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ABSTRACT

The problem studied here concerns modelling of call losses due to the

trunk blocking phenomenon in telephone networks. Using classical assumptions

such as Poissonian distribution for inputs (call attempts) and exponential

distribution for service time (call duration), a Markovian representation

of telephone process provides a very accurate model for studying this process,

However, such a "microscopic" representation cannot be used for real net

works because of the rapidly increasing number of states to be considered.

The Markovian model is useful for finding analytical formulas of trunk

blocking probabilities and also for comparing some approximate models we

try to build in this paper.

The first part of this study is devoted to the elaboration of a

dynamic analytical model of traffic where each variable represents the

average state of the corresponding trunk. In the second part, we intro

duce the concept of "over-variant" and "under-variant" processes. In

some cases, representing traffic both by its mean and variance leads to

better estimation of blocking probabilities. Finally, we try to generalize

the "equivalent trunk" theory introduced by R. I. Wilkinson [1].

Research sponsored by the National Science Foundation Grant INT78-09263
and by Centre National de la Recherche Scientifique, bourse docteur -
ingemeur (France).



I. INTRODUCTION

A telephone network consists of a set of trunks each with a finite

number of servers, linking a set of nodes representing switching centers.

Calls arrive in this network at some origin nodes. It is generally

assumed that calls entering the system are Poisson distributed. The

arriving calls are routed through the network link by link, according

to a routing policy (load sharing, overflow rerouting), until a free

connection can be established between an origin-destination pair of

nodes. Successful calls remain in the system for a random conversation

time (holding time) which is assumed exponential [7]. Calls that fail to

find this connection are lost to the network and do not reenter the

system (lost calls cleared [5]).

Analysis of telephone processes is aimed at building models to

estimate the average number of calls which find a free connection for

each origin-destination pair. In real networks, this analysis does not

provide analytical solutions. Markovian models often lead to untractable

numerical problems mainly due to the large number of possible states.

Therefore, various approximate models and methods are generally used.

The most common approximation is to assume the independence of different

flows in the network and then to simplify the whole analysis with a link

by link study [6] [11]. However, the resulting problem in each link is

not necessarily simple to model. Even with the simplifying assumption of

Poisson distributed input flows, the flow of calls in the network

does not keep the Poisson Property due to routing and transit operations.

The study of such distributions has been made for particular cases

and generally appears to be very complicated [4]. Methods for finding

equivalent processes have also been proposed [2] [3]. The accuracy and
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computation burden associated with each of these methods [10] may

determine their applicability for engineering purposes.

The work presented in this report divides into two main parts.

In the first (2nd and 3rd section) we introduce the notion of traffic

(offered, carried, lost traffic) usually associated with telephone

process. In the case of one trunk, transient state is described by

means of a dynamic model of traffic. This model then is extended to a

network. Numerical comparisons with Markovian model show that the

approximate model provides a useful tool to represent traffic dynamics

in a network.

In the second part (4th section) we analyze the second moment of

telephone processes. A traffic model using both the average and the

variance of telephone process provides a better approximation. The

main result presented in this part is the equivalent trunk method for

under-van"ant traffic as a complement to the equivalent random theory

proposed by R. I. Wilkinson [1].

II. Study of Telephone Process on One Trunk:

II.1) General assumptions

- arrivals

We assume that call attempts can be represented by a Poissonian

distribution with a constant rate X; Probability of k call attempts during

a time interval 9:

*#•-" (2.1)
For small time interval dt the probability of more than one arrival

2
is of the order dt and the probability of one arrival is:

X dt (2.2)

-3-



- Service time

We assume that service time (including both conversation time and

switching times) obeys an exponential distribution with an average

duration T. The probability that the duration of a call is included

between t and t + dt is:

1/T e"t/T (2.3)

If i circuits of a trunk are busy at time t (i.e. i calls are present

at time t), then the probability that one of these circuits be released

in a small interval dt is:

^ (2.4)
- Lost calls cleared

If N is the trunk capacity (i.e. number of circuits), then no more than

N simultaneous calls can be carried by this trunk. If a call arrives

when the trunk is busy (state N) it is immediately eliminated (no

waiting time). Lost calls are considered cleared once and for all.(see Fig. 2.1)

I
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Figure 2.1

II.2) Markovian representation:

Since at each instant t either one departure or one arrival occur

in the trunk with probabilities independent of t, telephone process

is a Markovian birth-death process with the following transition

diagram:
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l-(X+})dt

-Let P(t) the probability vector, each component of which represents

the probability of having i circuits busy and P the associated derivative.

Then, the dynamics of the telephone process can be represented by the

following equation:

P = QP (2.5)

where Q is the rate matrix. In the case of one trunk this (N+1) x (N+1)

matrix has the following structure (derived from the transition diagram):

Q :

-X 1/T

\ -a-1/T 2/T
0

X -A-N+l n/T
T

* -N/T

2.3 Steady State Solution

We first consider the steady state equilibrium behavior of the

telephone process.

