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ABSTRACT

Systems modeled as continuous-time finite-state Markov chains with

periodic transition rates are considered. The system states are parti

tioned into the set of up-states and the set of down-states. The prob

ability distributions of remaining in up-states and in down-states are

derived. The limiting distributions of up-time, down-time and cycle-

time, and the limiting expected up-time, down-time, and cycle-time, as

well as the limiting average availability and the limiting expected

frequency of entering down-states are derived. Some analogous relations

are shown to be true as in Renewal Theory.
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1. INTRODUCTION

Consider a complex system consists of r repairable components that

are either in operation or in repair, there are altogether n=2r system

states. The state transition in the system is modeled as a continuous-

time finite-state Markov chain. We consider the case where the state

transition rates are periodic. The model arises in our study of inter

connected electric power network security assessment and reliability

analysis, where the transition rates involve load demands that are

periodic functions of time [1].

For some of the system states, the system is considered functioning

or operational, we call them the set of up-states and denoted by U. For

the remaining of the system states, the system is considered failure, we

call them the set of down-states and denoted by D. For reliability

analysis we are interested in the time during which the system remains

in up-states if presently it is in U or the time during which the system

remains in down-states if presently it is in D. In this paper we first

derive the probability distributions of these up-time and down-time for

general nonstationary continuous-time finite-state Markov chains. We

then derive the limiting distributions of up-time, down-time, and cycle-time, and

the limiting expected up-time, down-time, and.cycle-time for continuous-time

finite-state Markov chains with periodic transition rates. Furthermore

we derive the limiting average probability that the system is in an up

state, and the limiting expected frequency of entering down-states. We

show that some analogous relations hold as in Renewal Theory.

Some reliability models in the form of continuous-time finite-state

Markov chains with constant transition rates are studied in [2, Ch. 7].

The time to failure distributions for such systems starting from all the
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components up are derived in [3]. A simple derivation is presented in [4]

2. UP-TIME AND DOWN-TIME DISTRIBUTIONS OF NONSTATIONARY CONTINUOUS-TIME

MARKOV CHAINS

Consider a continuous-time finite-state Markov chain x(t) with n

states denoted by l,2,...n. We make the following assumptions

Assumption 1. For all i^j, and At>0,

Pr{x(t+At)=j|x(t)=i} = X,.(t)At + o(At) (1)
"* ** *j

Assumption 2.

Pr{The number of transitions in [t,t+At] >_ 2} = o(At) (2)

We are concerned with reliability analysis of complex systems modeled

as continuous-time finite-state Markov chains. For example, for a system

of r repairable components that are either in operation or in repair,

there are altogether n=2r states of the system. The system is functional

for some of these states, called up-states, and is considered failure for

the remaining states, called down-states. Let U={l,2,...m} denote the

set of up-states and D={m+l,...n} the set of down-states.

Initially at time tQ we have the probability distribution of the

states that the system resides on,

P,(t ) = Pr{x(t.) = i} i = 1,2,...n (3)
• o o

Suppose that given x(tj£U the probability distribution of states at t(

is denoted by

+ o (At)
The little-oh notation represents a term such that lim jk ' = 0.

At +O *z
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u.(t0) - Pr{x(t0)-1|x(t0)€U} i - 1,2,...m (4)

Similarly given x(t )eD we define

d.(t0) = Pr{x(t0) =i|x(tQ)eD} i =m+l,...n (5)

We will use £(tQ), u.(tQ) and d(tQ) to denote the vectors whose components

are P^), u..(t0) and d..(t0), respectively.

