

Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DELIGHT: AN OPTIMIZATION-BASED

COMPUTER-AIDED DESIGN SYSTEM

by

W. Nye, E. Polak, A. Sangiovanni-Vincentelli and A. Tits

Memorandum No. UCB/ERL M81/19

15 April 1981

DELIGHT: AN OPTIMIZATION-BASED

COMPUTER-AIDED DESIGN SYSTEM

by

W. Nye, E. Polak, A. Sangiovanni-Vincentelli and A. Tits

Memorandum No. UCB/ERL M81/19

15 April 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

ABSTRACT

This paper describes the design criteria and the main

features of DELIGHT, a new interactive, optimization-based,

computer-aided design system.

1. INTRODUCTION

Optimization pervades engineering system design: it is

carried out over candidate configurations and over parameter

values. Given a particular system configuration, optimiza

tion is used to determine parameter values which satisfy a

set of specifications or optimize a performance function.

Commonly, designers resort to heuristic, cut-and-try methods

based on repeated system simulation. Unfortunately, such

methods are woefully inadequate when the number of design

parameters is large, the design specifications are complex,

or the system is nonlinear. It then becomes necessary to

utilize proper optimization algorithms for parameter compu

tation and thus allow the designer to concentrate on the

conceptual aspects of a design.

Despite considerable research activity on computer

optimization of electronic circuits (see [1,2] for a

review), optimization algorithms have not been used in

design as widely as might be expected, mainly because (i)

the best known simple algorithms were inadequate and

designers lacked mathematical sophistication to use the more

complex ones, and (ii) coupling optimization packages to

simulation programs was difficult. For example, commonly

used penalty functions, with the variable metric method as a

subroutine, were too primitive to solve design problems

involving yield maximization or complex performance specifi

cations, expressed as inequalities, which must be satisfied

for all values of a parameter, such as frequency, tempera

ture, or time ranging continuously over an interval. Simi

larly, since existing circuit simulators do not compute time

domain sensitivities, they cannot be used efficiently in

conjunction with most optimization algorithms.

New semi-infinite and nondifferentiable optimization

algorithms solve problems involving yield maximization or a

continuum of inequalities [3]«However, these algorithms are

sensitive to the choice of internal parameters, to initial

values of the design parameters and to the conditioning of

the mathematical programming problem into which the design

problem was transcribed.

Recently, a new design methodology based on interactive

computing has emerged. It permits one to observe, inter

rupt, diagnose, modify and restart a computation as it

progresses, resulting in very substantial savings not only

in computing time, but also in the overall time needed to

carry out a design. Por example, the fact that an initial

design cannot be adjusted to meet specifications can be

identified in an interactive CAD system by observing the

output. The designer may therefore stop the computation and

either modify the structure of his design or experiment with

relaxation of the specifications. Next, making use of the

heuristic information displayed on the screen, he could

reduce ill-conditioning by changing the description of the

design problem into a different mathematical programming

problem. Finally, he would be in an ideal situation to per

form trade-offs. The circuit design system APLSTA? [4]

developed at IBM and the optimization-based computer-aided

design system INTEROPTDYN [5] developed at Berkeley, are two

examples of such software systems. APLSTAP is intended

mainly for circuit designers with little or no background in

optimization; INTEROPTDYN is for sophisticated designers

with an optimization background.

The DELIGHT system represents a considerable advance

over these earlier systems in terms of flexibility and ease

of use in a variety of contexts. Thus, it serves both the

sophisticated and the unsophisticated designer. In addition,

it provides a "guru" with an ideal environment for develop

ing and testing new optimization algorithms and for extend

ing the capabilities of the system software.

2. THE DELIGHT SYSTEM.

The DELIGHT system was conceived for multi-disciplinary

as well as multipurpose use and aims to provide a congenial,

efficient and portable environment for the following poten

tial users:

a. An unsophisticated designer requiring only command

and algorithm execution.

b. An advanced designer who wishes to adjust his optim

ization algorithms, for example, by modifying algo

rithm parameters or by substituting new stepsize or

direction-finding sub-procedures for the ones he

finds unsatisfactory.

c. An optimization algorithm expert who requires his

computer programs to resemble as much as possible the

mathematical description of the algorithm he is

implementing or creating so as to minimize the effort

involved in testing alternatives.

d. A systems expert who needs to add new built-in func

tions, utilities, or other system features.