Let us denote lim P.(t) by P., the solution of the system of
t-*» 1 1

N + 1 equations:

N

I Q(i,J)P,- =0 i = 0,...,N (2.6)
j=0 J

Blocking Probability:

In order to get an analytical solution for (2.6), it is necessary to

solve the recurrence:
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xp1.1 - (x +i)P1 +(^OP^ =0,1= 0,...,N-1
(P1 =0, i <0)

p -Up = n
KN-1 T KN U

The solution of which is:

Pi =ly PQ with y =X.T (2.8)

Then, with normalization condition one gets:

ll
P.=-^ (2.9)

N i

j=o a

The blocking probability of the trunk which in fact is PN, is well known

as the Erlang's lost calls cleared formula:

p =E(N,Y) = Y^N! (2.10)
N N *

j=0 j!

The computationof E(N,Y) is simplified by the use of the following

recursive formula:

N YJ N"1 y^ Y YN_1
j-0 jT =j=0 31" +¥^^

(2.7)

denominator of numerator of

E(N-1,Y) E(N-l.Y)

TfE(N-l.Y)
E(N,Y) =—^ : (2 in

1+^E(N-1,Y) U-M;
Taking initial value E(0,Y) = 1, this formula is convenient for computing

E(N,Y) even for large values of N.

mean state:

Let X denote the average number of circuits busy in the trunk:

N

X"ilo 'P<

-6-



but

N vi N vi-l N vi VN

i=0 '• i=0 K ' i=0

therefore

iloi!"N!

i=0 1#

X = Y{1-E(N,Y)} (2.12)

X is also called the carried traffic.

Remark

If we consider atrunk with a very large capacity such that X-»• 0,
then

N Yi v
lim I |r=eY
N u

Y1 -Y
Pi=TTe (2.13)

In this case, the probability of icircuits busy is defined by a Poisson

distribution. This means that the Poisson characteristic of traffic is

preserved when blocking probability is very small.

X= I i pi •Y (2.13)
l

Definition

The offered traffic Y is the traffic which would be carried by a

trunk having infinite capacity.

carried traffic = offered traffic - lost traffic (2.12)

4. Transient State

We propose an extension of the previous results to study the

transient behavior of the process. Let X(t) be the carried traffic at

time t and let X be the associated derivative:
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X(t) = I iP.(t) (2.14)
i=0

*(t) = J 1P.(t) (2.15)
i=0

N N

£.;*= l H t Q,, P,(t)} (2.15)
i=0 j=0 1J J

N-l . N
=M I P,(t)}-|{ I 1P(t)}

i=0 ' ' i=o 7

X»-^+X{l-PN(t)} (2.16)

The differential equation (2.16) is useful in representing dynamics of

calls in atrunk. However, the calculation of PN(t) requires the

computation of all values P..(t) which is equivalent to solving the

Markovian model (2.5). In fact model (2.16) would be very useful if a

relation between X(t) and PN(t) could be stated. Unfortunately such a

relation, even in steady state, seems very difficult to obtain. In

order to remove coupling between model (2.16) and Markovian model (2.5)

we propose two approximations for estimating PN(t).

II.4.1. Offered Traffic Approximation

Let us consider Y(t) the traffic carried by an infinite capacity

trunk (i.e. offered traffic at time t) and Y the associated derivative:

Y(t) = I 1 P.(t)
i=0 1

Y=-^+X (2.17)

The approximation consists in using Y(t) and Erlang's formula (only true

in steady state) to estimate PN(t); let P*(t) be the estimator of PN(t):

PjJ(t) = E(N,Y(t)) (2.18)
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and then,

' *-- T+XO-PjJ).

Remark:

PN(oo) =PNH = E(N'AT>

Numerical Result

On figures 2.2 and 2.3 are plotted responses of PN(t) (using model
(2.5)) and P*(t) (using (2.17) and (2.18)).

Initial Data Are:

P0(0) =1 P^O) =0 Vi f 0

Y(0) = 0

Capacity: N = 20

The transient part of PN is always faster than that of PS(t); this

difference increases when XT increases.

II.4.2. Approximation by Erlang Inverse

We call Erlang Inverse the function which would give the blocking

probability of a trunk depending on the carried traffic X. No analytical

solution has been found for such afunction. But since PN, for afixed
N, is a monotically increasing function of X it is easy to find the

unique value PN corresponding to X. In the appendix Iwe propose a very

simple algorithm for solving this problem.

The approximation we propose, consists of computing by Erlang's

formula the blocking probability PN(t) corresponding to X(t) (even if

X(t) is atransient state). Let ?N(t) be the estimator of PN(t). PN(t)
is solution of the following equation:

«t) = Y(t){l-E(N,Y(t))}

PN(t) «E(N,Y(t)) (2*79)
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Remark:

When X(t) is such that Y(t) =XT, then *=0, and the steady state

exact solution (2.12) is well verified.