Suppose that at time t the system is in an up-state x(t )GU, we

are interested in the duration that the system remains in up-states, i.e.,

the time to failure. More precisely we define, given that at t x(t )eu,

the up-time to be

A , ,Ty =Ty such that x(t)eu for te[tQ,t() +Tu)

and x(t0 +Tu)eD

To simplify notation we shall write x[t0,t0 +Tij) CU to represent x(t)€U

for te^.^+Ty). Similarly if at tQ x(tQ)eD we define the down-time,

or the time to repair, to be

TD =TD such that x[t0,t0 +TD) CD, x(tQ +TD)eU

The up-time Ty and the down-time TQ are random variables. We are

interested in finding the probability distributions of up-time F,,(t,t )

and down-time Fp(t,t ), viz.

Fu(t,t0) = PrCTy >t|x(t0)eu, u(tQ)} (6)

FD(t,tQ) = Pr{TD >t|x(t0)€D, d(tQ)} (7)

Clearly we have

Fu(t,t0) =Pr{x[t0,t0+t]cu|x(t0)€U, u(tQ)}
m

= I PKx(t+t)=i,x[t ,t+t]cu|x(t )eu,u(t )} (8)
i=l ~ "
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FD(t.t0) =Pr{x[t0,t0+t]CD|x(t0)6D, d(t0)}
n

= J ,Pr^(t+t)=i, x[t ,t+t]CD|x(tJSD, d(tj} (9)
i=m+l ~ ~ "

Let us define

UjdO =Pr{x(t)=i, x[t0,t]cu|x(t0)€U, u(tQ)}

d^t) =Pr{x(t)=i, x[t0,t]CD|x(t0)SD, d(tQ)}

(10)

Hence

F|i(t.t„) = lTu(t+tn)
- -.T

A n
X,,(t) = - I X..(t)

j=l J

(12)

FD(t.t0) =V d(t+tQ) (13)
T

where V is a row vector whose elements are all 1. The dimension of X

is clear from the context.

We further define

(14)

Let R(t) be the nxn matrix whose ij-th element is A..(t). We partition

the matrix R(t) into submatrices corresponding to the sets U and D,

R(t) = RUU(t) RUD(t)
RDU(t) RDD(t)

(15)

where Riiy(t) is mxm, and Rnn(t) is (n-m)x(n-m).

Theorem 1 below states that the probability distributions of up

time Fy(t,t )and down-time FD(t,tQ) can be obtained from the solution of

a differential equation.
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Theorem 1. Under assumptions 1 and 2,

(i) for a given initial distribution £(t ), we have

d£(t)
-at—= *(t) £.(*) (16)

(ii) given that x(tQ) eU and u.(t ), we have

du(t)
Tt- = Ruy(t) u(t) (17)

and F^t,^) =lTu.(t+t0) (18)

(iii) given that x(tQ)€D and d.(tQ), we have

dd(t)
-dt~ = RDD(t)d(t) (19)

and FD(t,tQ) =l_Td(t+t0) (20)

Proof. The derivation of (i) is standard for Markov chains 05, p. 842].

(iii) is similar to (ii). Thus we prove (ii) only.

u^t+At) =Pr{x(t+At)=i,x[tQ,t+At]cu|x(t0)eU; u(t )} (21)
m

= I Pr{x(t+At)=i,x[t,t+At]cu|x(t)=j,x[tn,t]cu; x(tn) eu,j_-| ~ o - o

u(t0)} Pr{x(t)=j,x[t0,t]cu|x(t)eu, u(tn)} (22)

= I Pr{x(t+At)=i, x[t,t+At]CU|x(t)=j}ui(t) (23)
j=l ~ J

m oo

= 11 Pr{x(t+At)=i, x[t,t+At]CU, # of transition in
j=l £=1 ~

[t,t+At] =A|x(t)=j}Uj(t) (24)
m

= I Pr{x(t+At)=i, x[t,t+At]cu, # of transition in

[t,t+At] =l|x(t)=j}uj(t)
+ Pr{x(t+At)=i, x[t,t+At]cu, # of transition in

[t,t+At] =0|x(t)=i}ui(t)

+ o(At) (by Ass. 2) (25)
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Since nx(t+At)=i, x(t)=j, l<i,j<m, and # of transitions in

