structure perserving model which was presented in [BER2]. The state-

space model using a generator reference is derived. Section III gives

results on local stability and instability. The general Lyapunov function

for study of transient stability is derived in Section IV. Section V looks

at an example and Section VI gives some conclusions. Some background

material and certain calculations have been relegated to the Appendices.

II. Structure Preserving Dynamic Model of a Power System

In this section, the model which was developed in [BER2] will be

described. An improved formulation will be used. This is based on using

a generator as the reference.

We consider a network of m generators and nQ buses connected by

transmission lines. There are nQ -m buses which have loads, but no

generation. We augment the original network to introduce fictitious buses

which represent the internal generation voltages. These are connected to

the generator buses via the transient reactances. All the transmission
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lines are modelled as series reactances. Hence, all the buses in the

augmented network model are connected by a network of series reactances.

The augmented network has n = m + nQ buses. We number the buses with no

generation 1, 2, ..., n^-m, the remaining buses from the original network

n0-m+l, ..., nQ, and the fictitious generator buses nQ+l, ..., n. (In [BER2],

the load buses were numbered last.) The nth bus will be used as a reference.

Let 5. and PD be the bus angle and real power drawn by the load at
1

bus irespectively. The key observation made in [BER2] is that for constant

voltage magnitudes and small frequency variations around the operating

point Pn , it is reasonable to assume
ui

\ bPdJ+D1("| 1=l»2,...,n-m =nQ (1)

where u).. = 6^ and D.. > 0 is the load-frequency coefficient. The generator

dynamics are modelled by the swing equation with the usual assumptions of

constant voltage (magnitude) behind transient reactance, constant mechanical

power and so on [F0U1]. Thus, we are led to

Mi5.+D.Si+ I bljs1n(«r«j) =PM°-PD° AP°
J?4!

i = l,...,n (2)

where

Mt = 0 i — 1,... >n#»

M. > 0 i = nQ+l,...,n

Di > 0 i — i, •..,n«

D1 > 0 i = nQ+l,...,n

^°-o i — i,. ••. ,nQ

^d° =o i = n«+l,...,n

-3-
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n n
It is convenient to assume that V P? = 0. For situations where this is

i=l 1
not the case, a shift of speed reference can be chosen to make it true in

the new coordinates.

There are various ways to describe the angle variables in the network.

We define the internodal angles,

ai " 6i"6n 1= 1»---»n-1J

the line angle differences,

ak = ^i'^j k= 1,...,ji

for the kth line joining buses i and j where there are & lines in the

augmented network; and the tree branch angles,

9p =S^r p= 1»---»n-1

for the pth line joining buses i and r in a chosen tree. The angle vectors

6. = [<S-j, ...» 5n] ,a = [a-j, ...» a J ,a= [a-i» ...» o\»] »and

6.= [9-j, ..., 9n_-]] are related by various transformations

a=T6 (3a)

a=ATa (3b)

a=(fi (3c)

Matrix T is given by

I^CVr-ViJ

where I^-j is the (n-1) identity matrix and e , is the (n-1) vector with

unity entries. Matrices A and £ are the reduced incidence matrix and
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fundamental cutset matrix of the augmented network respectively [DES2]

We denote the real power flow in line k by Pk= 9k(o"k). Then

9k(ok) = bksin ak

where b. = b-jj > 0 and it is assumed that branch k connects buses i and j
0 n-1 0 n

Now Pn = - J PY, so there are n-1 independent bus powers. Let £ =

[P^ ...» P^.-j] • Then from eqn (3b) and nodal analysis, the load fl<
equations can be written as

P=AafATa) Af(a)

Note that

n-1

fi(eL) =jIlb1Js1nfo1"<*J)+binsin ai

Now define the diagonal matrices

D^ = diag{Dr .... Dn }

Dg =diag{Dvl. •- V

i = ],...,n-1

It is also convenient to partition T according to

T =

h, :;o
•%.

^n-1 "Vl
8[I, | 4]

low

(4a)

(4b)

(5)

From the results of [BER2], with minor changes to accomodate the use of a

generator reference, we get that a state-space representation for the
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power system is

i% =-M^D^ -M^^CKaJ-P0] (6a)

^ =12^ -Li^ll^-l0! (6b)

Further, the equilibria are given by oj = 0 and the solutions of

f(ae) =P° (7)

Eqn.(7) typically has numerous solutions. Some indication of what is

known about the nature of these solutions is helpful.

