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ABSTRACT

A comprehensive framework for power system security assessment which

incorporates probabilistic aspects of disturbances and system dynamic

responses to disturbances is presented. Standard mathematical models for

power system (steady-state) power flow analysis and transient stability

(dynamic) analysis are used. The probability distribution of the time

to insecurity is shown to be obtainable from the solution of a linear

vector differential equation. The coefficients of the differential equa

tion contain the transition rates of system structural changes and a set

of transition probabilities defined in terms of the steady-state and the

dynamic security regions. These regions are defined in the space of

power injections. Upper and lower bounds on the time to insecurity dis

tribution are obtained.



1, INTRODUCTION

The concept of power system security was introduced by Dy Liacco

[1-3]. Security is considered to be an instantaneous, time-varying condi

tion that is a function of the robustness of the system relative to

imminent disturbances [4-5], A working definition of security introduced

by Dy Liacco [1-3,6] employs a deterministic framework in which the

robustness of the system is tested, using the steady-state model, with

respect to a set of selected disturbances, or contingencies. However,

because of uncertainty involved in the prediction of "iiraninent distur

bances," a probabilistic framework for security assessment should be used.

Furthermore most of the major power system breakdowns are caused by prob

lems associated with system dynamic responses [7], dynamic models of the

system should be included in security assessment. In this two-part paper

we introduce a comprehensive framework for probabilistic dynamic security

assessment of power systems. We say a power system is steady-state secure

with respectto a given configuration (system structure) and load if it

can be operated in normal state with no overload in any component. We say

a power system is dynamically secure with respect to a given configuration,

fault and load if it is transiently stable. Steady-state and dynamic

security regions are defined in the space of power injections (load I

demand and generation). The time to the first instance at which the in

jection leaves the security region is defined as the measure of system

security. It is shown that the probability distribution to the time to

insecurity can be obtained from the solution of a vector differential

equation. Upper and lower bounds for the time-to-insecurity distribution

are obtained. In this paper (Part I) the system configurations during

faults, though considered in the computation of dynamic security regions.
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are neglected in the consideration of the evolution of changes in system

configurations. In Part II the system configurations during faults are

considered. It is shown that the results of this paper are obtained as

a limiting case when the short circuit duration approaches zero.

Comprehensive survey papers on conventional deterministic steady-

state security assessment are available [1-4,6,9]. A simple measure of

system security without considering the transmission system is the

spinning reserve. Probability methods have been introduced for spinning

reserve calculations [17, 18 Chapter 8]. An extension of this approach

was suggested in [19]. A rather general conceptual approach to probabilis

tic dynamic security assessment in terms of stochastic differential

equations was suggested in [5].

Most notations used in the text are standard. We use J and y to

denote random variables, whether it is a scalar random variable or a

vector random variable should be clear by the value it takes, a scalar

J or a vectory y_. The probability density of y is denoted by fy(y). The
~ s.

ith component of the vector is denoted by y^.. The little oh notation,

o(At), is used to represent a term such that lim ~^0.
At->0

2. OVERALL FRAMEWORK

2.1 Modeling Considerations

A (bulk) power system consists of generations and loads, intercon

nected together by transmission lines and transformers. Each generation

subsystem supplies real and reactive powers to the system. It has a

synchronous generator driven by either a steam or a hydro-turbine. The

•f* . • •
The reactive power from a generator may be positive or negative.
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synchronous machine has its associated control devices for excitation

control and speed-governor-turbine control. There are dynamics assoicated

with machines, control devices and boilers [8]. Each load is an aggre

gate of real and reactive power demand at a substation. There are

dynamics associated with load demands. Except for the study of electro

magnetic transients, which are not considered here, the transmission

subsystem is considered to be in sinusoidal steady-state. There is a

maximum power carrying capability of a line or a transformer set by its

thermal limit. (In current practice the maximum power carrying capability

of some lines are limited by stability consideration.) During operation

a component may fail, causing an outage. There are also protective

devices to switch off a component when an abnormality is detected. There

fore, the configuration of the system depends on the availability of its

components. The dynamic responses of the system variables, e.g., voltages,

machine fluxes, speeds, phase angles, exciter voltages, etc., of course

are affected by system configuration.

The disturbances on the system may be classified into load disturbance [

and event disturbance [9]. Load disturbances are the small random fluc

tuations of load demands. Event disturbances may be further classified

into exogenous disturbances and endogenous disturbances. An exogenous

disturbance is defined to be a short-circuit or a component outage or

addition caused by outside forces, for example, a short-circuit on a

transmission line due to lightning, a generator outage due to equipment

failure, a generator addition after repairment, a sudden large load

change. An endogenous disturbance is defined to be a component outage

caused by an event developed in the power system, for example, disconnect

ing a shorted line, disconnecting an overloaded line, a generator outage

due to loss of synchronism, load shedding, etc. The consequence of an
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event disturbance is the change of system configuration. The probability

of occurrence of an exogenous disturbance is time-varying and may depend

on ambient conditions. The occurrence of an endogenous disturbance is

governed by the state in which the system is in.