[t,t+At] =l"=>,,x[t,t+At]CUn and "x(t+At)=i, x(t)=i, l<i<m, # of

transitions in [t,t+At] =0"=»"x[t,t+At]cu." So,

m

u.(t+At) = 7 [X..(t)At +o(At)]u.(t)
1 j?i J1 J

+ (l+Xii(t)At+ o(At))u1(t)+ o(At) (26)

^Ht ^-(t) = Ruu(t)^-(t) (27)
n

3. CONTINUOUS-TIME MARKOV CHAINS WITH PERIODIC TRANSITION RATES

We now consider continuous-time finite-state Markov chains with

periodic transition rates. We make the following assumption

Assumption 3. The elements of R(t) are periodic with period TQ. The

limiting solution of

d£(t) •
-gt— =R(t)£(t) (28)

exists and is unique. This limiting distribution is denoted by £ (t).

Lemma 1 Under assumptions 1-3, £(t) is also periodic with the same

period T .

Proof. Since R(t) is periodic with period TQ, the state transition

matrix of (28) may be written as [6, pp. 126]

*(t,tQ) =Q(t,tQ) exp[(t-tQ)B] (29)

where Bis aconstant matrix =i- In $(t0+T0,t0), and the matrix valued
o

function t->Q(t,tQ) is periodic with period TQ, i.e. Q(t+TQ,t0) =Q(t,tQ)
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We first show that 1 is a left eigenvalue which implies that 1 is

also a right eigenvalue of *(t+T »t ). Note that

lTR(t) =0 Vt (30)

- iT ft •(t»t0> =i^twt'V =£ (31)
"* lT*(t,t0) -lT$(t0,t0) =l1-! =1T (32)

=> 1 is an eigenvalue of *(t+T »t ) (33)

=> 0 is an eigenvalue of B (34)

Let v, be the right eigenvector of B corresponding to the eigenvalue

0. By Ass. 3, the limiting distribution n(t) is unique.

A (t-tj
2L(t) =♦(t,t0)v -Q(t,tQ) e ° v (35)

• Q(t,t0)v (36)

Wt+VV =Q(t'to) {37)
=>7L(t+Tn) = Tr(t) (38)

The system state resides alternatively in U and D. However the

resulting process is not an alternating renewal process because the up

time (down-time) distributions are not identical. In the following sec

tions, we derive the limiting distributions and expected values of up

time, down-time and cycle-time, and compare the results with Renewal

Theory.

3.1 Limiting Distributions of Up-Time, Down-Time and Cycle-Time

Suppose that we look at time t, ahead. Let Ty(t,) be the first

full up-time duration after t-.. To be more precise, if t' is the first

transition from D to U after t-,, Ty(t-j) is defined to be the time such

that
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x(f- )SD,x[t,,t,+Tu(t1))CUf and xft'+Ty^)) GD

The limiting distribution of up-time Fy(t) is defined to be
A

Fy(t) = lim Pr{Tu(t1)>t} (39)
t, -»-«>

= lim PrJxrt' t'+tlcu *' 1s the first transition! Un)t "• I- from Dt0 Uafter t} J (40}

Similarly, we define the limiting distribution of down-time FD(t) to be

FD(t) = lim Pr{TD(t1)>t} (41)
t-i -*00

= lim PrJxrt'.f+tlCD t' 1s the f1rst transition! U2)
t -Too T from ut0 Dafter *i J

Let Tc(t.j) denote the first complete cycle after t, that starts from U,

i.e., if t' is the first transition from D to U after t,, then

x(f- )€D, x[t',t'+t2)cu, xCt'+tg.t'+T^t^CD

and x(t*+Tc(t.,))eu

The limiting distribution of cycle-time Fc(t) is defined to be

Fc(t) = lim Pr{Tc(t1)>t} (43)
t-i -*-00

Theorem 2 below gives explicit expressions for the limiting distri

butions of up-time, down-time, and cycle-time. We first introduce some

notations. The vector ^(t) is partioned into n(t) = (;nj.(t)sTrn(t)). The

state transition matrix of Ryy(t) from t' to t is denoted by $y(t,t'),

i.e., $y(t,t') satisfies

!^ $y(t,t») =RyyUHytt.t'K^f.f) «I (44)