We call the function £(•) the flow function. Due to the periodic

dependence of f(a) on a, we write f: T •»-Rn"1 where T0"1 is the n-1

dimensional torus. To study the properties of solutions of eqn.(7), we

make extensive use of the dacobian matrix of the flow function, which is

denoted by F(a). We note that £ e C. From eqn.(4), it follows that

1(a) -||=AG(ATa)AT (8)
where

6(a) = diag{GR(ak)}

and

Gk(aR) = bkcos ak

The (i,j)th tenn of £(a) is given by

n-1

bir)cos ai + I b^cosC^-a-,), 1=j

3fi )
k=l

m

-b..cos(a^-a•), i$j

-6-



It is clear that £(a) has full normal rank. Using some terminology from

the theory of nonlinear mapping, we call £ regular if det £(a) t 0 for

all a such that (7) is satisfied;"(Note that any P° for which (7) has no

solution automatically qualifies as being regular.) Sard's Theorem [0RT1]
fl n 1

says that almost all £ £R " are regular values. Further, on choosing

a regular value of P , we are guaranteed that (7) has a finite number of

solutions (which includes the possibility of no solutions, of course). In

fact, it is easy to show that there must be an even number of solutions [ARA5]

Comments

(1) The important feature of this model is that it explicitly preserves

the original network structure. That is, on substituting eqn.(4a) into

eqn.(6), the system dynamics can be studied as a function of the parameter

values, network topology, and bus powers. Further, the model is still

simple enough to undertake direct analytical studies using the tools of

system theory. The previously used model did not have structural integrity

due to the absorption of loads into an effective admittance matrix. The

loads were modelled as impedances ; this does not appear suitable for bulk

power systems. For further discussion along these lines, refer to [BER2].

(2) The dimension of the state-space in the above model is m + n - 1 =

(2m - 1) + nQ. Using the classical model, the dimension would be 2m - 1.

Clearly, we have merely added one extra state for each load. It is implicit

in the above formulation that damping is nonuniform.

(3) Note the model depends on the assumption that all D. > 0. This is

certainly physically reasonable so not very limiting on the scope of the

results given here. On setting D = 0 (or if damping is uniform) the

obvious extension of the classical case applies. That is, the state-space

dimension is reduced to m+ n. If D^ = 0, eqn.(6) is replaced by a set
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of algebraic and differential equations. It turns out that astate-space

can be defined by setting D^ =el and taking the limit e+ 0+ [SAS1].

(4) £(a) can be interpreted as the nodal admittance matrix of a linear

resistive network. The conductance of branch k connecting nodes i and j

is Gk. Later we will have cause to look at the possibility of Gk = 0,

i.e. |ak| = j (mod 2ir). Such branches are called zero-valued.

III. Local Stability and Instability

We have seen that eqn.(7) typically has numerous solutions. In this

section, we study the local stability properties of the state-space

model (6) about each of these as a dynamic equilibrium point.

For the study of local stability, we linearize eqns.(6) about the

equilibrium point (a e, 0) to obtain differential equations in variables

Aa =a - ae and Aw„ = or, -w = ai . This gives
- - - -g-g-g-g 3

Aa =I2A(^ - T1Dj1T|F(c^)Aa (9b)

It is convenient to define the polytope

QA ={a€I& la^ <|(mod 2tt), i =l,...,Jl}

Lemma 1 [TAV1,ARA5]. Consider a solution ae to (7) and suppose that

£6 =ATae 6^. Then F(ae) >0. Further, det F(ae) =0iff there is a

cutset of zero-valued lines.

The following result for stable equilibrium points was given in [BER2]

An outline proof is given here since the details are instructive as a

lead-up to deriving the instability result.
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Theorem 1. Consider an equilibrium point for the power system satisfying (7)

e fi.
Suppose that a £ fl and the augmented network has no cutsets of zero-valued

lines. Then the equilibrium point is asymptotically stable.

