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ABSTRACT

Systems modeled as continuous-time finite-state Markov chains with
periodic transition rates are considered. The system states are parti-
tioned into the set of up-states and the set of down-states. The prob-
ability distributions of remaining in up-states and in down-states are
derived. The limiting distributions of up-time, down-time and cycle-
time, and the limiting expected up-time, down-time, and cycle-time, as
well as the limiting average availability and the limiting expected
frequency of entering down-states are derived. Some analogous relations

are shown to be true as in Renewal Theory.
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1. INTRODUCTION

Consider a complex system consists of r repairable components that
are either in operation or in repair, there are altogether n=2" system
states. The state transition in the system is modeled as a continuous-
time finite-state Markov chain; We consider the case where the state
transition rates are periodic. The model arises in our study of inter-
connected electric power network security assessment and reliability
analysis, where the transition rates involve load demands that are
periodic functions of time [1].

For some of the system states, the system is considered functioning
or operational, we call them the set ofup-states and denoted by U. For
the remaining of the system states, the system is considered failure, we
call them the set of down-states and denoted by D. For reliability
analysis we are interested in the time during which the system remains
in up-states if presently it is in U or the time during which the system
remains in down-states if presently it is in D. In this paper we first
derive the probability distributions of these up-time and down-time for
general nonstationary continuous-time finite-state Markov chains. We
then derive the limiting distributions of up-time, down-time, and cycle-time, and
the 1imiting expected up-time, doWn;time,,and,éycle-time for continuous-time
finite-state Markov chains with periodic transition rates. Furthermore
we derive the limiting average probability that the system is in an up-
state, and the 1imiting expected frequency of entering down-states. We
show that some analogous relations hold as in Renewal Theory.

Some reliability models in the form of continuous-time finite-state
Markov chains with constant transition rates are studied in [2, Ch. 7].

The time to failure distributions for such systems starting from all the
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components up are derived in [3]. A simple derivation is presented in [4].

2. UP-TIME AND DOWN-TIME DISTRIBUTIONS OF NONSTATIONARY CONTINUOUS-TIME
MARKOV_CHAINS |

Consider a continuous-time finite-state Markov chain x(t) with n

states denoted by 1,2,...n. We make the following assumptions*

Assumption 1. For all i#j, and At>0,

Prix(trat)=j|x(t)=i} = A;;(t)at + o(at) (1)

Assumption 2.

Pr{The number of transitions in [t,t+At] > 2} = o(At) (2)

We are concerned with reliability analysis of complex systems modeled
as continuous-time finite-state Markov chains. For example, for a system
of r repairable components that are either in operation or in repair,
there are altogether n=2" states of the system. The system is functional
for some of these states, called up-states, and is considered failure for
the remaining states, called down-states. Let U={1,2,...m} denote the
set of up-states and D= {m+1,...n} the set of down-states.

Initially at time t, we have the probability distribution of the

states that the system resides on,
A -3 .
pi(to) = Pr{x(to)-1} i=1,2,...n (3)

Suppose that given x(to)GEU the probability distribution of states at to
is denoted by

0 (At = 0.

TThe 1ittle-oh notation represents a term such that 1lim At

At-+0



A . .
"i(to) = Pr{f(to) -1|§(to)€U} i=1,2,...m (4)
Similarly given >~((to)€D we define
A, =3 -
di(to) = Pr{§(to)-1|§(to)60} i=mH,...n (5)

We will use p_(to), g(to) and g(to) to denote the vectors whose components
are pi(to)’ ui(to) and di(to)’ respectively.