The time between changes in system configuration is much longer than

the time between changes in system variables associated with physical

components, e.g., voltages, machine angles. The former is basically

discrete in nature whereas the latter is continuous. Therefore we suggest

the use of a two-level model to view the system dynamics. The first level

of the model describes the evolution of system configurations. The

second level of the model describes the trajectories of the system vari

ables associated with component dynamics. The two levels are coupled.

2.2 State Variables

The first level of our model describes the evolution of system con

figurations that are discrete. Let N(t) denote the number of transitions

of system configurations in [0,t] and denote the system configura

tion immediately after the N(t)-th transition has occurred.

any t is a discrete variable and takes values i,j,k etc. The change in

configuration is a result of random event disturbances. Thus is

indeed a random process. We assume that the random process Jj^(t) satis

fies;

Assumption A1: is a Markov process and the probability of two or more

transitions in a small interval At is of the order of o{At), i.e.,

Pr{N(t + At) - N(t) >2} =0 (At), Vt
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The second level of our model describes the trajectories of system

variables when the configuration is given. The moving force behind the

variations in system variables is the power injection (power generation

and load demand). Let ^{t) denote the power injection at time t. Be

cause of random load disturbances, y(t) is a random process. We assume

that the random process y(t) satisfies:

Assumption A2: The random process {y(t), t^O} is separable and sample

piecewise differentiable, i.e., with probability 1, every sample function

y^(t) is piecewise differentiable. Furthermore, {y(t)} is independent of

yN(t)^-

We define the state of the system to be a(t) = .

2.3 Security Regions

Because of different time scales of interest conventionally studies

of power system response are divided into transient stability analysis

for large disturbance, steady-state (or small disturbance) stability

analysis , and steady-state (power flow) analysis. Transient stability

is considered when there is an event disturbance, i.e., a change in sys

tem configuration. Small disturbance stability and power flows are

considered when system configuration is fixed.

2.3.1 Steady-state security region

A power system in steady-state for a given system configuration j is

described by the power flow equations

fj.(x)=^ (1)

"^This is the standard IEEE terms [25]. Small disturbance stability is
called dynamic stability by some authors.
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The system has to be operated within the operating limits of its components

This is described by a set of inequality constraints, known as the

security constraints

gj(*) <0 " (2)

Moreover it is required that the operating point be small-disturbance
3fi

stable, i.e., the eigenvalues of at the operating point lie in the

open left half of the complex plane.

The steady-state security region for the system configuration

"f*j IS defined to be the set of ^ for which there exists a solution to the

power flow equation (1) and all the solutions satisfy the security cons

traints (2) and small disturbance stability requirements, i.e.,

J^_e( j) =|y.| 3Xs.t. f^(2L)=Z' 94(x) lO the eigenvalues55 gf j j

of (x) lie in the open left half of the complex (3)
92L

planej'

Remarks

1) Because of the fluctuating load demand the so-called steady-state

analysis of power system is only an approximation. We shall inves

tigate the validity of this "quasi" steady-state approximation.

++

Suppose indeed the system variables are changing dynamically^

^*(t) =f(x*(t)) -y.(t)

^ For ease of presentation, all the mappings under consideration are
assumed to be one to one.

^^This may be considered as the differential equations describing the
so-called long term dynamics.
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and our "quasi" steady-state approximation is the power flow equations

0 = f(x(t)) - y.(t)

*

Consider the error Ax = x -x, we have

^ = f(x (t)) - f()^(t)) - _x

3f

3x " "(i0

Therefore for quasi steady-state approximation to be valid it is required

that:

lie in the open left half of the
3f

(i) all the eigenvalues of
3x

complex plane

3f
the eigenvalues of

0

(ii) the rate of change of power injections j; is much smaller than

0*

The first condition above is precisely the requirement that the sys

tem is small disturbance stable, which is the classical approximation of

studying long term dynamics. The second condition requires that the

change in power injections be relatively slow.

2) We [10] have formulated the steady-state security assessment problem

as a mathematical problem of the existence of solutions to f^-(2L)=^

within a region {)L|g,-(x.) lOJ- By the application of Leray-Schauder
w

fixed point theorem and the analytic degree theory we have obtained

a region which is a hyperbox in the space of injections

H{j) ={x|yk(j) lyfc

where the limits, y^(j) and y|̂ (j), are explicitly defined in terms
of the network parameters and the constraints on x.
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3) Previous attempts to obtain steady-state security regions using

linearized power flow equations or rectangular-coordinate formula

tion have been reported in the literature with various degree of

success [20-23].

2.3.2 Dynamic security region

Loss of transient stability is a severe breach of security. We will

define dynamic security region after an event disturbance in terms of

transient stability region. Two types of event disturbances will be

considered, one, those cause component outages or additions, two, short

circuit faults. We make the following assumption.

Assumption A3: Except for transitions from a short circuit fault situa

tion, all transitions take place when the system has reached a steady-

state.

