Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

CHARACTERIZATION AND REPRODUCTION
OF THE REFERENCING DYNAMICS OF PROGRAMS

by

Domenico Ferrari

Memorandum No. UCB/ERL M81/22
22 April 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Characterization and Reproduction of the Referencing
Dynamics of Programs*

Domenico Ferrari

Computer Science Division
and the Electronics Research Laboratory
University of California, Berkeley

ABSTRACT

A model of dynamic program behavior based on the patterns
of pace arrival into and departure from a program's workire set is
proposed. This characterization is equivalent to one based on the
time behavior of working set size and on the occurrence times of
those page arrivals which do not change the working set size since
they are accompanied by page departures. The model has intuitive
appeal and several interesting properties. The possibility of gen-
erating strings which will obey a given characterization is one of
the most important such properties. An algorithm is described
which may be used to generate these reference strings, and neces-
sary and sufficient conditions under which the algorithm can suc-
cessfully complete its task are given.

1. Introduction

Since the beginning of the history of virtual memory systems, the referenc-
ing behavior of programs has been recognized as one of the factors having a sub-
stantial influence on the performance of these systems. Because of its impor-
tance, a great deal of program behavior modeling and measurement work has
been performed. Most of the work has been done with the ultimate objective of
designing or improving memory management policies [1], but even the compie-
mentary approach consisting of improving the performance of programs in a vir-
tual memory environment has received considerable attention [2].

In spite of all the eflorts made so far, a viable approach to the characteriza-
tion of the dynamic behavior of a program has not been proposed yet. At one
extreme, we have a complete characterization, namely, the reference string
generated by the program when processing a given set of input data (in this
paper, by "behavior of a program"” we shall always refer to the behavior of a
program-input pair). The reference string (i.e., the sequence of addresses
issued by the CPU during the program'’s execution) contains complete referenc-
ing dynamics information but is excessively long for most purposes, hard to
classify and compare to other strings, inflexible (i.e., hard to modify in a con-
trolled manner), and input-data dependent in unknown ways. At the opposite
extreme, we find program behavior models whose dynamics either is totally
unrelated to that of the original string (e.g., the Independent Reference Model

* The work reported here has been supported in part by the Computer Systems Design
Program of the National Science Foundation under grant MCS-7824618. :

-2.

[3]) or cannot be easily related to it (e.g., the two-level Markov-LRU Stack Model
described in [4]).

The work reported in this paper may be seen as an attempt at bridging the
gap between the two extremes just described. Ideally, the dynamic behavior of
a program should be characterized by an amount of information substantially
smaller than that contained in a reference string. This information should be
easy to use for the purpose of classifying programs according to their dynamic
behavior, hence to their expected performance in a given virtual memory
environment. Furthermore, the program behavior model should be usable to
generate artificial reference strings with approximately the same dynamic
behavior as the modeled program; this behavior should be easily modifiable for
use in sensitivity studies. Finally, the characterization should be based on quan-
tities having a physical meaning, so that their values may be estimated from
descriptions of the program or even of the algorithms implemented by the pro-
gram. For some programs, the modifications of the values of these quantities
could be derived from the knowledge of the input data variations or of the
changes to be made to the code. '

The ability to reproduce a certain dynamic behavior by generating an
artificial reference string which has a given characterization is quite useful in
most applications of trace-driven simulation to the study of memory policies
and program behavior. An artificial string is generally less expensive to pro-
cure, more easily modifiable in a controlled way, and less space-consuming than
a real address trace. The last characteristic comes from the fact that in most
cases an artificial string does not have to be stored between consecutive
instances of its use, but can be produced by the generating program and pro-
cessed on the fly every time it is needed. Furthermore, an artificial string can
be designed and implemented according to given specifications (e.g., 2 charac-
terization of its dynamics), thereby allowing one to perform completely con-
trolled simulation experiments, which cannot be performed with a real string
because of its lack of flexibility.