Suppose that at time t, the system is in an up-state §(to)€U, we
are interested in the duration that the system remains in up-states, i.e.,
the time to failure. More precisely we define, given that at to §(to)€U,

the up-time to be

A
Ty = Tu such that §(t)EU for te[to,t°+TU)
and 5(to+TU)eD

To simplify notation we shall write §[to,to+TU) CU to represent x(t) €U
for te[to,to+TU). Similarly if at t, §(t°)€D we define the down-time,

or the time to repair, to be

A
Tp = Tp such that x[t .t +T,)CD, x(t +T)) €U

The up-time T'J and the down-time TIJ are random variables. We are

interested in finding the probability distributions of up-time FU(t,to)

and down-time FD(t,to), viz.
Fyltaty) & Prety >tix(t)€u, u(t )} (6)
Fpltste) 2 PriTy >tlx(ty) €D, dlt,)) (7

Clearly we have

FU(t’tO) = Pr{§[to,t°+t]CU|§(to)€U, _u_(to)}

m
izl Prix(t +t)=i,x[t .t rt]1CU|x(t ) €U.u(t )} (8)
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Fpltsty) = Prixlt,,t +1CD|x(t ) €D, d(t,)}
n

) igm+lpr{§(to+t)=i’ ’.fl:to’tc"'t:l C‘le(to)eo’ g-(to)} (9)
Let us define
us (t) & Prix(t)=1, x[t ,t1CU|x(t)) €U, u(t,)} (10)
d;(t) 2 Prix(t)=1, x[t,,t1CD|x(t ) €D, d(t )} ()
Hence
Fyltsty) = 1Tu(t+t ) (12)
Fpltatg) = 17 d(tst ) (13)

where lT is a row vector whose elements are all 1. The dimension of 1
is clear from the context.
We further define
A N
Az5(t) = - jzllij(t) (14)
J#i
Let R(t) be the nxn matrix whoseij-th element is Aji(t). We partition

the matrix R(t) into submatrices corresponding to the sets U and D,

R(E) = | Ryy(t)  Ryp(t) (15)
Rog(t)  Ryp(t)

where RUU(t) is mxm, and RDD(t) is (n-m) x (n-m).
Theorem 1 below states that the probability distributions of up-
time FU(t,to) and down-time FD(t,to) can be obtained from the solution of

a differential equation.



Theorem 1. Under assumptions 1 and 2,

(i) for a given initial distribution p_(to), we have

dp(t)
S R(t) p(t) (16)

(ii) given that 5(to)eu and g(to), we have

du(t)
—F& = Ru(t) ult) a7
and Fu(t,to) = ng(t+to) (18)

(iii) given that 5(1:0)60 and g_(to), we have

dd(t)
at— = Rpp(t)d(t) (19)
and Fy(t,t) = 1Td(t+t ) (20)

Proof. The derivation of (i) is standard for Markov chains [5, p. 842].

(ii1) is similar to (i1). Thus we prove (ii) only.

ug(t+at) = Prix(t+at)=1,x[t ,t+at]CU|x(t,) €Us u(t )} (21)
= jglpf‘{i(t‘*ﬁt)=i,i[t,t‘fAt]CUI>~<(t)=j,§[to,t]CU; x(t,) €U,
0 u(ty}} Prix(t)=y,x[t,.t1CUlx(t,) €U, u(t,)} (22)
= J.Z]Pr{gg(t+m:)=i, 5[t,t+At]CU|§(t)=j}uj(t) (23)
= 5‘51 2§1Pr{>~<(t+At)=1’, x[t,t+at]CU, # of transition in
[e.trat] =2{x(t)=jlu;(t) (24)
m

‘ .Pr{x(t+At)=1’, x[t,t+At]CU, # of transition in
J[11:,1:+A1:] =1 lg(t)=j}uj(t)
+ Pr{f(t+At)=1', §[t,t+At]CU, # of transition in
[t.t+at]=0]x(t)=1}u;(t)
+ o(At) (by Ass. 2) (25)
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Since "§(t+At)=1', x(t)=j, 1<i,j<m, and # of transitions in
[t,t+at] = 1"=>"§[t,t+At]CU" and "§(t+At)=1', x(t)=i, 1<i<m, # of
transitions in [t,t+At]=0"="x[t,t+At]CU." So,

uy (t+at) = jgi [Aji (t)at +0(At)]uj(t)

+ (1+ay;(t)at+ o(at))u(t) + o(at) (26)
= 0 u(t) = Ry,(thu(t) (27)

3. CONTINUOUS-TIME MARKOV CHAINS WITH PERIODIC TRANSITION RATES

We now consider continuous-time finite-state Markov chains with

periodic transition rates. We make the following assumption

Assumption 3. The elements of R(t) are periodic with period Ty The

limiting solution of

dp(t) - '
S = R()p(Y) (28)

exists and is unique. This limiting distribution is denoted by = (t).