Numerical Results

With the same data we used in the previous approximation we plotted on

Figures 2.4 and 2.5 the responses of PN(t) obtained by the Markovian model
(2.5) and the responses of PN(t) obtained by (2.19) and (2.16).

The results show that transients of PN and F>N are very similar;

PN seems to be abetter estimator than Pjjj. The transient of PN(t) is

always faster than the transient of PN, but in contrast with PJj, the
difference does not increase with XT.

On figures 2.6 and 2.7 a comparison is made between model (2.16)

using estimator PN and a Monte-Carlo simulation. These results prove the

accuracy obtained by model (2.16) and estimator P...

III. Study of Telephone Process on a Network

Although accurate results are obtained with estimator PN, the

improvement introduced by the dynamic model (2.16) and (2.19) compared to

the Markovian model (2.5) is not obvious because of the burden to

compute PN-

In fact, we shall see in this section that an extension of model

(2.16), representing the average state (or traffic) in a network, is

profitable since a "microscopic" representation such as a Markovian model

can no longer be used because of the rapidly increasing number of states

to be considered.

III.1 Studied Network

The simplest network which can be studied consists of departure nodes,

destination nodes and only one transit node (fig. 3.1). The process is
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defined with the same assumptions as in paragraph II.1:

•Trunks linking ito kand kto j have finite capacity N-k and N. ..

•.Conversation time exponentially distributed with average T.

• Poisson distribution for call attempts; X^ being the arrival

rate of each flow (i,j).

• Lost calls cleared.

III.2 Markovian Model

The state of network is completely determined by the state of every

path connecting the set of nodes I to the set of nodes J. The associated

probability vector P has to contain all combinations of possible states

and therefore the dimension of this vector becomes enormous. Thus, it

is easy to understand why such a "microscopic" model cannot be used to

represent the telephone process in a network. In fact, we use this model

only to compare approximate models of traffic.

Transition Diagram

Let us denote by {p-^ jP-io'Pi.q'*-* 'Poi'^rV" 'PIJ* the state of tne network

where the component p.. represents the number of busy circuits between i
'j

and j. As in the case of a single trunk, we consider only the adjacent

states; the corresponding transition diagram is given in fig. 3.2 where:

r°if i p« • Nik °r i "ij • Nk0-
• a. • = ( J

1J Lxii dt otnerwise

di3 =

0 if p = 0

pii-^- dt otherwise

L$t us denote by PN (t), the blocking probability of path (i,j), and
ij

by x..(t) the active number of calls from i to j:
'j

PN_(t) =Probability{x.k(t) =N^or Xkj(t) =NRj} (3.1)
•si
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Fig. 3.1. One transit network

{pll'p12*
...,Pij,...,PIJ}

1 - y a.. - I d.>
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fxik(t) =I x..(t)
with J J

|xkj(t) -I X..(t)
It can be verified [13 that the steady state probability satisfies:

P{xll =pn--"xij =Pij'"-'XIJ =PIJ} =* ^TP(0) (3J)
It can be verified that dynamic equation (2.16) transforms, in this

case, to the following:

x,,(t)

v^'^-v*" (3,2)
X..(t) defines the average number of circuits busy between i and j at

• \i

time t and L. is its derivative.

In steady state we get:

Xij =Yij{1-PN.>' Yij "XiOT (3'3)
Then, total traffic carried by trunk ik is:

hi = l hi (3-4)

and total traffic carried by trunk kj is:

Xkj =I Xij (3-5)
The problem in equation (3.3) is to compute PN . If the network is

ij
sufficiently large to assume that the processes on ik and kj trunks are

independent, then we can write:

p=p+P_pp (3.6)

\ Nik Nkj VNkj
PM : blocking probability of trunk ik
Nik

Pw : blocking probability of trunk kj
Nkj

Using relation (3.6) we present two different ways for calculating the

blocking probabilities PM and PM .
Nik Nkj
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III.3 Erlang Fluid Approximation Model

This model, currently used by telephone engineers, allows traffic

calculation as if the telephone process was a fluid flowing from a

trunk to the next one. Assuming that the traffic obeys a Poisson

distribution, blocking probabilities are computed by Erlang's formula.

Let Y.. be the total traffic offered to trunk ik.