Section 2 discusses these problems and proposes a dynamic behavior char-
acterization which exhibits to some extent all the ideal properties listed above.
The context in which the discussion is held throughout this paper is that of a
paged virtual memory. Even though the proposed characterization is based on
the working set model [5], its use should not be confined to virtual memories
managed by working-set-like policies. However, the conditions under which it
retains its accuracy and other properties in different memory management
environments are still to be investigated. An algorithm which produces an
artificial reference string with a given dynamic behavior (characterized as
described in Section 2) is illustrated in Section 3. The main properties of the
algorithm and the most important research questions which remain to be
answered are discussed in Section 4.

2. Characterizing Program Referencing Dynamics

Two of the aspects of an address trace that are most relevant in a paged
virtual memory environment are the following:

(a) references to information items belonging to the same page cannot be
distinguished by the memory manager and therefore always have the same
effect on program and system performance;

(b) references to pages which, because of the amount of memory space
allotted to the program and of the memory policy adopted in the system,
tend to be in memory at the time they are referenced usually have a
beneficial impact on performance, whereas references to pages which tend

-3-

to be out of memory have a negative influence.

Statement (a) authorizes us to deal with page reference strings rather than
with address traces, guaranteeing that this will not have any impact on the accu-
racy of the results. Statement (b) refers to the strong relationship existing
between program locality [8] and virtual memory performance. Thus, a charac-
terization of program dynamics which allowed us to specify "how local” the
behavior of the program is at any given time (or during any given interval) of its
execution would be quite meaningful and useful in practice. A policy-
independent characterization of this type could be based on page inter-
reference times [3]. However, to be specified, the sequence of inter-reference
times requires as much information as the string it intends to characterize, and
the alternative model consisting of the distribution (or distributions) of such
times does not lend itself well to the representation of referencing dynamics, as
is usually the case when time is not explicitly represented in a model. Further-
more, the latter characterization cannot be easily used to generate artificial
strings with the desired properties (in this case, with a given distribution of
inter-reference times).

Among the policy-oriented approaches that could be proposed, one based
on the working set model [5] looks particularly attractive. The appeal of this
characterization stems from the attractiveness of that model, from the increas-
ing popularity of working-set-like policies, and from the natural and relatively
compact way in which it can represent the dynamics of programs. It should be
immediately stressed that the characterization to be presented below, though
based on the working set model and hence somehow biased towards variable-size
memory policies of the working set type, is not intended only to describe the
dynamic behavior of a program in a working set environment, but to model
those aspects of such behavior which are the most relevant ones in any virtual
memory environment. Unfortunately, however, this characterization is expected
to become less and less accurate as the actual operating conditions of the pro-
gram get farther and farther from those assumed while building the model (i.e.,
a working set policy with a given window size).

Let virtual time be measured in memory references rather than in
microseconds, and assume for simplicity that references are equally spaced on
the virtual time axis. In this discrete-time context, the working set W(¢,T) at
time ¢ with window-size 7 can be defined as the set of the pages referenced in
the closed interval (¢—T+1, t). If the reference string generated by the pro-
gram is the finite sequence r = {ry} (¢ = 1,2,...n), where r; is the name of the
page referenced at time ¢, the above definition of W(t.T) can be extended to the
interval 1<t < T assuming that, for2 - T< ¢ <0, r; is defined and is the name
of a non-existing page whose size is 0.

A natural way to represent the dynamic behavior of a program is by using
_the curve w(t,T), which shows how the size of its working set varies with virtual
time for a given window size T. Under the assumptions made in the previous
paragraph, this characterization is totally equivalent to the one based on the
string of integers w(t,T) = fw; . (¢ = 1,2,...n), which represents the consecutive
values of working set size. The objection that the amount of information string
w contains is as large as that found in the program’s reference string can be
answered by observing that the important aspects of a dynamic phenomenon
can often be captured by assigning the coordinates of a relatively small number
of points of the curves which describe it; also, in certain cases, it may be possi-
ble to specify w(t,T) by one or a few analytic expressions.