Lemma 1 Under assumptions 1-3, m(t) is also periodic with the same

period To'

Proof. Since R(t) is periodic with period To’ the state transition

matrix of (28) may be written as [6, pp. 126]

o(t,t,) = Qt,t,) exp[(t-t,)B] (29)

ne

where B is a constant matrix In <I>(t°+To,t0), and the matrix valued

1
To
function t-*Q(t,to) is periodic with period T, i.e. Q(t+T.o,to) =Q(t,t0)
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We first show that 1 is a left eigenvalue which implies that 1 is

also a right eigenvalue of o(t0+T°,to). Note that

1TR(t) = 0 vt | (30)
T3 _ 1T -
= 1 s o(t,t)) = 1R(t)e(t,t)) = 0 (31)
= 1a(t,t,) = 1To(t,,t) =17-1=1" (32)
= 1 is an eigenvalue of @(to+T°,to) (33)
= 0 is an eigenvalue of B (34)

Let v be the right eigenvector of B corresponding to the eigenvalue

0. By Ass. 3, the limiting distribution m(t) is unique.

20 2ot v = Qltaty) e Oy | (35)

= Q(t,t))y. (36)
Qt+T t) = Q(t,t,) (37)
= 1(t+T,) = x(t) (38)

H
The system state resides alternatively in U and D. However the
resulting process is not an alternating renewal process because the up-
time (down-time) distributions are not identical. In the following sec-
tions, we derive the limiting distributions and expected values of up-
time, down-time and cycle-time, and compare the results with Renewa{

Theory.

3.1 Limiting Distributions of Up-Time, Down-Time and Cycle-Time

Suppose that we look at time ty ahead. Let TU(t]) be the first
full up-time duration after t]‘ To be more precise, if t' is the first
transition from D to U after ty5 TU(t]) is defined to be the time such
that
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§(t'- )ED,§[t',t'+TU(t1))CU, and §(t'+TU(t]))€D

The limiting distribution of up-time Fu(t) is defined to be

F, (t) = Tim Pr{T,(t,) >t} (39)
U t,+> UM
1
1 . PP
= Jin prfige welcuff ot e st transition} (g
.|+oo

Similarly, we define the 1imiting distribution of down-time FD(t) to be

FD(t) 1im P'r{TD(t]) >t} (41)

t-l +o

. Ve t' is the first transition
t: m Pr{ftt 't 1Sl eom U to D after t } (42)

Let Tc(t]) denote the first complete cycle after t] that starts from U,
i.e., if t' is the first transition from D to U after t,, then )

>~<(t'- )ED, 5[t',t'+t2)cu, §[t'+t2,t‘+TC(t-l))CD

and §(t'+TC(t]))€U

The limiting distribution of cycle-time Fc(t) is defined to be

F.(t) = Tim Pr{T.(t,)>t} (43)
C te > c*1
1
Theorem 2 below gives explicit expressions for the limiting distri-
butions of up-time, down-time, and cycle-time. We first introduce some
notations. The vector @(t) is partioned into m(t) = (Eu(t)’ED(t))‘ The
state transition matrix of RUU(t) from t' to t is denoted by @U(t,t'),

i.e., @U(t,t') satisfies

] - [ 1 'Yy = F

3t Qultst’) = Ryytdoy(tst') o (t',t") = 1 (44)
The state transition matrix of RDD(t) from t' to t is denoted by
°D(t’t')'



Theorem 2. Under assumptions 1-3,
T

(1) Fylt) = % ]0° Moy (t+t! ,t")Ryp(t" )y (t")dt! (45)
where K = [:°1_TRUD(t)ED(t)dt | (46)
(11) Fy(t) =l-‘<-; f:(’ e (t+t! £ )Ry, (" )my(t')dt! (47)
where K" = [? MRy, () ()t (48)
(ii1) K" = K (49)

. UL (T, . g
(iv) Fo(t) = Fylt) + '_(-Io fo Top(tet! ,t +x)Rp (t'+x) g (t +x,t")

RUD(t')ED(t')dthf (50)

Proof.

