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Since L,(0+)=0, L,(/)<0 for />0. Hence for r>0, L(/)
<L(0 +)=0. This proves the lemma.
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M7y^
Recursive Linear Smoothing of

Two-Dimensionai Random Fields
RICHARD G. OGIER, student member, ieee, and EUGENE WONG, fellow, ieee

Abstract— In an earlier paper, recursive formulas for the causal filtering
of two-dimensional random fields were developed. "Causality" in two
dimensions is not a physical constraint but rather an artifact Introduced to
generate recursion, which in turn is motivated by computational efficiency.
The earlier results are extended here in order to derive some recursive
formulas for "smoothing" estimators which use all the data rather than just
the data in the "past".

I. Introduction

LET T=[ax, bx]X[a2, b2] be a rectangle in the plane.
A random field on T is a collection of real-valued

random variables indexed by points in T. Suppose that
one observes the random field {£(/), t(ET) which has the
form

«0-*(0+*(0. <u)
where x is a zero-mean random field to be estimated, and
tj is a two-dimensional white noise uncorrected with x
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and having spectral density NQ. The object of this paper is
to find an effective means for computing the linear least-
squares estimate of x(t) given {£(s),s<=T}, i.e., the
smoothed estimate.

The two-dimensional filtering solution in [1] was devel
oped primarily to serve as a foundation on which a
recursive solution to the smoothing problem could be
obtained. The recursion structure of the filtering solution
is shown in Fig. 1. For two points s=(sv s2) and /=(/„ t2)
in T, s<t will denote sx<tx and s2 < t2. A, will denote the
rectangle {sGT:s< t), and SA, will denote the upper and
right borders of A,. We shall call A, the past at t, and
T-A, the future at t. We denote by x(r\t) the linear
least-squares estimate of x(t) given (£(s), s<=A,}. Thus
x(r\b) is the smoothed estimate of x(t). By an increasing
path in Twe shall mean a continuous function V: [0,1]->T
such that l\0)=a, T(\)=b, and a<P=*T(a)<T((3). In [1]
it was shown that if the process x is modeled by a class of
partial differential equations often so used in the image
processing literature [2], then the filtered estimates {x(r\t),
tGS/*,, /ST} could be computed recursively for any
increasing path T using the state

i/ ={x(r|/),re^,}.
Note that x, can be considered a random process on 8A,
defined by *,(t)=x(t|0- In this paper we shall show that
if x, is computed for every / on a forward pass on I\ then

0O18-9448/81/010O-0077S0O.75 ©1981 IEEE



78
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 1, JANUARY 1981

b2

/T

FUTURE

J PAST
-8At

/a

Fig. 1. Recursion structure.

the smoothed estimate {x(t|6), tET) can be computed
recursively on a backward pass on T using a new state
A, = {\,(t), rSSAf) for recursion on the backward pass.
The algorithm is a generalization of the corresponding
result in the one-dimensional case [3].

In the case where V passes through the point (ax,b2),
the smoothing algorithm becomes one for a function-
valued random process with a one-dimensional time
parameter. The filtering formula for this case was derived
in [4]. An alternate derivation for the smoothing formula
in this case could make use of the smoothing formula ([7],
Theorem 6.20) for random processes taking values in a
separate Hilbert space.

We note that the desire for a recursiye solution to the

smoothing problem is due, not to any requirement for
real-time computation, but to the need to reduce the
dimensionality of computation that a "straightforward"
solution of the problem would entail. For example, con
sider a situation where the observation £(/) is sampled on
an nXn grid to obtain n2 samples. The smoothed estimate
can be obtained by inverting an n2 by n2 covariance
matrix that requires roughly n6 multiplications. In con
trast, for a diagonal path, the recursive solution requires
roughly 4/j3 multiplications. Thus there is a potential
reduction of dramatic proportion.

II. Innovations Representation

For any rectangle A= [sx,tx)X[s2,t2) and any random
field {V(t), tET}, denote the corresponding increment of
Kby

V(&)=V(tx,t2)-V(tx,s2)-V(sx,t2)+V(sx,s2).

