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ABSTRACT .

Multiple stochastic integrals are defined relative to a class of

sets. The classic cases of multiple Wiener integral and Ito integral

(as well as its generalization by Wong-Zakai-Yor) are recovered by

specializing the class of sets appropriately. Any square-integrable

functional of the Wiener process has a canonical representation in terms

of the integrals.

Formulas are given for projecting a stochastic integral onto the

space of Wiener functionals and for representing multiple stochastic

integrals as iterated integrals. Applications to a change in probability

measure arising in a signal detection problem are given.
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1. Introduction

Let R denote the collection of all Borel sets in IRn with finite

Lebesque measure (denoted by y). Define a Wiener process {W(A), A € R}

as a family of Gaussian random variables with zero mean and

EW(A)W(B) = u(AOB) (1.1)

As a set-parameter process, W(A) is additive, i.e.,

W(A+B) = W(A) + W(B) , a.s. (1.2)

where A + B denotes the union of disjoint sets, and intuitively, we can

view W(A) as the integral over A of a Gaussian white noise.

The connection with white noise renders the Wiener process important

in applications as well as theory. Consider for example, the following

signal detection problem.

A process £t is observed on teT where T is a fixed rectangle in

IRn, and we have to decide between the possibilities: (a) £t contains

arandom signal Zt plus an additive Gaussian white noise and (b) £t

contains only noise.

Formulated so as to avoid the pathologies of "white noise," the

problem can be stated as follows: Let {W(A), A e R(T)} be a set-

parameter process, with parameter space R(T) = {Borel subsets of T},

and defined on a fixed measurable space (fl,F). Let p' and P be two

probability measures such that (a) under P' W(A) -J Ztdt is aWiener
process independent of {Zt, te T}, (b) under PW(A) is aWiener process

Now, let Fw denote the a-algebra generated by the process W, and

let Pw and P^ denote the respective probability measures restricted to

Fw. If [ Z^dt <«; a.s., then P^ « Pw and the detection problem in
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most cases reduces to one of computing the likelihood ratio

dP,\
A'dF 0.3)

arw

in terms of the observed process W.

With respect to the probability space (Q,F,P) {W(A), A 6 r(T)} is

a Wiener process. Hence, A is a positive integrable functional of a

Wiener process. Computing A in terms of W is a problem that can be

embedded in a more general one of finding representations of a Wiener

functional, which in turn can be embedded (and illuminated in the

process) in a still more general problem of representing martingales

generated by a Wiener process.

For a random variable Y that is a square-integrable functional of

a Wiener process {W(A), A e R(T)}, several representations already exist.

The first is the Hermite-Wiener series of Cameron and Martin [1], The

second is in terms of the multiple Wiener integrals as defined by Ito

[6]. The third is in terms of the Ito integral [5], and it generalization

as defined by Wong and Zakai [9] and Yor [11]. In the last representation

the concept of martingales plays a crucial role.

For processes with a multidimensional parameter, it is both more

natural and more general to define martingales for processes parameterized

by sets rather than by points inIRn. Let C cr(T) be a collection of closed

sets, let (F(A), A e C} be a family of a-algebras such that

A DB «* F(A) D F(B),and Tet(M(A), A€C} be a set-parameter process. We

say that {M(A), F(A), Aec} is a martingale if

E(M(A)|F(B)) = M(B) a.s.

whenever A D B. Let {W(A), A e R(T)} be a Wiener process and denote
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FW(A) = a({W(B), BCA and B€ R(T)}) (1.4)

One of the main objects of this paper is to show that under very

general conditions on C, there is a canonical representation of all

square-integrable martingales with respect to (FW(A), Ae C}, and hence

representation for square integrable Wiener functionals. For

C = {all closed sets} the representation reduces to that of multiple

Wiener integrals. For C = {all closed rectangles in IR" with the origin

as one corner} the representations of Ito, Wong-Zakai, and Yor are re

covered. These two are in a sense limiting cases, and between them

lies a vast spectrum of choices for C, giving rise to an equally large

array of representations for C-martingales and Wiener functionals.

The key to these representations is to define multiple stochastic

integrals of the. form

r

<Ktrt2,...,tm) w(dt^ w(dtm)
* m

where <i> is (in general) a random integrand C-adapted in a suitable

sense to be defined later. The integrand in such a stochastic integral

is then identified as a certain density of conditional moments.

Next, formulae are found for transformation of multiple stochastic

integrals under two operations. The first is a projection formula for

the projection of amultiple stochastic integral onto L (ft,Fw,P)

(equivalently, this is a formula for the conditional expectation of a

multiple stochastic integral given Fw.) The second is an iterated

integral formula for expressing multiple stochastic integrals defined

relative to C in terms of stochastic integrals defined relative to

another class of sets C*.
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Finally, the transformation formulae are applied to the signal

detection problem noted above. The projection formula is relevant

since the liklihood ratio is the projection of the Radon-Nikodym

dP'derivative -jp , and the iterated integral formula is relevant as a

first step towards a stochastic calculus in a general framework.

Portions of this paper appear in [4]. This work is an outgrowth

of ideas first introduced in the dissertation [3]. The present paper

is self-contained except for the ommission of two technical proofs for

which the reader is referred to [4].

2. Multiple Stochastic Integrals

Let C be a collection of closed subsets of a fixed rectangle T in

]Rn. Given sets A, ,A2>-.. ,A^ eR(T), we shall define their support
relative to C to be the following subset of C:

sa a A = °{B:BeC and BHA. + 0 for 1 < i < m} (2.1)
Alrt2"Am 1 -. ~

with the convention that if no such sets B exist then the support is

taken to be all of T. Also, the support of the empty collection of

sets (i.e. m=0) is simply the intersection of all sets in C and is

denoted by S. (Note that S=ST). It will be assumed that the support

of any collection of sets A-|,..,Am e r(T) is contained in C. This

assumption can be met by enlarging a given collection of sets C.