(i) Let t] +» be represented by a sequence t] = JLTO, 2= 1,2,... . Hence
ty+ro=2+=. Llet N, be the random variable such that the interval
[szo’(Bzﬂ)To) contains the first transition from D to U after
t;. Note that t; < (N, +1)T  almost surely, i.e., N > 2.

It follows from Eq. (40) that

(j+1)T° m
FU(t) = lim ) 1 Pr{TU>t[§(t')=1’,§(t')eu,

Lro >4 I3T i=1
x(t'-)GD,§2=j}
- Prix(t')=i|x(t'-) €D,x(t"') EU,N =3}
. Prix(t'-) €D,x(t") €U[N,=j}dt" -Pr{N,=j}
(51)



Note that the conditional probability dehsit}~fdimaké a first transition
from D to U at t is proportional to lTRUD(t)ED(t) where Eu(t) =.-
(py(tlspy(t)), i.e.,
i IR S |
Prix(t-) €D,x(t) €U|N,=i} = g3y [1 Ryp(t)pp(t)]s
Ty 2t = (J""'I)To (52)

We use the following fact to find the proportion factor K(j).

Prdd transition from D to U N=il=1
occurs during [jTo,(j+1)To) Y

(3+1)T,
= P'r{x(t-)ED,x(t)EUleJ’}dt (53)
iT, ~ ~ ~
Hence (j"’])TO
k@) = [ rpltipy(tiat (54)
T,
Note that

PriT>t]x(t')=1, x(t') €U,x(t'-) €D,N =i}

Pr{gg(t',t'+t]CU|§(t')=i,>~<(t')€U} (55)

1_T<I>U(t+t' ot')e; (¢; standard vector)

The last equality follows from Theorem 1. The other term in (51)

may be expressed as,
Pr{§(t')=1’|§(t'-)eD,§(t')€U,N2=J'}
= Prix(t')=i|x(t'-) €D,x(t"') €U}
_ TRyt Dpp(t)];

T . ; (56)

Substituting (52) (55) (56) into (51), we obtain
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: (3+1)7, .
Fy(t) = liTw jzz kG Toy(trt' e )Ryp(t" )pp(t)dt!
PriN,=j} - (57)

where K(j) is defined on (54).

Let us consider K(j). We are going to show that K(j) +~K. First

we claim that

@U(t+T0,to+To) = @U(t,to) for ¥ t,,t (58)
" ¢U(t+To,to+To)|t=to =1 =¢)(t;,t,)

) ) _
5E-¢U(t+T°,to+T°) = RUU(t+T°)¢U(t+To,tO+T)

= Ruu(t)°u(t+To’to+T)

The claim (58) follows from the uniqueness of solution to the

differential equation.

On the other hand, by definition of limiting distribution, we

have
p(t) = m(t) + 0(t), where (")(t)—t—->0 (59)
Thus,
(3+1)T,
K(3) = [ 1TRyp(tdpp(tat
T,
(J+1)T,
[ TR (e
T,
rT°

_ T . . -
= . ]_RUD(x+JTo)gD(x+JTO)dx + O(JTO)

r O

1Ry (K)mg(x)dx + B(3T,)

‘0
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Tim K(j) = K (60)