2.3.2.1 Component outage or addition

Consider the situation where a disturbance in the form of a compon

ent outage or addition occurs at t and the system configuration changes

from to J-j =j. Prior to the disturbance the system is assumed to

be in steady-state and is governed by the power flow equations

f^(Xo)=^ (5)

After the change, the system dynamics are governed by a set of differen

tial equations:

We are concerned with the stability of the post-disturbance system (6).

Assume that the equilibrium point of (6) is stable and let V be the region
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of asymptotic stability of (6) for the equilibrium point under considera

tion. This is the region in the post-disturbance system state space

such that if the initial state is in V then the trajectory of the

post-disturbance system will be stable. The region V is dependent on

the equilibrium point, hence the configuration j and the injection y^.

We will denote this dependence explicitly by writing V(j,y^). The initial

state is related to the pre-disturbance state )^. Indeed ^ is part

of 2<.^. From the power flow map f^. in (5) we can obtain a region Win the

space of injections ^ such that

W(i,j,r*) = s-t- f.j{Xo) Xi(0)ev{j,x*)} (7)

We define the dynamic security region for the system from i to j to be

Note that under assumption A3 the dynamic security is considered

only at the instance when a component outage or addition takes place.

2.3.2.2 Short-circuit fault

For transient stability analysis as a result of a short-circuit fault

on the system, a power system can be considered as going through the

changes in configuration from pre-fault system i, fault-on system k, to

post-fault system j. The pre-fault system is considered to be in steady-

state and is described by the power flow equations:

fi(Xo) ° ^ (8)

The fault-on system is described by a set of differential equations from

0 to T, where t is the switching time,

ii = (10)
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The post-fault dynamics are

*2 = (n)

Let us point out that the change from i to k is the result of an exogenous

disturbance and the change from k to j is the result of an endogenous

disturbance. The former is probabilistic and the latter is deterministic.

Power system transient stability refers to the asymptotic stability

of the post-fault system. Let V(j,y^) denote the region of asymptotic

stability such that if the initial state }^{0) is in V{j,y_) then the post-

fault trajectory will be stable. The initial state >^(0) of the post-

fault system is the final state of the fault-on system. The fault-

on system dynamics (10) can be considered as a mapping D which steers a

point 2L-](0) to The image Uof the region Vunder the map D"^ (the
inverse of D) is a region in the state-space of the fault-on system such

that if ^^(0)GU then the post-fault trajector will be stable, i.e.,

U=D"^(V) or

U(k,j.x,T) = {Xi(0)|Dx^(0)eV(j,^} (12)

Note that the map D depends on the fault-on system configuration k and

the switching time x, hence U depends on k,j, y^, and x.

The initial state Xi(0) is related to the pre-fault system state

2^. Indeed ^ is part of x^{0). From the power flow map f^. in (9) we
can obtain a region Win the space of injections ^ such that

W(i,k,j,y*»T) ={y.|3xQ s.t. f^.(j^) =y. and x-j(0) eu(k,j,y*,x)}
(13)

We now make the following assumption.

Assumption A4: The system configuration during short-circuit is not

considered in the first level system model.
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Comment. The short-circuit duration is in the order of a few cycles

(1 cycle =^sec), whereas the time between component outages or addi
tions may be minutes, hours or even longer. Assumption A4 removes

deterministic transition due to endogenous disturbance, thus simplifies

the model considerably. In Part II of this paper Assumption A4 will be

relaxed. It is shown that the more general results obtained .there reduce

to our current results as t^O.

Knowing that j is the result of removing a short circuit on i, the

configuration k can be deduced from the configurations i and j. There-

fore we may write W(i,j,x ,t) instead of (13). Under assumption M, we

define the dynamic security region for the system transition from i to j

as a result of a short-circuit fault to be

= {y* Iy*ew(i,j,y*, t) (14)

Remarks

1) Under assumption M we do not consider the configuration k during

the short-circuit in the first level of our model, however the

effect of which on the second level of our model, namely, the dynamic

security region, is considered.

2) In this case we view the short circuit fault the same as a component

outage (i.e., the outage of the shorted component) except replacing

JijjCisj) in Eq. (8) by S^^(i,j,T) in Eq. (14). Alternatively we can

view J2^(i9j) = |t-=o* presentation we will
write the dynamic security region as S^^(i,j,T) with the understand

ing that if the transition from i to j involves no short circuit

fault then t=0.
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3) The switching time x may depend on the transition, i.e., function of

i and j.

4) A subset of the region of asymptotic stability may be obtained by

Liapunov method [11-13] or energy function method [14]. The map

D"^ is difficult to evaluate (solving differential equations). We

suggest to avoid the direct evaluation of by a two-step approxi

mation scheme. The first step is to approximate f|̂ by a simpler

function, e.g., piecewise linear, and obtain a region inside U [15].

The second step is to make simplicial approximation of V and obtain

a further reduced region inside U.

5) Note that under assumptions A3,A4, dynamic security is considered

only at the instance when a fault occurs.

