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ABSTRACT

Chaotic motion along resonance layers in phase space appears

generically in near integrable Hamiltonian systems with three or more

freedoms. Such motion is forbidden in systems with two freedoms,

where only chaotic motion across resonance layers is generic. We

review three mechanisms for chaotic motion along resonance layers:

Arnold diffusion, modulational diffusion, and resonance streaming... The

emphasis is on the geometry of the motion in the phase and action

spaces, simple physical pictures of the mechanisms, and computational

examples.
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1. INTRODUCTION

It is well-known that Hamiltonian systems with one freedom H(p,q)

are integrable. For two freedoms HCppP^q-j^) integrability is

exceptional. In general, resonances between the two freedoms lead

to the formation of a dense set of resonance layers in the action space.

Within each layer, a chaotic motion appears. Energy conservation

prevents large excursions of the motion along the layer. Only motion

across the layer is important. For an integrable system with a weak per-
2

turbation the chaotic layers are isolated by KAM surfaces. Thus motion

from one layer to another is forbidden. For strong perturbations, resonance

layers can overlap, the intervening KAM surfaces being destroyed. A

globally chaotic motion then develops, leading to large excursions in

both actions over long times.

For three or more freedoms, strong perturbations also lead to

overlap of resonance layers and globally chaotic motion. However, for

weak perturbations, two new effects appear:

(1) Resonance layers are no longer isolated by KAM surfaces.

Generically, the layers intersect, forming a connected web dense in

the action space.

(2) Conservation of energy no longer prevents large chaotic

motions of the actions along the layers over long times. As a result,

large, long-time excursions of the actions along resonance layers

are generic in systems with three or more freedoms. In contrast, such

motions are forbidden in systems with two freedoms. Furthermore, the

interconnection of the dense set of layers ensures that the chaotic

motion, stepping from layer to layer can carry the system arbitrarily

close to any region of the phase space consistent with energy

conservation.
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The interconnection of, and motion along layers lies at the heart

of the chaotic phenomena which are reviewed here. We describe three

different mechanisms for motion along resonance layers: Arnold

diffusion, modulational diffusion and resonance streaming. These

mechanisms have no analog in systems with one or two freedoms.

This review is in four parts. It is first desirable to consider

the geometry of the 2N-dimensional phase space, the 2N-2 dimensional

surface of section, and various projections, such as the N-dimensional

action space. The emphasis is on simple diagrams that illustrate the

definition of the resonance layers and give meaning to the notion of

motion "across" and "along" layers. Using these diagrams, the different

layers which give rise to Arnold diffusion, modulational diffusion and

resonance streaming will be described qualitatively.

After this, we review in some detail the mechanism of Arnold diffusion,

which gives rise to chaotic motion along resonance layers. Arnold

diffusion is universal, in that there is no critical perturbation strength.

Furthermore, the chaotic motion is intrinsic, i.e., generated by the

dynamics alone. The diffusion appears as chaotic motion along thin

layers of stochasticity surrounding the separatrices associated with

non-overlapping resonances. A model problem, that of a ball bouncing

between a flat and a periodically rippled wall, is used to illustrate

the diffusion. The case of many non-interacting resonances (Nekhoroshev

regime) is described qualitatively using a second model problem.

While Arnold diffusion appears as chaotic motion along non-overlapping

resonance layers, modulational diffusion results when the layers

associated with adjacent resonances overlap. The resulting diffusion

along the overlapping resonance layer is generally much greater than

for Arnold diffusion. Again, the chaotic motion is intrinsic to the
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dynamics; no external noise acts on the system. However, modulational

diffusion is not universal. There is a critical perturbation strength

below which adjacent resonances do not overlap. Modulational diffusion

is generally found in systems which have a slow oscillation in one

of the freedoms. We describe here the formation of modulational

stochastic layers, and present recent numerical results illustrating

the chaotic motion along such layers.

To conclude this review, we examine the effect of weak, external

stochasticity in producing enhanced diffusion along a resonance layer.

If the motion in the absence of external noise is oscillation within

a resonance layer, then the classical transport due to external noise

or dissipation can be strongly enhanced along the layer. This effect

is called resonance streaming, and will be illustrated for a model

Hamiltonian perturbed by dissipation and by noise.

2. ACTION AND PHASE SPACE

We consider first an integrable Hamiltonian system with N freedoms.

In action-angle form

H0 " HoW

where I is the N-tuple of actions. The motion in the 2N-dimensional

phase space (1,9) is on an N-dimensional torus defined by the N-tuple

of angles 6 conjugate to I:

!(*) =J0 »S(t) -ft»(J)t +60 (1)

where

(Uj(I) =3^/31., (2)

is the N-vector of unperturbed frequencies.
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Action space—Fig.. 1 shows the N-dimensional action space. For

the unperturbed system the actions are conserved and each trajectory

is a stationary point. One may define an N-l dimensional energy

surface by the condition

H0(I) = a.

For example, for free particle motion in N-dimensions,

N 0

Ho =&4 •
the energy surfaces are spheres, as shown in the figure.

One may also define an N-l dimensional resonance surface by the

condition

m • 03(1) = 0 (3)

where m is called the resonance vector and has integer components.