Joro

Next we consider the numerator of (57),

(J""])T0 T
- Toylt+t'st!)Ryp(t! )py(t!)dt! (61)
Il
To .1 o . .
= [0 1oy urndTy et Ty Ry (ki Ty pg (x43T N (62)
0 To
Note that since )\].J.(t) >0, 1#]. Jo lTRUD(x)ED(x)dn 0, implies
1 .
- (8D (8, 47 ) (63)
K+0(JT0)
Substituting (60), (62) and (63) into (57), it becomes
- T
j % 1T (txax)R - (x) 7 ()
. 0 = PyttTXIRyp IR AIX 5 .
F,(t) = Tim } [ +0(3T.) | PriN,=j}
U g+ 352 K 0 L
T
0 7
[O l_@u(t+x,x)RUD(x)gD(x)dx )
= 1im R  Pr{N,=j}+ 0(2T°)
L+ 13> -
To 176, (t+x,%)R 1 (x)1(x)dx
0~ U UMD -
= Tim X ) Pr{N.=j}-+0(2T0)
> J_>_2. -
T
=1 ° 7o (t+x . X)R, (X )ma (%) dx (64)
K 0~ U RN D
where we use the fact that Pr{N£=j} = 1.
N2
(i) Similar to (i).
(ii1) By definition, we have 1'R(t) = 0, i.e.,
TR, () + VR (t) =0 ¥t (65)
- U — DU =

Now consider
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K'K* = ’ J_T(RUD(t)ll'_D(t) - Rnu(t)lu(t))dt

- o -

? 1T (R (£)mp () * Ry (E)my(£))dt (by substituting (65))

S———y
-4 O

LI O (by definition)
~ daly 4

" .
—_—
o

I
1 (my(T,) - 1,(0))
which is 0 as a consequence of lemma 1.

(iv) Let us use the same notations as in the proof of (i)

Fe(t) = Tim  J Pr{T,>t|N,=3} Pr{N,=j}

L+o j>R
N7, ,
L PriTe>tx(t')=1,x(t'-) €D,x(t') €U}

Tim ) I
Lo §223T ) 1=1
. Pr{§(t')=i|§(t'-)€D,§(t')€U}
- Prix(t'-) €D,x(t') EU[N,=j}dt" - PriN =j}
(66)
Pr{Te>t|x(t')=1, x(t'-) €D,x(t") €U}
t
= ]0 Prix[t',t'+x) CU,x[t'+x,t'+t]CD|x(t"')=1,x(t'-) €D,x(t') EU}dx

+ Pr{T > t|x(t')=1,x(t'-)€ D,x(t') €U} (67)

Substitute (67) into (66), manipulate term Pr{TU>t|...} as in (i), we get

(jﬂ)To m (t

Fe(t) = Fy(t) +1im  § J ZJ
gre 20 3T, i=1 /0

Prix[t',t'+x) CU,x[t'+x,t'+t]CD| .

R (t")pa(t')).
x(t')=1,x(t'-) €D,x(t') €U} R Kz?‘)’( Vi e

PriN,=33 : (68)
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Now
Prix[t',t'+x) CUX[t +x,t+t]CD]x(t')=i,x(t'-) €D,x(t') €U}

n

1 Pri{x[t'+x,t'+t]CD[x[t',t'+x) CU,x(t'+x)=i7,x(t"+x) €D,

i]=m+1 - -
x(t'-) €0,x(t') €u; x(t')=1}

- - -

Pr(g(t‘+x)=i]I§((t'+X)-)e_‘u,x(£'+x)€ D, x[t',t'+x) CU,x(t')=1}

Prix(t'+x) €D.x[t',t'+x) CU, [x(t')=i;x(t'-) €D sx(t') EU}

- ) og(t +t,t +x)e & - (Rgu(t )8y (4.t e i1y
i,=m+] 1 RDU(t +x)¢U(t +X,t' )e
44-%;1T¢U(t'+x,t')_e_i ‘ (69)

where we have used Therem 1. But

g;f@u(t'+x,t') lTRUU(t'+x)<bU(t'+x,t')

-]—TRDU(t |+X)¢U(tl+x :t ! )

Hence (69) becomes
_'I_T@D(t‘+t;t'+x)RDU(t'+x)<pU(t'+x,t')g.i (70)
Substituting (69) (70) into (68), we get