If ti»t2""'tm are P°ints ™ T' their support will be written as

S. f f . We say t^t,,..,^ are C-independent if no point is con-
t^..^ ' L m
tained in the support of the remaining ones.

For C = {all closed sets in T}, S. . + is just {t,,...,t}
I £ m

that C-independent means distinct. For C = {all convex sets in T},

the support of m points is their convex hull and the points are
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C-independent if and only if they are extreme points of their convex

hull. When Tcjr£ and C={Rt :teT} where Rt denotes the closed
rectangle bounded by the origin and t, then S. + + is the smallest

tito • . U_
\ c m

set in Cwhich contains t,,t2,..,t .

Another example is when T cjrJJ and Cis generated by {Q. : t € T}
where Q. = {s e T : s. < t. for some i}. Then for t,,t0,..,t e T,

*» i —• 1 i c. m

S+ + 4. = U R. . Moreover
^V^m 1 *1

m

C = {U R. : m < +oo and t19t0,..,t e T}
i=l *1 12m

For this example, m points are unordered if and only if they are pair-

wise unordered.

Let T denote the subset of C-independent points in T . For a

given collection C, f" may be vacuous for sufficiently large m. For

example, if C= {Rt} is the collection of rectangles bounded by the

origin and teTCIRj, then fm is empty for m>n. That is, no more

than n points can be C-independent. In the extreme case C = {T},

^mT is empty for all m _> 1.

For a subset A of T define B(e,A) to be the set of points in T of

Euclidean distance at most e from A. For e > 0 define the e-support

relative to c of A,,A2,..,A e Rn(T) by

SA1A2..Am =SB(e,A1)B(e,A2)..B(e,Am).

and let S^"^ ^ denote the union over all e>0of the e-support of
1 2" m

A-,,A2,..,A . Note that the e-support of A-|9A2,..,A increases to

sa i a as e decreases to zero and s[~l - is contained in the
i c m I c m

support of A,,A2,..,A
m
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Let (ft,F,P) be a fixed probability space,-let {F(A) : A € R(T)}

be a family of sub-a-algebras of F which is increasing in the sense

that A C B implies that F(A) C F(B), and let (W(A) : A e R(T)} be a

Wiener process such that Fw(a) c F(A) and FW(AC) is independent of
F(A) for all A in R(T), where F.,(A) is defined by equation (1.4). These

conditions are true, for example, if F(A) = FW(A) for all A.

We shall assume the following conditions on C and {F(A) :A € Rn(T)}

(c,) For every collection of rectangles A, ,A0,..,A such that

m

n A. CTm,
i=l 1

I c m

(c2) For each m> 1, the mapping

t = (t}9t2,..,tm) r>>St

is a continuous map from Tm to the collection of compact sets under

the Hausdorff metric:

p(A,B) = (max min |x-y| + max min |x-y|) ; (2.2)
x^A y^ x^ y€A

(cj For every collection of rectangles A,,A0,..,A in T,
° i c. m

e>0 AlV,Ata AlV'Am

Since FW(A) C F(A) for all A in R(T), condition (c3) implies the

following condition:

(c^) For every collection of rectangles A,,A2,..,A in T,

^(%A?..A-SaX..aJ =0 • (2.3)
\ c m 12 m

A A

and if FW(A) =F(A) for all Athen conditions (c3) and (c^) are equivalent.
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Condition (cJ, as well as condition (c2), is a continuity condition.

Note that since the sets in Care closed, condition (c2) insures that

Tm is an open subset of Tm in the relative topology on f11.

For a C satisfying conditions c, - c3, we shall define multiple

stochastic integrals of order m

<f> o w"1 = <(.t W(dt1)..W(dt|)))

for integrands (J>(ca,t),(a),t) e JJ x f, satisfying

(h,) <|) is F x immeasurable

(h2) For each t € fm cj>t is F(St)-measurable.

(h3) [ E*2
T

The space of functions satisfying h, - h3 will be denoted by La(ftxT ).

Call <J) atomic if <|>(a),t) = a(ai) IA(t) where IA is the indicator

m ^

function of a product of rectangles A = n A. such that ACT. Two
i=l 7

atomic functions

cJ>(o),t) =o(u) IA(t) ,AC?
(2.4)

eU,t) =8(a)) I3(t) ,BCTP

are said to be comparable if each pair (A.,B.) is either equal or dis-

joint module sets of zero Lebesgue measure, and similar if m = p and

(B1,B2,...,B )is a permutation of (A1 ,A2,... .Aj. Call <j> simple if

K

4> = \ $. and each (J>. is atomic.
k=l K K

For an atomic function <j> define

dt < »

m

-8-
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m

4> o wm =a n W(A,) (2.5)
i=l 1

So defined, <J> o wm has the following property:

Lemma 2.1. Let <J> and 9 be comparable atomic functions in LfflxT ) and
. a

L*(GxTP) of the form (2.4). Then
a

E(<f>oWm) (e°wp) = 0 (2.6)

unless <J> and 9 are similar. In the latter case,

EUow"1) (9°Wm) =
def. „ .

E<j>t9t dt = <<j),9> (2.7)

where <ji denotes the symmetrization of <|), i.e.,

*t =ml ^*n(t) *n^ =Permutation of t (2-8)

Proof: First, assume <f> and 9 to be similar. Then

m m m 0
(<|>°Wm) (9oWm) =aB n WZ(A.)

i=l ^

and aB is measurable with respect to F(S- * - ). Therefore, condition
rt-i rtn ... rt
i c m

c, implies that

E[(*oWm)(eoWm)|F(sAiA2. )]
m «

= a3 n E W^(A.)
i=l

m

= a& n y(A.)
i=l n

and (2.7) follows.

Next, suppose that <j> and 9 are comparable but not similar. With no

loss of generality assume m > p. Consider two possibilities:
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(a) There exists a B. (say B,) such that

m

B1 n [ u a. u SA . A ] =0
i .=1 l V2"Am

(b) For every j < p

m

B n [ u A. u SA A A ] j 0
j i=l n AlV-Am

For case (a), let

m p

D= u A. U B. U SA . , USBB B
i=l 1 j=2 J Mr2-*Am BlB2--*bp

Then, with probability 1

m p

E[(j)oWm)(9oWp)|F(D)] =a3 II W(A.) n W(B.)[EW(B,)] = 0
i=l 1 j=2 J '

and (2.6) is verified.