Outline Proof: Choose as a Lyapunov function candidate

V(a)g,Aa) ={u^ +̂ aTF(ae)Aa (10)

Differentiating along the solutions of (6) gives

Wojg.Aa) =-Wg5gWg "^(a^^D^TJF^jAa

which is at least negative semi-definite in the w and Aa variables. It
g

is straightforward to show tf(w ,AqJ =0implies that TT JF(ae) Aa =0.

Since T has full rank and, from Lemma 1, £(ae) is nonsingular, standard

Lyapunov stability theory [HAHl] predicts that the equilibrium point (0, g_e)

is asymptotically stable.

This result accomodates the intuitive idea that if all lines satisfy

lail <f» tnen tne equilibrium is stable. Observations of the results of
power system analysis also lead us to associate unstable equilibrium points

with some branches satisfying |<|o\| <^. The instability result
clarifies this idea. First, we establish the following.

Lemma__2. Consider a solution ae to (7) and suppose that ae = AT ae satisfies

[a^ - ir| <j on acutset C$ of branches in the augmented network. Then

F(a ) has a negative eigenvalue.

Proof: Choose a tree for the network such that the cutset C corresponds

to a fundamental cutset [DES2]. From eqn. (3c), we have

As= Q.TAa
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Write £ =Ci|» 3g» •••» %-]]'> tnen tne designated cutset corresponds to
Sg. Setting A6i = 0 for all i f s gives

Ag^ =^Qs

The corresponding internodal angles satisfy

Ap- = A Aa
""t> — —s

Now

Aa^F(ae)Aas= Ag^AG (afjA1^,

=Ag^GJ^jAo^

-(Aes)2q^G.(ae)q5

•(A6S)2T Ck(a?)
s

where the summation is over branches in the cutset C . The given conditions

on ae imply that Gk(ae) <0for branches in C. It is then clear that
£(a ) has a negative eigenvalue. n

Theorem 2. Consider an equilibrium point for the power system satisfying (7)

Suppose that ae satisfies |o\: - tt| < Jr on a cutset of branches in the aug

mented network and det £(ae) f 0. Then the equilibrium point is unstable.

Proof: As in the stability result, we use standard Lyapunov stability/

instability results. Now V(w , Ao) in eqn.(10) takes negative values

arbitrarily close to (0, 0). Again we have that ?(w- Aa) = 0 implies that
a

(ul, Ao) = (0, 0). A straightforward application of a standard instability
y

theorem proves the stated result. n
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Comments

(1) The restriction that det F(ae) t 0 is used in Theorems 1 and 2 to

ensure that ? £ 0 except for the trivial trajectory. Removing it from

Theorem 1, no conclusion can be made directly about the stability of (£, ae).

However, in Theorem 2 the absence of this condition leaves the conclusion

that (£, ae) is not asymptotically stable.

(2) When all Gk >, 0, Lemma 1 gives a simple characterization of the

condition det £(ae) f 0. We should note, of course, that in the usual case

of regular £ this condition is automatically satisfied.

(3) Typically, there is one stable solution to (7) and numerous unstable

solutions. Precise statements on this issue are only recently beginning

to emerge [ARA5]. In [ARA5], geometrical arguments on (7) are used to

show that for regular JP° there are more unstable solutions than stable ones.

There can be multiple stable solutions and, most surprisingly, there can

be unstable solutions without stable ones.

IV. Lyapunov Functions for Transient Stability

After establishing that the equilibrium point (£, as) is asymptotically

stable, the next step is to estimate the region of stability for large

disturbances. In power systems terminology, this is called the transient

stability region. A powerful approach is based on using Lyapunov functions

for the nonlinear model. Suppose V(-) has been established as a Lyapunov

function. A critical value V^ is defined which represents the maximum

amount of transient energy which can be injected into the faulted system

without causing instability. This is obtained by examining the unstable

equilibrium points.. The stability region is then defined by the inequality

V(x(0)) < Vr

The most general systemmatic method of producing Lyapunov functions
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for nonlinear systems is via use of Popov's stability criterion. The

application of this technique to the classical model of power systems has

been developed by Willems [WIL16,WIL10,WIL11]. In this section, we consider

the corresponding results for the model given by eqn. (6). A summary of

the results needed on the Popov criterion is given in Appendix A.