However, the knowledge of w(t,T) is not sufficient to characterize a
program's behavior for our purposes. Not all of the arrivals and the departures

-4-

of pages cause working set size variations. While an increment in the working
set size is always the result of the arrival of a new page (when running the pro-
gram with those input data and that window size in a pure working set environ-
ment, this arrival would produce a page fault), there are arrivals which do not
change the working set size. This is the case when the arrival of a new page is
accompanied by the simultaneous departure of an old page from the working
set. The above statement can be repeated for decrements in w(¢,T) and depar-
tures. Simultaneous arrivals and departures are important aspects of program
dynamics since they are found in non-local phases of a program’s execution
(inter-locality transitions), and particularly in purely sequential referencing pat-
terns. The magnitude of their presence in the reference string to be character-
ized can be specified in several alternative ways, the most compact and least
accurate one being that of assigning the mean page fault rate generated by the
program. To simplify our discussion, we shall assume that their occurrence
times are given, a situation which all the other characterizations will have to
lead to if artificial reference strings with the assigned properties are to be gen-
erated. Thus, the characterization we are proposing consists of the two finite
sequences of integers

w = fwl (t = 1.2,..n),
7 =tsy (4 = 1.2...k),

where f; is the time index at which the j-th arrival-departure event occurs. For
the sake of brevity, an arrival-departure event will be called a flat Jault in the
sequel, and the above will be called a (w.f) characterization.

Flat faults are the manifestations of purely non-local behavior. When each
reference in a long sequence causes the arrival of a new page into the working
set, the size of this set climbs to T and, since the time it reaches T. every refer-
ence generates a flat fault. This is the case of purely sequential referencing
behavior (if reference r, is to page i, reference ry,, is to page i+1forallt), as
shown in the last portion of the string in Figure 1.

Figure 1. A reference string r, its working set size string w for T=8, its fiat fault
string f (whose entries are the times marked by a dot), and its w(¢,T) curve.
Note that the references with a bar correspond to page arrivals, and the under-
lined ones to page departures.

-5-

Another type of non-local behavior, namely, random referencing, has simi-
lar characteristics but, in its pure form (i.e., when references are uniformly dis-
tributed over the program'’s virtual address space), produces less flat faults due
to the non-zero probability of referencing pages which are in the working set. A
simple but useful addition to the characterization described above would be to
specify for each flat fault whether it is sequential (i.e., caused by the page fol-
lowing the one which produced the previous flat fault) or not. Alternatively, one
might assign the percentage of sequential flat faults for the whole string or for a
number of time intervals into which the virtual lifetime of the program could be
divided. All these and other similar additions to a (w,f) characterization can be

easily accommodated by the string generation algorithm to be described in Sec-
tion 3.

What conditions are to be satisfied by a (w,f) characterization in order for
it to represent a reference string? Can w and f be assigned arbitrarily? Before
answering these questions, we must introduce the departure set D(¢,T). First,
we observe that a departure occurs at time ¢ if either

w=w -1
or

Ji=t

for some j. Second, we notice that in both cases the departing page is the one
which has been referenced at time £ = T. The departure set D(¢,T) is the set of
pages which drop out of W(¢,T) during the closed interval (¢ +1,¢£+ T -1); in
other words, it is the set of pages referenced between £ =T + 1 and ¢ which are
not referenced between ¢ and ¢ + T —1; its cardinality d; at time ¢ is equal to
the sum of the number of working set size decrements and of the number of flat
faults occurring between ¢ + 1 and ¢ + T —1 (the page referenced at time ¢ can-
not drop out of W before ¢t + T'). Note that a decrement is said to take place at
time £ +1 if wg,y=w; —1. Note also that sets # and D can be defined for ¢ < T
assurning that all references for t <0 are made to a non-existing page whose size
is 0, and which does neither arrive nor depart. ’

An answer to the previous questions can now be provided.

Theorem 1.