J

j;

If the process on trunk ik is considered independent of the remaining

trunks, then, Erlang formula (2.10) gives the blocking probability of

trunk ik:

pfi.k =E<Nik»Yik> <3-8>
Let Yj. be the total traffic offered to trunk kj:

I

Ykj = I Yii{1-PN } <3-9>KJ .=1 IJ N.k

If we assume that Y. . has a Poisson distribution, blocking probability

of trunk kj is calculated by Erlang formula:

X - e<w <3-io>
Then, using (3.6), traffic carried by each flow (i,j) is:

Xij =Yij°-PN )(1"PN } (3-">1J 1J "ik Nkj
III.4 Erlang Inverse Approximation

With the independence assumption (3.6), the dynamic model (3.2) can

be rewritten:

xij •^P-+ v1-vtmi-v*» (3,12)
Using the estimator PN we obtain:

xik

• Yik = X Yij <3-7>

xik =--r+Ix.i(i-p (t))(i-pN (t)) t = i,...,i
1 j 1J "ik "kj

1 IK Kj

-15-
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with

pnik(t) =E(Vik<*»
X1k(t) - ?1k(t){l-E(N1k.Y1k)}

Vt} =E(Nkd'?W(t»
LXy(t) =Ykj.(t){l-E(Nkcj,YKJ)}

In steady state (3.13)

J

[ik = I Yii(1"PN )(1"PN } i =1""'11K j=l 1J Nik \j

lw ^!, YiJ(1X)(1"?Mkj> J"1'"-"J
This system of nonlinear equations can be solved using a relaxation algorithm,

see appendix II.

III.5 Numerical Results

We consider a small network constituted of 3 departure nodes, 3

destination nodes and one transit node. We use the following data:

- capacity:

2

/-,

N
ik • Nkj :t3 46]

- offered traffic matrix:

Y . •
ij *

0.5 0.5 0.8

0.6 0.8 1.2

1.3 1.4 2.7

In order to compare the two models presented previously, the following

table gives the steady state probabilities and carried traffic obtained

by (3.11), (3.14) and the exact values computed by the Markovian model.
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Steady state
solution of

Markovian model

PNi.i

Erlang Inverse

pN..

Fluid approxima
tion model

P*

Nij

blockingprobabilitiesof paths(i,j)
pn 0.4489 0.4588 0.4838

P12 0.3926 0.4002 0.4320

P!3 0.3817 0.3924 0.4236

"21 0.2895 0.2998 0.3169

P22 0.2097 0.2240 0.2479

P23 0.1964 0.2139 0.2368

P3i 0.3225 0.3369 0.3658

P32 0.2511 0.2652 0.3021

p
33 0.2339 0.2556 0.2918

traffic carriedby trunksik

XIK 1.074 1.057 1.003

X2K 2.023 1.984 1.928

X3K 3.998 3.901 3.714

traffic carriedby trunkskj

XKI 1.583 1.553 1.493

XK2 1.984 1.949 1.863

Xk3 3.527 3.439 3.298

Table 1
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The results presented in this table show clearly that the

approximate models (3.11) and (3.14) always overestimate losses

compared to the exact solution given by the Markovian model. The

error is about 2 percent. However, model (3.14) always gives a

better approximation than model (3.11).

IV. Over-Variant and Under-Variant Telephone Processes

Let us consider a telephone process described by probabilities

P. (probability of i busy circuits) with an average X and a variance V:

00

1=0 1

v= I i2p,. -x2
i=0 n

•if ][•= 1(see 2.13),. the offered traffic is assumed Poissonian.
Therefore all the results of section II can be applied.

•if X>1(over-variant) or j <1(under-variant) previous results
cannot be applied.

In this paragraph we investigate when over-variance and under-variance

are created and how to calculate carried traffic, lost traffic in

such a case.

IV.1 Over-Variant Process

IV.1.1 Overflow Rerouting

Overflow rerouting is the most commonly used routing policy in

telephone networks. Let us consider traffic at rate X arriving at two

trunks. One of these trunks, with capacity N,, is called the first-

choice trunk, the other one is called the second-choice trunk (capacity

N«). The routing consists in first trying the first choice trunk. If

all circuits are busy in this trunk (state N,), calls are switched to the

second-choice trunk (fig. 4.1). Overflow traffic is of the over-van"ant type.
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second choice trunk
with, capacity N2

first choice trunk
with capacity N

Fig. 4.1. Calls overflowing from the first choice trunk
to the second choice trunk.

Fig. 4.2. Transition diagram associated with
overflow rerouting.
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IV.1.2 Transition Diagram

Let i denote the state of the first choice trunk and j the state

of the second-choice trunk. The process is identified by the set of

possible states (i,j) (i =0,...,^; j=0,...,N2) and by the probabilities

P..(= Probability{x, = i and x2 = j}). For a small time interval dt,

we only consider transitions to the adjacent stated of (i,j); The

transition diagram is given in figure 4.2 where:

di =j dt, dj. =idt

f\ dt if i<N, Co if i<N-, or j=N£
a. =k »a. ={

\0 if i•N1 lx dt if i=Ni and J<N2

IV.1.3 Equilibrium Equations

These equations describe the steady state solution of Markov model

P = QP. Let us denote L.. the equation corresponding to the component

^ .of vector P. We get aset of (N^l) (N2+l) equations Li;j. =0as

follows:

ru.. : xPii . . (x +ili)Pi. +w Pi+1. +M p. .+1

(Vi =0 Nj-1; Vj =0 N2-l)

< Nn+j
L

N

r N,+N?
d=Xfy-l +XPNrl J"(X +̂ XJ +̂ f PNlJ+l

1 M J.M

IV.1.4 Recurrences on Probabilities

rj
Define P.* and P*.. as follows:

P.* =Probability^ =i, Vx2> =J P^

P.. =Probability{x2 =j, Vx-,} =\ P...

