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ABSTRACT

Consider systems that have an intrinsic mathematical representation
of the form: Ani(n) + e+ Agx = Bu, where 5‘1) is the ith derivative
of x. The matrices Ai may possess certain properties. The problem is
to construct a reduced model having the same form with corresponding
matrices Ai of smaller dimension and possessing the same properties.

An algorithm for this structure-preserving model reduction is presented.
An algorithm for constructing an approximate reduced model, called
e-structure preserving reduced model is also presented, together with
the error bounds. The application of the method to power system dynamic

equivalents is described.
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I. INTRODUCTION

Model reduction, i.e., constructing a reduced model of a given system,
is essential in the analysis and simulation of many practical large systems.
Frequently for systems such as interconnected power systems [1], or space

craft [2,3],the modeling leads naturally to a mathematical representation

of the form:
(n) (n-1) , ... -
A+ Ay gl e Ag = B

where x € nzm, gﬁi) denotes the i-th derivative of x, and Ai’ i=0,1,002,n,
are mxm real matrices. The matrices A may possess certain properties,

for example, symmetry, diagonal, or positive-definiteness. It is desired

to construct a reduced model which preserves the structure of the physical
system. That is, the mathematical representation of the reduced system

still has the form:

4 eee +-K0£r=B

T . x L (n-1)
Ake "+ ApqXp

where x

r is of lower dimension than m and the matrices K} possess the

same properties as Ai' We shall refer to this problem as the structure-

preserving (SP) minimal realization. Moreover sometimes it is desired

to preserve the identity of certain variables in x corresponding to the

subsystem under study and to have a structural-preserving model reduction

of the external system, or simply SP model reduction. The SP minimal

realization is a special case of the SP model reduction.

Preserving the structure of the physical system in the reduced model
is necessary for the reduced model to be analyzed by the same large
computer simulation program. For example transient stability simulation
programs are available for the analysis of power networks consisting of
hundreds of generators and interconnecting lines. One would Tike to use

-2-



the same simulation program to study a reduced model of an even larger
system. Conventional model reduction methods, either time-domain
approach [4,5] or frequency-domain approach [6,7], lead to a set of
reduced-order equations which can no longer be interpreted as a
representation of the same physical system.

In this paper a structure-preserving model reduction scheme is
presented. The development of the method utilized concepts of reachability
grammian and its singular value decomposition, which are collected for
easy reference in Sec. 2. The structure-preserving minimal realization
is discussed in Sec. 3. An exact SP model reduction scheme is presented
in Sec. 4.1. A practical algorithm to construct an approximate reduced
model, called e-structure preserving reduced model, is presented next.
Bounds on the resulting errors in system variables are given. The
application of the method to power systems dynamic equivalent is
presented in Sec. 5. This is a genera]izétion of our previous work on

e-coherency dynamic equivalent of power systems [8].

2. PRELIMINARIES

2.1. Grammian and Reachability Set

Consider the linear time-invariant system
x=Ax+Bu x(0) =0 (1)

where A € R™" and the admissible input u satisfying the constraint

[T lu(t)12dt < a2 (2)

0

The reachability grammian at t is defined to be the matrix wf.

T T
Nz = J eAtBBTeA gt (3)
0



Note that wﬁ is real, symmetric and positive semidefinite. Therefore

we have
W= u 2ol (4)
2 - 1 2 2 L N 2 L 2 2 * 0 00 2
where £° = d1ag(c],cz, 30,505 2+,0), gy 2 05, >0, >0, are the

real eigenvalues of WE and columns of U are the corresponding orthonormal

eigenvectors. The positive root of wﬁ, wT, is defined to be

W e= uzu? (4a)

where I = diag(c],cz,----,or, 0,+++0). 0y 20, *** >0, > 0.

The set of reachable states at T is given by

T T
s, 1=l = | A Paueyae, [ lu(e)i%er < a2 (5)
0 0

and the set of reachable states in [0,T] is given by

t :
SEO,TJ = {x|Jt € [0,7] s.t. x = Jo ehlt-t )Bg(t')dt' , and

Jr; hu(t)1%dt < a%) (6)

also, the image S under the map wT of the ball with radius a.
S := {x|x = Wp, lpl < a} (7)
Fact 1. S[O,r] =S5.=S [8-9]

2.2. Singular Value Decomposition of the Grammian

Consider the set

S={x|x = Wp, Ilpl <a}

where WT = UZUT and I = diag(o],--'or, 0,+++0)
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If we change coordinates to a basis formed by the orthonormal columns of

U, i.e., x = Ux', p = Up', then the set S can be described as follows:
I K2

St —_— *e o0 — ! = L ] - ' =

X c]) + (02) + (=) <a%, x x' = 0}

Thus S is an r-dimensional ellipsoid in R".