Since there is a resonance surface for each resonance vector, these

surfaces are dense in the action space. For the free particle, several

resonance surfaces are shown as the flat planes in Fig. 1.

We consider now the effect of a small perturbation, periodic

in 6:

im. •§
H=H0(I) +eTVk(I)e k (4)

where k represents the sum over all resonance vectors m. . The motion

in action space is

I=-9H/36 =-ie ZQ?kVke (5>

we see that each component k drives an oscillation in I in the direction

m^. For most k's the oscillation will be non-resonant

-5-



\ ' §(*) t const

and the amplitude of the oscillation in I will be of order e, as shown

in Fig. 2a. However, for some value k = R we may find a resonant

motion

5)R •6(t) = ij/R = const (6)

where tpR is the resonance phase. In the direction of mR, which we

define to be the direction of the resonance action IR, the amplitude of

the oscillation is of order e'. We then have the picture shown in

Fig. 2b. The direction of mR in the action space describes the motion

"across" the resonance layer.

As an example, Fig. 3" shows some resonance surfaces and energy

surfaces for the two freedom Hamiltonian

H0 =A+<6I2)2'
The resonances surfaces, from (3), are lines in the action space given by

m-|I-j + 36m2I2 =0

Some of these (for m2 = 1) are plotted in the figure. Note that since

mR • 3HQ/al = 0

at resonance, a resonance vector mR lies in an energy surface, as shown

in the figure. In general mR, the direction of the resonance action

excursion, is not perpendicular to the resonance surface. It can be

seen from Fig. 3that even for arbitrary m-j and m2, resonance surfaces

do not intersect on a constant (non-zero) energy surface. This property

is generic for systems with two freedoms.

For three or more freedoms, resonance surfaces generically

intersect. We illustrate this in Fig. 4 for a free particle in
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three dimensions

HQ =0/2)(lf +l| +i|)

The resonance surfaces are planes which pass through the origin in

action space. The two planes intersect at non-zero actions along a line,

as shown in the figure. The resonance surfaces also intersect a

spherical energy surface HQ(I) =a in great circle meridians (for this

example,, the resonance vectors mR happen to lie perpendicular to the

resonance planes). An energy-conserving motion from one resonance to

another is possible. The motion may proceed along a meridian of one

resonance to an intersection, turn sharply, and then more along a new

meridian. This type of motion is generic to systems with three or

more freedoms. The intersection of resonances in the constant energy

surface generates a dense interconnected network, the so-called Arnold

web. The web for this example is illustrated in Fig. 5, with all

resonances shown for which |m.| < 2.
j ——

Phase space—Now we consider the geometry of stochastic layers in

the 2N-dimensional phase space. The layers, defined by (3) are surfaces

having dimension 2N-1. The KAM surfaces, being perturbed tori defined

by the condition

I = const

are N-dimensional. .The interconnection of resonance layers into the

Arnold web can then be understood geometrically. For N > 3, the 2N-1

dimensional resonance surfaces can not be isolated from each other by

N dimensional KAM surfaces. The situation is analogous to that illustrated

in Fig. 6, where KAM "lines" isolate regions of a plane, but do not

separate a three dimensional volume into a. distinct parts.

9
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Now consider a projection of a resonance layer in phase space

onto the two-dimensional surface defined by the resonance action IR and

resonance angle t|;R. Fixing all other actions and angles, we obtain

the usual picture, Fig. 7, showing the structure of a stochastic

layer in cross section. The stochasticity forms around the separatrix

associated with the resonance mR. The layer thickness is of order
1/2
e . Near resonance, the topology of KAM surfaces has changed. Close

to resonance, the surfaces perturb to the ellipses shown in the two

dimensional projection in Fig. 7.

If we look at a resonance layer in a three dimensional projection,

adding an additional action variable I-, we obtain the structure shown

in Fig. 8. The resonance layer extends along the unprojected action

I$ (although its properties, such as its thickness, may vary with Is).

The KAM surfaces near exact resonance appear as elliptical tubes within

the layer. In this figure, I$ represents one of the N-l action variables

(excluding the resonance action IR) which define motion along a layer.

The essential feature of*the behavior within resonance layers for

three or more freedoms is the existence of long-time chaotic motion

along resonance layers; i.e., along I$ It is easy to see that such

motion cannot be driven by the dynamics in near-integrable systems with

two freedoms. The change in the Hamiltonian is

AH = AHQ + eAH-j = 0,

since energy is conserved. Thus

^0 =Hj *R +3i; AIS -©(e) (7)
But if the resonance action IR is confined to the resonance layer

AIR =<D(e1/2). (8)
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It follows that

.1/2AIS = <9(e"c),

and large excursions along resonance layers are forbidden.

For three freedoms, (7) is replaced by

31^ AlR +3lf Ah +317 4IT =0(£) (9)
Even if (8) holds, large excursions in the two actions Is and IT along
the resonance are possible, provided

5AIS +5i:T=(D(£V2)-
In this review we describe three types of chaotic motion along

resonance layers. For Arnold diffusion, intrinsic randomness drives a

slow diffusion along the stochastic separatrix layer, as illustrated

in Fig. 8. In resonance streaming, extrinsic diffusion or dissipation

drives a migration through the elliptical KAM tubes within the stochastic

separatrix layer. This situation is also shown in Fig. 8. In modulational

diffusion, illustrated in Fig. 9, a slow modulation in one freedom

can produce multiplets of sideband resonances. When these overlap, a

thick stochastic layer is formed along which diffusive motion appears.