6) The regions J^^(i,j,T) are time-invariant. They can be con

structed off-line and stored for on-line security assessment.

2.4 Security Assessment

We say that a system state a(t) = (j,y.) is secure at time t if

{
if there is no transition at t

y^J2 j (i J »t) no (j) if there is a transition at t from i to j
^ d ss

We shall use the notation a(t)ej; to denote that a(t) is secure at time

t.

Suppose that presently t=0 our system is secure, a (0)ej. We

define the time to insecurity T to be the first instance at which the

system state leaves i.e., for ts[0,T) anda(T)^X. For

convenience we will write a[0,T)cJ to represent a(t)e^ for te[0,T). The

time to insecurity obviously is a natural measure of system security.
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The disturbances are random in nature. Thus and y{t) are all

random variables. The system state a(t) = »y(t)) is also a random

variable. Consequently the time to insecurity J is a random variable.

Given that presently the system is secure, i.e., a(0)e^^ let us define

the probability that the system will remain secure up to t seconds ahead

as F(t), i.e.,

F{t) = Pr{ T > t 1 a(0)€l } (16)

= Pr{a[0,t]cj I a(0)eX } (17)

The function F(t) is a measure of system security in a probabilistic frame

work. We shall refer to F(t) as the probability distribution of the time

to insecurity.

In security assessment we assume that presently the system is secure

<^(0)^^. The information we have for the present state a(0) is given in

terms of

(i) probability distribution of present power injection

(ii) probability distribution of configurations

Remarks

1) From the on-line state estimator [6], we can obtain the distribution

fy(y.>t)|̂ _Q. From the on-line network configurator, we can obtain

2) In what follows all of our probabilities are conditioning on the

given initial-state probability distribution fy(y.,t) |̂ _q,
and the fact that a(0)e^.

Conventionally l-F(t) = Pr{T £t|g{0)ej|} is the probability distri
bution of T.
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3. TIME TO INSECURITY

3.1 Model Simplifications

To facilitate the presentation of the basic ideas in the development

of our results, we make for the time being the following simplifying

assumptions which will be relaxed later.

Assumption $A1. The automatic relay reclosure is not considered.

Assumption SA2. A short-circuit fault and a component outage are not

distinguished.

Under the assumptions Al-4 and SAl-2 the first level system model

'̂ N(t) characterized by its transition rates. We define the transi- .
tion rate X«.(t) as

' \J

t UrnX^.(t) = lim _ (19)
At^O

X.At) = I X.,(t) (20)
JJ JX,

Remarks

1) The probability distribution of event disturbances is used to define

the rates in (19). Note that faults are part of the event distur

bances .

2) If the time to failure and the time to repair distributions of each

component are exponential the transition rates (19) will be constants,

independent of time.

^We assume that all the limits in our definitions exist.
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Consider the transition from i to j. At the second level system

model, the following quantitites are of interest in security assessment.

VJe define the security transition probabilities u..(t) as
' w

Uij(t) =Pr{y(t)enj(i,j.T) n J2j^{j)|y{t)€njj(i)} (21)

u..(t) = lim PHy(t +At)?n35(j)|y(t)efl33(j)}
JJ At + O Zt ^ '

Remarks

1) The probability distribution of load disturbance enters into the

definition of the security transition probability (21), (22).

2) We will discuss how to compute the security transition probabilities

u^j(t) and Ujj(t) from the probability distribution fy(y.,t) in
Section 4.

We now make an additional assumption A5, which is sort of like

requiring the state a to have a Markov property with respect to the set

I-

Assumption A5.

^^{s^N(t+At) " »^CO»t+At] ~̂ »j[0,t]
~̂ '̂ ^^N(t+At) ~ »o(t+At) ~̂ o(At)

Remark. It is easy to see that if y(t) is a constant x» i*e., a deter

ministic quantity, then assumption A5 holds. On the other hand. Fact 1

below shows that, roughly speaking, if y(t) takes any value of the set

S^ssCi) equally likely, then assumption A5 also holds. The proof of Fact 1
is left in the Appendix.
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Fact 1. Suppose that

(i) {y(t), t^O} is a Markov process.

(11) For 1?«j,

Pr{y(t+At) eQ^(l ,j ,t) |y(t) ^J2gg(1)}

= Pr{y(t+At)€j2j(1,j,T)nfi^^(j)|y(t)e(:2^^(1),y(t)=y}+ 0{t)

for all y.^i^55(1)»

where 0(At)-»'0 as At^O,

and

Pr{y(t+At)eQ33(j)|y(t)€S233(j)}

= Pr{y(t+At)€f2^^(j)|y(t)eQ^^(j),y(t) =y^} +o(At)

for all y.^f^33(j)

Then assumption A5 holds.