We say that V is a standard orthogonal increments (SOI)
process if E[V(A)] = 0, and

, £[>(A)F(A')] = area(AnA'),

for all rectangles A, A'. The observation equation (1.1)

may be rewritten in differential form as

• Z(dt)=x(t)dt+VN0W{dt) (2.1)

where W is an SOI process uncorrected with x. The
precise interpretation of (2.1) is that it defines an integral

(g{s)Z{ds) = (g{s)x(s)ds+VNQ (g(s)W(ds),
JT JT Jt

(2.2)

for all gEL2(T), the space of all real-valued, square-
integrable functions on T. The second integral on theright
side of (2.2) is interpreted in the Wiener sense (see [1]).

Let % denote the Hilbert space, with inner product
(x, y > = Exy, of all real-valued zero-mean finite-variance
random variables on a fixed probability space (ft,1?, <3>).
We shall assume that for each /, both Z(t) and x(t)
belong to %. Let 9C,Z denote the closed linear subspace
spanned by [Z(s): sEA,)}. Thus x(r\t) is the orthogonal
projection of x(t) onto %,f.

For an SOI process V, the subspace %f spanned by
{V(s): sEA,} is equal to the space of Wiener integrals
)a g^Wi^5)- Similarly, for the observation process Z, we
have

%? =Wg(S)Z(dsy.geL2(T)\. (2.3)

This result is easily proved as a generalization to a similar
result in the one-dimensional case.

For a fixed increasing path T and any sET, denote

sT= m2Lx{tET:sE8Al}, (2.4)

and define

Zr(dt) = Z(dt)-x(t\tT)dt. (2.5)

Defining the error

&(r\t)=x(r)-x(r\t), (2.6)

we can use (2.1) to rewrite (2.5) as

Zr(dt) =S(t\tT)dt+VN0 W{dt). (2.7)
The process Zr will be called the innovations process for
the path T.

In one-dimensional estimation, the usefulness of the
innovations process is due to the following properties. 1)
Any element in the linear space spanned by past observa
tions can be expressed as an integral with respect to the
past innovations. 2) The innovations process has orthogo
nal increments. We shall see that Zr possesses only re
stricted versions of these properties which nevertheless
allow a useful innovations representation for x(r\t).

Using (2.5), (2.7), and the fact that.c(T|/)±0C/z, wefind
that

EZr(ds)Zr(ds') = 83tJN0ds + 8srta.rp(s,s'\sT)dsds',
(2.8)

where 5,,. = 1, if s=s' and zero otherwise, and p is the
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(3.4). For tG&V

<W)« 5T|/ia,(T)c(r|/).

+ f,28i(r;titu2\t)€(tltu2\t)du2 dtx

+f\i.h^2\u2)V{dtx,du2)

^=T ft2p(r;tltu2\t)W(dtudu2)t
(3.6)

and dt€(r\t) is given by the dual equation. The error
equations will play a large role in the derivation of the
smoothing formula.

The filtering errorcovariances {p(t; u\t), r,uE8At, tE
T] required by the filtering equations are given recursively
by the following Riccati equations. For r,uE8A, with

Ti='i>
3^-p(r; m|0=«i(t)p(t; m|0

+/TVi(t; u'2)p(tx, «2; u\t)du2

+8UI «i(")p(t; u\t)

+ fU1fl(u;u2)p(r;tl,u2\t)du2
Ja2

+r"('i-"l)A1(T;Ui)A1(«:«i)<fai
Jat

^0 Ja-,

Theorem: For /el\ t6W„ the smoothed estimates are
given by

1x(r\b)=x(r\t) +
Nn

p(r;t\t)\t(t)

+ r2p(T;/i,w2)Xr('i»"2)^«2
Ja2

+ f p('r;w,,/2|/)A/(«i,/2)rftti . (4-1)

where the processes A,: 8At->R are given recursively by
\b =0 and for tGl\ uE8At,

-I(u2<t2) gAt;u\t)\M

+ r2g1(/1,«2;M|/)X<(r1,u2)^2
Ja2

+pgx(u\>h\u\t)\t{u\yt2)du\+vT{u)
'«i

(4.2a)