Putting eqns.(6) into the form (A.l), we have

F =
-tffig a

- *2 a.

4fe) = f(a)-_P°

G =

£L To

H =

0

MX I -
^-""L

First, we look at the necessary positive realness condition to insure a

solution of eqns.(A.2). The transfer function G. (s) of the linear part^

is given by

^(s) -fetsI^Dj)-1^ +I^lj]

Note
>-lTTthat lim s G|_(s) =T,D~ T,. This contrasts with the classical case

s-*»

where s(^(s) is a strictly proper transfer function matrix. Now consider

Z.(s) = (p+qsjG^s)

where p >_ 0, q > 0. It is not hard to see that Z^s) is positive real if

Miq >. P n-» i = nQ+l, ..., n.
1

To obtain the general Lyapunov function it remains to solve eqns.(A.2).

It is useful to introduce the following notation. For r x r diagonal matrix

d_ = diag {d-j, ..., dp}, we define the (r-1) x (r-1) diagonal matrix

d_- diag {d-j, ..., dr_-j}.
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Let P., L. and W be partitioned as

P =
* PT

-2
L =

fell
W =

*1

h h 1*1 1=22 %

Then eqn. (A.2a) becomes

rDJ^Pl+lIP,
-=g1-g -2 -2—3 -11J=-ll+^l 2^-12 ^11^21*4=12^22

^21-ll+k2^12 -21-21+W=22

It follows that

k, =0 L,2 =0

-11-11+-12^12

Now note that

HTG =1,^1,

Eqn.(A.2c) gives

Eqn. A2 has an infinite number of solutions in general and thus we

(Ha)

(lib)

may

expect some freedom in the choice of W-, and Wg. It is convenient to take

W^^qD/lj

-13-



h = 0

Then

LW =

2qk11D/lj

We can now express eqn. (A.2b) as

-1

J^I^I^lj -Pin.!

(He)

(Hd)

Thus, the solution of eqns.(A.2) is equivalent to solution of eqn.(11).

For the general case, the details are quite cumbersome and have been relegated

to Appendix B. A useful result is obtained, and the main calculations are

illustrated, for the special case of p = 0. For the rest of this section,

we assume that p = 0.

Eqns.(lla) and (lid) give

l&^I&}f}) = o

Define

i*I^ll+I^ll

tf

-9 .

n

(12)

Now observe that K has rank of n-1. Thus P^ = 0, and from (11a), we

further conclude that Pg = 0. Eqns.(llb) and (lie) are simplified to
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It is convenient to rewrite T, in the form

"Sn.
12 =

h

(13a)

(13b)

where from (5) clearly T has the same general structure as T. Then it

is easy to see that eqn.(13b) becomes

&$ 2= -•ZqL11DJ^ + q (14a)

s*.

jvM= ^T (14b)

A solution to (14b) is

—1 -^ -g-4nm-g (15)

where y is a scalar constant and 1 is an m x m matrix with all elements
-mm

equal to 1. In verifying the result we note that "LlT = 0. Substituting
—mm—g — J

into eqn.(14a) gives

1

"]1 ^"^V1

where 1^ is the m x nQ matrix with all elements equal to 1
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Finally, we note that the solution to eqns.(ll) is achieved if

Pq > 0 and eqn.(13a) is satisfied. Regarding this second condition it

is to be noted that the required L^may be found if P, is such that the

left hand side of (13a) is positive definite (or positive semi-definite).

This then requires that u is chosen to ensure the following inequalities

are satisfied:

qMg^MgJ^ >0 (16a)

2^ +utMgl^+fig^) -̂"gi.n^In/g i°- 06b)
The Lyapunov function in A^4 reduces to

V(x) =ftj^ +f^W^ +*faA*) 07)
where

a~-

W(a,as) =r,Cffe)-P.°]Td£.
Ja5

Refer to Appendix B for the results in the general case of p f 0.

Comments

(1) Although the situation treated by Willems [WIL16] is not a special

case of the present model, it is reassuring that on putting Jh = 0,, eqns.(16)

correspond to those obtained in [WIL16]. It is the extra term in eqn.(17)

which effectively solves the so-called transfer conductances problem.