Given a reference string r = {r;} (¢t = 1,2,...n), and assuming that the work-
ing set of the program which has produced r is initially empty, its (w,f) charac-
terization has the following properties:

(a) w,=1;

(b) 0 < wy = min(p.T) (t = 1, 2, ..n), where p is the total number of pages
in the program;

(c)fl >0, f, >f,-‘(j =2, 3, ...k);
d) Jw, —wy_, | €1(t=2, 3,...n)
(e) wy, = Wy 1 <P =12 ..k)
(B)d; <w; (t =1, 2, ...n).

Proof. ;
(a) Since W(t,.T)= D for t <0, after the first reference, made to, say,
page g, we have ¥(1,T) = {g}, and w, = 1.

(b) The working set, by definition, can never contain more than p pages or
T pages, whichever is smaller. Also, its size must be positive at all times.

-8-

(c) The f;'s are positive time indices arranged in chronological order and
corresponding to the occurrences of flat fauits.

(d) By definition, the working set size after each reference can either
change by 1 or remain constant. All other changes are impossible.

(e) A flat fault cannot occur when the working set size is either increasing
or decreasing, or when it contains all the program’s pages.

(f) Since no page may drop out of the working set more than once during
an interval of T references, and the page referenced at time ¢ is guaranteed to
be in W (¢ + T —1,T), the maximum cardinality of D(¢.T) equals w; — 1. Q.E.D.

The inverse question now arises: Given a {(w,.f) characterization which
satisfies the conditions of Theorem 1, can one construct a reference string which
will be described by that characterization? We shall see in the next section that
this question has an affirmative answer.

3. Generating a Reference String With a Given Dynamic Behavior

An elgorithm will now be presented for obtaining a reference string having a
given (w,f) characterization. It will then be shown that, if the conditions stated
in Theorem 1 are satisfied, the algorithm completes its task successfully, and
that, if they are not satisfied, the algorithm cannot generate the entire string.

The assigned dynamic behavior can be reproduced by referencing one of
the pages not belonging to the working set whenever w or J indicate that an
arrival is to take place, and one of the pages already in the working set other-
wise. In addition, T references before the time a departure is expected to
occur, the page which has just been referenced is to be marked so that further
references to it will be prevented until its departure time. If no departure is to
take place T references from the current time t, the page just referenced will
have to be referenced again on or before time £ +7T (if it is referenced at ¢+ T for
the first time after ¢, we shall consider it as a re-referenced page rather than
viewing this as the departure and the simultaneous arrival of the same page).

In order to execute the algorithm just described, we need to know at any
time ¢ the current contents of the working set, whether an arrival must take
place at t, and whether a departure must take place at £+ 7. Also, the pages in
the working set are to be divided into two categories: the marked ones, which
cannot be referenced before they will drop out, and the unmarked ones, which
must be referenced before they drop out. It is therefore convenient to con-
struct and maintain three sets, the set of unmarked pages, to be called the can-
didate set C, the set of marked pages or forbidden set F, and the ezternal set E,
which contains all the pages not in the working set. These three sets are dis-
joint, and their union coincides with the set P of all pages. Thus,

c(¢.TYUF(t.T) = W(¢,T) =P - E(t.T).

To simplify our symbology, we shall leave the dependence of these sets on £
and T implicit and write C,F, and E whenever no ambiguity may arise.

Page r;, referenced at time ¢, will either join F or C, depending on whether
or not its departure is expected to take place at t+T. In any case, the page will
be assigned t+7T as its time index, and, when required, we shall write 7; [t+T)
if the page is added to F, the time index is the time at which it will leave F and
join E, thereby departing from the working set: if it is added to C, the time
index represents the latest possible time at which the page is to be referenced
again in order for the given dynamics to be accurately reproduced. While the
page to be referenced at time t can be chosen arbitrarily from among the
members of C (if no arrival is to occur) or of £ (if an arrival must take place), it

W

z2

K]

-7-

meay be convenient to keep the members of C ordered according to their time
indices, ie., in FIFO order, so as to minimize the probability of unwanted depar-
tures which will require repeating the string generation procedure for the last
window with different page selections. On the other band, the choice of a page
from £ does not have to satisfy any such condition and can be made according
to several criteria; for example, trying to reproduce given proportions of
sequential and random referencing behaviors (one approach would be to assign
the probability that the next external reference is to the next page, if indeed
this page is not in the working set at that time). Set F does not have to be
ordered, but the amount of searching to be performed at each reference to see
whether the current time coincides with the time index of any member of F is
minimized if F is treated as a FIFO queue.