The state transition matrix of RDD(t) from t' to t is denoted by

*D(t,t').
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Theorem 2. Under assumptions 1-3,
T

(1) Fu(t)=l f l^yU+t'.t'jRy^t'^ft'Jdt' (45)
°Towhere K=J^RypttJiEjjftJdt (46)

0

To

K J0
(ii) FD(t) ""TF { l^oU+t'.fjRp^t'Jijjtt'Jdt' (47)

Towhere K* =j lTRDy(t)Try(t)dt (48)

(iii) K* =K (49)

TQ t
(iv) Fc(t) =Fy(t) +1J | ir$D(t+t,,t,+x)RDU(t,+x)$y(t,+x,t')

RUD(f ^(t'Jdxdf (50)

Proof.

(i) Let t-j->-oo be represented by a sequence t-. =£T ,£= 1,2,... . Hence

t, •»• »=>&-*-«>. Let N. be the random variable such that the interval

^Vq^'V'UTq) contains tne first transition from D to U after

t|. Note that t^ <(N^+1)TQ almost surely, i.e., N„ >, l.

It follows from Eq. (40) that

rx ' o m

Fu(t) = lim I I Pr{Tn>t|x(t'H,x(f )eu,
u A+co j>z JjT 1=1 u

xtt'-JSD.N^j}

.Pr{x(t,)=i|x(t'-)eD,x(t,)eu,NJl=j}

.PrWt'-JeD.xtt'JeulN^jldt'-PriN^J}

(51)
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Note that the conditional probability density to make a first transition

from Dto Uat tis proportional to i^pU^t) where j^(t) =-
(£u(t)>£D(t)), i.e.,

Pr{x(t-)€D,x(t)eu|MA=j} =̂ jj if^D^Wl,
a'T0 <t< (j+l)T0 (52)

We use the following fact to find the proportion factor K(j).

D fa transition from Dto U «-4I - i
^occurs during [jT0,(j+l)T0) ftt"JJ" '
U+DT0

Pr{x(t-)eD,x(t)eu|N(,=j}dt (53)
JjTQ

HenCe (J+1)T0
Ui) = J. lTRUD(t)£0(t)dt (54)

jTo

Note that

Pr{Ty>t|x(t')=i, x(t,)€U,x(t,-)€D,Njl=j}

= Pr{x(t,,t,+t]cu|x(t,)=i,x(t,)eu} (55)

=lT$..(t+t,,t,)e.j (e^ standard vector)

The last equality follows from Theorem 1. The other term in (51)

may be expressed as,

Pr{x(t*)=i|x(t,-)eD,x(t,)GU,NJl=j}

= Pr{x(t,)=i|x(t,-)eD,x(t')eu>

ir*UD(t''-,*B(t,)
Substituting (52) (55) (56) into (51), we obtain
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(J+1)T0
Fu(t) =1im J mr J. ivw.t'jR^tf^(f )«:•

•PHN^j} (57)

where K(j) is defined on (54).

Let us consider K(j). We are going to show that K(j)->-K. First

we claim that

•u(t4VW =V^V for * to»t (58)

0

ft Vt+T0»W =Ruu(t+T0)*u(t+T0,t0+T)

= Ruu^Vt+W1*

The claim (58) follows from the uniqueness of solution to the

differential equation.