(G+)T t
Flt) =Fy(e) + ;,Tm i>e K TTI ° fo lT@D(t'+t’t'+x)
To

RDU(t'+x)¢U(t'+x,t')RUD(t')Eo(t') dxdt"Pr{§Z=j}
(71)

t .
1 0 T : . s
=Fy(t) +1im : f f 1o (t+t'+3T ,t'+3T_+x)Ry, (t'+5T_+x)
R ) K(3) 0 lg— D 0 o "'DU 0

Oy (£ T, t T IRy (£ 43T ) mp (£ +3T )+0(t ' +3T )]

dxdt' - Pr{N2=j}
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T

1 o (t T " ogl ( 1 ' 1 '
= Fu(t) +K’j0 JO l <I>D(t"'t st +X)Ruu(t +x)¢u(t +X,t )RUD(t )ED(t )

dxdt' a

3.2 Limiting Expected Up-Time, Down-Time, and Cycle-Time

The 1imiting expected up-time E(TU) is defined to be

BT, © Jin E(Ty(ey)) (72)
.I—)-oo

The limiting expected down-time E(TD) and the limiting expected cycle-

time E(TC) are defined to be

E(Ty) & Jim E(Ty(ty) (73)
]+eo

§(T) Jin E(T(t})) | - (74)
..-)oo

Theorem 3 below gives explicit expressions for the 1limiting expected

up-time, down-time, and cycle-time.

Theorem 3. Under assumptions 1-3, we have

I
o ,T
JO 1my(t)dt

E(Ty) = (75)
f 0 1TR (t)m(t)dt
- upr’-D
0
T
I ° JTED(t)dt
0
E(Ty) = —5- (76)
[, Troytemy(e)et
E(T,) = E(Ty) + E(Ty) (77)

Proof.

(i) We are going to show first that
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E(Ty) = f: Fy(t)dt (78)
Eit) £ pe(T (i
Let F(t) = Pr{T(iT ) > t}
. _ i
then E(Ty(1T)) = f: Flce)et
and E(T,) = Tim I“Fa(t)dt
i+ /0
Since Fa(t) is nonnegative measureable function, if we allow = as a
1imit then, by Fubini's Theorem [7, p. 355], {Fa} is a sequence of
integrable functions, and by (64) Fa(t) also converges pointwise to

FU(t). Furthermore IFalﬁj Yi, hence by Dominated Convergence

Theorem [7, p. 3311, FU(t) is integrable. And

f: Fyt)de = Tim [* Fi(e)ae (1)

1 >0

Next we are going to show that
T
04T
_ f 1m(t)dt
[OFU(t)dt = '—To
T dt
[ Trupttimyie)

o

.
.0
(1) = [Tyt = ¢ [7 ] oyt Rl dmy(eat at

With the change of variables z=t+t', t'=t', the corresponding change

in the domain of integration can be easily seen as in Fig. 1.

E(TU)=HZ° [ oyt mp(tmy(t)de e

=0 ‘t'=0
-] TO
1 [ J T ' ' VY44 !
+ 1 1'8,(z,t" )R n(t")my(t')dt'dz (79)
K Z=T t':o U UD _D
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_
N\

A

| . t' o) To t'
Fig. 1. The domain of integration after change of |
variables z=t+t', t'=t".

On the other hand,
y(£') = Ryt )my(t) +Ryp(t )y (t")
= Ryp(t* )y (') = iy (£) = Ry (£ )my (t") (80)
Furthermore

5o Oy(zst ' )my(t')
= [gor oz, Mmy(t') + ozt )iy (t")
= =9 (2,t )Ryt )my(t') + 8(z,t )my (t*) (81)
(80) and (81) give
0y (258 WRyp (' )mp(t') = 53 92,6 )my(t") (82)
Substituting (82) into (79) and integrating over t', we have

ET) =2 [ 1Tmi2)dz - 2 [0 1T, (2,0)m.(0)dz
T FRT K ), 1 %20y

©

Tay(2,0)m,(0)dz

tx | eyt e -¢ [
z=T,

z=T0

10T (2)dz + 2 [T 1T (2.7 )m (T )d
KO_‘JI'U KT" UZ’QEUOZ
0

- %‘[0 lT@U(z,O)EU(O)dz
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But IT 1T¢U(2,TO)EU(T°)dz
0
= (09T
- fo o (2"+T_,T ) (T )z’

7T,
= fo 1 ¢,(z,0)m,,(0)dz'
Hence we arrive at the result
1(°.7
E(T)=-f 1T, (2)dz
1] K 0 Y=’

Similarly for E(TD).