Since it is impossible to foresee all the features a

CAD system will eventually need, we made sure that exten

sions and modifications of the system will be easy to carry

out. We shall now describe the DELIGHT system with some

detail.

2.1 RATTLE: The Interactive Language.

Our system uses the interactive programming language

RATTLE (an acronym for RATfor Terminal Language Environment)

which we have evolved from the structured language RATFOR.

The similarity to RATFOR allows DELIGHT system users to

learn RATTLE easily. RATTLE encourages good programming

practice by providing structured constructs such as "while",

"repeat-until", "if-then-else", etc., and hence results in

highly readable programs. RATTLE executes rapidly because

it is compiled into an intermediate form, with only one pass

over the source code; it is not interpreted.

RATTLE has powerful extension capabilities, that is,

the ability to create new language constructs or new com

mands from existing ones. This facilitates its use in many

different design environments. In particular, RATTLE has

defines, similar to those in RATFOR but with several exten

sions, as well as a new, powerful feature, the macro. Mac

ros are written as ordinary RATTLE procedures. However, they

are not executed at run time, but rather when their name is

encountered during the compilation of other procedures. They

can act as filters in the stream of input characters being

received by the RATTLE compiler. For example, one can write

a macro to scan the next few tokens, which need not be valid

RATTLE code (they are never parsed by the compiler), make

decisions based on what is found, and then send valid RATTLE

code to the compiler. This is accomplished using the push-

back stack mechanism of [7]. We have used macros to enable

us to carry out very complex computations by means of very

simple commands. For example, using the macro 'lp', we can

solve a linear program with the following RATTLE code:

lp z = argmin j c'*x | x>=0,x<=d,A*x<=b }

where the array z is assigned the minimizing value of x.

The macro lp scans ahead, determines what is being

requested, and pushes back onto the push-back stack a normal

RATTLE procedure call. In addition, the macro creates all

the necessary work arrays and inputs for the call to a

built-in Harwell Library linear programming FORTRAN routine.

Thus, macros relieve the programmer of such burdens as the

creation of work arrays for library routines and the use of

complicated language syntax, as well as provide enhanced

readability. Presently, there is an arsenal of numerical

analysis software available to the user through macros. The

following is a sample of these macros:

Computation Macro Syntax

eigenvalues matop lambda = eigen(A)
inverse of matrix matop Ainv = inv(A)
solve linear eqns. lineq A*x = b
quadratic program qp z = argmin { x'*Q*x

+ b*x ! x>=d, A*x<=c }
12-norm of vector]|v| | (in any
inner product <<x,y>> expression)

Most of the above macros use UNPACK routines [11].

One important use of defines is in the creation of

user oriented commands for invoking RATTLE procedures for

complex graphics. These procedure use high and low level,

terminal independent graphical routines which are incor

porated in the system. For example, one can define a "win

dow" by name, so that the command "window name" is a substi

tute for specifying the particular set of world coordinates

[8], and corresponding viewport coordinates (in the (0,0)-

(1,1) coordinate system of the terminal screen), which are

associated with the window.

The RATTLE language supports incremental program

development [6], that is, the ability to test, by just typ

ing it in, a single statement, procedure, or section of an

algorithm, without having to write and load/link a whole

program. The following is a complete RATTLE statement which

would execute when typed in:

while (f(x) > eps) |
x = x + f(x) / df(x)
print x

In this example, the while-loop body consists of two state

ments; the closing '(' is needed before starting execution.

An important RATTLE feature, from the programmer's or

algorithm developer's point of view, is the fact that execu

tion can be interrupted by the user or by the program and

later resumed after modifying variable values, or even re

compiling an entire sub-procedure.

2.2. FORTRAN Functions and Routines and the RATTLE Algo

rithmic Library.

The built-in FORTRAN functions and routines fall into

the following categories:

a. Standard FORTRAN functions such as sin, cos, exp,

log, etc.

b. General purpose numerical analysis software such as

that found in LINPACK [11] or the Harwell Subroutine

Library [12].