3.2 Probability Distribution of the Time to Insecurity

3.2.1 Reclosure and simultaneous disturbance neglected

The probability distribution of the time to Insecurity F(t) by

definition can be expressed as

F(t) = Pr{a[0,t]cjla(0)€j| } (24)

=l Pr{Jpj(t) =j. a[0.t]cj;|a{0)en (25)
J

Let us define

Ahj(t) =P^^^!}M(t) ^ a[0,t]Cj;|a(0)Gn (26)

We are going to show In Theorem 1 that the vector h.(t) = (h^(t) ,h2(t)...)

satisfies a vector differential equation.
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Theorem 1. Under assumptions Al-5 and SAl-2, the time to insecurity

distribution

F(t) =I hj.(t) (27)
j

can be obtained from the solution of the following vector differential

equation

= A(t)h_(t) (28)

where the ji-th element of the matrix A(t) is

Aji(t) =X.j(t)u^j(t) r^3 (29)

(30)

The initial conditions of h^(0) are given by

h (0) 2 ss
I '''•tJN(O) ° ^^33^) ly{0)}

Remark. Equation (28) is analogous to the Kolmogorov differential

equation for finite-state continuous time Markov chains. We shall there

fore call the elements of the matrix A(t) in (29)(30) the security

transition rates.

Proof of Theorem 1

Consider h.(t+At)
J

° 3'j[0,t+At]C=i ,a[0,t] C^}h^.(t)
^ / J

* ''''%(t+At) ° =j,a[0,t]C^}h (t) (32)
<3
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Because of assumptions A1 and A5

'̂̂ ^i^N(t+At) ~ I^s^COstl ^Z)

^ ''^^^N(t+At)°"® transition
in [t,t+At]} + o(At)

"^^^^NCt+At)^ °"® transition
in [t,t+At]} + o(At) (33)

By the definition of this is equal to

^^N(t+At) ~ 9y(t'̂ At) ^^ '̂̂ ^ss ^̂

^JN(t) ^ +o{At) (34)

Since {y(t)} independent, the first term of (34)

can be expressed as a product

'̂̂ %(t+At) ''̂ *'̂ 3N(t)

Pr{y(t+At)eQjj(i,j,T) nj^^^(j)|y(t)€f2^^(i)} + o(At) (35)

The first term of (35) is X..(t)At + Q(At) by definition (19). Thus the
• J

first term in (32) becomes

y X.^(t)At Pr{y(t+At) ej^^(i,j,T) ns^^^(j)|y(t)es^^g(i)} h^.(t)
i f j

+ o(At) (36)

Now consider the second term in (32). By conditioning on the num

ber of transitions in [t,t+At] we get

'̂ '̂ ^J?N(t+At) " »̂o[0,t+At] j9^[0»t] ^Z^ (37)

" P'̂ ^!!N(t+At)"^*'?'̂ °'̂ "^^^^^ '̂5JN(t)"'̂ *'?'̂ °'̂ ^^ '̂ transition in
[t,t+At]} + o(At) (38)
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Note that we have used the facts that (i) if there is exactly one transi

tion in [t,t+At] the probability of the term in (37) vanishes (ii) the

probability of having two or more transitions in [t,t+At], by assumption

Al, is o(At). By assumption A5 and the definition of secure state (38)

becomes

+ o(it) (39)

Since {y(t)} are independent, Eq. (39) becomes

(40)

Note that by using (20) and (22), we get

=} - I X.,(t)At + o(At)
Ai«j J*'

= 1 - X..(t)At + o(At) (41)
J J

and

Pr{y(t+At)enjj(j)|y(t)enj5(j)}

=1 - Ujj(t)At + o(At) (42)

Therefore the second term in (32) becomes

{(l-Xjj(t)At)(l-Pj.j(t)At +o(At))+ o(At)} hj(t)

=h^.(t) - {Xjj(t) +Pjj.(t)}At h.{t) +o(At) (43)

Substituting (36) and (43) into (32) and rearranging terms, we get
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j h.(t+At)-h.(t)
^h-(t)= lilt) i
" J At + 0

where

At^O

= I.X,-j(t)y,.j(t)h.(t) - {Ajj(t)+yjj(t)} hj{t) (44)
^ / J

u*j(t) = lim Pr{y(t+4t)€nj(i,j,T) nn^^(j)|y(t)esj^j(i)} (45)

4r

We claim that iJ..(t) in (45) is equal to u..(t) in (21) except on a
IJ IJ

set with measure zero. First we are going to show that under assumption

M.'

u^j(t) =Pr{y(t''')eQj(1,j,T)nj2^j{j)|y(t)engg(i)} (46)

By sequential continuity of probability measure, Eq. (45) becomes

ut-i(t) = Pr{ lim y(t+At)es^.(i,j,T) (j)|y(t)eQ (i)} (47)
At-»-0 5b ^ b:>

We claim that for a fixed t {aj| lim y(t+At) ^ y(t^)} where wdenotes
At -»• 0

sample point is a set with measure zero. Let At^^O, At^-^0, and de-
A +

fine = {a)|y(t+At^) ^ y(t )} . Note that any point belongs to

lim SUP E = n u E iff it belongs to infinitely many terms in the
m=l n-m

sequence n^l}. By assumption A2 lim sup E^ is a set with measure

zero. The fact that {u| litn y(t+4t) ^ y(t'̂ )}ciim sup E„ implies that

{a)| lim y(t+At) ^ y(t )} is a set with measure zero. By the separability
At.-^-O ~ ^ .

assumption this implies {(d| lim y(t+At) f y(t )} is a set with measure
At^ 0

zero. So lim y(t+At) = y(t ) except on a set with measure zero and
At ^ 0

the proof of the claim (46) is complete.