For case (b) we shall prove that SA A a D SB B B " ^nce
1 2* * m 1 2*' p

<J> and 9 are comparable but not similar and m >. p, there must exist an

A^say A.j) such that y(A1 ^b.) =0for every j. Hence, W(A-|) is in-
m p

dependent of a6 n w(A.) n w(B.) and (2.6) is again proved.
1=2 1 .1=1 J

To prove SA A M DSB b B for case ^' let D€cbe anv set
1 2" m 1 2*" p

such that

D n A. f <J> for every i

then, D^Si . ' . by definition. The defining condition for case (b)
A1A2,-Afti

implies that for each j

either B. nuA./ <j>
J 1«

which implies B. = A. for some i
j *

which in turn implies D n b. f $
V
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or B. n s ^ <f>
j alM2"Am

which implies D n b. f <j> .
j

Therefore,

D n A. 7* <j> for every i => D n b . 7* (J) for every j
' j

and thus indeed S.. . => Sg . B
r <i m I 2 p

Lemma 2.2. For atomic functions <J> and 9 that are not necessarily

comparable, we can write

K

<D • I <J>k (2.9)
k=l K

9 - I 9
X=l A

where <j>. , <j> are atomic and the set {^9,} is pairwise comparable. For
2

any atomic <j> and 9 in L_ the isometry
a

E((J,oWm) (9oWP) =6mp <$,9> (2.10)

holds.

Proof: <J> and 9, being atomic, are of the form

rt^ Xrt«yX . . Xrt__
I l m

8=B^^BgX.-xBp

where A,,A«,..,A ,B,,..,B are rectangles in T. Since a union of
I c m I p

rectangles is always a union of disjoint rectangles, there exist dis

joint rectangles D,,D2,..,D such that each A. or B. is the union of

some of the D 's. Hence (2.9) follows, with
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/

*k =0lDk1xDk2x"xDk,n

9X =B^xD^x.. xDXp

where D. . c A. and D. . c B. for ewery i and j. It follows that a is

F($n n n )-measurable and 3 is F(Sn n n )-measurable for each
ukluk2"ukm DXlUX2"UXm

k and X. From lemma 2.1 we have

e(Vwra) <vwP> =vvv

and (2.10) follows from the bilinearity of < > . n

Lemma 2.3. Under conditions c2 and c3 the subset of simple functions

is dense in L^flxT™).
A proof of this result is given in appendix A of [4].

Theorem 2.1. There is a unique linear map denoted by <j> o wm of

<J> € L.(^xTm) into the space of square-integrable random variables such

that

(a) For an atomic function <f> =a IA

(j> e Wm =a n W(AJ

(b) Symmetry:

i i

. ,,m , ,,m

(c) Isometry:

E^oW"1) (9oWp) =<*,9> 6mp

Proof: First, any simple function <f> is by definition of the form

K

<fr = 1 i> where (j>. are atomic. Bi linearity of < > then implies the
k=l K K

isometry property (2.10) for simple functions <f> and 9. Let $ be any function
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2 ^m (n)from L^(fixT ). Lemma 2.3 implies that there exists a sequence {(Jr '}
a

of simple functions such that

,2

*(n)^_*v n-*» y

Hence, Wn'} is Cauchy. The isometry property (2.10) then implies that

{<jr ;oW } is mean-square convergent as a sequence of random variables,

and we take the limit to be <j> ° Wm. Verification of the properties

follow from the isometric property in a straightforward way. n

Remark: Observe that the isometry property of the multiple stochastic

integral implies uniqueness up to equivalence of the integrand. That is,

if (J> o Wm = 9 o Wm then

li-9H2 =(EfdL-eJ2 dt =0." I E^/et):
Tm

.mLet {(<J>°W )B, B £C} be the set-parameterized process defined by

(<DoWm)B =<j>I mo i/n

We shall call (<j>°Wm)B the indefinite integral of (J) o wm.

Proposition 2.2. The process {(<J>°Wm)B, F(B) : Bc c} is a martingale.

Proof: It is enough to establish the proposition when <j> is atomic. Let

*=aIAlXA,x..xA • Then for Bee,
1 2 m

m

E(<j>oWm|F(B)) = E(a n W(A,)|F(B))
i=l

m

= E(aE[ n w(a.)|f(busa a A)]|F(B)
i=l n AlM2"Am
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m

= E(a n W(A.OB)|F(B))
i=l 1

m

= E(a|F(B)) n W(A.HB)
i=l ^

Now since B € C, if A. n B f 0 for 1 < i < m then B D Sn « a and in
i - - AiA2 m

that case E(a|F(B)) = a a.s. On the other hand, if A. n B = 0 for some
n

i, then n W(A.hb) = 0. Hence in either case
i=l 1

mm

E(a|F(B)) n W(A.OB) = a n W(A.HB) = (<i>°W)D
i=l n i=l ^ 8

Thus, {((froW^g, F(B) :BCC} is indeed amartingale. «

3. Integrands as Moment Densities and a Projection Formula

The isometry property of the multiple stochastic integrals can be

given the following interpretation. Suppose that for each m >_ 1 and

te Tm that {a .(t) :k >_ 1} is acomplete orthogonal basis for the

space of square integrable, F(St)-measurable random variables, and

suppose that <J> ^(t) is a symmetric function of t. Then, formally, the
m, k

isometry property of multiple stochastic integrals means that the set

of "incremental" random variables

{<pm ^tWdt^WCdt^-.W^tJ : m>0, k >1, t e Tm}
(3.1)

is an orthogonal collection of random variables which are also orthogonal

to the F(S)-measurable random variables. (Of course, the increments

dt.. in (3.1) are "outward" from S..) This fact is reflected in the next

proposition which states that the symmetrized integrands are uniquely

determined as moment densities. The completeness property proven in

Section 5 formally means that the collection of variables in (3.1) together

with the F(S)-measurable variables are complete in L (&,F,,(T),P) if
W'

F(A) = FW(A) for all A in R(T).
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Proposition 3.1. Let ye L^(fixfm). Then for t e fk,
a

.miE[W(dt1)W(dt2)..W(dtk) y oWm|F(St)]/dt1dt2..dt|c =m!Y(t)5mk

(3.2)

in the sense that the linear functional

f(t)W(dt1)W(dt2)..W(dt|<) y o W

T'
defines a symmetric finite signed measure on the a-algebra of subsets of

^kQ x T generated by C-adapted atomic functions, the measure is absolutely
k

continuous with respect to Px y measure, and the Radon-Nikodym

derivative is m!Y<5mk.