The algorithmic library consists of an integrated set

of RATTLE routines implementing algorithms for unconstrained

and constrained, both ordinary and semi-infinite, optimiza

tion problems. This library is organized to exploit to the

utmost the natural modularity of modern optimization algo

rithms which, in the simplest case, can be assembled from

such blocks as search-direction, step-size and update subal-

gorithms. In turn, search-direction subalgorithms can be

constructed from subprocedures which determine the gradients

to be used for direction construction and from linear or

quadratic programs. Similarly, step-size subalgorithms can

be built up from constrained and unconstrained step-size

blocks. More complex blocks include outer approximations

subprocedures and adaptive parameter adjustment subpro

cedures. For example, to construct an unconstrained optimi

zation algorithm, one may combine a search-direction

obtained through a quasi-Newton update formula, or through a

conjugate gradient scheme, with a step-size rule based on

cubic interpolation, or the golden section rule. The

features of RATTLE make the use of such a modular library

extremely easy and effective, so that a large number of

algorithms can be generated from a relatively small number

of procedures. It is easiest to explain how this modularity

is used by means of a simple example.

A large class of unconstrained minimization algorithms

have * structure which is incorporated in the RATTLE pro

cedure ucmin below:

ucmin
#„„„„„„„
procedure ucmin {

repeat (
interaction

evaluate h = dir(X[lter])
' :£
]

Iter = Iter + 1

lambda = step (XLIter], h)
update X[lter+1] = X[lter] + lambda * h

}
forever

[

This procedure calls two subprocedures: dir (search-

direction computation) and step (step-size computation). In

order to construct a particular unconstrained minimization

algorithm, one creates a file containing instructions com

bining a file containing ucmin with files containing the

appropriate search-direction and step-size subprocedures (or

functions), as in the following program for the armijo gra

dient method [14]:

armgrad

include step.arm
include dir.gradient
include ucmin

The files step.arm and dir.gradient contain the following

specific subprocedures step and dir:

#„„„„„
step.arm

parameter Alpha = .5
parameter Beta = .5
function step (x, h) i

import Alpha, Beta
array x(), h()
evaluate gcost = gradcost (x)
k = 0

repeat (
update xnew = x + Beta**k * h
breakpt
del = cost(xnew) - cost(x)
if (del <= Alpha*Beta**k * <<h,gcost>>)

return Beta**k
k = k + 1

}
forever

i

dir.gradient

procedure dir (x, h) (
array x(), h()
evaluate h = gradcost (x)
matop h = (-1) * h
f

The above code is mostly self-explanatory. However, the fol

lowing features are worth pointing out. First, we note that

in procedure ucmin, the vector X[k] is an element of a

sequence, which has been declared using "array_sequence"

(for an example see Section 3). Since uart of this sequence

is frequently needed for display or analysis purposes, the

user can save its last n elements. Second, the concept of

imported variable, as exemplified by Alpha and Beta in the

function step, is borrowed from [13]. Alpha and Beta,

declared outside the procedure, are given a default value at

compile time. This allows the user to modify them before

starting execution; their value is known to the function

step at run time. Since different problems require different

values of Alpha and Beta for efficient solution, it is cru

cial to be able to modify them (or other algorithm parame

ters). Third, RATTLE permits interruption of a process and

resumption of execution after checks or modifications have

been carried out. The user relies on information displayed

at each iteration, preferably in graphical form, in deciding

when an optimization computation should be interrupted. The

define "interaction" enables a user supplied procedure "out

put", to be executed at every passage through "interaction".

When the "break" key is depressed, execution is suspended

right after the procedure "output" has been executed

(depressing the "break" key generates an interrupt).

Besides using the "break" key, the user can control

execution of an optimization process through the define

"run". Typing "run 5", causes 5 iterations of the process to

be carried out; computation stops at the "interaction"

point. Typing simply "run" causes the process to execute

until the "break" key is depressed. Another define,

"steploop", allows similar action in a subloop ,with

"breakpt" playing the role of "interaction".