-20-
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By summing the equations L.. one gets:
•j

n loj * -Ypo* +pi* • °

/Jhj* YP0*_ (*+U',1* +2P2*"0
\ 3

j LNiJ *YPNrl* -N^ =0

•»?.,. = -5-P.
i i-1*

i = 0.....I

&'lio*-vp + P*! = 0

lLi

I L., + ~^M 4 + P^,, = 0

N,0

~ + P = 02^1 **2 U

YP

vj
ij J^J *j+l

"^"iV1 J=0*""N2

Y = XT

(4.3)

(4.4)

Of course, the solution of recurrence (4.3) gives the Erlang's formula

PN* = E(NrY) (4.5)

Hence, all the results obtained in section II apply to the process of

the first-choice trunk.

However relation (4.4) does not allow the calculation of P*N .

We shall see later, how traffic characteristics of the second choice-

trunk can be computed.

Summing the equations L.., in another way, we get:
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\o *-YPoo +<pio+poi) =0

(h0+L01J * YP00 - <Y+1>(W +2(P20+P11+P02> • °

(L02+L20+L11) * Y(P01+P10) - (Y^2)(P20+P02+Pn) +3(P03+P30+P21+P12)=0

\»z * Y<PNrlN2+PNlN2-l> " (Nl+N2)PNlN2 - °
By successive substitution in the above, we get:

Yk

i.jesk(i.j) 1J k' 00

Sk(1.j) : {i,j/i+j =k; 0 <i <Nr 0 <j <N£}
and

\*2 =(N^Ng)! P00
but:

N7+N2 N1 N2

J l , x PiJ = l l PiJ =]k=0 i,jesk(i,j) 1J i=0 j=0 1J
thus we get:

n _ 100 N1+N2^
k=0 *

and therefore:

N,+N«
Y ' c
(N,+N2)!

PNlN2 " N7R7V =E<N1+VY> (4'7>
. k=0 K*

(4.7) proves the following intuitive result: The probability all circuits

in the first and second choice trunk are busy is equal to the blocking

probability of a trunk having a capacity (N,+N2).
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IV.1.5 Characteristics of Traffic Offered to the Second Choice Trunk

By definition the traffic offered to the second choice trunk is the

traffic which would be carried by this trunk having an infinite capacity.

Let Y* and V be the average and the variance of this traffic. Then,

average Y' = I jP .
j=0 *J

. Y

(4.8)

(4 .8) +(4.4) => Y' = I j | P . , =YP * =YE(N. ,Y) (4.9)
j=o J Nr ' Ni ]

but

00

_ 2
• variance V - r * '

,2
" - E J p*j •Yj=0 J

XAj =YI jPN j-1 =Y{ I JPN j +PN *}j=0 *J j=l V ' j=l N1J Nl

= Y I jP . + Y'
j=l N1J

(4.10)

(4.11)

In order to calculate I j PM .. it would be useful to find a recurrence
j N1J

between I JP,-,-- Let us sum the equations L.. in the following way:
j J 1J

.i jloj +* jpu= (y+i) * jpojj=0 UJ j=0 IJ j=0 UJ

1 J'Lij * I J'pi+lj "TTT I Jpii "ik I Jpi-lij=0 1J j=0 1 '° 1+l j=0 1J n ' j=0 1 1J

i = 0,...,N,-1

00 00

Jo JLnij' *j=o jPV =Ni+1 ih JVJ +V1" \
Let us denote:

i yk
A1 - I JPid and B.= I L
1 j=0 1J 1 k=0 k*
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we find:

Al =

Ao =

B1A0 "^

B2AQ

AN1 =BN1 A0J
and

\ =N-,+1 ^-l*^**

(4.12)

(4.13)

(4.12) + (4.13) ^Sg =
^+1 r^*

BN (N1+1-Y+YPN *}
,N1 Nj+1 DNrl

therefore we get:

YP

J0 j PN1J =AN1 =̂ O =N^l-Y+Y PN *
^*

(4.14)

Finally from (4.10) and (4.11) and (4.14) we obtain the well known

formula of variance:

v'-y'<i-y +v1;y,.y) (4.15)

R. I. Wilkinson [IJ demonstrated this formula using factorial moment

generating function. The plotting of V and Y' for different values

of N, and Y shows clearly that V is greater or equal to Y'. Hence,

offered traffic to second choice trunk is an over-variant process

(yr is called peakedness factor).