(i) The proof that E(TC) = J Fc(t)dt is the same as in (i).
0

Applying the result of Theorem 2, we have

J Fc(t)dt = J FU(t)dt + %-J ! ] 1T¢D(t+t',t'+x)
0 0 0’t'=0 'x=0

RDU(t'+x)¢U(t‘+x,t')RUD(t')gD(t')dxdt'dt

With the change of variables Tt = t-x, x = Xx. (Since the integrand is a
nonnegative measurable function the interchange of order of integration

is justified by the Fubini Theorem.)

V. W

Fig. 2. The change in the domain of integration as a
result of the change of variables t=t-x, x=x.
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;
©, 0 s
E(Te) =E(Ty) + & [O [0 jo 1o (w4t 4, b1 4ORy (£ 4508y (£ 45, )

RUD(t')er(t')dx dt'dr

Interchange the order of integration dxdt'-dt'dx, and with another change

of variables z=x+t', t'=t"'.

LI R A Y . Y (b
E(TC)=E(TU)+-KJ0 L Jt'=0 Map(tez,2)R (20 (2.t )Ry (" )mp ()

dt'dz|dt

T

1 Im [“’ I ° 1 ' ' '

+1 1 00 (t+z,2) Ry (2) 8 (25t )R o (t" )T (t")

Ko [zﬂo £'=0 = O_ pUTTITE DT
dt'dz|dt

Similarly as in the proof of (i)

£(r) =61+ [ { [ Magternadigy(@)ey(aadny)-sy (2. 00my 01z
- ,

R [:T 1_T<I>D(t+z,z)RDU(z)[QU(Z,TO)LTU(TO)-@U(Z,O)Eu(o)]dz} it
0
)

~E(Ty) ¢ j:{ Jz=0 1op(t42,2)Ry (2)my(2)dz

o

-~}

T
+ JFT oy (t2,2)Ry (2)8,(2,T )y (T, )z
0

- [;0 ]_TQD(t-i-Z,Z)RDU(Z)QU(Z,O)';_rU(O)dZ} dt

® 0T
But Jz=T{1’ @D(t+z,z)RDU(z)¢U(z,TO)1T_U(T°)dz

=f 17

o (t+2+4T 24T IRy (24T )8, (24T, T ) (T ) dz

z=0

-f: 1Toy (t+2,2)Ry (2)0(2,0)m,,(0)dz
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:
0
T
[Fo oy (t+2,2)Rpy (2)m, (2)¢z

<o

] 1
> E(T,) =E(T,) +¢ Io

) 1 (T (9 .7
BT jo L=ol op(t+z,2)Ryy () (2)dz

=E(TU) + J: FD(t)dt (by Theorem 2)

= E(Ty) + E(Tp)

3.3 Limiting Average Availability, Limiting Expected Frequency and
Duration

The availability at time t, A(t), is defined to be the probability

that the system is in an up-state at time t, i.e.,
A
A(t) = Prix(t) €U} (83)

The limiting average availability Aav is defined to be

A
A, = Tim

T
av = 1 JO A(t)dt (84)

|

The unavailability at t, A(t), and the limiting average unavailability

Kﬁv are similarly defined.
The system resides alternatively in U and D. Let NU(t) denote the
number of transitions into U in the time period [0,t]. We define the

Timiting expected frequency of entering up-states U, fU’ to be

Ny()
t

fy 8 im E (85)

trw

Similarly ND(t) denotes the number of transitions into down-states D in

[0,t] and the limiting expected frequency of entering down-states D is

£ 2 1m £ Np(® (86)

D t+o t
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Assumption 4.