Proof: In view of the definition of Radon-Nikodym derivatives,

Proposition 3.1 is simply a restatement of the isometry property of the

multiple stochastic integrals. n

21 ^m / wIn the following proposition, LnQxT ,Fw(*))is defined in the same
2 Amway as LljteT ) except with the cr-algebras F(A) replaced by FW(A) for

all A € r(t).

Proposition 3.2. (Projection formula) For each y € L (QxTm) there is a

Y€Lg(ax?m,Fw(-)) such that

Y(t) =E[y(t)|Fw(St)] for a.e. te fm (3.3)

and for such y and all A 6 c,

E[YoWm|Fw(A)] =(Ym°Wm)(A) (3.4)

Proof: By the completeness of multiple stochastic integrals in
2
L (ft»Fw(T),P) (see Proposition 5.1 below) and the fact that
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E[Y°Wm|Fw(S)] =0, there exists acollection {<J>k : k >_ 1} with
♦k e L^(fixfm,Fw(-)) such that "

E[YoWm|Fw(T)] = [ ioWk,
w k=l k

Now by Proposition 3.1 with F replaced by Fw,

E[W(dt1)W(dt2)..W(dtk)E[YoWm|Fw(T)]|Fw(St)]/dt1dt2..dtk =k!^(t)

so that

E[W(dt1)W(dt2)..W(dtk)YoWm|Fw(St)]/dt1dt2..dtk =kljk(t) (3.5)

on T . Comparison of equations (3.2) and (3.5) reveals that

*k(t) =EMt)6rak|Fw(St)] a.e. t e Tk

Thus <j>k(t) =0for a.e. tef unless k=m. So if y is defined by

Y = 4>m then y satisfies equation (3.3) and equation (3.4) is true for

A = T. Since each side of equation (3.4) is martingale relative to

{FW(A) :A€ C}, (3.4) is thus true for all Ae c. Finally, since y

is uniquely determined on tm up to a set of P x um measure zero by

equation (3.3), any yeL^(fixt]T1,Fw(-)) satisfying (3.3) also satisfies
equation (3.4). n

4. Nested Classes of Sets C and the Iterated Integration Formula

Let C and C with C 3 C be two classes of sets which each satisfy

conditions c-| - c3 for a Wiener process {W(A) :A€ R(T)} and a

collection of a-algebras {F(A) : A e R(T)} as in Section 2. A dot

above (or above and to the right) denotes definition relative to C so

that, for example, S. denotes the C-support of t and T denotes the

collection of C-independent points in Tm.
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An important example which is exploited in the next section is

when C is any class satisfying conditions c-| - c3 with F(A) =^(A) f°r

all A e R(T), and C is the collection of all closed sets. Another

natural way in which nested collections of sets C arise is given by the

following propositions.

Proposition 4.1. Let C satisfy conditions c, - c3. Suppose that

t= (t,,t2,..,tk) €T is fixed and define a subcollection Ct of C by

ct = {c e ct :{trt2,..,tk} CC} .

Then C. also satisfies conditions c, - c3.

Proof: See Appendix A.

Theorem 4.2. (Iterated integration formula) Suppose that C and C each

satisfy conditions c1 -c3 and that Ccc. Then for 9€ L^(fixT )the

class-C stochastic integral 9 o w"1 can be represented as a sum of

class-C integrals:

9oWm= E[9 oWm|F(S)] + I (f)iS«k (4.1)
k=l K K

/ ^k •where the integrands <J>k e L (fixT ) satisfy

(j>k(t) =(8(tx-)I.nHk) o Wm"k for a.e. t€fk*. (4.2)
St

For each fixed t the integral on the right side of equation (4.2) is

defined relative to the collection of sets Ct.

Proof: Let 119 denote the transformation of9 by a permutation of its

arguments. Suppose for some permutation n that

ne=aIA1x..xAm
l m
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where A., cr(t), A.jX..xA Cfm, ais abounded F(SA A)measurable
^k> l*#7m

random variable, A^x..xAk cT'and Afc+1 ,Ak+2,.. ,Am C SA A A . Then,
I Cm K

symmetry implies that

m k

9 o wm = n9 o wm = [a n w(A.)] n w(a.)
i=k+l n i=l 1

-hR 5Wk

where for t £ f

M^ =h x AMt*h x xA •^'^

=[ne(tx-)i.m.k]5wm-k.
bt

The isometry property of multiple stochastic integrals relative to C

implies that both k and the two sets {A^,A2,..,Ak} and {Ak+^»Ak+2,...Am}

are unique. The integer k is unique because otherwise we would have

E(9oWm)2 =E(hkoWk) (hk,oWk') =0.

The collection {A,,A2,..,A.} is unique because otherwise we would have

9oWm =hk owk =gR °wk

and hkgk =0. It follows that

I E(ii9)(tx.)i..(-) Swm"k] ;wk
all n S™ K

= k!(m-k)! 9 o Wm

=m! <j)k owk

where <j>. is given by equation (4.2). Hence

e.wm = (»)* i wk
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which is just equation (4.2) for the given 9. In appendix B it is

proved that linear combinations of such 9's are dense in La(ftxtm). The
proof of the theorem is then completed by an application of the isometric

property of the stochastic integrals. n

5. Completeness of Multiple Stochastic Integrals and an Exponential

Formula

The iterated integration formula is applied in this section when

one of the classes of sets C consists of all closed subsets of T and

F(A) = FW(A) for all Ae R(T). The associated integrals are then

multiple Wiener integrals. Let Tm denote the set of m-tuples of

distinct points in T and for 9 in L2(Tm) let 9«Wm denote amultiple

Wiener integral of order m.