(2) The above Lyapunov function can be applied using techniques which are

described elsewhere [Gl

evaluated according to

yas) =W(au,as)

-16-
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where au represents a selected unstable equilibrium point. Then the

stability criterion for large disturbances becomes

q4"gi% +wjjglm^ <2qW(aU>a) (18)

That is, all states (w-a) satisfying (18) represent stable post fault

initial conditions.

(3) The calculation of acceptable values of y is very similar to that

employed for the classical model case [WIL16], We get that V(.) is a

valid Lyapunov function if y satisfies

0>y>max(yQ,y1)

where the value of yQ and y^ are selected to ensure inequalities (16a)

and (16b) are satisfied respectively. We have

u0 n

i=nQ+l 1

and y1 is a negative root of a polynomial in y.

(4) The quantity Wfopcig) can be evaluated as asummation over all the

lines in the network,of single variable integrations [BER2],

r°kf 1W(a,,go) = I b. vfsin u - sin a. )du
1 ' k=l kJa, k

where a1 =ATa., i= l, 2.

(5) In Section III, we used a version of V(x) in eqn.(17) with y = 0. It

is easy to see that these results on local stability cannot be improved with

more elaborate Lyapunov functions derived from setting y t 0.

-17-



(6) Note that the Lyapunov function (17) has not precisely followed the

recipe given by Theorem A.l. In the above analysis we have P. >. 0 but

not P. > 0. Note that with p= 0, s = 0 is a pole of G, (s) so the conditions

of minimality are violated. However, it is easy to check from eqns. (A.4)

and (A.5) that V(«) is still a valid Lyapunov function if y is chosen so

that Pi > 0.

V. Example

To illustrate the results of the previous section, we consider the

simple power system shown in Figure 1. The buses, including fictitious

ones represented by dotted symbols, and lines are numbered according to

the convention given in Section II. Note that m = 2, nQ = 3 and ^

n = nQ + m = 5. We take bus 5 to be the reference.

The relevant matrices are

D1 0 0

h = 0 D2 0 V

D4 0

m4 o

-g
Mr

First consider the case where p = 0, q = 1. Then

M,+yM!

?1 =
yM4M5

4n5

2

HM4M

M5+yM5
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and it is easy to check that this is positive definite if

" *uo= - jyt£

Inequality (16b) becomes

2D4+2uD4M4^-M2 y(M4D5+M5D4)-|o4M4M,
2 2

ytM.Dc+McDj-l-DJMIr 2D_+21,n_M_-Mji m?
*4U5T,V4' TW5 2D5+2yD5M5-^)^

where

Dl • Dl+D2+D3-

This is equivalent to the scalar inequalities

2 DAM4y< Af - 2yD4M4 - 2D4 <0

^2<D4MiD£+D5M4Dil+(M4D5+M5D4>2-4D4M4D5M5)
-4yD4D5(M4+M5) - 4D4Dg <0

> 0

(19a)

(19b)

(19c)

Any negative solution of inequalities (19) can be taken as y.

However, by trial and error the one giving the largest estimated stability

region would be chosen. The stability of a post fault initial condition

(au(0),a(0)) is determined by (18) which reduces to

M4(l+uM4)io^(0) +2yM4M5<o4(0)u)5(0) +M5(l+yM5)^(Q)
ak(0)

<JA f u <sin u -s1n *k)duk-l Jgk

where

- aT2.(0) = A'a(0).

-19-
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p =

In the general case, we obtain from (B.l) and (B.3) that

2 DiM4 Ma D-M, D-qM4+yM<j yM4M5 -p-^1 -p-|l -p-^A pM4(1.^)

P M,D, M.D,, M.-D- M.DAyM4M5 qM5+yM25 -p-%-1 -^ -p^ -p^

D1M4 MRDl Di DiD9 didq D^D-

D^ M5D2 D^ D D2D3 02D4
p~ p~d~ "P~r" ^"t -it" "p~d~

D3M4 M5D3 D3D, D3D2 D D3D4
•p— -p-D- -p-ir -pT^ p^^-t) -p D

p^nf* -p-tt -p»4di -p-tt -p^r pVOJ

and the stability criterion (20) is modified accordingly. The value of y

is obtained from the inequalities (B.4).