^\M--8>uttal(u)\l(u)-9mtM'-)dt

-/(«,</,)

where

g2(f> u\t)\t(t)

+ ftlg2iWi.t2;u\t)\t(Wl9t2)d^

+f'2g2(ti^2;u\t)\t(tltu2)du2+pr(u)
(4.2b)

\,{'t)=Wm\t{uXtt2),
«it'i

^/(C)= lim *,(/,, m2),

and pr is the white noise derivative of Zr defined by

vT(u)du=ZT(du). (4.3)

Observe that the state A, = {A,(t), rE8At} is computed
(3-7) recursively by (4.3) as / moves backward along T. If the

For rtuE8At with t2 =/2, (9p(r;u|/)/8/2) is given by the direction in which / moves is parallel to one leg of 8At>
dual of (3.7). Once the filtering error covariances are then A,(u) is unchanged for u along that leg. In order to
known, (3.4) can be used to recursively compute the compute {*(t|b\ rET} from (4.1) we do not require all
filtered estimates {Jc(t|/), re8A„ tET). the computed filtered estimates: only {*(t|tT), tET}.

Since vT(u)du=Z(du)-x(u\uT)du, we see that the filter-
IV. Smoothing Formula ing formula requiresonly the data {x(T|Tr),Z(T),Ter}.

_ ,. ... , , We begin the derivation by using the innovations repre-
In this section it is assumed that we have applied the sentation of gjection „ to ^ ^ smoothed esthn3ite

filtering formula along some fixed increasing path Tand ^b) ^ a filtered estimate lus ^ innovations mtegraL
have obtained the filtered estimates {x{r\t\rE8An tET}. Lemma J: For tET,TE8A,
The following smoothing formula uses these estimates and * ''
the observations (Z(t), tET} to recursively compute the -/ it\ •/ i.\.l f i?r / i.\ / i r>\i^ / j \smoothed estimates {X(,\b), ieT). 'M^WO+^J^^£[<(T|0c(*|*r)]Zr(*).

(4.4)

Proof: Using (2.13) and (2.14), the smoothed estimate
can be expressed as

x(r\b)= f k(r;s)Zr(ds)

=x(r\t)+f k(r;S)Zr(ds), (4.5)
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for any rer, tET, where

k(T;s)ds=—Ex(r)Zr(ds).
N,

If tET, tE8A„ and sEAb-A„ we have

k(r;s)ds=^rE\x{r){€(s\sT)ds+VN'0rV(as)}]

^4rE[x(r)€(s\sT)]ds
N,

=±E[t(T\t)e(s\sT)]ds,
N,

(4.6)

where the orthogonality of c(j|.*r) and x(t|0 was used in
the third equality. Substituting (4.6) in (4.5) yields (4.4).

Q.E.D.

We proceed to derive a recursive formula for the in
tegral in (4.4). The integrand is the covariance between
two filtering errors: one on 8A, and one in Ab —Ar With
the immediate goal of expressing this integrand in terms
of the filtering error covariances p(r; u\t), T,uE8At, we
introduce the evolution operator S associated with the
error equation (3.6) and its dual. For tET, let Ct denote
the space of continuous functions mapping 8At to R. Let
A be an increasing path, tEA, andyECr Then for rE A,
Srl: C,->Cr is defined recursively by

StitM-y* (4.7)

and for sE8Ar,

+[\(s;rx,s'2\r)&r;l[y](rx,s'2)ds'2, (4.8)

where

Is given by the dual of (4.8). Hence Sr.,[y] gives the state
the zero-noise error equations at r given that the state

at / is v.