IV.1.6 Characteristics of Traffic Carried by the Second Choice

Trunk

Let X2 and V2 the average and the variance of the traffic carried

by the second choice trunk. Then, average
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•2 N2
X2= I JP^-=Y I P M => X2 =Y{P *-P } (4.16)
d j=o J j=o V ' c n V2j

with

P.>N* =E(NrY)

and

PNlN2 "E<N1+N2»Y>
van ance

N2 , N2
h- lQ J2p*j =YI i \j-! "4

Using the same demonstration than for V we get:

v+v•J" " YN0 KM \

Remark:

V2 =X2{1 - X2 4. Ni+1lm.} - YN2 PNiN (4.17)

Generally the following approximation is made

Et^+Ng.Y)
\n2 =\* P*N2 ** P*N2 = E(NrY) (4-18)

Using approximation (4.18) carried traffic can be calculated as follows:

X2=Y«(1-P*N) (4.19)

This is an exact formula for the traffic carried by the second choice

trunk:

(4.16), (4.19) =>X2 = X2

In the same way, it is usual to find the same approximation for the variance

of the carried traffic:

V2 =V(1-P*N ) (4.20)

(4.15), (4.17) - V2 f V£

Depending on Y' and N2, the difference between V« and V2 may be large.

In fact, there is no reason for (4.20) to be a good approximation.
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IV.1.7 Equivalent Trunk Theory for Overvariant Traffic

Let us consider a system composed of several first choice trunks

overflowing to a common second choice trunk (fig. 4.3).

y0 * TYTT ' No

y3 —* W-J > N3

y2 —+ j-1 * n2
yi —* / » Nl

Fig. 4.3. Traffics overflowing to a
common second choice trunk.

The study of traffic carried by trunk 0 is much more complicated

than in the previous example; in fact no exact formula has been found

for the carried traffic on trunk 0. The equivalent trunk theory

elaborated by R. I. Wilkinson provides a powerful tool since the system

of figure 4.3 can be reduced to the simplest case represented on

figure 4.1, and then all the results obtained previously can be applied.

Let Y! and VI be respectively the average and the variance of

the traffic overflowing from trunk i,

ft-v<w
(4.9), (4.15) + 1

If the blocking probability of trunk 0 is small then the overflow

traffics can be assumed independent and then the resulting total traffic

offered to trunk 0 has the following characteristics:

r I
Y' = I Y'. + Yn

(4.21)
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This over-van ant traffic (V* > Y') can be viewed as a traffic overflowing

from a unique trunk. Let N* and Y* be the capacity and the offered

traffic of this equivalent trunk. These two variables have to satisfy

the two nonlinear equations of overflow traffic:

Y' = Y* E(N*,Y*)

V = Y'll - Y' + - >
v J x l T n*+]+y'-Y*-

(4.22)

(In Appendix III we present an algorithm for solving (4.22)). Traffic

carried by trunk 0 is computed by (4.16):

XQ = Y*{E(N*,Y*)-E(N*+N0,Y*)} (4.23)

The contribution of traffic i is:

Xq -Yl y£ (4.24)

IV.2 Under-Variant' Process

Let us consider a trunk with capacity N and with Poisson offered

traffic Y = AT. We demonstrated in paragraph II.3 that carried traffic

has a Poisson distribution when XT « N. When blocking probability cannot

be neglected, this property doesn't remain, and it is interesting to

know the impact of blocking probability upon variance of carried traffic.

IV.2.1 Variance of Carried Traffic

The probability of state i is:

Y1
P. = TT

and

i N y£
.^ i1j=0 J*

Pi=fPi-l (4'25>
By definition the variance of this process is:
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Fig. 4.5
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V= I i2 P, -X2 (4-26)
i=0 1

X being the average of the process:

X= Y(1-PN)

N P.

(4.25), (4.26) +V=Y{ J i2 -4A -X2
i=0 1

N o

=Y{ I iP. ,} - X^
i=0 1"1

N-l N-l r,
= y{ I i p. + i p.} - r-

i=0 1 i=0 1

N N-l * 9
but 7 i P. = X => 7 i P. = X - NPM, then V = Y{X-NPM+1-PM} - X .

i=0 1 i=0 1 N N N

Finally, rearranging this expression, we get:

V = X - (Y-X)(N-X) (4.27)

Since X £ N and X <• Y it is obvious that V <_ X.

j can be called "saturation factor"

Hence, the traffic carried by a trunk, can be an undervariant process.

X and V are plotted on figures 4.4 and 4.5 for different values of Y

and N; these figures show that when Y is approximately greater than

60% then V is smaller than X.