On the other hand, by definition of limiting distribution, we

have

£(t) = ir(t) + 0(t), where 0(t) *-0 (59)
t-*-<»

Thus,

(J+1)TQ
K(J) =J. iXottJBpftJdt

jTo

r(j+1)T°T•J. rRUD(t)(2r0(t)+0(t))dt
J o

rT° trRUD(x+jT0)irD(x+jT0)dx +0(jTQ)

r'o T=j rRUD(x)ir0(x)dx +0(jTQ)
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lim K(j) = K
j-J-00

Next we consider the numerator of (57),

r(d+1)T° tJ. ftutW'.t'lRuplt'ljjIt'ldt

(60)

(61)

=f°1*U(t+x+jT0,X+jT0)RUD(x+jT0)fi0(x+jT0)dx (62)
0 T0

Note that since X..(t) >0, i?j. jlTRUD(x)ir0(x)dx> 0, implies

m =_i6ij_=i6ii +0( ,
KU' K+5riT ) K °K+0(jTQ)

Substituting (60), (62) and (63) into (57), it becomes

T.

(63)

Fy(t) = lim I
Jo jr^y(t+x>x)RyD(x)T[D(x)dx _

OUTJ Pr{N£=j}

= lim i
3>i

f° T-J r$y(t+x,x)RUD(x)Tr0(x)dx
• Pr{N£=j} + o(u0)

= lim
1 + 0°

j°l\(t+x,x)RyD(x)Ir0(x)dx
I Pr{N =j} +0(ZT)

,To
lT$u(t+x,x)RyD(x)T[0(x)dx

where we use the fact that £ Pr{N0=j} = 1.

(ii) Similar to (i).

(iii) By definition, we have l_R(t) = 0_, i.e.,

An.U) +A^nU) =0 ¥t
VUU DU1

Now consider

-13-
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K-K = { l^RyDWlnU) -RDy(t)TTy(t))dt

rT° t=J KRyQftJioftJ +RyyftjTTyftJJdt (by substituting (65))
TQ

=j 1T gt Iy(t)-dt (by definition)

•l^SutV-iEyfO))

which is 0 as a consequence of lemma 1.

(iv) Let us use the same notations as in the proof of (i)

Fr(t) = lim I Pr{Tr>t|Np=j} Pr{N=j}

(J+DT
o m

= lim I I Pr{Tc>t|x(t')=i,x(t,-)eD,x(t,)eu}
Ji + co 3>IJ jT i=l

Pr{x(f)=i|x(t,-)€D,x(t,)eu}

• PrCxU'-JeD.xU^eulN^jldt1 . PKN^j}

(66)

Pr{Tr>t|x(t')=i, x(t'-)€D,x(t')^U}

ft
Pr{x[t',t,+x)GU,x[t,+x,t,+t]CD|x(t,)=i,x(t,-)€D,x(t,)€U}dx

JO - • ~ ~

+ Pr{Tu>t|x(t')=i,x(t,-)e D,x(t')eU} (67)

Substitute (67) into (66), manipulate term Pr{Ty>t|...} as in(i),we get

Fc(t)-Fu(t) +I1m I
5,-j-co j>jt J

(j+l)Tn m .
r o m ft

JT,

in f}

i=l J(

Pr{x[t,,t,+x)cu,x[t'+x,t'+t]CD|

(Ut'klt'j),
x(t')=i,x(t,-)eD,x(t')eu} uu v,7\ — dxdt'

TOT

Pr{NA=j}

-14-
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Now

Pr{x[t,,t,+x)cu,x[t,+x>t,+t]CD|x(t,H,x(t,-)6D,x(t,)eu}

n

I Pr{x[t,+x,t,+t]CD|x[t,,t,+x)cu,x(t»+x).=i1,x(t,+x)eD,
i,=m+l ~ " ~ ~

_x(t,-)€D,x(t,)€U,- xlt'Hl

PrWf+xH^xftt'+xJ-Jeu.xU'^jeD, x[f .t'+x)cu,x(t')»1}

Pr{x(t'+x) eD,x[f ,t'+x) cu, Ixft'Mixtf-) eD.x(t') eu}

I iTfb(t-n.t'̂ ..(Vt';x)Vt,^t')^)<i'
V"*1 i iRDU(t,+x)*u(t'+x.t')ei

where we have used Therem 1. But

ax-lV*'****') lTRuu(t'+x)$u(t,+x,t')
-irRDU(t,+x)#,l(t,+x,t')