2.3 Interfaces to Problems and Simulation Routines.

The DELIGHT system includes an algorithm-problem inter

face which simplifies the coupling of RATTLE algorithmic

library routines with design problems. An important feature

of this interface is the way in which design problems are

formulated. In a design, the cost and many constraint func

tions are frequently composites, consisting of simple func

tions which are evaluated on results of simulation, for

example, the overshoot constraint y(t,x) < 1.1 for all t >

0, where x is the design parameter and y(t,x) is the

corresponding step response. Consequently, in DELIGHT, the

formulation of a design problem "prob" consists of a set of

files whose names are : "prob.descr" (simulation structure

and design parameters of the problem), "prob.data" (initial

values of design parameters), "prob.cost" (cost function),

"prob.gradcost" (gradient of the cost), and, possibly,

"prob.hesscost" (Hessian of the cost) together with

corresponding files for the various types of constraints

(equality, inequality and functional inequality). When an

algorithm needs a "surrogate" cost (as in the case of aug

mented Lagrangian methods or exact penalty function

methods), the interface constructs it automatically. In

addition, the interface makes sure that unnecessary duplica

tion of evaluations is avoided. As we have seen in the

preceeding section, in the DELIGHT system, a program for an

optimization algorithm is a file containing a list of all

the algorithmic procedures to be used and of the information

needed (gradients, Hessians). The coupling of a problem with

an algorithm is carried out by means of the define "solve"

which checks to make sure that the problem and algorithm are

compatible (e.g.., a constrained problem cannot be solved

using an unconstrained optimization algorithm). For example,

"solve prob using armgrad" couples the problem "prob" with
the algorithm "armgrad".

The second interface facilitates the use of a variety

of simulation programs for engineering design (e.g., of

electronic circuits, control systems, structures). Usually,

a simulation program has input parameters, options, out

puts, as well as simulation run controls, all of which can

be chosen by the designer. An optimization algorithm pro

gram calls RATTLE function and gradient evaluation pro

cedures which, in turn, may have to call a simulation pro

gram and hence must be able to set input parameters and

retrieve output values. To allow the required choices to be

made interactively by the designer and automatically by

optimization algorithms, it is necessary to have an inter

face to the simulation program. Our interface is readily

usable by any RATTLE procedure and consists of two parts:

one part which is written in RATTLE and is used for all

simulation programs and a second one which is written for

each simulation program. For example, the simulation depen

dent interface routine "output_keywords" allows a RATTLE

translation macro to be independent of any special syntax

for specifying simulation outputs. In circuit design, sup

pose that SPICE [10] is to be used as the simulation pro

gram. The system first calls the routine "outputjceywords"

which returns the special node voltage keywords of SPICE,

"vm", "vp", »vr", etc.. It then creates a define for each

output keyword, which invokes the translation macro to

gather the keyword and its arguments, considered to be the

source tokens following the key word which are enclosed in a

set of balanced parentheses. This string, for example,

*'vm(3,55)", is then passed to another interface routine so
that it can parse the arguments in any way needed.

3. EXAMPLE

We shall now present an elementary illustration of the

use of the DELIGHT system in solving a very simple uncon

strained optimization problem. The specification of this

problem, pb1, is contained in the following files, which are

in the format discussed in Section 2.3- Note that the file

pbl.descr contains only the specification that 25, 2-
component past design parameter values be stored.

pb1.desor

array_sequence X[25](2)

pb1.data

X[0l(1) = 1
X[0](2) = 1

pb1.cost

function cost (x) (
array x(2)
return (x(1)**2 + 2*x(2)**2)

pb1.gradcost

procedure gradcost (x,g) (
array x(2), g(2)
g(D = 2 * x(1)
;(2) = 4 * x(2)

We shall show what appears on the screen when a

designer solves this problem by means of the Armijo gradient

method discussed in Section 2.2. We have underlined the user

input to distinguish it from computer output. The basic RAT

TLE prompt is "1>", while "2>" indicates that the process

has been interrupted once. In this example, the user first

specifies the design problem and the algorithm to be used

for its solution by means of the "solve" define. Then (i) he

assigns to Alpha the value .9; (ii) he includes the pro

cedure "output" contained in the file "printstate", and

(iii) requests that the process run for 3 iterations.

Unhappy with the way the computation is progressing, he

changes the parameter Alpha to .6 and resumes execution.

When he is satisfied with the values displayed, he stops the

process by depressing the "break" key.