Proposition 5.1. (Completeness of multiple stochastic integrals)

Let C be a collection of sets such that C and (FW(A)} satisfy

conditions c-j - c3. Then every square-integrable FW(T)-measurable

random variable Z has a representation of the form

Z = E[Z|F(S)] + I 1 oWm (5.1)
m=l m

where Zm ° W are stochastic integrals defined relative to C and

S = n{C : C e c} .

Proof: The proposition is well known [6] in case C consists of all

closed subsets of T, for then the integrals are multiple Wiener

integrals. Since by the iterated integration formula any multiple

Wiener integral can be represented as a sum of multiple stochastic

integrals relative to the smaller class of sets C, Proposition 5.1

is true in general. n
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Proposition 5.2. For f in L2(T), define

r(tvtz,..,tm) = n f^) (5.2)

and set

Wm(f,A) = (fm»Mra)A (5.3)

If C and {FW(A)} satisfy conditions c, - c, then for Ae C,

Wm(f,A) =Wjf,^) +j^) [fk(-) W^f.S.) .Wk]A (5.4)
*k

Proof: Observe that f is symmetric and

f^W-.y =fk(tl,t2,..,tk) ^(t^.-.g

Hence, equation (5.4) for A = T is obtained by applying the iterated

integration formula to express the multiple Wiener integral W (f,T) in

terms of stochastic integrals relative to C. Then equation (5.4) is

true in general since each side is a martingale relative to {F.,(A) : AGC}

Proposition 5.3. Let C and {F(A) : A e R(T)} satisfy the conditions of

Section 2. Then if either f 6L (T) or if f is a bounded function in

L2(ftxT) define
a

L(f,A) =exp((f«W)A- \ (f2oy)A) (5.5)

2 2
where (> °u)a denotes the Lebesgue integral of f over A. Then for

A € C,

L(f,A) =L(f,Sn\) + I Jj- [?"(.)L(f,S.) oW% (5.6)
m=l

p
Proof: Suppose first that f GL (T). For multiple Wiener integrals

(C={all closed sets}) equation (5.6) reduces to
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L(f.A) -1+1 srVM) (5.7)
m=l

which is well known [6]. For the case of general C, we use (5.4) in

(5.7) and write

L(f,A) =1+Jl * (M»(f,SnR) +\IP [f Vk(f>s-) °w\)
1 r5k r 1

k=l K- j=0 J- a A

00

1 r5k,L(f,SOA) + J J-^Hf.s.) o w*]A
k=l K* A

2
which establishes (5.6) for f in L (T). The equation (5.6) can then be

extended to bounded f in L~(ftxt) by an approximation argument (see [4],
a

Proposition 3.2). n

6. Change of Measure and Liklihood Ratio Formulas

Let (W(A), F(A) : A e R(T)} on {SlJ,?) and a collection of sets C

satisfy the assumptions of Section 2. Suppose that P* is another

probability measure on (ft,F) which is mutually absolutely continuous

relative to Fand is such that the Radon-Nikodym derivative ^£- is
P-square-integrable and has the representation

S--E[f-|F(S>]+ l\°^ «•»
m=l

in terms of C-stochastic integrals. If L(A) denotes the Radon-Nikodym

derivative of (P* restricted to the a-algebra F(A)) relative to

(P restricted to F(A)) then {L(A), FW(A) : Ae c} is a martingale with

the representation

L(A) =E[C-|F(S)]+ I (YoWm)(A)
dP ' x /J m£., wm

m=l
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Now replacing y by ym in each side of equation (3.2) and summing

over m yields that for each m > 1 and for t € tm,

E[W(dt1)W(dt2)..W(dtm)L(T)|F(St)]/dt1dt2..dt[n =m!Ym(t) .

Dividing each side of this equation by L(St) and defining

rm(t) =m!Ym(t)/L(St) yields that

E,rw(dt1)W(dt2)..W(dtm)|F(St)]/dt1..dtm = rm(t) (6.2)

where E* denotes (conditional) expectation relative to measure P'.

Thus, the Radon-Nikodym derivative L(A) for A e C has the representation

00

UA) =E[^-| F(S)] + I ±- [(r (-)L(S.)) • "% (6.3)
m=l

where the functions r have been identified in equation (6.2) as the

density of conditional m-th moments of W under measure P'.

Next, define A(A) = E[L(A) |FM(A).]. A(A) is called a liklihood

ratio. By an application of the projection formula to each term on the

right side of equation (6.1),

00

A(A) =E[fp-I FW(S)] + I (yWm)(A)
m=l

where the integrands y € L (RxT ^u(')) satisfy

Ym(t) =E[Ym(t)|Fw(t)] a.e. te f» . (6.4)

Now A(A) is the Radon-Nikodym derivative of {?' restricted to FW(A))

relative to (P restricted to FW(A)) and thus (A(A),FW(A)) has the same

«—..*».<.- (iw.w.1.- «.. w;.,. *«,«. »
rm(t) =m!Ym(t)/A(St) for t =(t, ,t2,.. ,tm) e? then

rm(t) = E'[W(dt1)W(dt2)..W(dtm)|Fw(St)]/dt1dt2..dtm (6.5)
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and the liklihood ratio A(A) for A e C has the representation

00

A(A) =E[^-|FW(S)] + I Jj- [(r(-)A(S.))oWm)]A (6.6)
m=l

Also, comparing (6.2) and (6.5) (or using equation (6.4)) yields that

?B(t) =E'[rm(t)|Fw(St)] a.e. tef (6.7)

Remark: Equation (6.3) (resp. equation (6.6)) can be viewed as an

integral equation for L(0 (resp. A(»)) in terms of the moment densities

r (resp. r ) and the Wiener process. As shown in examples below, it is

sometimes possible to explicitly solve these equations (also see [2], [7]

and [8]).

Since the measure P1 is thus at least formally determined by the

functions {r}, it should be possible to express other moments under

measure P* in terms of (r }. In this direction, we consider next
m

moments as in equation (6.2) but with Sx replaced be a larger set.
• •

Let C be another class of sets with C c c so that the assumptions

of Section 2 are also satisfied by {W(A), F(A) : A € r(T)} and C. The

notation introduced in Section 4 will be used in what follows.