Hence (69) becomes

l^t'+tjt'+xjR^t'+xJ^t'+x.t1)^

Substituting (69) (70) into (68), we get

Fr(t) =F..(t) +lim 7 1 ( T° f* T ,.c u t*-j>tunrJJT jor*D(t'n,f+x)
RDU(t,+x)*u(t'+x)t')RUD(t')£0(t') dxdt'-PKHj-J}

(71)

"Ftj(t) +llm= ill WC /„ iV^'V^V^Du^^"^^j>4 0 J0

(69)

(70)

*u(f+jT0+x,t'+jT0)RUD(t'+jT0)[iIo(t'+jT0)+0(t'+jT0)]

dxdt' • Pr{Nz=j}
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To rt=̂ (tJ+^j | ir*D(t+t,9t,+x)RDU(t,+x)$u(t,+x,t,)RyD(t,)Ir0(f)
dxdt' n

3.2 Limiting Expected Up-Time, Down-Time, and Cycle-Time

The limiting expected up-time E(Ty) is defined to be

E(Ty) = lim E(lu(t})) (72)
t-i •*<»

The limiting expected down-time E(TD) and the limiting expected cycle-

time E(TC) are defined to be

E(TD) = lim Edjjtt,)) (73)
t-i -*-00

E(TC) = lim Edgtt,)) (74)
t-i -*"00

Theorem 3 below gives explicit expressions for the limiting expected

up-time, down-time, and cycle-time.

Theorem 3. Under assumptions 1-3, we have

f ° lj^ttjdt
E(V • -7T—:

J 1"uott^ttjdt
(75)

T„
f ° Ti'loftjdt

E(T„) =-iS (76)
0

Proof.

{ iXyftJlyftJdt
0

E(TC) =E(lu) +E(TD) (77)

(i) We are going to show first that
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E(Ty) =J" Fy(t)dt (78)

Let FJ(t) =Pr{Ty(iTQ)>t}

then E(Ty(iT0)) =pFj(t)dt
J0

and E(TM) =lim l°°?Ut)dt
u i+« JO u

Since Fy(t) is nonnegative measureable function, if we allow »as a

limit then, by Fubini's Theorem [7, p. 355], {F?.} is a sequence of

integrable functions, and by (64) Fj(t) also converges pointwise to
Fy(t). Furthermore |Fy|<J Vi, hence by Dominated Convergence

Theorem [7, p. 331], Fy(t) is integrable. And

00 ,-!F„(t)dt = lim F'(t)dt = E(TM)
u i+« )q u u

Next we are going to show that

\ 0lTIy(t)dt
oFy(t)dt =-q

|o ^(t^ftjdt
ToE(Ty) =J'FyUJdt =jf° \ ^(t+t'.t^Ry^t'̂ U'Jdfdt

With the change of variables z= t+t', t' = t', the corresponding change

in the domain of integration can be easily seen as in Fig. 1.

r O rZ

l^z.t'jRy^t'^Odt'dzE<V • i Z=0 J

4
fCO f 0

z=T

° l^z.t'jRy^t'^t'Jdt'dz (79)
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0 T, t'

Fig. 1. The domain of integration after change of
variables z = t+t', t'=t'.