The coefficients of the d.e. (44) with p^-j{t) given by (46) and
the d.e. (28) with u,..(t) given by (21) are equal except on a set of t

' J

with measure zero. Moreover the off-diagonal coefficients of these d.e.
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are bounded. Hence [24] their solutions are identical for t ^ 0.

Now we shall derive the initial conditions (31). By definition (26)

hj(0) = 15(0)^1 }

Pr{cr(0)ej }

= Pr{y(0)€n33(j)|y(0)}
I Pr{y(0)en55(j)|y(0)}
J

which is (31). n

3.2.2 Simultaneous disturbance considered

If we relax assumption SA2 we have to consider two possible transi

tions from a configuration i to a configuration j having less components.

One case is that the transition is the result of component outages and

the other is that the transition is the result of the removal of a short-

circuit fault. Let d(i,j) be the indicator of which type of disturbance

occurs in the transition from i to j:

0 if component outage has occurred
d(i,j) = (55)

s if short-circuit fault has occurred

Let us define two types of transition probabilities and security transi

tion probabilities:

ij At-»-0 At

X®.{t) = lim ~m+At} ^NitJ ,T^j (57)
'J At->-0 At
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Xjj(t) = I U^j(t)+xJj{t) } (58)

u°j(t) =Pr{y(t)enj(l,j) nfijj(j)|y(t) e fljjCij.dCi.j) =0}, 1?! j
A ~u®j(t) =Pr{y(t)ss2j{i,j,T) nn^^(j)|y{t) e fl^^(i),d(i,j) =s}. j

(60)
A .. Pr{y(t+At)^Sj5(j)|y(t)en^^(j)}

U..(t) = Tim —= 22 :: 22 (gl)
J"' At + O At

Corollary 1. Under assumptions Al-5 and SAl, the results of Theorem 1

holds with the elements of the matrix A(t) replaced by

Aj,.(t) =X?j(t)v°.(t) +X?j(t)u^.(t) (62)

Ajj(t) =-x;.(t)-y..(t) (63)

The same proof for Theorem 1 holds, mutatis mutandis for Corollary 1.

3.2.3 Automatic reclosure considered

Most of the short-circuit faults on transmission lines are temporary.

They may be cleared by opening and immediately re-closing the circuit

breakers protecting the lines. If the automatic reclosure is successful

in clearing the fault, the system returns to its original configuration.

On the other hand if the short-circuit fault persists the circuit breakers

will remain open and the system will be in a different configuration.

Consider the situation where without reclosure the result of the short-

circuit fault would be the transition of system configuration from i to

j. Let Tr..(t) be the probability that in this case the reclosure will
• J

be successful in clearing the fault.
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= p^i^^eclosure clears the transition at time t from i to j\ij ~ Ifault successfully (if reclosure unsuccessful) j

For a successful reclosure the system configuration is back to where

it was before the fault but the system variables undergo dynamics. Let

us define S^^(i,j,T9r) to be the dynamic security region for breakers

reclose r seconds after their opening, where i is the pre-fault configura

tion and the breakers openned t seconds after a fault, resulting in con

figuration j. Let us define the following security transition probabili

ties due to reclosure

P^j(t) =Pr{y(t)^^(i,j,T,r) n j)|y(t) ^^^53(i),d(i,j) =s} i j

Corollary 2. Under assumptions Al-5, the results of Theorem 1 holds

with the elements of the matrix A(t) replaced by

Aj.(t) =(1 - J(t){t)u|.(t)+ (t)u?j(t) (65)

(66)

The proof of Corollary 2 is left in the Appendix.

3.3 Upper and Lower Bounds on F(t)

In this section we present an upper bound and a lower bound for the

time to insecurity distribution F(t). For ease of presentation the proof

of the result. Theorem 2, is given under the simplifying assumptions SAl-2,

Obviously using the modifications (65)(66) assumptions SAl and SA2 can be

relaxed.

Theorem 2.

n ^.
j J <F(t)<e ^ J ^ (67)
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where

r,-(t) =u^^-{t) + I (68)
J

Remark. The function r^. (t) has a physical interpretation. Substituting

(21) (22) into (68), we have

Pr{y(t+At) ^Jl--(i) |y(t) €fi--(i)}
r^. (t) = lim

At ^ 0 At

+ I Pr{y(t)^Jlj(i,j,T) nj222(j)|y(t) HQ^^d)} (69)

The first term is the "rate" from secure region into insecure region due

to steady-state security violation and the second term is the "rate"

from secure region into insecure region due to dynamic security viola

tion. Thus r^- (t) can be interpreted as the "rate from secure region into

insecure region" at configuration i.