3. ARNOLD DIFFUSION

As we have seen, for a system with at least three freedoms, all

stochastic separatrix layers are connected into a single complex

network — the Arnold web. The web consists of an intricate system of

"freeways, streets, sidewalks, and cracks" that permeates the entire

phase space. For an initial condition within the web, the subsequent

stochastic motion will eventually intersect every finite region of the

phase space, even the predominantly stable regions where the fraction of
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stochastic initial conditions is small, and even in the limit as the

perturbation strength e -»» 0. This motion is the Arnold diffusion. The

merging of stochastic trajectories into a single web was proved by
3

Arnold for a specific nonlinear Hamiltonian. A general proof of the

existence of a single web has not been given, but many computational

examples are known.

From a practical point of view, there are two major questions

concerning Arnold diffusion in a particular system:

(1) what is the relative measure of stochastic trajectories in the phase space

region of interest? and

(2) for a given initial condition, how fast will the system diffuse

along the thin threads of the Arnold web?

The extent of the web in phase space can be estimated by means of

4
resonance overlap conditions . Overlap of resonances near the separatrix

gives rise to a resonance layer thickness, with stochastic motion

occuring across the layer as in systems with two freedoms.

Calculation of the diffusion rate along a layer has been given by

4 5 6
Chirikov , and Tennyson et al_. , and Lieberman for the case of. three

resonances. For coupling among many resonances, a rigorous upper bound on

the diffusion rate has been obtained by Nekhoroshev , but this bound

generally overestimates the rate by many orders of magnitude. A

statistical treatment of the diffusion regime in which many resonances

are important is under development »,u,,l> and some recent results will

be described. Extensive numerical simulations of Arnold diffusion have

4 8 11-13
been carried out ' ' and are summarized in the review article

4
by Chirikov .

Billiards problem—A simple example of a system illustrating

Arnold diffusion is that of a ball bouncing back and forth between a
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smooth wall at z = h and a fixed wall at z = 0 which is rippled in two

dimensions, x and y. The surface of section is given in terms of the

ball positions in the x and y directions and the trajectory angles

a = tan" v /v and B = tan v /v , just before the nth collision

with the rippled wall. The ball motion is shown schematically in

Fig. 10, and the definitions of the variables in the x, z plane shown

in Fig. 11. Assuming that the ripple is small, the rippled wall may

be replaced by a flat wall at z = 0 whose normal vector is a function of

x and y, analogous to the idea of a Fresnel mirror. The simplified

difference equations exhibit the general features of the exact equations

and may be written in explicit form

%+l "% - 2 axkx sin kxx + >Vc

(10)
xn+1 = xn + 2 h tan an+l

Bn+1 =6n " 2 ayky sin V +»Vc

*n+l =*n + 2 h tan en+1

where y = sin(k x + k v), a and a •are the amplitudes of the ripple
C X. jr ' x y

in the x and y directions respectively, and u is the amplitude of the

diagonal ripple and represents the coupling between the x and y motions.

A similar set of equations was examined numerically in pioneering

studies by Froeschle and Froeschle and Scheidecker .

If u = 0, the system breaks into two uncoupled parts describing

motion in x-z and y-z separately. Figure 12 shows the motion in the

ct-x surface of section for the uncoupled case. A number of different

orbits are shown, each with different initial conditions. Each particle

was run for 1000 iterations. The plot displays the usual features of

a system with two degrees of freedom: (1) regular (KAM) orbits
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(2) resonance islands and (3) stochastic orbits. The islands are

examples of "higher order" regular (KAM) orbits. The central resonance

at a = 0, x = 0 corresponds to a stable motion for which the ball

bounces up and down along z in the valley of the rippled wall. The

islands encircling this resonance correspond to "adiabatic" motion in the

valley with a small oscillation back and forth in x occuring over many

bounce times in z. There are two major stochastic orbits visible in

Fig. 12. The thick stochastic layers for a near ±tt/2 are regions of

stochasticity produced by all overlapping resonances with one bounce

period in z equal to one or more periods along x. Physically, these

motions correspond to grazing angle trajectories, as shown in Fig. 12.

Isolated from the thick layer by KAM curves spanning the space in x

is the thin stochastic layer which has formed near the separatrix

associated with the central resonance. Physically, as shown in Fig. 12,

the separatrix orbit corresponds to a motion in x for which the ball is

either just reflected or is just transmitted over a hill. The chaotic

motion in this separatrix layer induces an Arnold diffusion in the

coupled system, which appears as a diffusion in a along the separatrix

layer of the g-y motion.