On the other hand,

Iy(f) = RyytfiTryft-J+Ry^f)^^')

RyoU'^f) =^(fJ-RyyU-jTryft')

Furthermore

(80)

afrVz't,)^j(t,)

=C3tr$U(z't,)]:![U(t,) +$U(Zst,)^U(t,)

=-$y(z,t,)RUy(t,)^^y(t,) +$y(z,t,)iy(t,) (81)

(80) and (81) give

SyU.fjRy^t'jTr^t') =gfr $y(z,t,)Tru(t')

Substituting (82) into (79) and integrating over t', we have

TQ TQ
E(Ty) =1|z=o lTiy(z)dz -1(z=o lT$y(z,0)Try(0)dz

i=T^ J z=T«

(82)

+ K

1f°iVzJdz +1ri\U-TQ)2ufTo,dzK
0

"V^Z.OjTTyWd

-18-



But f l\(z.VWdz
0

=IolT*u(z'+To»To>2u(Vd2'
» 00

=jl^tz'.OjT^tOjdz'

Hence we arrive at the result

TQ
E(Tu) -\ \ lTZEy(z)dz

Similarly for E(TQ).

(ii) The proof that E(TC) = Fc(t)dt is the same as in (i).

Applying the result of Theorem 2, we have

foFc(t)dt =/oFu(t)dt +ifo Co to -*»{t+Vst'+x)
RDU(t,+x)$y(t,+x,t,)RyD(t')Tr0(t,)dxdt,dt

With the change of variables t = t-x, x = x. (Since the integrand is a

nonnegative measurable function the interchange of order of integration

is justified by the Fubini Theorem.)

Fig. 2. The change in the domain of integration as a
result of the change of variables r = t-x, x = x-

-19-



oo . 0 /• °°

o Jo jo

RUD(t,)^D(t,)dxdt,dT

Interchange the order of integration dxdt'-^dt'dx, and with another change

of variables z = x+t', t'=t'.

E(Tc)=E(Tu)+I}oM }z°o ^i=oir$D(t+z,z)RD(J(z)*u(z,f)RUD(f)2r0(t')

E(TC) =E(T,j) +{• J| JI^T+t'+x.t'+xjR^ft'+xJ^^f+x.t')

dt'dz dt

i\o Ct C0lT*D(t+z'z)RDu(z)*u(z't,)RUD(t')Io(t,
u-- 0

Similarly as in the proof of (i)

T

dfdz dt

E(TC) =E(Ty) +1 J11 lT$D(t+z,z)RDU(z)[$u(z,z)Iru(z)-$u(z,0)TTu(0)]dz

+{ l^pU+z.zjRpyfzJ^tz.^Jiry^J-OyCz.OjTr^OjJdz1dt
Z=J° TQ

"E<V4£{ |z°0 lVt+z'z'RDU(z)*U(z>dz
f 00

+J lT«D(t+z.z)RDU(z)»u(z,T0)iru(T0)dz
o

"{ ir*D(t+z,z)RDU(z)*u(z,0)Tru(0)dzldt
But [ ir*D(t+z,z)RDU(z)«u(z,T0)iru(T0)dz

='" lVt+z+Vz+VRDU(z+VVz+VV^(Vdz
f °° Tr$D(t+z,z)RDU(z)$y(z,0)7ry(0)dz
z=0
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To-E(TC) -E(Ty) +jr J" fz=o l\(t4z.z)R0U(z)Su(z)dz

=E(Tu)+ K* f0" f^lV^'2^1^2^
=E(Ty) + f FQ(t)dt (by Theorem 2)

=E(Ty) + E(TD)

3.3 Limiting Average Availability, Limiting Expected Frequency and

Duration

The availability at time t, A(t), is defined to be the probability

that the system is in an up-state at time t, i.e.,

A(t) = Pr{x(t)€U} (83)

The limiting average availability A is defined to be
av

A 1
Aav = I™ T

fT
A(t)dt (84)

T->oo l Jo

The unavailability at t, A(t), and the limiting average unavailability

Aaw are similarly defined,
av

The system resides alternatively in U and D. Let Ny(t) denote the

number of transitions into U in the time period [0,t]. We define the

limiting expected frequency of entering up-states U, fy, to be

A N„(t)
fj lim E J1_L (85)
U t+» t

Similarly NQ(t) denotes the number of transitions into down-states D in

[0,t] and the limiting expected frequency of entering down-states D is

* ± 14m C Nn(t)fD = lim E_&L± (86)
t+oo t
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Assumption 4.