By the iterated integration formula for C-stochastic integrals in

terms of C-stochastic integrals, equation (6.1) yields that

% -EC^J-IF(S)] + I ^ 6Wk (6.8)

where the C-adapted integrands Yk satisfy

OO J]}

Yk(t) = I (k) (Ym(tx-)I.m.k) o\f'k for a.e. t£f' . (6.9)
m=k S.

Now equation (6.8) is the same as equation (6.1) with C and (y : m > 1}
m —
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replaced by C and {v_ : m > 1}. Thus, (L(A) : A € C} and r can be
m — m

defined relative to C in the same way as the corresponding quantities

were defined relative to C. In particular, equation (6.2) yields that

for t e Tm*,

E'[W(dt1)W(dt2)..W(dtin)|F(St)]/dt1dt2..dtm =rm(t).
»

That is, r is a conditional moment density for W under P1 just as r
m w m

is, except that St is replaced by the larger set Sr

Multiplying each side of equation (6.9) by k!/L(St) yields that
for a.e. t€ fk*,

"k(t) =r^r X^ (L(stx-)rn»(tx-)Vk) -lf"k (6-10)
k t

This equation represents the moment density r. in terms of the moment

densities {rm :m>^ k}, the Wiener process, and L. Of course a similar

representation holds for ?k in terms of {r. : k>m}, the Wiener process,
and A.

At this point more structure will be assumed on the Radon-Nikodym

derivative -^- . Suppose that (Z(t) :t €T} is abounded, measurable

process such that Z(t) is F(St)-measurable for each te T. Then it will

be assumed that, in the notation of Proposition 5.3,

%" UZ.T) (6.11)

Thus L(A) = L(Z,A) and rm =Zm. By equation (6.7), the moment density
/\

rra in the liklihood ratio representation (6.6) satisfies

rm(t) =E,[Zm(t)|F(St)] a.e. t € f». (6.12)

Therefore rm is now actually a conditional m-th moment rather than just

a moment density as in (6.5)
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The assumption (6.11) arises in a detection problem for which a

signal is observed in white Gaussian noise. Indeed, define a process

{X(A) : A€ r(t)} by

X(A) = W(A) - (Zoy)(A)

Then trivially W(A) = X(A) + (Zoy)(A), and the following proposition

is true:

Proposition 6.1. {X(A) : A e R(T)} is a Wiener process under P' and for
^meach te T ,the collection of random variables {X(A) :AnSt =0} is

P'-independent of F($t).

Proof: It suffices to prove that for teTm, if ArA2,..,Ak are disjoint
rectangles contained in T- St and if 0|,a2,..,a. are bounded, F(Sj-

measurable random variables, then E'$ = 1 where

$=exp(K.X(A.)-ilafu(A.)).
i i

Define a function h on ft x T by h = £a.Ifl . Then
1 A.

<* =exp(hoW+(hZ- \ h2)oy) (6.13)
t

where h ° W is a stochastic integral defined relative to the class of sets

Ct. By the fact that L(Z,St) =E[^-|F(St)] we have

E'l>|F(St)] =E[$L(Z,T) |F(St)]/L(Z,St) =E[$L(Z,T-St)|F(St)]

(6.14)

Now the integral (ZI^c )°Win the definition of L(Z,T-S.) can be defined
*t t

relative to Ct with the same result as its definition relative to C.

Thus, using equation (6.13), equation (6.14) becomes
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E'[*|F(St)] =ECL^h+ZIjCDlF^)] (6.15)
w

where L is defined in the same way as L except relative to the class of

sets C. instead of C. Finally, by the martingale property of L

relative to the class of sets C (which contains S.), the right side of

equation (6.15) is equal to Lt(h+ZIcc,S.) = 1. Thus E'$ = 1. «
*t '

Four examples are considered in the remainder of this section.

First, let a eiRn be a fixed unit vector (i.e., Ilall=l) and let H denote

the half space {t elRn : (t,a) >a}. Then the collection C= {H nT}
— a

• /sm
is a one-parameter family of sets such that T is vacuous for m > 1.

That is, two or more points are always C-dependent. For this choice of

dP'C if -rp- has the form (6.1) then Ym =0 for m >2 so that the structure

assumption (6.11) is then also satisfied for Z = y-i- In this case the

likelihood ratio formula given by equations (6.6) and (6.12) reduces to

A(A) = 1+ [Z(-)A(S )oW]A , A6C

and an application of (5.6) yields

A(A) =L(Z,A) =exp{(Z°W- \ Z2°y)A} ,AGC (6.16)

where

Z(t) = E'(Z(t)|Fw(St))

=E'(z(t)|Fw(n(t)a)nT))

In this case we see that the likelihood ratio is expressible as an

exponential of the conditional mean.

For the second example take C = {all closed sets} and assume that
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equation (6.11) holds for some bounded C-adapted process Z. Then for

(Zt ,Zt ,..»Zt ) is F(St)-measurable. (6.17)
12 m

By our standing assumptions on the a-algebras, F(S.) is independent of

Fw(St). But for this example

st = ^rV'-'V ^6*18)

so that, up to events of P-measure zero, Fw(s£) =^W(T). Thus the
processes Z and W are P-independent. This implies that Z is identically

distributed under Pand P'. Then, again using (.6.18), A(St) =1 P-almost

surely and r = pm where pm is the m-th moment
mm m

P^VV.-.t*,) =E[z(ti)z(t2)--Z(tm)]- <6-19>

Thus, equation (6.6) becomes

00

MA) =1+ ji (PranWn,)(A). (6.20)
m=l

Equation (6.20) provides a martingale representation of the liklihood

ratio for the "additive white Gaussian noise" model under very general

conditions. In the one-dimensional case, it was recently obtained in

[8].