Inputs: n. k, T, P,w, (t=1n), f; (7=1k).

Output: r(t =1,n).

Initialization

1.Ce D, Fe D, EBEecP wye0 fra1+-0,t 1,71,
2. Fori « 1, Tdowpy + wp.

Reference Selection

3. fw >w_ or fy =t thenif £= P then error, 7y « e €E, E « £ = {e]
else if C= @ then error, ry « first(C), C « C - first(C).

4. If timeindex [first (C)] = ¢ then error.

Set Updating

5. If wyyyr K Wyyr-y0r fo =t + T for somem =5 then F « Flr[t + T}
else C « Cyir(t+ T].

8. If timeindex [first (F)] = t then E « EYiSirst(F)}, F « F - {first(F)}.

Loop Control

7. Iffy=tthenj «j + 1.

B. Ift <nthent « ¢ + 1, go to 3 else stop.

Figure 2. A description of the string generation algorithm.

The algorithm discussed informally so far in this section is more formally
described in Figure 2, where we have assumed that both C and F are FIFO
queues. Note that in the figure first (@) represents the oldest member of FIFO
queue &, and the union operator | in @ Uiz ! appends page z to FIFO queue @.
Note also that, if F is empty when Step 8 is executed, the test of the time index
of its first element will have a negative result as if such element existed and its
time index were different from £. Finally, whenever the procedure "error” is
invoked, the algorithm halts, since it can no longer accurately reproduce the
given dynamics.

A sample application of the algorithm in Figure 2 is presented in Figure 3.
The given (w,f) characterization is the one of the reference string considered
in Figure 1. Step 5 of the algorithm clearly shows that, at all time instants, r; is
appended either to € or to F with time index £+T. This suggests that we can
keep track of the contents of both C and F by writing the name of each refer-
enced page on a single line (the C/F line in Figure 3) T time instants ahead, i.e.,

at the time corresponding to its time index. When the first element of C is used
as the next reference, its symbol on the C/F line is crossed out and rewritten T
instants ahead. The elements of F, whose symbols appear underlined on line
C/F in Figure 3, are crossed out and join set £ when the current time goes
beyond their position (see Step 8). The generated string r* does not, of course,
coincide with the original string r but has the same dynamic properties as
characterized by the (w,f) pair.

w 12223344434554433333456666665444

4

:':fabonzgag:?ap_faf_qf

c/F

fThred?t

133vsd
AELEAELEdRS

:
ABAE A hAhELE

Pig.3. Generation of a string r* with the sane (w,?) characterization

as string r in Fig.1 (T=6).

-

¥We can now prove that the conditions of Theorem 1 are necessary and
sufficient for the algorithm in Figure 2 to generate a reference string with an
assigned dynamic behavior.

Theorem 2.

The string generation algorithm described in Figure 2 produces a reference
string with a given (w,f) characterization if and only if this characterization
exhibits properties (a) through (f) of Theorem 1.

Proof.

(A) The conditions are necessary. Since by Theorem 1 all reference strings
bave properties (a) through (f), the given (w.f) cbaracterization must have
these properties in order for the generated string to be faithfully represented
by it.