2.3. Differential Equation of the Grammian

The reachability grammian wﬁ can be obtained from the solution of
a linear matrix differential equation as stated in the following fact,

2

whose proof is immediate by the definition of wT.

Fact 2. [10, p. 84] The reachability grammian N% as a function of t,

satisfies the following Tinear matrix differential equation

X = AX + XAT + BB', X(0) = 0 (9)

3. STRUCTURE-PRESERVING MINIMAL REALIZATION

3.1. System Representation

Consider the first-order representation of the zero-state response

of a lTinear time-invariant differential dynamical system,
z =Az +Bu, y=0C, 2(0)=0 (10)

We shall use F[A,B,C], or F(z), or simply F to denote the representation
(10).
Consider next the n-th order representation of a linear time-

invariant differential dynamical system,
(n) (n-]) (n-z) ee o0 - =
A X + A _.X + A oX + + A05 Bu, y = x,

A, nonsingular, 5("'])(0) = 3<_(n'2)(0) = «ee0 = x(0) =0, x€ R
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where ﬁﬁi) is the i-th derivative of x with respect to t, and all Ai's
are real mxm matrices. We shall use N[An,~-'AO,B,I], or N(x), or simply
N to denote the representation (11). We shall call n the order of the
representation, and m the dimension of the representation.

Now if we consider the class of all first order representation R]
with the form of (10),

R] := {F(z) |F is represented as (10) for some matrices A, B, C} (12)

and the class of all n-th order representation R" with form (11),

R" := {N(x)|N is represented as (11), for some matrices

An,An_] ,An_z,""AogB} (]3)

Clearly, if N(x) € R", choose

(14)

as state variable, then it is obvious that N(x) can be represented by
a first-order representation F(Zz). Hence R" R]. F(z) is called
the embedded first-order representation of N(x). Let us define the

embedding map &,

o : R" -+ R], such that for any N(x) € R, o(N(x)) = F(z), F(z)

is the embedded first-order representation of N(x).

3.2. Structure-Preserving Equivalent

For a dynamical system which is modeled as an n-th order system (11),
we are interested in finding a minimal realization of (11) within the
same class R". Roughly speaking, we are not only looking for a system
representation with least complexity, but also preserving the physical

structure of the model.



Two representation N(x), N'(x'), are said to be SP equivalent iff

N(x) € R", N'(x') €R", and y'(+) = y(¢) for ¥ u(+). Note that the SP

equivalent is defined only for zero state equivalent. The SP reachable

space is defined for N(x) € R" as,

Sy = {x| Ju(-), for some t >0, x(t) = x, and

x(+) satisfies (11)} (15)

We say that N(x) is SP completely reachable iff dim SN = dim(x). And

N'(x') is said to be a Structural-preserving minimal realization, or SP

minimal realization of N(x) iff N'(x') is SP equivalent to N(x) and N'(x"')

is SP completely reachable.

3.3. Structure-Preserving Minimal Realization v.s. Conventional Minimal

Realization

A minimal realization on R" is not necessary a minimal realization
on R]. In this section we study the implications when an SP minimal
realization will also be a minimal realization on R].

Let the reachability grammian at T, WE for N(x) € R" be defined
as the reachability grammian at t of its embedded first-order representation
F[A,B,C]

W o= J; AtggTeh Ly (16)
The first m rows of wT is denoted, by H, m = dim(x). Thus H is a real
mxmn matrix.

Theorem 1: For any T > 0, minimal realization of &(N(x)) is algebraically

equivalent to & (SP minimal realization of N(x)) iff

dim R(W_) = n dim R(H)



where R(NT), R(H) denote the range space of wT, H respectively.
Proof
For a linear time invariant system, the range space of wT for any
T > 0 equals to the reachability space (controllability space). That is,
T T (n-1)T,T , . :
(X 5X 5 soeex ) € R(wt), and x € R(H). Besides &(N) is completely
observable. Thus the dimension of minimal realization of &(N(x)) equals

dim R(wT), and dim Sy = dim R(H). But the dimension of & (SP minimal

realization of N(x)) equals to n x dim SN. Therefore,

dim R(NT) = n dim R(H) for any T > O
iff dim of minimal realization of &(N(x))
= dim of & (SP minimal realization of N(x))
iff &(SP minimal realization of N(x)) is a minimal realization
iff minimal realization of ®(N(x)) is algebraically equivalent to

to ¢ (SP minimal realization of N(x)) [11]. o

4. STRUCTURE-PRESERVING MODEL REDUCTION
Sometimes in model reduction it is desired to preserve the identity

of a subsystem, called the study system. The rest of the system will

be called the external system. A reduced model (i) which retains the

interconnection of the study system and (ii) whose reduced external system
is an SP minimal realization of the external system is called an

SP_reduced model. The SP model reduction to be presented below includes

the special case where the study system is empty, i.e., constructing an

SP minimal realization of a system.