Coupled motion—A typical numerical calculation showing Arnold

diffusion in the coupled system is given in Fig. 13. The surface of

section for the system is 4-dimensional (a,x,$,y), which we represent in

the form of two, 2-dimensional plots (a,x) and (3,y). Thus,two points, one in

(a,x)and one in (3,y), are required to specify a point in the 4-dimensional section

In Fig. 13, the two plots are superimposed for convenience, and x and

y have been normalized to their respective wavelengths 2ir/k and 2ir/k .
x y
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The initial condition as shown in Fig. 13a, has been chosen on an

island encircling the central resonance in x, and within the thin

separatrix layer for y. This corresponds to an initial adiabatic

motion in x, well-confined in the valley, while in y the motion just

reaches or passes over a hill. We observe numerically that the y motion

is confined to its separatrix layer until thex-motion reaches its own

separatrix layer. The successive stages of the diffusion of the a-x motion

are shown in Fig. 13b, c and d respectively. In the absence of coupling

(u = 0), the motion in the a-x plane should be confined to a smooth

closed curve encircling the central resonance. For a finite coupling,

a and x diffuse slowly due to the small randomizing influence of the

stochastic $-y motion. The a-x diffusion is the motion along the 3-y

stochastic layer; i.e., it is the Arnold diffusion. The diffusion is

shown for 1.5 x105, 3.5 x106, and 107 iterations of the mapping. At
this time the a-x motion has diffused out to its own thin separatrix

layer. Continued iteration of the mapping shows that the trajectory

point diffuses over the entire a-x plane. In particular,the change of

direction from diffusion along the 3-y separatrix layer to diffusion

along the a-x separatrix layer, illustrated in Fig. 4, has been observed

numerically. Similarly, the change of direction from diffusion along

a separatrix layer to diffusion along a thick layer (see Fig. 12) has

been observed. Figure 14 shows these effects in the (a,3) action space

(for x=y=0) for the single initial condition of Fig. 13, after 5x107

iterations of the mapping. The trajectory has wandered randomly along

thin and thick layers in the action space, as shown, spending much of its

time in the region of thick layers for both a-x and 3-y motion. This

corresponds physically to motion with grazing angles of incidence in

both the x and y directions.
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All of this, however, is just part of the story. For recall that

there exists a dense set of resonance surfaces in the action space. In

particular, consider a coupling resonance, where physically the motion

is "adiabatically" confined to a valley in both the x and y directions

as the ball rapidly bounces along z. The ball executes small amplitude

oscillations in both the x and y directions. If the oscillation

frequencies w and ui satisfy
x y

m-jO) + nwi) = 0»

then we have a resonance with its stochastic separatrix layer, which

is also a part of the Arnold web. Including only a single coupling resonance.

we have the action space shown in Fig. 15.

We now see a remarkable character of the motion near this coupling

resonance in the billiards system. For initial conditions such that

the system is placed in the separatrix of the coupling resonance, and

thus within the Arnold web, the billiard motion initially appears

"to be stable", consisting of a fast bounce motion in z and slower,

small amplitude oscillations in x and y; in fact, it seems that the

motion "is adiabatically confined" to a small neighborhood near

x = y = 0. However, this is not the case. After a sufficient time,

the billiard can be found executing grazing angle motion in both the

x and y directions. The manner in which the diffusion proceeds is

illustrated in Fig. 15. The diffusion typically proceeds first along

the coupling resonance, than along the thin layer in x or y, and

finally along the corresponding thick layer. With very high probability,

the billiard motion will rarely "become retrapped" in a valley. This

follows because the overwhelming fraction of the Arnold web is

comprised of the "thick stochastic layers", with a negligible (but dense I)

fraction of the web in regions such as the coupling resonance,

-14-



where the motion "appears to be adiabatic". On the other hand, for

nearby initial conditions not on the Arnold web, the motion will be

eternally confined to a small neighborhood near x = y = 0. Singular

behavior indeed!

Stochastic pump model—The theoretical calculation of Arnold

diffusion was first performed by Chirikov4, and his collaborators.

For the billiards problem, the diffusion has been calculated by

5 6Tennyson et al. and by Lieberman . The basic theoretical procedure

is to break the original three-freedom system into two, two-freedom

systems which are successively solved. A decomposition is illustrated

in Fig. 16, where in (a) we show the original system and the coupling

among the three freedoms due to resonances, and in (b) we show the simplest

decomposition, the three resonance, stochastic pump model. In this

model, the guiding resonance, along which the Arnold diffusion proceeds,

is associated with freedom 2. The coupling between freedoms 1 and 2,

described by the Hamiltonian

"across^vVlfty =const' (")

generates the chaotic motion across the separatrix layer. The Arnold

diffusion is then obtained from

"aW^S'V^ =const 02)

which describes the coupling between freedoms and 2 and 3. The motions

described by (11) and (12) are.solved, successively, witn (1.1) first yielding

the stochastic variations of e„(t) and I2(t) in the separatrix layer.

These are inserted into (12) which is then solved to obtain the

stochastic variation I3(t) describing the Arnold diffusion. For

details of these calculations and comparison with numerical simulation for

the billiards problem, see Tennyson et al.5 and Lieberman6.
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Physically, the model of Fig. 16b represents a pumping of

stochasticity from freedom 1 into freedom 3 via the-guiding resonance

of freedom 2, since as shown by (9), large chaotic excursions Al-i

and AI2 occur while AI3 remains confined to the separatrix layer of
1/2

width e . We refer to the motion described by (11) as the "stochastic

pump".