E[Ny(t)]<« and E[ND(t)] <«> for any t<•;

Theorem 4 below gives explicit expressions for the limiting average

availability, and limiting expected frequency. Theorem 5 below presents

some relationships among various limiting expected quantities, similar

to the ones in Renewal Theory.

Theorem 4. Under Assumptions 1-4,

To(D Aav -j- |o l^ftjdt
TQ

Aav -t f l^Wdt
o J0

T

(1i) fU =f | iXoft^tJdt
o J0

T

fD =f L lTRou(t)su(t)dt
o JO

Proof,

(1) A.v - lim I f A(t)dt
av T->oo ' Jo

=lim 1 | lT£y(t)dt (Pr{x(t)eu> =lT£y(t))

=4" lim F I
!o k +~ i=0

k-1 /i+1>T<
iT

lT£y(t)dt

.(1+DT
r ° t r ° t

Since 1 £y(t)dt •+ riy(t)dt
o

fT° Tl2E,,(t)dt
0 "°

1

Aav=T0 j

-22-

as !-»-<» ,

(87)

(88)

(89)

(90)



Similarly for A,w.
av

„ t(ii) Let us divide t into ksubintervals, Ata|. Then,

ENy(t) = E[Ny(t)-Ny(t-At) +Nu(t-At)-Ny(t-2At) +....-Ny(0ll

k-1

= I E[Ny((i+l)At)-Nu(iAt)]
1=0 u u

By assumptions 2 and 4,

E[Ny((i+l)At)-Ny(iAt)]

= PKthere is a transition into up-state in [iAt, (i+l)At]> + o(At)

=lTRUD(iAt) P^iAtjAt +o(At)

Therefore

k-1 T
ENy(t) = J 1 RUD(iAt) PD(iAt) t +k o(At)

Let k •*• «> (i.e., At •*• 0), we have .

So,

ENu (t) =| i7RUD(t,)jPD(t,)dt'

ENu(t)f(j.^__

TQ
=T"[ lTRuD(t')lo(t')dt'

o Jo

Similarly for fD
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Theorem 5. Under assumptions 1-4,

E(Ty)
(i) Aav " E(Ty)+E(TD)

av

E(Tp)
E(T,j)+E(TD)

(ii) f„ •E(T0) =Aav

fD *E<V =Aav

Proof (i) From Theorem 3, we have

(°̂ (tjdt
I*V = ,To| TTTru(t)+lTir0(t)dt

f° T1 lyftjdt

Il(t)dt
o

[ lTIy(t)dt
- Jq

= A
Mav

(ii) The results are immediate by comparing eqs. (87), (89), and

(75). h

It is reasonable to define the limiting average failure rate

Xynj to be

-24-



, rT Pr{x(t+4t)eo|x(t)€U}
XUD Alim T [lim — ^ ] dt

T-*» Jo At->o+

It can be shown that

! fTo lTRDU(t) ITy(t)

On the other hand,

T_

iTIy(t)

[ lTly(t)dt
E(Ty) =-J°

o

0

Hence in general AyD f eTTuT * i'e«> the limiting average failure

rate is not equal to the reciprocal of the limiting expected up-time

as in the case with constant transition rates.

4. CONCLUSIONS

In this paper we have defined several limiting reliability

indices of a continuous-time Markov Chain with periodic transition

rates. Explicit expressions for the limiting distributions of up-time,

down-time and cycle-time, and the limiting expected up-time, down-time,

and cycle-time, as well as the limiting average availability and the

limiting expected frequency of entering up-states, down-states are

derived.

The results are generalizations to stationary Markov Chains [4].

Analogous relations among availability, expected up-time, down-time,

frequency and duration as in the renewal theory are shown to be true.

However, in this more general case the limiting average failure rate

is no longer equal to the reciprocal of the limiting expected up-time.

-25-
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