4.1. Structure-Preserving Model Reduction

Let us consider an n-th order matrix differential system N(x) as

described by (11). Without loss of generality, we renumber the
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components of the vector x such that the first q components are associated
with the study system, the last m-q components are associated with the
external system. The reachability grammian at t > 0 of N(x), wf, and its
positive root, wT, are defined in (16) and (4a) respectively. Let us
partition wT into n blocks.
r"\
Wy
W
W= | 2 (17a)
“
n
L

where all wi's e rmxmn

Let us further partition w] into

W, := (17)

e RIxmn g, € R (m-q)xmn

Let the singular values of Weq be ordered as 01 20y *** 20

where WS]

r

>0C S esee = = 0, and Z-l = [2-”,0] € ]R(m-q)xmn, Where

r+l %m-q

I = diag(c],°-~cr,---om_q

whose columns are the left singular vectors of WE]' Partition

). Let U] denote the (m-q)x(m-q) matrix

- (m-q)xr (m-q)x(m-q-r)
V] denote the (mn)x(mn) matrix whose columns are the right singular
vectors of WE].

The singular value decomposition (S.V.D.) of wE1 can be written as
_ T
Let us define a mx(q+r) matrix

I 0l
K :=[ (19)
0 U]]_



Theorem 2.

M) R ¢ B g™ o e e g = B,y - B,
A_ nonsingular x("'])(o) = sees = x (0) =0 (20)

is a SP reduced model of N(x) defined by (11).

where Ai = KTAiK
B := kB
C :=K

Furthermore, if Ai’ i=0,1,+-+n, are symmetry (skew symmetry, positive
definite, negative definite, resp.), Ki’ i=0,1,°+n, are symmetry (skew
symmetry, positive definite, negative definite, resp.)
Proof

It is clear that K retains the interconnection of study sytem. By

Fact 1 and the proof of Theorem 1, J g(t) such that

x(t) = W,g(t) (21)
Therefore

Uix(t) =0 for ¥t >0 (22)
where

TLE- T - mx (m-q-r)

Equation (22) also implies U{§(1)(t) =0, ¥t > 0, ¥i = 0,1,2,¢¢+

Hence

Aii(.‘)

1]

A;LK,0,10K,0,17 1)

AxkTx(1) ' (23)
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Substitute (23) into (11) and premultiply the resulting equation by KT

'l'
It is immediately that KT& satisfies (20). By the uniqueness of
differential equations, we have
T, -
K'x = x,. (24)
Because of (22) and the fact that [K,U1] is unitary, we have
_ = T
x = [K,0,3[K, 0,1 x (25)

kK'x + 0;00x

K&r

Equation (25) shows that y = Yps therefore Nr(ér) is SP equivalent to
N(x). Besides by (21) and (24) the reachable space of the external
system of Nr(ir) is SP completely reachable. Therefore the external
system of Nr(ﬁr) is a SP minimal realization of that of N(x). The
nonsingularity of An follows immediately from the fact that An is
nonsingular and K is of full rank.

Clearly Ai preserves symmetry, etc. ﬂ

Remark. If we let g = 0, i.e., there is no subsystem to be retained,

the above SP model reduction gives a SP minimal realization of the system.

4.2. e-Structure Preserving Model Reduction

In practical implementation some singular values of NE]-are very
small but not exactly zero. For all practical purposes they should be
treated as zero. In this section we present an SP model reduction which
takes into account of this fact. We also present in Theorem 3 the

error bounds for this approximation.
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In this section we assume that

o'_l >0'2300.- zo'r >>€=Gr+_l->_ooo- Zo’m-qio (26)

For ease of presentation let us consider second order matrix
differential equations only. The extension to higher order system is
obvious.