Many resonance regime—Calculations based on the three resonance

model have been reasonably successful in predicting the Arnold diffusion
4 c

rate which is actually observed numerically"' . However, in the limit

of weak coupling among the freedoms, the combined effect of many

noninteracting resonances is important, and the three resonance theory

predicts diffusion rates which are much lower than those observed

from numerical simulation. The many resonance regime is called the

7-9
Nekhoroshev region * after the Soviet mathematician who first derived

a rigorous upper bound on the diffusion rate there. However, Nekhoroshev's

upper bound is generally many orders of magnitude larger than the actual

diffusion rate.

4 q i2
The many resonance region has been examined numerically,- * and

4 8 9
some analytic estimates were made ' * for a simple model of a coupling

resonance in a Hamiltonian system. The Hamiltonian studied was :

H=0/2XPi +P*)* 0/4Xx| +x£) -yXlx2 -ex^ft) (13)

where the p*s are the momenta, the x*s are the positions, and

m

2 T/2
where o* - (1-A )' ' measures the harmonic content of the driving term f.

This Hamiltonian describes the motion of two nonlinear oscillators which

are coupled quadratically with strength u. Oscillator 1 is driven by
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a periodic function of time f with strength e. Figure 17 shows the

resonance surfaces in the w2(I) vs. to, (I) frequency space.

The Arnold diffusion was calculated numerically for motion

along the coupling resonance ^ =oi2, shown as the 45° line in the

figure. The resonances of the driving term f(t) with oscillator 1,

mv = o)-i ,

are shown as the solid vertical lines. Numerical calculations of the

normalized diffusion rate D at a = 0.1, w = 4.5v, are plotted versus
-1/2
u , where y is the normalized coupling strength, in Fig. 18. The

theoretical prediction of the three resonance theory

D«exp[-u1/2]

is shown as the dashed straight line, for the three resonances

oj-i - u)2 = 0

4v - o)1 = 0

5v - a), = 0 .

It can be seen that there is strong deviation.from the three resonance

theory for weak coupling strengths u + 0. Also shown in the figure is

Nekhoroshev's upper bound on the diffusion rate, for which

DuPPer *expC-n"1'9].
The discrepancy at small u is resolved if we consider the harmonic

resonances

mv - kw, =0

between the driving term f and the driven oscillator 1. These resonances,

shown as dashed vertical lines in Fig. 17, are excited with small

amplitudes, and thus have wery thin chaotic separatrix layers.
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Nevertheless they strongly contribute to the overall Arnold diffusion

because they lie close to the initial condition 4.5v = (o-j.

Theoretical calculation of the Arnold diffusion in the many resonance

4 8 9
regime has been described by Chirikov * and Chirikov et al_. . The

theory is based on summing the non-phase correlated contributions of an

infinite set of non-overlapping resonances, as shown in Fig. 16c. The

theory is not well developed but yields results which are qualitatively

in agreement with numerical calculations.

4. MODULATIONAL DIFFUSION

We turn now to another phenomena involving chaotic motion along

resonance surfaces—the modulational diffusion. This mechanism is

similar to Arnold diffusion, but as shown in Fig. 9, the chaotic motion

is driven along a layer of overlapping resonances in the system. Due

to the strong stochasticity in the overlapping layer, modulational

diffusion is generally much stronger than Arnold diffusion. However,

modulational diffusion is not universal. There is generally a resonance

overlap condition for formation of the stochastic layer. Below this

threshold, one sees only the weaker Arnold diffusion.

Modulational diffusion generally appears when the frequency in

one freedom is slow compared to the frequencies in the other freedoms.
q

Following Chirikov et aK , we illustrate this for the example of the

nonlinear coupled oscillators with Hamiltonian (13), but where the

driving term is now

f(t) =I fm cos[mvt + Xsinflt]. (14)
m

Thus*oscillator 1 is driven at harmonics of the frequency v and is

phase modulated with amplitude A at the slow modulation frequency fi.
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Expanding (14) in a Fourier series yields

f(t) = I fmOn(X)cos[(mv + nfl)t].
m,n

The Bessel functions Jn have significant amplitude provided n < X. The

result is the formation of a multiplet layer of driving resonances of

width approximately 2QA centered about each harmonic mv of the driving

frequency. The multiplets are shown as the vertical sets of lines in

the u2 - w.| frequency space in Fig. 19. The modulational diffusion will

appear as a chaotic motion along a set of overlapping resonances within

a multiplet, in the vertical direction in Fig. 19. The motion along

the overlapping multiplet layer is driven by the coupling resonance

u)-| = io2. This picture of modulational diffusion is illustrated in

Fig. 16d.

Formation of multiplet layer—Near each multiplet

03-| (I-.) = mv

the motion can be described by the Hamiltonian

(AIJ2
H-| =—2 +e cos[e.j + XsinQt].

Physically this describes the motion of a ball in a one dimensional

potential well

Y(e.-| ,t) »ecos[81 + Xsinftt]

which is slowly shaken back and forth with large amplitude, low frequency

oscillations (see Fig. 20).

The conditions for a strong stochastic modulational layer are

(1) many resonances in a multiplet

t » 1
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(2) adjacent multiplet layers do not overlap

v/fl » X;

(3) resonances overlap within a multiplet layer

e>A G2/23.