Proof of Theorem 2

We first claim that hj(t)^0 for t^O. From (31), hj(0)^0 for all
j. Let t' be the first instance a component h^.(t') =0. Then

it ° (t)yj^(t)hj(t) >0

The claim is thus proved.

Combining (27) and (28), we get

^F(t) = ^ I A.^(t)h^.(t)
J ^

=l jA,i(t)h.(t) (70)
1 J

Since h.(t)^0, we have
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mln I A.i{t) F(t) < < max I A..(t)F{t) (71)
i j " i j

Consider max J A..(t), substituting (29), (30), (20) into it, we get
i j ^

max I A..(t)
j ^

= max {-X. .(t)-u. .(t)+ I X. .(t)u. .(t)}
i " j7i ^

= -min{u^ .(t) + I X. .(t)(l-]i. .(t))}
i jYi

= -min r.(t) (72)
i

The last equation is obtained by definition (68).

Substituting (72) into (71) and upon integration, we get the right

half of (67). Similarly for the left half. n

Remark. From (31), we see F(0) = 1. Clearly r.(t) ^0. Equation (67)
J

implies 0 £ F(t) £ 1. Furthermore Eqs. (71) (72) implies

This checks with the fact that F(t) is equal to one minus a probability

distribution.

4. COMPUTATION OF SECURITY TRANSITION PROBABILITIES

In this section we take up the problem of computing the security

transition probabilities iJ..(t) and iJ..(t) defined in (21) and (22),
J J J J

respectively, from the probability distribution of y(t).

Let the mean function of y(t) be denoted by m(t), i.e.,

m(t) = E y{t) (73)

By assumption A2, m(t) is piecewise differentiable. Let

z(t) = y(t) -m(t) (74)
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which is sample piecewise continuous by assumption A2. Let f (y.»^jt)
y »z

denote the joint probability density function of y(t) and z(t).

Theorem 3. Under assumptions A2, A5 and assuming the surface of ^^53(0)

is piecewise smooth and orientable [16, p. 351] we have

kss2.{i.j.T)nnUTj(t) ^ (75)

ten fj)
Ujj(t) = (76)

y(t) = a +

ss

where n denote the unit outward normal vector of the boundary (surface)

of and fy denote the surface inte
gral of fy boundary of ^^55(0) on
which (m(t)+^ ^ 0.

Proof of Theorem 3.

Equation (75) is direct from the definite (21). Consider

Pr{y(t+At) (j) ly(t) gq (j)}
u. Jt) = lim 5S : |S (77)

At-»"0 At

From the definition (74) clearly

rt

z(t) dx + m(t) (78)
0

where a =y(0)-m(0) has zero mean. Since {z(t)} is sample piecewise

continuous, with probability 1 for all sample functions y.(t) we have
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X(t+At) =^(t) +[z.(t)+ffl(t)]At + b{At) (79)

Let S2-j(j) denote the complement of Qjj(j). We can express

Pr{y(t+At)^f!jj(j), y(t)engj(a)}

= Pr{y(t) +[z(t)+m(t)]At +o(At)snjj(j), y(t)ssijj(j)}

Pr{y(t) sj2jj(j}-Cz(t)-Hn(t)]At -o(At),y(t) esijjCj) U(t) =z}

Pr { z(t) = z )Az (80)

But

Pr{y(t)€njj(j)-[z(t)+in(t)]At-o(At),y(t)es2^^(j)|^(t)=^ }
r

y.s{R53(j)-[z+m(t)]At}nj2^^(j) ^y|2(X.t)<'X+"(it) (81)

The integral in (81) can be considered as an analogy of calculating the

total mass inside R := {^33(j)-[z+m(t)]At}. We decompose Rinto

small boxes with base ds on (j) and height rt*[^+m(t)]At. The mass

inside these small boxes equals f |̂2(^3t)ff-[^+m(t)]Atds (Fig. 1). When
we sum over ^^55(0) gives

(j) ' [z+m(t)]At ds + o(At) (82)

Substituting (82) (80) into (77), we have

lim Pr{y(t+At)SEj2^^(j),y(t)en^^(j)}
^^

f

z

lim 7J-
- At^-0^^

Pr{y(t)enj3(j)}

• f JJ+ (j) fy|2{X»t)n'[z+!n(t)]At dS'Pr{z(t) =i}dz+o(At)l
Pr{y(t)esj^^(j)}

(83)

which reduces to (76).
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dy =rt- [z+m(t)] At-ds
(volume)

direction of n

ds (base)

n• [z+m(t)]At +o(At)
(height)

[z +m(t) jAt +o(At)

Fig. 1. The change from volume integral to surface integral.
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5. CONCLUSIONS

We have presented a comprehensive framework for probabilistic

dynamic security assessment in which the conventional models for steady-

state and dynamic analyses of power systems can be incorporated. We have

derived a vector differential equation whose solution gives us the prob

ability distribution of the time to insecurity. The coefficients of the

differential equation are computed in terms of the steady-state and

dynamic security regions. We have indicated how these regions may be

computed. In practice we expect only to be able to compute subsets of

these regions. We have begun research in this area. When subsets of

the security regions are used the time to insecurity derived in this

paper should be interpreted instead as the time to leave security.
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APPENDIX

1- Proof of Fact 1.