The matrix w2 in (17a) is partitioned into

W

S2
W, = (27)
gxmn (m-q)xmn
where wsz € R s NEZ € R .
Let the singular values of U']rsz2 be ordered as
O) 20y *+2 205 > €205,y ***20p 020, (28)
and z, = [222,0] € Bz(m-q-r)x(mn) where I,, = diag(&l,'o~5m_q_r). Let

U2 be the (m-g-r) x (m-g-r) matrix whose columns are the left singular
T - ' (m-g-r)xJ

vectors of U]ZNEZ’ and 92 [UZ]’U22] where U21 € R and

U,, € Bz(m-q-r)*(m-q-r—a). Let V, be the (mn)x(mn) matrix whose cotumns

are the right singular vectors of UIZNEZ‘ The S.V.D. of UIZWE2 can be

written as
T _ T
UraWen = UpZoVy
For the case where n = 2, (11) becomes
N(x): A% + Ajx + Ax = Bu, y=x,

A, nonsingular x(0) = x(0) = 0 (29)

Let
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Uyy = UgpUy, (30a)
and
I 0 0 .
K, := = | e gm(atr+j) (30b)
1 0 Upq T,

We define the €-SP reduced model to be the system:

coTaiks s xTaks 4 kT - -
Neleds KiRgKyZe + KA KRy KyAgkyXy = KiBUL Yy = Ky,

x.(0) = x,(0)

X, 0 (30)

Next we will present error bounds on the approximate e-SP reduced
model and the original system. We will separate the errors in the study
system response and the external system response. The error vector

e(t) between (29), (30) is defined to be

gg(t)
= y(t) -y (t)

t) :=
e(t) et -

where gs(t) € RY denotes the error vector of the study system and
e € R™Y denotes the error vector of the external system.

Let us consider the set of inputs u(+), such that

(i) u(t) is continuous on (0,t)

(11) u(t) = yy(t) + v

where v is the discontinuity of u(t) at t = 0, 94(0) = 0,

(iid) gq(t) is piecewise differentiable on [0,1).
T
(iv) j lu(t)12dt < a
0
T
(v) J Iy (6)1%dt < h?
0
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Let us denote the set by

L(a,h) := {u(-)](i)-(v) are satisfied}. (31)

Let us define the following quantities

~

2y = ﬂAzﬂh + HA]Ha + HAOHa (32)

where I+l is the Euclidean norm.

T .. T
T
2 . (F ToT AT, TaTy o o Te At _
Y2 i JO V'B'e” "CKyKoAA K KoCe Brdt, F[A,B,C] = &(N(x)) . (33)

Let (oi)2 be the largest singular value of the reachability grammian

T T
at T of N(Ay,A LAqK,1)

Theorem 3. For ¥ u(-) € L(a,h)

1. max ||gs(t)"_<_0]'(T2]2€2+2,§+21']/2£]£26)]/2 (34)
t€[0,1]
2. max Hgﬁ(t)ﬂ <ea+ Gi(T£$€2+2§+2T]/22]22€)]/2 (35)
te[oﬁT]
2 _ (T ATe T, T,T, , JTAt
Remark: wo = J B'e “C K2K2A2A2K2K2e B dt can be interpreted as the
0

observability grammian at  of @(N(Ay.Aq,A0.B,A0KK])). Thus 25 = vMWly.

Proof of Theorem 3.

We shall express e(t) as the sum of 5;K]K{5 and KlKléleir'

1. The matrix [K],Kz]is unitary, where K; = [0,(U]2U22)T] € Ea(m-q-r—j)xm

By Fact 1, 4 p(t), lIp(t)l < a, 0 <t <t such that

T, _ T

0 0
= T T W]E(t) (36)

0 UpsUz0Uz0U0,
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Substitute (18), into (36), it can be easily shown that:

Ty =
(é- K] K]i)s =

o

and

I (x-K;Kix) gl < e

(37)

(38)

where (_>5)S and (5_)E denote the first q and last m-q components of x

respectively.

2. Let z denote the state vector of embedded first order

N(x). The Laplace transform of z(t) is Z(s),

2s) = (s1-A)7" B(uy(s) + 3 v)

where gq(s) is the Laplace transform of gq(t).

Therefore sZ(s) = (sI-A)-] B(sgq(s)+1), this implies

At

|~
—
ct
~
]

Zq(t) + e "By

. T 2 2
2y = Azy + Bl 5 (0) = 0, | Hig(6)%a <

Note X is the last m components of z(t). By (40) we have

" A
K;i = Kgng(t) + K;[O,I]e tBl

where z,, is the last m components of z,.