IV.2.2 Two Trunks in Series

Let us consider two trunks ik and kj in series, and let Y be the

offered traffic at node i (fig. 4.6).

It is obvious that calls are rejected only by the trunk having

the smallest capacity. In fact this system is equivalent to a single

trunk from the point of view of call losses.(fig. 4.7).

The traffic carried between nodes i and j is:

X.d = Y{1-E(N.0.,Y)} (4.28)
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Remark

Nik r-. "u0 l E3 ©
Fig. 4.6. Two trunks in series.

0 ^ Q N.j =mintN.k,Nk.}
Fig. 4.7. Equivalent trunk.

The Erlang fluid approximation presented in paragraph III.3

implies:

*ij -Y(1-Pik)d-Pkj) (4-29)

P*1k = E(Nik»Y)
with< „

lPkj =E(Nkj'Ykj)'Ykj =Y^Pik)
(4.29), (4.28) -X... < X...

IV.2.3 The Equivalent Trunk Theory for Under-Variant Traffic

The model we propose here is an extension of Erlang fluid approximation

model (we suppose traffic flows through the network like a fluid). The

only difference with model of paragraph III.3 is the introduction of

variance to compute blocking probabilities.

We make the same assumption as for over-variant traffics:

the addition of several traffics into a node is equivalent to an unique

traffic having an average and a variance equal to the sum of individual

averages and variances.

Let us consider the following network:
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Fig. 4.8

k k
Let Y.. and V.. be the average and variance of traffic carried

by trunks ik:

fit -Yij{1-E<Nik4 V>
vij • Yij - <VYij><Nik-Yij>

i = 1 1

j = 1,... ,J
(4.30)

All these traffics add at node k; we denote by Y. the average and V. the
j j

variance of the resulting traffic offered to trunks j.

'yj • ?1j

'j • I<j
j = 1,... ,J (4.31)

If V. < X. the traffic offered to trunk kj is under variant; then we

can assume that this traffic has the characteristics of the traffic which

would be carried by a unique trunk. This equivalent trunk with

capacity N* and offered traffic Y* has to satisfy the following system

of equations (given by (2.12) and (4.27)):

j = 1,...,J (4.32)
Yj =Y*{1-E(NJ,Y*)}

vj - yj - (yj-V<n!-V
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v

v

V

The network of figure 4.8 decomposes into J simple networks. Each

of them is composed of two trunks in series:

From IV.2.2, we can easily calculate the traffic carried by

trunks kj:

Xkj =Y5{l-E(min(NJ,Nk.),Y*)}

Vj = 1,...,J

(4.33)

In fact if N* < N. • then X. . = Y. meaning that trunk kj is never blocked.

Let X?* be the contribution of traffic Y.. to the total traffic
ij lj

u

carried by trunk kj; in order to compute X.. we use the classical
•j

assumption that the carried traffic of one flow is proportional to the

offered traffic of this flow:

y'
Xij•Tf hi
IV.2.4 Numerical Results

(4.34)

In order to compare the equivalent trunk method with Erlang fluid

approximation and with the exact solution given by stationary probabilities

of the Markovian model, we study the following network constituted of

3 source nodes i one transit node k and one destination node j:

X"T o o
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The results obtained by the three models are presented in the following

table:

EXACT

SOLUTION

EQUIVALENT
TRAFFIC

THEORY

————

FIRST

MOMENT

APPROXIMATION

X]T=25 1^=20
X2T=35 N2=30
X3T=45 N3=40
X*I=95 N*=87

NQ=70

m 68.16 67.74 66.47

xi 15.52 14.87 14.59

x2 22.83 22.55 22.13

x3 29.81 30.31 29.74

X]T=20 N-,=15
X2T=21 N2=20
X3T=19 N3=18
X*T=53 N*=50

NQ=48

m 44.27 44.25 42.05

xl 13.08 12.93 12.29

x2 16.48 16.54 15.71

x3 14.71 14.78 14.04

These results as well as other results obtained with different data

show that the equivalent trunk theory improves the accuracy of fluid

model usually used to describe large telephone networks.

IV.3 Generalization of the Equivalent Trunk Theory

The equivalent trunk theory for overflow traffic developed by

R. I. Wilkinson and the extension to under-vanant traffic presented

previously provides a general method to compute blocking probabilities

when non-Poisson traffic is offered to a trunk.

Let V be the variance and Y be the average of traffic offered to

a trunk having capacity N. Depending on whether V < Y or V > Y or

V = Y there are three ways to compute X, the traffic carried by this trunk
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a) V = Y

X = Y{1-E(N,Y)}

b) V > Y
.

fY = Y*E(N*,Y*)

fin

sue

d (N*,Y*) (
i that: w Y*

— Vfl V 1 ' i- Y{1 - Y + N+1+Y. Y*J

=> X = Y*{E(N*,Y*)-E(N+N*,Y*)}

c) V < Y

fY =Y*{1-E(N*,Y*)}
find N*, Y*

V = Y - (Y*Y) (N*-Y)

X = Y*{l-E(min(N*,N),Y*)}

V. Conclusion

In this report we discussed different ways of estimating call losses

in a telephone network. Basic assumptions such as Poisson arrivals,

exponential holding time and lost calls cleared were made. Some

classical results were rederived and new theoretical and practical

results were presented.