For the next example let T be the unit interval [0,1] and, for

k^ 1, consider the class of sets

Ck ={[0,^] u{t2,t3,..,tk} :0<t1 <.. <tk <1}
u

Relative to C , if 0 < t, < t0 < .. < t < 1 then
— I — c — — m —
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Un to . . X —
I c m

{t-|,t2,..,t } if m<k

{tm-k+r--VU[°'tm-k+l31fmIk

cm _.
and T is vacuous for m > k. Now suppose that for each k > 1,

(6.21)

dP'

dP
has

k k
a representation of the form (6.1) relative to C = C . Let r* denote

th k
the m— order moment densities when C is equal to C . Then by (6.21),

it is clear that rm = ri P x ]im a.e. on [0,l]m if k and j are each
mm

larger than m. Thus, we can define functions r by
m

rm^tl,t2,-,,tm) =^W^'V for some k>m

and

ytrt2,..,tm|[0,t1]) =rj;(t1,..)tm)

Moment densities r are defined analogously. Thus

^VV'-'V =E'[W(dt1)W(dt2)..W(dtm)]/dt1dt2..dtm

and

rm(t1,t2,..,tm|[0,t1])= E,[W(dt1)W(dt2)..W(dtm)|Fw([0,t1])]/dt1dt2..dt]

Let At =£[^-^([0,^])] for t] €T. Then by (6.21),

r 1 if k < m

m

i c. m

if t, < t« < .. < t .
12 m

A,

P a.s.

'm-k+1
if k > m

m
Thus, equation (6.6) for the liklihood ratio when C - C becomes

At=l + ^(t^wfd^) +
t t
r

6 o

'rzltyt2)M(dt}Mdt2) +
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t Vi
J f .. I V1(tr...til.1)H(dt1)..H(dt^1)
0 0

t tm h

\ \ "IVtr--,tmlC0,tl])W(dtl)W(dt2)--W(dtm) (6'22)
0 0 0

and the moment equation (6.10) when C = C and C = C _,, becomes
m m+l

t

0

(6.23)

Apt
Now suppose that ^p- satisfies (6.11) where (Zt :tet} is bounded

and C -adapted for all k > 1. By reasoning similar to that in the

second example, the processes Z and W must be independent under P'.

Thus

rn)(t1,..>tJ[0,t1])=E'[Z Z Zt|Fw([0,t])]
i z m

and

rm(tT—V °pm(tT—V

where Pm is the m-th moment defined in equation (6.19). Defining
/s

Zt = E'[Zt|Fw([0,t])], equations (6.22) and (6.23) for m=1become

At=l + ATZTW(dx)

and

Vt =E[Zt] +j ^i^l^iO^W&t)
respectively .
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Note that equation (6.25) is a well-known representation for the

first "unnormalized" conditional moment Z,A . Using Ito's formula for

one-parameter process, equations (6.24) and (6.25) together yield a

representation for the conditional moment Zt = UtZt)/A. itself. As an

intermediate step, an integral representation for A" would also be

derived via Ito's formula. In constrast, in the setting of a general

class of sets C, a suitable analogue of Ito's formula is not yet

available. Such a formula might provide, for example, an analogue of

the moment equation (6,10) for rk which does not contain the factor

l/L(St). (An instance of such equations is provided in [10].)

For the final example suppose that T is a rectangle in IRn with

y(T) = 1, suppose that {W(A),F(A) : A € R(T)} is as in Section 2, and

consider P' defined by

"dP" = W(J)

In terms of multiple Wiener integrals,

so that the moment densities r corresponding to C = {all closed sets}

are given by rm = 5m2. Also,

L(A) =1+ [W(A)2 - y(A)].

Now let C be a class of sets satisfying the conditions c, - c3. Then by

the moment equation (6.10), the moment densities r satisfy
m

^(t) =W(St)/L(St)

r2(trt2) = l/L(St)
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and r. = 0 for k ^ 2. Thus, in terms of C-stochastic integrals,

%- =L(S) +(US.)^.)) oW+(L(S.)r2(-)) oW2.
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Appendix A

Proposition 4.1 is proved in this appendix. For the proof fix
k

t € T and let C = C^. Clearly for subsets A,,A0,..,A of T,
t i c m

SA,Ao..Am =SA,A0..A t^to-.t, »
\ c m 12 m 1 2 k

so that conditions c2 and c3 for C are immediate consequences of these

conditions for C. It remains to establish condition c, for C.

To begin we will establish that '

?"c u{s €Tm :sxxe?+J and tc(SSXT)k} (A.l)

where the union is over all t= (t1,t2,..,t.) such that

{t-j,t2,..,t.} c {t^,t2,..,tk} and sxt denotes the point

(s1,s2,..,sm,T1,x2,..,Tk) in Tm+k. To see (A.l) suppose that s€t"1'.
Then s is contained in any" of the sets on the right side of relation

(A.l) which correspond to aminimal subset {x,,x2,..,x.} with satis-

fies Ssxt = Ssxf Thls establisnes relation (A.l).

Now by relation (A.l) if e > 0 then

Tm'c u{S €Tm :sxteTm+J* and d(t1fSSXT) <z for 1<1<k}
(A.2)

where d denotes the usual Euclidean distance between subsets of T, and

the union is over x as in (A.l).

Now choose any product of rectangles A = A,x..xA so that A e fm\
l m

Since each of the sets in the union on the right side of relation (A.2)

is open (by condition c-j), the set A can be expressed as a countable

union of sets of the form B=B1x..xBm where B19B2,..,B are rectangles
such that
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Bc {s €Tm :sxteT^ and d(t.,SCYJ <efor 1<1<k}

(A.3)

for some x as in relation (A.2), and where x depends on B. Condition

C| for C applied to such B implies that

y(Bi°SBxx) =° for ] - 1- m • (A*4)

By relation (A.3) it is clear that $Bxt 3 Sg ., and since BC Awe also

have that Sgxt DS^xt. Thus (A.4) implies that ufB^S^) =0for
1 < i _< m, and since A. is a countable union of such sets B.,

y^Ai°SAxt^ =° for T1 i1 m•

Now sending e to zero and applying condition c3 for C shows that

u(A..nSAxt) = 0. Finally, since SAxt = SA, this establishes condition

c, for C = C . n
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Appendix B
• •

Let C and C with CDC each satisfy conditions cn - c0. Let I
lorn

denote the collection of subsets of Tm of the form A^x.^xA^ such that
l m

each A. e Rn(T) and for some permutation II,

1) An(l),*"'An(k) are c"indePenc,ent» and

2) An(k+1)'-,AnWCSAn(l)V2)-"An(k) '
Define I relative to C similarly. The purpose of this appendix is to

prove the following proposition:

Proposition B. The linear span of (alg :B € I ,Be t ,a is bounded,

p($a a a ) meas.} is dense in L;(QxT ) for each m > 1.
M^ Mo .. •»_ a
I Z m

Proof: Consider the following two conditions:

(b,) There is a countable subcollection of I which covers Tm a.e.
I . m

(b«) There is a countable subcollection I„ of disjoint sets in 1
x 2' mm

which covers Tm a.e.