The latter condition is derived using the usual resonance overlap
4

criterion that the Chirikov stochasticity parameter K = 1. As the

modulation frequency Q is varied, we find the three regimes illustrated

in Fig. 21.

At high frequencies a, for which (3) is not satisfied, multiplet

resonances do not overlap and we have only the possibility of Arnold

diffusion. At intermediate frequencies satisfying both (2) and (3),

a thick chaotic layer is formed and we have strong modulational

diffusion. At very low frequencies we enter the trapping regime. The

overlapping separatrix layers merge and trapping of the ball in a

valley of the potential V(e-j) can occur (see Fig. 20). The modulational

diffusion is weak in this regime.

These three regimes were first described by Tennyson in connection

with a simple model of the beam-beam effect for bunched proton beams

in the ISABELLE storage ring at Brookhaven. Figure 22, after Tennyson,

shows the diffusion coefficient for chaotic motion across the modulational

layer as the modulation period P$ =Zn/a is increased. Figure 23 shows

numerical calculations of the Poincare section for the vertical motion

(Py =V/w0 vs. Y) of abunched proton beam as the modulation period is
increased. A single modulation resonance becomes visible at P = 200

s

and a thick modulation layer has formed at P = 600.

Diffusion along the layer—We consider now chaotic motion along the

overlapping resonance, which is the modulational diffusion. For
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I«2 " "l' ~™ (15)

the condition of exact resonance

w2 " wl + n^ = Oi lnl $ X

is met within the layer, and we expect a strong diffusion along the

layer. The diffusion rate along the resonance can easily be calculated
l^

(see Chirikov et al_. °). A more subtle problem is the calculation

of the diffusion rate when the exact resonance condition is not met.

This problem has been considered by Chirikov et al_.13,15 for the coupled

nonlinear oscillator problem. Figure 24 shows numerical calculations of

the normalized modulational diffusion coefficient DR as the frequency

separation |oj2 -^ |is varied over a range of parameters X, ft, and e.

We note the plateau region when (15) is satisfied and the exponential drop

in the diffusion rate when the exact resonance condition is not met

(see also Fig. 19). The shape of the curve (solid line) has been

calculated from an analytic theory containing two empirically determined

parameters. The sharp drop near the plateau edge and the apparent wavy

oscillation in the exponential tail show that there are many interesting

features to be further explored in understanding modulational diffusion.

5. RESONANCE STREAMING

As a last example of chaotic motion along resonance surfaces we

ifi lfi
consider the process of resonance streaming '. Streaming occurs in

near-integrable systems that are subject to an externally generated

transport process such as a diffusion or dissipation on the action

space. In the absence of the external process, we have seen that a

perturbed Hamiltonian system undergoes a motion which is a small bounded

oscillation in the action space of the unperturbed system (see Fig. 2).
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Although the oscillation itself may be unimportant, it necessitates an

averaging procedure when the long term behavior is of interest.

Specifically, transport phenomena must be described in terms of the

motion of the oscillation-center, rather than of the instantaneous

position. When the phase point is outside nonlinear resonance, the

oscillation-center transport is almost identical to the unperturbed

classical transport. But when the system is resonant, the two can be

drastically different in both magnitude and direction. The difference

is most pronounced when the resonance vector m. is nearly tangent to

the resonance surface. In this case the oscillation-center can move

rapidly along the resonance surface at a rate that is much greater

than, but still proportional to, the classical transport rate.

Resonance streaming should not be confused with enhanced classical

diffusion due to transport across resonance layers. This process is

illustrated in Fig. 25a, where a large step in the action I« results

when an initially untrapped phase point becomes trapped at the bottom

of the island, swept around to the top of the island, and then detrapped,

If the external noise is not conservative; i.e., if it can change the

total energy of the system, then it essentially introduces an additional

freedom into the original system (see note 1). Enhanced diffusion

across resonance layers may be present in systems with two or more

freedoms (including the noise).

Resonance streaming is illustrated in Fig. 25b, which shows an

orbit moving up and to the left along a resonance surface in the action

space. Streaming can only occur in systems with three or more freedoms

(including non-conservative noise as a freedom). As shown in Fig. 8,

streaming occurs when an orbit becomes trapped inside a resonance tube.
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To understand the process of resonance streaming, we consider a

near integrable two degree of freedom system with unperturbed actions

I.j and I2, having aresonance layer with resonance vector mR in the

action space, as shown in Fig. 26. The initial motion is an oscillation

within the resonance layer in the direction mR, about the initial

oscillation center shown in the figure. Consider now a sudden non-energy

conserving displacement B to a final position within the layer. The

final oscillation center is displaced along the layer a distance A.

We note that

A = B sin $ esc 6, (16)

and therefore A may be much larger than B if 6 is small. Furthermore

the oscillation center displacement is always along the resonance.

Thus any sequence of displacements (due to noise) that does not take

the system out of resonance will result in a net displacement of the

oscillation-center along the resonance, and this net displacement may

be much larger in magnitude than the sum of the classical displacements.

For more than three freedoms, the direction of the streaming in the

resonance layer is given by the projection of the resonance vector mD

onto the resonance surface.