; Lemma 2: Let t,rET with / <r. Then Sr., has the form

Kjy](s)=*r;t(sMsAt)+v.My(t)
+ [ 1®l;t(s\u2)y(tx,u2)du2

+ f'^2l(s;ul)y(uxt2)dux, (4.9)

where s /\ t = (min {sx, tx}, min {s2, '2})' and
3h<» 'rV; t> ®n n®r,t nave tne following properties:

a) sE8Al=*<br.l(s)=l,

b) rx=tx orr2=t2^ril(s) = 0,

£c) rl=tx=*<t>lr;l(s;u2) =0,
: d) r2=/2^d>f2;X5;u1) = 0. (4.10)

81

The backward evolution operator St. rhas the form

S,.r[v](«) =<M")>'("*'-)

+ f 2*/;r(";j2M',l»52)<&2

+ r^2r(w,sx)y(sx,r2)dsx, (4.11)

where

uwr =

r,u = t,

(rxtu2)y u2<t2,

/V00/; We first find forms for &rl when r2 = t2 and
when /-,=/,, i.e., for the "horizontal" operator 6^Jj —
Sr ,., and for the "vertical" operator €£•£•=&turtit'
From(4.7) and (4.8), wehave for r[E[tx, rx] and sE8Ar. tj,

^7^;;;[v](,)=5Ji,ria1(.)S;i;;;[v](,)

+rgi(*;^*Sk^a)%J[^]W,*i)*2. (4-B)

where Srl,'/[^] =v. Using the method of successive ap
proximations [6], it can be shown that (4.12) has a solution
of the form

+[%ir;X(s;u2)y(tx,u2)du2, (4.13)

where

a) sE8At=*lii%(s)=l,

b) r,=r1^^i(5;u2) =0. (4.14)

A dual argument yields the form for £>/'', which is just
the dual of (4.13) and (4.14). We can now obtain the form
for Sr., by composing the horizontal and vertical forms,
i.e.,

S„[y]=S^[s;-',;[y]]. (4.15)
Substituting (4.13) and its dual in (4.15) gives the form
(4.9). Properties (4.10) follow from knowing that (4.10)
must reduce to (4.13) or its dual under each given condi
tion. The backward form is obtained similarly. Q.E.D.

We now use & to rewrite the integral in (4.4) in terms of
the filtering error covariances p(r, u\t), r, uE8Ar

Lemma 3: For tET, tE8A{

x(r\b)=x(r\t) +̂ - p(r;/|/)Ac(/)

+ f'2p(r;txtu2)\x(t;du2)

+j',p(T;ux,t2)\2(t;dux) (4.16)
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where, for uE8A,y

K(*)= [bl(b\r;MzA*i>*2)
Defining Ac, A„ A2 as in (4.17), we can rewrite (4.20) as
(4.16). QE.D.

With the goal of finding recursive formulas for
Ac, A„ A2, we first find the partial derivatives with respect

+/ «fcr:MZr(ds), (4.17a) to /, and t2 of <f>r.„ fn„ «J„ and **,.
A- ~A- Lemma 4: Let /, rET with t<r, and let sE8Ar. Then'Ab-A,

\x(t;du2)= [ l$aTu(sx,u2)ZT(dsx,du2)

+ [ *lsr.,t(s;u2)Zr(ds)du2, (4.17b)
JAb-A,

^2it\dux)= f \T;l(uvs2)Zr{duXtds2)

+ f ^r;l(s;ux)Zr(ds)dux. (4.17c)

Proof: Let r>f. By linearity, the state e(-|r) of the
error equations at r, given that the state at / is c(-|/), is

€('\r) =&r;l[€('\t)]+%;t[V(dv),W(dv)tvEAr-At]t
where 9tr., isa linear operator. Therefore, for rESA, and
sEAb-A„

£c(T|/)€(j|jr)

-ft(T|/){S,rsl[c(.|/)](*)_ (4.21c)

+̂ r:lW.^),«e4r-^]W} J_$2/(j;Mi)=0.
-6,r:,[*M')e('IO]« ''' "

~ r , , %.# v , v The dual equations give the partial derivatives with re-
-Wp('H0]M. (4.18) spectto,2.

where the orthogonality of «(t|/) and V(dv),W(dv), vE Proof: Let c>0 and let {^ri6(;iiV rxE(tx-
Ab -Ab was used in the second equality. Hence €, tx +c)n[ax, bx]} be a family of functions with dtiyTili =