(B) The conditions are sufficient. Let the given (w.f) characterization
exhibit properties (a) through (f). The discussion of the algorithm in the first
part of this section shows that, by construction, the algorithm generates a
string r whose behavior is characterized by the given (w.f) description. This
conclusion can also be reached by formally analyzing the reference selection
phase (Step 3) and the set updating phase (Steps 5 and 8) in Figure 2: page
arrivals are handled by referencing pages outside the working set (Step 3), page
departures by preventing the referencing of the pages expected to leave (Steps
3 and 5) and by transferring them from F to EF (i.e., out of the working set) at
the proper times (Step 8). Thus, the only case in which we cannot obtain the
desired result is when the algorithm is not allowed to terminate. There are
three error exits in the description of Figure 2.

(i) Let wy > wg_, at some time ¢. If £ were empty after the generation of
r¢-1, we would have w;_; = p, where p is the number of pages in the program.
This would require w; > p, which is impossible if condition (b) is satisfied. If on
the other hand we had f; =t for some j and some ¢, E could not be empty
since we would have w,;_; = p and condition (e) would not hold. Thus, the first
error exit in Step 3 can never be taken if the given characterization has proper-
ties (b) and (e).

(ii) Let wy<w,_, and £ # f, for all § (i.e., no page arrival at time ¢). By
definition, D(¢,T) is the set of pages leaving the working set between t+1 and
t+7T-1, and F(t-1,T) is the set of departures expected to take place between ¢
and £+ T-1. Thus, if there is a departure at time ¢t (i.e., if w; < w;_,), we have
|F(t =1.T)| =d; +1; if, on the other hand, there is no departure (i.e.,
w; =w;_,), then |F(t ~1,T)| =d;. Since ¥ = CUF, and C and F are disjoint,
we have

we = [C(E=1T)| + |F(t-1,T)|,
and, ifWg < Wy
w, <|C(t=-1,T)| +d; + 1.

It C(t - 1,T) were empty, condition (f) would not be satisfied, since we would
have w; = d;.

Let us now assume w; = w;_;. Then
wy = |C(t -LT)| +d;,

and, again, assuming |C(t —1.T)| = 0 contradicts condition (f). Thus, C can
never be empty when no arrival is to occur, and the second error exit in Step 3
will never be taken if condition (f) is satisfied. It is easy to verify, using the
above relationships, that condition (f) is necessary for C(t —=1,7) to be non-
empty in this case.

(iii) Let timeindex [first(C)] =t for some t. Then, first(C) is a page
which has been referenced at time ¢ = T and never referenced again since. Dur-
ing the interval (¢ —T+1,t) there have been, say, a page arrivals and d page
departures. Let ¢ = |C(¢t =T + 1,T)|. If timeindex [first(C)] = ¢, then the
total number T —a of references which are not page arrivals in (¢=T+1,t)
equals c-1, the number of pages in FIFO queue C which at ¢t =T preceded the one
being considered (see Step 3). From

W(it-T+1LT)=C{t-T+1LT)UF({Et-T+1T)

we obtain w¢.r.; =c + d, since the cardinality of F at £-T+1 equals the
number of departures between £ -T+1 and {. From

w—~w_pyy=a—-d=T=-c+1-d
we obtain
w=T+1,

which contradicts condition (b). When this condition is satisfied, we have
¢ £ T - a, and timeindex [first(C)] is guaranteed to be always greater than ¢
after the execution of Step 3. Thus, the third error exit in (Step 4) can never be
taken. Q.E.D.

-10-

4. Conclusions

The algorithm described in Section 3 can be used to generate a reference
string with a given (w.f) characterization of dynamic behavior provided that
the strings of integers w and f exhibit properties (a) through (f) of Theorem 1.
As can be derived from an analysis of Figure 2, the complexity of the algorithm
is low both in time and in space. Time-wise, the complexity is a linear function
of n. the length of the string to be generated. The coeflicient of n in the expres-
sion of the computation time is approximately constant; in the worst case, it
equals the time for performing 7 tests, 1 extraction and 1 addition of an element
from and to a set, 1 extraction of the top element of a queue, 1 addition of an
element to the end of a queue, 1 short search through string f, and the incre-
menting of 2 variables. The search may be eliminated if a pointer m to f, in
Step 5 is maintained and used in the same way as j for f, in Step 3. In a Pascal
implementation of the algorithm running on a DEC VAX-11/780, the mean value of
this coefficient is around 100 us. Thus, 1 million references can be generated in
approximately 100 seconds of VAX CPU time. Also the algorithm's complexity in
space is quite low. Of the given w string, only the four values w;, Wiy, Wier
w4 p- are needed at each time instant ¢; of string f . only the values f; and fn;
the largest amount of space is that needed for the three sets C. F, and F, whose
total size equals the number of pages in the program.