1> solve pb1 using armgrad

array_sequence Xf25](2)
data: XTo1(1) = *1.000
data: X[o](2) = 1.000

parameter: Alpha = .5
parameter: Beta = .5

please specify an output action
type run to execute

1> Alpha = .9
1> include printstate
1> run 3

lter=0 cost=3.000
Iter=1 cost=2.410
Iter=2 cost=1.945
Iter=3 cost=1.577

Interrupt...
2> Alpha = .6
2> run

Iter=4 cost=.6063
Iter=5 cost=9.548e-2
Iter=6 cost=2.387e-2
Iter=7 cost=5.967e-3
Iter=8 cost=1.492e-3
Iter=9 cost=3.729e-4
Iter=10 cost=9.324e-5

i igradcost
gradcost
gradcost
gradcost

=4.472
=3-971

=3.531
1=3.146i i

gradcost
gradcost
gradcost
gradcost
gradcost
gradcost
gradcost

'=1.823
=.6180

=.3090
=.1545
=7.725e-2
=3.862e-2
=1.931e-2

(here, the user depresses "break")
Interrupt...
2> reset
1>

4. CONCLUSION

We have briefly described the design criteria, the

structure and the main features of the optimization-based

computer-aided design system DELIGHT. Two imDortant features

were not discussed in in the paper, but should nevertheless

be mentioned. The first is that the system incorporates an

editor (a subset of the UNIX editor). The second feature is

a "store-restore" command permitting to store a computation

in its full state, from which it can be restarted at later

time. To evaluate DELIGHT we have tested it in the solution

of a few complex design problems such as the design of a

digital filter and the design of control systems subject to

constraints on singular values over a range of frequencies.

Fairly sophisticated graphics, based on the macros and

built-in functions of RATTLE, have been devised, some for

the display of complex information required to monitor the

progress of optimization algorithms, and some for use in

digital filter design (e.g., for repeatedly displaying the

frequency response of the filter and the constraint viola

tions corresponding to the current value of the design vari

ables. At present, simulation programs for structural design

of braced frames under seismic loading are being interfaced.

Integrated circuit design will be attempted as soon as the

time-domain sensitivity computation is implemented in SPICE

and the simulation interfaces discussed are completed.

ACKNOWLEDGEMENTS

This research was supported by the National Science Founda

tion Grants ENV-76-04264 and ECS-79-13148, by the Air Force

Office of Scientific Research (AFOSR) United States Air

Force Contract No. F49620-79-C-0178, and by a grant from the

Semiconductor Products Division of the Harris Corporation.

REFERENCES

[1] R.K.Brayton and R.Spence, Sensitivity and Optimization,
Elsevier, 1980 —" c -'

[2] J.W. Sandler and M.R. Rizk, "Optimization of Electrical
Circuits", Mathematical Programming Study , vol. 11,
pp. 1-64, 1979. " "

[3] E. Polak, "Algorithms for a Class of Computer-Aided
Design Problems: A Review", Automatica," vol. 15
pp.795-813, Sept. f979. —

[4] G.D. Hachtel, T.R. Scott and R.P. Zug, "An Interactive
Linear Programming Approach to Model Parameter Fitting
and Worst-Case Circuit Design", IEEE Trans, on Circuits
and Systems, vol. 27,pp. 871 -882"T~Sct. 1980.

[5] M.A. Bhatti, T. Essebo, W. Nye, K.S. Pister, E. Polak,
A.L. Sangiovanni-Vincentelli and A.L. Tits, "A Software
System for Optimization-Based Interactive Computer-
Aided Design", Memorandum N. UCB/ERL M80/14, University
of California, Berkeley, April 1980.

[6] J. Wilander, "An Interactive Programming System For
Pascal", BIT vol.20, n.2, pp. 163-174, 1980.

[7] B.W. Kernighan, P. Plauger, Software Tools, Addison-
Wesley, Mass., 1976.

[8] W.M. Newman, R.F. Sproul, Principles of Interactive
Computer Graphics, 2'nd Edition, Mcgraw-flill, N.V..
1979.

[9] W.T. Nye, RATTLE/DELIGHT Programming Manual. University
of California, Berkeley, 1980.

[10] L.W. Nagel, "SPICE2: A Computer Program to Simulate
Semiconductor Circuits", ERL memo no. ERL-M520, Univer
sity of California, Berkeley, May, 1975.

[11] J.J. Dongarra, et.al., LINPACK Users' Guide, SIAM, Phi
ladelphia, Pa., 1979.

[12] Harwell Subroutine Library, Harwell, England.

[13] N. Wirth, "Modula — A Language for Modular Multipro
gramming", Software - Practice and Experience, vol.7,
1977. —'

[14] L. Armijo, "Minimization of Functions Having Continuous
Partial Derivatives'" Pacific J. Math., vol. 16, pp.1-

	Copyright notice 1981
	ERL-81-19