£e(T|/)e(*|jr)=^r;#(*)p(T;-*A/|/) 0. It is clear that for r>/and iiSW,.
•+fcr;i(*)p(*;/|/) M") =S,;,[Sr:,|>,]]("). (4.22)
+ f"*;r.,(*; «2)p(t; /,. «2|0*a Using (4'9) and (411) to write out (4'22)'taking 3/a'"42 * ' 2 2 using (4.8), and using (4.22) again, we obtain

+jys2rit(s;uMT;ux,t2\t)dux. 0= ^lllal(«)^(«)+/'aii(«;/|,«a|0^i.«2)Aa
(4.19)

Substituting (4.19) in (4.4) and rearranging, we obtain

d/,

^•*;,W--«l(0*r;r(*)-*r2;,(';'l).

(4.21a)

(4.21b)

—•J ,<*;•,,) — *|(*A';'|,«2l')4;,(')

+Si(';'i,"2l')<M*)

+al(ti,u2)Q}.t(s;u2)

+ f *id. "2; 'i. «i\'Wit(»i u'i)dui

+J/,g,(i/;,/2;/„«2|0*r2;,(j;«;)^i

"2

+S,r wS'[y<] («). (4-23)

*{r\b)-*(r\t) + -± r2p(T;/„52|/)r%,r./(j)Zr(^1,rfs2)+ r,p(T;*|f/2|r)f\r.,j[*)fr(A1,A2)
Ja2 Jt\ Jax Jt2

+P(r;t\t) fbl f\r;t(s)Zr(dsXtds2)+p(r;t\t) f «fcr.t(s)Zr(ds)

+rV0,;'i.«2l0f ^r:/(^;«2)Zr(^)^2 +f'lp(T;ux,t2\t)f ^ru(s;ux)Zr(ds)dux
•'fl, ^y<t->4. •'fl. J A. -A.Ab—A, Ab-A,

(4.20)
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i Subtracting the last term from both sides, applying S to
I each side as a function of u, using (4.22) for the left side,

and writing out both sides using (4.9), we obtain

^A*M'M)*-£foMyM
+r-c-*i«(««a)Xr('i.«a)*a

+P^-«gi(*;«i)M«i»»2)*i
Jax dtl

+$?.t(s;tl)yl(t)

-*»»(*) I(sx>tx)ax{sAt)y,(*/\t)

+*..,(*) ccx(t)yt(0

+ (t2gi{t;tx,u'2\t)y,(tx,u'2)du'2

+P^;^;"2) «l(^PW2)>,/(/l'U2)

+ rVi(r1,«2;ti,«2lO^(^i»«2)rf"2

+ f*«£«(*; «i) rVi(«p'2^i»«2lO

•#(*!,tt'2)*&*2 dux.

*/«-

(4.24)

r

d,\x(t;du2)=- cxx{tx,u2)Xx(t;du2)

+gx{t;tx,u2\t)Xc{t)du2

+ P2g,('p"2;^"2l0^(<;^2)^2
•'a 2

pg.K^'i.^l')^';^!)^

-Zr(dh,du2), (4.25b)
</,A2(/;^,)=0. (4.25c)

The dual equations give dfXc(t), dl2Xx(t; du2), and
d,X2(t; dux).

Proof: The initial conditions are obvious from (4.17).
Equations (4.25) are obtained by differentiating equations
(4.17) using (4.21) and properties (4.10).

Proof of Theorem: Define the process (A,(u), uE8At}
by

X,(t)= Xc(0,
XXtx,u2)du2=Xx(t;du2),
Xt(ux,t2)dux=X2(f,dux). (4.26)

Then (4.1) is simply (4.16) rewritten in terms of A,. Equa
tions (4.2) are simply (4.25) and their duals rewritten in
terms of A, and vT as defined in (4.3). Q.E.D.

+

83

dr.

Since y, is arbitrary, it is easy to show that (4.24) implies
(4.21) Q"E-D-

Lemma 5: The processes AC,A„A2 are given recur
sively by Xc(b)=Xx(b;du2) =X2(b; dux) =0, and for tET,
uE8Aru¥=t,

«X«- -«i(0^0*i "x2(^; *i>. (4-25a>
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