The algorithm can be easily modified to accommodate several variations in
the characterization of dynamic program behavior described in Section 2. Some
of these variations exploit the freedom of choice for the member of E to be
referenced (see Step 3) and, to a lesser extent, that for the member of C (which
in Figure 2, Step 3, has been assumed to be restricted to the top element in the
FIFO queue, but which need not be so constrained). Many variations may be pro-
posed for the specifications of the flat fauit string f and of the working set size
string w. The algorithm assumes that both are completely specified, as they will
eventually have to be before they are processed. However, the users will often
want to assign them in a different, more compact way, which will generally vary
with the application. Some of these specifications will have a stochastic flavor.
Others might be based on analytic expressions or on various kinds of interpola-
tions of given points. Others yet will make use of mean values such as the mean
page fault rate.

Two main problems, among several others, should, and in the near future
will, be investigated. One has to do with the implementation of an artificial pro-
gram which, when running, generates a given reference string. The availability
of such a program will allow controlled measurement experiments to be per-
formed on memory policies, both in uniprogramming and in multiprogramming
contexts. It is very difficult to solve this problem exactly, but some promising
solutions exist which seem to provide a satisfactory accuracy for most practical
purposes. A study of the merits and limitations of these solutions has been
undertaken and will hopefully result in a methodology for synthesizing programs
with given dynamic characteristics.

The other problem is more fundamental: What are the strengths and
weaknesses of the (w,f) characterization? In what contexts is it an adequate
way of representing program dynamics? The most evident limitation of the pro-
posed model is related to the choice of T. How should T be chosen when charac-
terizing e particular program or an entire workload? How different will be the
eflects of a change of T on the dynamics of the artificial string and on that of
the modeled program? Can the arbitrary choices which the algorithm makes be
guided so that a better match will result at different window sizes? Can an algo-
rithm be found which will generate a reference string obeying two working set

L gL

-11-

size strings corresponding to two window sizes T and 7'? Another limitation
stems from the working-set orientation of the (w,f) characterization. Can
artificial strings and programs produced by the algorithm be used to study
other memory policies without introducing an unwanted bias into the results?
How should T be selected in those cases? Clearly, the more accurate character-
izations alluded to above should decrease the likelihood of introducing a sub-
stantial bias in an investigation of memory policies. But how far can we go in the
direction of greater sophistication before we incur the penalty of diminishing
returns?

Acknowledgements

The author is grateful to Bob Hagmann, Bill Joy, Ron Dutt, and several
members of the PROGRES group for the enlightening discussions he had with
them on the subject of this paper. The author is also indebted to Caren Weisglas
for her invaluable help in the preparation of the manuscript.

References

[1] J. Spirn, Program Behavior: Models and Measurements. Elsevier North-
Holland, 1977.

[2] D. Ferrari, "The improvement of program behavior", Computer 9, 11(Nov.
1976), 39-47.

[3] E. J. Coffman, Jr. and P. J. Denning, Operating Systems Theory. Prentice-
Hall, 1973.

[4] P. J. Denning and K. Kahn, "A study of program locality and lifetime func-
tions", Proc. Fifth SIGOPS Symp. on Operating Systems Principles, (Nov.
1975), 207-216.

{5] P. J. Denning, "The working set model for program behavior”, Comm. ACM
11, 5(May 1968). 323-333.

[8] P.J. Denning, "Virtual memory", Comp. Surveys 2, 3(Sept. 1970), 153-189.

	Copyright notice 1981
	ERL-81-22