It is obvious that a "microscopic" representation of the telephone

process such as a Markovian model, cannot be used when considering large

networks, because of the rapid increase of elementary states of the

system with respect to the number of trunks and the capacity of these

trunks.

However, in the simplest case of one and two trunks, we have shown

that exact formulas of blocking probability and average and variance of

offered (or carried) traffic can be obtained. The purpose of modelling

was to extend these theoretical results to larger networks by doing some

judicious approximations and to validate them by numerical comparisons.
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In the second and third paragraph the basic idea was to use the

Erlang formula for estimating the transient blocking probability. The

plots of PN(t) and PN(t) shows that PN(t) is a good estimator for the

blocking probability PN(t). The computation of P is not simpler than

that of PN(t) in the case of one trunk. However an improvement is

obtained when considering several interconnected trunks (model (3.13)).

In such a case model (3.13) gives better results than the classical

Erlang fluid approximation (model (3.11)).

In the last section the idea of equivalent trunk, developed

earlier by R. I. Wilkinson, was extended to a network constituted of

trunks interconnected by a transit node. The concepts of over variant

traffic and under variant traffic allows the generalization of equivalent

trunk theory. When analyzing large networks exact blocking probabilities

(or lost traffic) are extremely difficult to obtain. Then, the

most convenient approximation consists to assume that the telephone

process flows through the network like a fluid. The errors introduced

by the Erlang fluid approximation are due to the fact that this model

assumes that the Poisson distribution of the input process is not

modified by the network. Representing traffic both by its variance

and its average allows to take into account peakedness factor (over

variant traffic) and the corresponding equivalent trunk then increases

the accuracy of blocking probability estimation.
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Appendix I

Given the carried traffic X and the capacity N of a trunk, the

following algorithm finds the offered traffic Y* such that:

X = Y*{1-E(N,Y*)}

Step 1: i = 0 Y1 = 0 select e > 0

,1%. J 'J A dXStep 2: compute EfN.Y1), X1 =YMl-EtN.Y1)} and ^-= 1 - EfN^HN+l-X1}
dY1

Step 3:

r. < e •=> Y* = Y

.f OX1-XII
<

,iP = E(N.Y')

stop

^ > e go to step 4

Step 4:

Yi+1 =y1 +*=£•
dx]_
dY1

i = i + 1 go to step 2.
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Appendix II

Steady state solution of model (3.13) is computed by a relaxation

algorithm

hi -1 v^v^V
Step 1:

initialize 3?- =1 Vj

I = 1 go to Step 2

Step 2:

4 •1 - E<"w$ Yij4)
i

go to step 3

Step 3:

• if Ic^-a*"1! and ile^-a^"1!! <e

\k ='-**

• otherwise % = & + 1 go to Step 2.
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Appendix III

Given an over-van ant traffic having a variance V and an average

Y', the following algorithm finds the offered traffic Y* and the capacity

N* of the first choice equivalent trunk such that:

V = Y*E(N*,Y*)

V s Y'll - Y1 + 1J T ll T N*+l+Y'-Y*/

Step 1: i = 0 j = 0, step length a > 1, e, > 0, e2 > 0, maximum

capacity R

Y° =2Y', N° =I(Y') I(-) =integral part

Step 2: Compute

Y'1 =Y1E(NJ,Y1)
and

4^-= E(Nj,Y1){NJ+l+Y,1-Y1}
dY1

IIY'̂ -Y'II
• if Y*"i—1 e-i 9° t0 Step 4.

• otherwise next step

Step 3:

Yi+1 =y1 +Y'-Y'1
dY'1

dY1

i = i + 1 go to Step 2.

Step 4:

1 Y1V,J = Y'{1 - Y' + , Y . }
NJ+1-Y1+Y'

. V'j-V ^ ^ Y* =Y1
v c N* = NJ
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In order to get better precision, it is preferable to test adjacent

value of NJ* : NJ* - 1 or Nj + 1

• otherwise adjust step length a

ev,3-VD < BV'J^-V ^ i+1 _9 j
vi K m "*" a = 1.Zcr*

V

BV,J-V'I . ilV'^-Vll ^ J+l n Qj
*. Vi > ——trH— •* or = 0.8a"

go to next step

Step 5:

Nj+W +I(aJ+1 '̂)
• if Nj+1 < 1 + NJ+1 = 1

• if NJ+1 > Nh- Nj+1 = N

j = j + 1 GO TO STEP 2
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