A resonance layer may be classified into one. of three distinct

transport regimes for resonance streaming. These are approximately

equivalent to the well known regimes of neoclassical theory19:

1) The oscillation-center (or weak transport) regime. For the

oscillation-center concept to be valid, the system must remain

in the resonance for a time greater than one oscillation period.

This means that the oscillation period must be smaller than the

time necessary for the classical transport process to move the
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phase point from the center of the resonance to its edge. The

enhancement ratio (16) is only valid in the oscillation-center

regime.

2) The classical (or strong transport) regime. If the external

process induces a motion that is faster than that induced by the

resonance, then the presence of the resonance is inconsequential.

The transport is said to be "classical" in this case.

3) The plateau regime. Since the upper limit of 1) does not

coincide with the lower limit of 2), there is an intermediate

situation. Here the phase point is not in the resonance

long enough to complete one oscillation cycle, but the oscillation

motion that does occur moves the phase point along the resonance

a distance greater than the resonance width.

Examples of resonance streaming—We describe briefly two examples

of resonance streaming. We first consider the effect of an external

dissipation on a near integrable Hamiltonian system

H = HQ + eH.

with

Ho • A+ A d7)
and

eH-, =lO"5cos(01 -e2). (18)

This system has unperturbed frequencies

oj-i = 21,, a)p = 2Ip

and a resonance surface

wl " w2 = ^
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or

h-h- °

in the action space. For the external process we take a dissipation in

I2 alone, of the form

I2 =-10"5I2. (19)

The motion must ultimately be attracted to the line I2 = 0, but may

detour along the resonance en route to its ultimate destination.

Figure 27 shows two computer generated trajectories plotted in the

action space. The first trajectory is initially nonresonant. It

drifts down to the resonance, makes a small horizontal jump as it

crosses, and then continues on. The second trajectory becomes trapped

inside the resonance as it attempts to cross and its oscillation-center

is consequently constrained to move along the resonance curve. The

libration angle is about 22 degrees and the ratio of resonant to

nonresonant drift speed is 2.55. The resonant libration is slowly,

damped by the dissipation and the phase point is drawn toward the center

of the resonance (barely perceptable here).

A second example is described by the same Hamiltonian (17) and

(18), but where the external process is a diffusion in the action I-2.

The diffusion is defined.by a sequence of small random jumps occuring

once each unit time interval;

AI2 =6x10'5 sin(rn) ,

where rn is a random number between 0 and 2tt. Figure 28 shows the

trajectory of the oscillation center for a phase point which starts

at the center of the resonance and diffuses slowly out. Initially the

oscillation center diffuses almost horizontally along the resonance

-25-



urve. Intervals where the trajectory diffuses back and forth across

the resonance (see Fig. 25a), can also be seen. Eventually the phase

point leaves the resonance, and the oscillation center stops its

horizontal motion and begins to diffuse vertically, following the

classical displacements.

The theoretical calculation of resonance streaming has been given

16
by Tennyson . Resonance streaming effects may be important in high

temperature plasma confinement experiments and in high energy particle

storage rings.

6. CONCLUSION

For three or more freedoms, a new phenomenon appears in near

integrable Hamiltonian systems, not present in systems with one or

two freedoms: chaotic motion along resonance layers. Three mechanisms

for such motion have been described: Arnold diffusion, modulational

diffusion and resonance streaming. Table 1 summarizes some important

properties of these mechanisms. There are probably many interesting

effects to be discovered concerning chaotic motion in multidimensional

systems.
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Mechanism
Perturbation

Strength

Driving source
for stochastic

pump

Driving source
along resonance

layer(s)

ARNOLD

DIFFUSION

e > 0

e > 0

ONE RESONANCE

MANY NON-

OVERLAPPING
RESONANCES

(NEKHOROSHEV)

ONE RESONANCE

MANY NON-

OVERLAPPING
RESONANCES

MODULATIONAL

DIFFUSION e > eCRIT

MANY

OVERLAPPING
RESONANCES

ONE RESONANCE

RESONANCE

STREAMING
£ > 0 ONE RESONANCE

EXTRINSIC
DIFFUSION OR
DISSIPATION

"NOISE"
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FIGURE CAPTIONS

1. The action space, showing energy surfaces and resonance surfaces for

the unperturbed, free particle Hamiltonian.

2. The effect of non-resonant and resonant perturbations: (a) non

resonant perturbations m. drive oscillations of order e. (b) A

resonant perturbation mR drives an oscillation along mR of order e1^2.
3. Resonance curves (lines) and energy contours (ellipses) in two

dimensional action space. The Hamiltonian function for this example
2 2is Hq(X) = I-j + (6I2) . The resonance labels are the values of

m, where aj,m, + u2 = 0.

4. Intersection of two resonance surfaces in an action space having

three freedoms. An energy conserving motion (wiggly line) from

one resonance surface to another is possible.

5. The Arnold web for the free particle Hamiltonian. Only some of the

intersecting resonances are shown.

6. Isolation of regions by KAM surfaces (lines). In (a) the plane is

divided by Tines into a set of closed areas; in (b) the volume is

not divided by lines into a set of closed volumes.

7. Projection of a resonance layer in phase space onto the two-dimensional

surface defined by the resonance action IR and the resonance phase

angle ij/R.