E[Ny(t)] <= and

E[ND(t)] <o for any t < o,

Theorem 4 below gives explicit expressions for the 1limiting average

availability, and 1imiting expected frequency.

Theorem 5 below presents

some relationships among various limiting expected quantities, similar

to the ones in Renewal Theory.

Theorem 4. Under Assumptions 1-4,
. 1 ° .71
(i) A =——I 1T, (t)dt
av T0 0 =
T
T .1 I° T
= 1'w.(t)dt
av To 0 -
T
(1) £,o= 2 [ TR () (t)dt
U TQ - uD*"'-D
T
foel [P TR ()m(t)dt
D T0 0 " puUr’'=y
Proof.
(1) 1 L[ A
i A.. = 1lim —f t)dt
av T_WT 0
= lim + IT 17 (t)dt (Prix(t)€U} = 1TBU(t))
T->ooT O—EU -
: : k-1 (1'+1)To . ©
= =— Tlim + 1 t)dt
To koo 50 JiT, —By
(1"l-1)To T To T
Since 1'p,(t)dt +I 1'm,(t)dt as i+,
iT 2y o — Y
0
T
] J° T
A, = =— 1'm (t)dt
av T0 0 =

-22-
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(88)

(89)

(90)



Similarly for Aav’
(ii) Let us divide t into k subintervals, At = % . Then,

ENy(t) = ELN(£)-Ny(£-t) + Ny(£-At) - Ny(£-28t) + ... - Ny(0)

k-1
‘Zo ELN,((i+1)at) - N, (iat)]
i=

By assumptions 2 and 4,

ELNy((+1)At) - N, (i4t)]

Pr{there is a transition into up-state in [iAt, (i+1)At]} + o(At)

1Ryp(i4t) Pyliat)At + o(at)

Therefore

k-1

ENy(t) = ] TRyp(iat) Pp(iat) t + k o(at)

1
0
Let k > » (i.e., At - 0), we have .

LS PR .
ENy(t) = [0 PTRyp(t") Pylt )t

So,

t
-lml Io 1TRyp(t!) Py(t)dt"
0
- 1= [ 1TRyp(e) mp(enyae
0

Similarly for fD H
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Theorem 5. Under assumptions 1-4,
E(T,).
(1) Ay = BT
av  E(Ty)+E(T,

- E(TD)

Aav = E(T)%E T
(11) f, - E(T)) = A,

fy + E(T

Proof (i) From Theorem 3, we have

T
i
E(T,) Joo Lmy(t)dt
BT~ T
[RELACBUAGE

T0
J j_TgU(t)dt
0
T
0
f Tn(t)at

(i1) The results are immediate by comparing eqs. (87), (89), and

(75). u

It is reasonable to define the 1imiting average failure rate

AUD to be
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T Prix(t+at)ED|x(t)eu)
I 1im X 1 dt

.1
Aimn A Tim =
b = T o At»ot

T

It can be shown that

T

T
A= _]_I o 1 Rou(t) Eu(t)
uD TO o

T dt
11U(t)

On the other hand,

T ;
Jo 1 m(t)dt

E(Tu) =7
0
[ Trpyeimy(erat

Hence in general AUD # ET%UT » i.e., the Timiting average failure

rate is not equal to the reciprocal of the limiting expected up-time

as in the case with constant transition rates.

4. CONCLUSIONS

In this paper we have defined several limiting reliability

indices of a continuous-time Markov Chain with periodic transition

rates. Explicit expressions for the limiting distributions of up-time,

down-time and cycle-time, and the 1limiting expected up-time, down-time,

and cycle-time, as well as the limiting average availability and the

limiting expected frequency of entering up-states, down-states are

derived.

The results are generalizations to stationary Markov Chains [4].

Analogous relations among availability, expected up-time, down-time,

frequency and duration as in the renewal theory are shown to be true.

However, in this more general case the limiting average failure rate

is no longer equal to the reciprocal of the 1imiting expected up-time.
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