Case 1) For i f j

^^^5^N(t+At) ~ ^-1j^(t)G ^} (100)

- (t+At)»y(t'̂ At) jj»t)

= [X^.j(t)At +o(At)] Pr{y(t+At)€Q^(i,j,T) ^%^{3)\y{t) eQ^^{i)}

(101)

The last equality follows from the fact that ^nd {y(t)} are

Independent and the definition of X..(t). Substituting condition
• w

(ii) of Fact 1 into (101) we obtain

= [X^.j(t)At +o(At)]Pir(y(t+At)eQ^(i ,j,T) FiS2gg(j) |y(t) =y}
+ 0 (At)

+ o(At) (102)

The last equality follows again from the fact that and

{y(t)} are independent and the definition of X..(t). On the other
*J

hand,

° a[0.t)Cj}

y(t+At)en.{i,j,T) nn (j)|

•Pr{^{t) =x|Jfj(t;)=i. ^{t)es233{i), aCO,t)cj;}dx
(104)
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Since {y(t)} Is Markov, (104) becomes

° (i) ' ^(t+At)€aj(i,j,T)ns2^^{j)|

• =x|Jm(t)=''> y(t)sn^^(i), a[o,t)cj}dy^
(105)

since (ICQ) is equal to (102), substituting (100) into (105), we

obtain

°Leo (i\ ''''%(t+At)°J' 2(t+At)eI|Jf,(^)=i. a(t)€n

+ o(At) (106)

Thus we have shown that assumption A5 holds under conditions (i) and

(ii) for i j.

Case 2) For i =j

Under the condition (ii) we have,

Pr{J[j(t+At)°j> ?( '̂'"^^)^II^N(t)°^* COS)

° ''''{J|̂ (t+^t)=j|Of,(t)=j}P*'{y(t+At)snj.j(j)|y(t) £055(0)}

° ''''%(t+At)"^I^N(t)°0 '̂''"^^^*'̂ ^^^^"ss^j^l^(^^^"ss^0 '̂ y(t)=x}+ o(At)

=Pr{J^(t+At)°J• yC+At)en55(j)|0^(t)=j, y(t)£055(0),y(t) =y.}+ o(At)
(109)

where we have again used the fact that and {y(t)} are inde-

pendent. On the other hand.
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P*'{JN(t+At)°'̂ ' ^11 '-1 ^ (110^

"I ^O i-\ ''''̂ -N(t+At)=J' y(t)en33{j),y(t)=j!.}
•Pr{y(t)= |̂Jp^(^j=j,y(t)ej2^^(j), a[0,t) cj }dy. (Ill)

Substituting (108) into (111) we reach the conclusion that assumption

A5 holds under conditions (i) and (ii) also for i=j. n

2. Proof of Corollary 2:

Proceed the same as in the proof of Theorem 1. Let us consider

hj(t+At) = }

°ifj 2C0,t+At]C |̂jjj^^j =1,
2[o.t]cj}h.(t)

2C0.t]cphj(t) (112)

By assumption A1, i

'̂̂ ^5^N(t+At)~"^* I s^COjt] ^J }

~ '̂̂ ^I?N(t+At)~'̂ * ^N(t)"^*
one transition in [t, t+At] +o(At) (113)

Equation (113) can be further written as

^^^5?N(t+At)~'̂ >t+At] 9o[0 jt] »

one transition in [t,t+At] }

+ »^CO»t+At] C! ^ *3) ~^I'

a[0,t]c^ , one transition in [t,t+At] } (114)
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Since and there is one transition in [t,t+At] implies the

second term in (114) corresponding to unsuccessful reclosure.

Thus by the same reasoning in the proof of Theorem 1, (114)

becomes

[X?j(t)u?j(t) +(l-ir,.j(t)) X®j(t)ufj{t)]At +o(At) (115)

Now consider the second term in (112). By conditioning on the

number of transitions in [t,t+At] we get

Pr{Jf|(t+At)°j>2C0»t+At]cl|JN(t)=j.2[0>t]'̂ I >

no transition in [t,t+At] }

^ ''̂ ^-N(t+At)~^* ^^I^N(t)~'̂ '
one transition in [t,t+At] }+ d(At) (116)

The first term of (116) can be reduced to

[l-Xjj(t).y.j.(t)3At (117)

The second term of (116) corresponding to successful reclosure,

can be written as

I , transition from j to 1 (if reclosure

unsuccessful) in [t,t+At],a[0,t+At]c^|,

a[0,t]c^ , one transition in [t,t+At]}

= I X®^(t)Atp?^(tK^j^(t) +0(At) (118)

Substitute (118), (117), (115) into (112), upon taking At-»-0 we

have
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