8. Three dimensional projection of a resonance layer in phase space.

Is denotes an action variable along the resonance layer. The regions

in which Arnold diffusion and resonance streaming take place are

identified.

9. Three dimensional projection of a set of overlapping resonances in

phase space. Modulational diffusion takes place along the layer as

shown.



10. The three dimensional billiards problem. A point particle bounces

back and forth between a smooth and a periodically rippled wall.

11. Motion in two degrees of freedom, illustrating the definition of

the trajectory angle an, and the bounce position x just before
•f"h

the n collision with the rippled wall.

12. Motion in the a-x surface of section for the uncoupled billiards

problem. The parameters are y = 0; X :h:a as 100:10:2; Xv = 2ir/kv.

Fifteen particles are started at x = 0 and allowed to run for

1000 iterations each.

13. Thin layer diffusion. Initial conditions are close to the central

resonance in the a-x space and within the separatrix stochastic

layer in the 3-y space. Parameters are u/h = .004; XY:h:a and

X :h:a as 100:10:2.

14. Projection of motion in the a-e action space for x' * 0, y * 0. The

parameters and initial conditions are the same as for Fig. 13.

After 5 x 10 iterations, the orbit has wandered in and out of

the thick and thin layers of both the a-x and B-y motions.

15. Arnold diffusion in the three dimensional billiards problem, in

the angle of incidence space a-$. The initial condition is chosen

to be within the separatrix of motion associated with the coupling

resonance o>Y = w . The initial motion with near normal incidence
a y

diffuses towards motion with large angles of incidence. A typical

diffusive path is sketched.

16. Decomposition of a three freedom system for the theoretical

calculation of chaotic motion along a resonance layer, (a) original

system with coupling among all degrees of freedom, (b) The three

resonance, stochastic pump model for Arnold diffusion, (c) Model

for Arnold diffusion in the many resonance (Nekhoroshev) regime.

(d) Model for modulational diffusion.



17. Resonances in the cog-to-j frequency space for the Hamiltonian (13).

The diagonal line shows the coupling resonance between oscillators 1

and 2. The solid vertical lines show the resonances of the driving

term with oscillator 1. The Arnold diffusion has been calculated

along the coupling resonance at the point shown (after Chirikov

et al.9).

18. Normalized Arnold diffusion rate D versus u , where u is the

normalized coupling strength. The dots are numerical calculations,

the straight dashed line is the prediction of the three resonance

theory, and Nekhoroshev's upper bound is also shown (after Chirikov

et al.9).

19. Resonances in the ^-u^ frequency space for the Hamiltonian (13)

with modulational driving term (14) (after Chirikov et a]_.13).

The coupling resonance is shown as the 45° line. The multiplets

of resonances which form near harmonics of the driving frequency v

are shown as the sets of vertical lines. The modulational diffusion

appears along a multiplet layer. The plateau and exponential tail

regimes of the diffusion are indicated in the figure.

20. Model for the stochastic pump which generates the chaotic motion

across the multiplet layer.

21. Three regimes in the formation of an overlapping layer of modulational

resonances as the modulation frequency ft is varied, (a) High Q leads

to non-overlapping resonances within the multiplet. There is Arnold

diffusion but no modulational diffusion, (b) intermediate Q leads to

overlapping of modulational resonances and strong modulational

diffusion, (c) Low a leads to formation of a trapping (regular)

regime and weak modulational diffusion.



22. Behavior of the normalized diffusion coefficient describing chaotic

motion across a modulational resonance layer (after Tennyson ).

23. Simulation of bunched proton-proton crossing beams in ISABELLE. The

Poincare section (Py = V/a)0 vs. Y) for the vertical motion is shown

as the modulation period P$ = 2n/n is increased. A modulational

resonance layer is formed (after Tennyson14).

24. Normalized modulational diffusion coefficient DR as the frequency

separation [cog-to-j |is varied. The points show numerical calculations

over a wide range of values of X, ft and e. The solid curve shows

an analytical calculation containing two empirically determined

parameters (after Chirikov et al.13).

25. Chaotic motion near resonance layers due to external noise or

dissipative processes, (a) Enhanced transport across resonances

(b) Resonance streaming which is an enhanced transport

along resonances.

26. Oscillation center displacement inside a resonance layer. The

phase point, oscillating vertically, makes a jump B due to external

noise or dissipation. The oscillation center makes a corresponding

jump A. Note that A may be greater than B.

27. Dissipative streaming in two dimensions. Two trajectories are shown

in action space. The first phase point begins at i, and descends to

f-j, crossing the coupling resonance co-j =w2 on its way. The second

phase point descends from i*2 but instead of crossing the resonance,

becomes trapped and thus streams along the resonance. The time

intervals for the two trajectories are the same. The dashed lines

show the energy contours at the initial and final positions.



28. Resonance streaming in two dimensions due to diffusion. The Hamiltonian

function is the same as in Fig. 27. The external process is now a

vertical diffusion consisting of small steps in AI2, and the time

between jumps is At =.1. The trajectory shown is that of the

oscillation-center since the position of the phase point is

averaged over successive time intervals of length T = 500.

Successive averaged positions are connected by line segments. The

initial position i is at the center of the resonance oj, =w2. The

particle eventually diffuses out of and away from the resonance,

ending the run at f.
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