VI. Conclusions

The model presented in [BER2] for a bulk power system is an important

new starting point for direct stability analysis techniques. Here a

complete theoretical study of the stability of this model has been presented.

A longstanding problem has now been completely overcome: how to allow

rigorously for the effect of significant real power loads at load buses.

The major step was taken in [BER2] by formulating a better model than the

classical one. In this paper, the main contribution is the derivation of

the first optimum Lyapunov function (of Lure-Postnikov form) which allows

for such loads. As such, this Lyapunov function holds considerable promise

for improving the accuracy of transient stability analysis. This aspect

will be pursued elsewhere.
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Appendix A

We discuss the computation of Lyapunov functions for the system

x=Fx -G£(HTx) (A.l)

The picture of this model representing a linear system with input £ and

output £ under the influence of nonlinear feedback u, = -j£(£) is well-

known. The transfer function of the linear system is

G, (s) =H^sl-F)"1^

The following is adapted from the work of Anderson [AND1,AND6]. We

consider the transfer function

Z_(s) = (p+qsjGjs)

where p>. 0and q>0and s=-£• is not apole of G, (s).
Theorem A.l. Suppose that (£, G, H) is a minimal state-space representation

of G, (s). Then if Z^s) is positive real there exists real matrices ?_, I

and W with P. positive definite symmetric, such that

PF+FTP =-LLT (A.2a)

PG =pH+q£TH-LW (A.2b)

WTW =q(HTG+iTH). (A.2c) n

Now suppose that the nonlinear feedback satisfies

<t(0) = 0

jfcT(u)u >euTu for all u f 0 (A.3)

where e > 0, and _£(•) is the gradient of a real-value function.
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Theorem A.2. If the transfer function Z.(s) is positive-real and £(•)

satisfies the properties (A.3), then the null solution of system (A.l) is

asymptotically stable in the large. n

This result is established using the Lyapunov function.

H x

V(x) =lxTPx +qf""£(£)Tdi (A.4)

where P_ is the solution of eqns.(A.2). The derivative along solutions of

(A.l) is

V(x) =-^xVi^fkVwjii)- P2iTHt(!iT2L) (A.5)

Comments

(1) Under the given conditions, the stability property in Theorem A.2 is

global. However, it is more common that property (A.3) is satisfied in

some region of Euclidean space. Then V(-) can be used to estimate the

boundary of the region of asymptotic stability.

(2) Varying the scalars p and q provides some flexibility in the Lynapunov

function. In practice, it is usual to try several combinations until the

size of the predicted stability region has been optimized.

(3) It does not appear to be widely recognized that Theorem A.2 is valid

when £(•) is not diagonal in the sense that \p.(u_) depends on some u., i t j

The assumption of diagonal £(•) is usually made. Anderson's paper [AND6]

is not precise on this issue and a subsequent paper [M001] assumed that

the nonlinearity is diagonal.
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Appendix B

Some further details on the solution of eqns.(11) are provided for

the case of general p and q.

Firstly, note that eqn.(11a) and (lid) now give

-1
P3 = Pii

From eqn.(12), we have

n

The Matrix Inversion Lemma gives

K"1 =D-S* eTD

where

D=AD'-
Hence

^-P(firK-l.n-lS>

We then get Po from eqns.(11a) and (B.la)

h -WgSg1

A straightforward calculation shows that

^-2 D

-fi*lfln.»-lMg

DM«-D„lm i m iM"g ^-4n-1 ,m-li-Jg

-MnDe

-23-
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Eqns.(14) are replaced by

-&
JULLn 1 n-g-m-l,n0

MeT
n=- n,

-l-g -41 H1g

+P1M^1
; o

A

Hence P^ is still given by

—I ^g —g-irarf-g

-1
0

v^q kn^ +q

A

From eqn.(B.2a), a fairly tedious calculation gives

k" =•&*&&*£
and then the counterpart to inequality (16b) i\s

(B.2a)

(B.2b)

(B.3)

-Uh-Im tt:?qDg +utMgl^+Dj^^) -p(I^DI2MgD^,+D^,MgI^DI2)

0-* "0'

(B.4)> 0
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Figure Caption

Fig. 1. Power system.
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