By a sequence of lemmas it is shown below that condition b, is

satisfied and then that condition b, ^condition b2 and finally that

condition b« (but with I replaced by I ) implies Proposition B.

n

Lemma B.l.

u u no{(x,y.) :x€ T* y_e (S)m'1} =Tm (*)
£=1 uep(m) -

-mProof: Let £ = (q,,...,q ) €T . Choose a permutation

£ = (p,,...,p )= n(q,,... ,qm) so that for some I with 1_< I < m,

S„ = S„ n f S„ " n for 1 < i < Si
Jl P-j »•• •»PA p-j »• •• »P^ •— »PA - -
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where "p." denotes that p. is to be omitted. That is, the permutation

is choosen so that p,,...,p- is a minimal set from q,,...,q with the

same support as q,,.. .,q . Now p0,,,...,p^ s„ „ since
i m x»+1 m p-I,...,Pq

q,,... q^ € S_ = S^^1 m £ P-j*...»P£
To show that £ is contained in the left side of (*), it remains to

show that p,.....p^ are C-independent. Now, if p,,...,Po were not

C-independent, then p. ^s ~
i Pi»• • • »P.;»• • • >Pj£

for some i. Then

{A e C : p1 p^SA} ={ASC : p1,... ,p.,... .p^ e A} .

Intersecting all the sets contained in this collection of sets yields

that

S = S
P"! S•-•>PjJ P] »• **»P-j »* «*>P^

which contradicts our choice of p,,...,pA. Thus p,,...,p^ are

C-independent so that £, and hence £, is contained in the left side of

(*). H

Lemma B.2. Condition b, is satisfied,

n m

Proof: Let I denote the subsets of T of the form ATX...xAm such that,
m I m

for some n e P(m) and some & > 0,

a) An/, x,.. X/.x are C-independent, closed rectangles whose vertices

have rational coordinates in TC iRn, and

b) An{M) =... =An(n.) =SAn(1)An(2)...An(Jl)

Then I is a countable subset of I and
m m
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,;-i-

u A? u u no {(x,y_) : xe T* , y_€ (si"))m"£,>
A€I A=l nsp(m)

m

where

= u u no {(x,y_) : x e T*, y € (SY)m"5'}
*=1 nep(m)

m

u u n o Sm (B.l)
A=l iKP(ra) m»*

Sm>A -" {(xtf) : 21 €T*. Le (s/"* - (sJ-))n-£} .
mThe first term on the right side of (B.l) is equal to T by Lemma B.l.

mi
'•M-tk. Thus, to complete the proof it must be shown that y (S_ 0) = 0 for all

,^^,,,i.;;-.v.'^ j.::,.' •;•-.;. . Ills*

Spl0^Mi '':'::-' m.> 1 and 1£ * £ m.
By condition c2,

^pttl-ll'' ' •• F£ ={'&*) : x€T*. X€(S^)1""*}

^$}'')L/X:p'-•'•''; is a closed subset of T x T which increases as e decreases to zero,

•^^•p'••;•* Since Sm 0 = Fn - U F_f it follows that Sm 0 is a Borel subset of T .

^ft^sS ;& >' By condi ti on c0, the section

' •' •••';'••' •'

•"/">? f •• j.

• :Vj . s

m-A

of S . at x has Lebesgue measure zero for a.e. y_ £ T . Hence, by

m.Fubini's theorem, y(Sm J = 0 for 1 < I < m, a
m,* — —

Lemma B.3 Condition b, implies condition b2.

Proof: Let Fi9F9,... be a countable subcollection of I which coversi l i_1 m

T01 a.e.. Then the disjoint sets D. = F. - u F. i > 1 cover Tm a.e..
1 ^ j=l J "
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We claim that for each i >_ 1 there is a finite collection of disjoint

ni
sets D.n,...,D. in I such that D. = U' D... Condition b0 is then

li mm i . -. ij l
d ^satisfied with I = {D.. : i _> 1, 1£ j £ n.}. It remains to prove the

claim.

By induction, it suffices to establish the claim for i = 2. Now
r

u

j=l

x r
F-, = A,x...xAm for some Borel sets A, ,...,Am c T. Thus, F, = u K.
• i m 1 m 1 . , j

where K,,...,K are disjoint and each K. is the product of m Borel

subsets of T. In fact, ?} is the union of all sets of the form

B^x.^xB^ such that B. = A. or B. = A? for each i and such that B. = A?
lm iiii k

for at least one i, and these sets are disjoint. So D9 = u K. n F«.
1 j=l J * "

The sets K. n F0 are disjoint sets in I as required so the claim is
j c. m

established. n

Lemma B.4. Condition b2 with I replaced by n implies that the linear

span of {alg :B6 I ,BcT ,a is bounded, F(S* « )measurable} is
9 ~m 1**' m

dense in L^nxf").

Proof: Let F = F,x...xF where each F. e Rn(T) such that F€ Tm and
I m l

let a be a bounded, F(Sp p F )-measurable random variable. If
•d 1 2" m . _

A = A,x..xA € i" then B = A n F satisfies B e I and B c T , and a is
1mm m

F(S« nF «nF )-measurable since C-supports are no smaller than C-supports.
1 1"" m m . .j

By condition b0 with I replaced by I ,
c m r m

alp = I al^nF a,e* in T *
m

Since the linear span of functions of the form alp is dense in

L^(flxTm), the lemma is established by considering sets of the
a

form B = A n F. "
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