Again by Fact 1,

T T
max HKzng(t)H'g HK2

t€[0,1]

Wylth < oj+]h

T

3. Now if we let y; := Xp - Ki%s and use the fact K

it is clear Y3 satisfies

-15-
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T
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e iR e Eou =kl T T, T

Thus by Fact 1,

max ﬂx_(tj“‘g ola (45)
tef0,x] i
where
T
Ty T, T h2., _ .2
J01|A2K2K25 + Ak Kok + AgK Koxll“dt = a (46)

In order to get a bound for a?, let's denote,
e T Te T
£5(t) 1= AgKKJ[0,1]eM By (48)

Using (43) and the fact that HK;&H'g éj a, “K;&“_i €a, we have

+1

max 0f, (t)I < 1A llo, .h + 1A NG, .a + [A,lca
e A e 1'%5+1 0

5_&-21

By Schwarz's inequality

2 2,2 2 1/2
a]_<_rsl]+22

+ 20700008 (49)

(45), (38) together with (49) implies:

) 2,2,,2.,.1/2
max Ilgs(t)ll < c](-re: 2+ *2T 21%9€)

t€[0,1]

1/2

max e ()1 < ca + ol (re?ef+a5+2r /20, 0,5c)

t€[0,1]

1/2

4.3. Procedure for £-SP Model Reduction

The following procedure may be used for £-SP model reduction of

N(x) defined in (11).
-16-



1. Determine e,7.

2. Solve
x = AX + XAT + BBT, X(0) = 0
and set

We = x(x)
where A, B are system matrices of the embedded first order system of N(x).
3. Perform singular value decomposition of wﬁ and obtain W..
4. Perform singular value decomposition of wE] and obtain U]], U12‘
U]], U]2 are the matrices whose column vectors are the left singular
vectors of WE] with corresponding singular values greater than and less
than € respectively.

5. For i = 2,+++,n, perform the singular value decomposition of

-T .
inEi and obtain Ui]’ U12'

Ui 2= Upolpy oo U(i_1)2 and Uiy, U;, are the matrices

whose column vectors are the left singular vectors of Ulei with

singular values greater than and less than e respectively.

6. Set
Ui = U7 5 Uyo = Uilyp
and .
I 0 0 ® 9060 00 0 0 00 0
Ky = ) ] ]
(0 Upp Upy ooe Uy oo Uy
_
0
K =
2 -
\Pnz
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7. The reduced system

M (n) A (n-]) s 0 = =
Nr(ér)' Z‘nilr‘ t AnaXy ¥ ¥ Aoﬁr Bu, Lp 7 V2

%1 (0) = wer = x(0) = 0

- K§B C = KC is the e-SP reduced system of (11).

ool

e

Corollary 1. For ¥ u(+) € L(a,h) defined in (31)

1. max Hgs(t)ll < o]' (T2%€2+£§+2T]/22122€)

t€[0,1]

1/2

2.2,,2

2. maxT] "gE(t)ﬂ < ea + oi(rﬂ.]E +22+21”22 2

: 28)1/2

where

Py
—
1

1A Ih + (HAn_]H + oeeee + HAoﬂ)a

T
9 T J XTBTeA
0

.
teTR kIATA KZKTCeAt

2RnAnKoKoCe Budt

is the largest singular value of the reachability grammian at T of

LI 2N 3 T
n*Ano127 RgaKps 1)

Corollary 2. For ¥ u(-) € {u(-)
T T

[0,7), and J lu(t)12dt < a2, J 10(t) 1%t < h2)
0

u(t) is piecewise differentiable on

0
1. max _leg(t)l < eola /2
t€[0,1]
2. max "gE(t)ﬂ < ea+ ecizlr]/z
t€[0,1]

5. POWER SYSTEM DYNAMIC EQUIVALENTS

In transient stability study of power systems one is interested in
the detail response in one's own service area (the study system). The
effects of the rest of the interconnection (the external system) have
to be modeled. A reduced model of the system is called a dynamic
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equivalent in power system literature. It is desired to preserve the
identity of the study system. Moreover it is desired that the reduced
external system be identifiable to a power system, i.e., interconnection
of generators and lines.

In Sec. 5.1 the €-SP model reduction is applied to power systems.
In Sec. 5.2 an external power network is synthesized from the result.
For convenience, we will use r' for (r+j) as the dimension of the reduced

external system.

5.1. ¢e-SP Model Reduction of Power System

We will use the model [8] which consists of the linearized classical
swing equations for the generators and the linearized decoupled real
power flow equations for the network. The disturbances are modeled as
inputs. The system is represented by the following second order matrix

differential equation.

MeS + DAS + HAS = Bu, y = AS, A8(0) = A8(0) = 0 (50)

where AS (AS],---AGm) vector of deviation of generator rotor angles

=
1

= diag(M],°-',M

m) of machine inertia constants

D diag(D],--~,Dm) of machine damping constants
H is obtained from node reduction on the linearized network.

B is obtained from the data on the location and type of disturbance.

Following the scheme proposed in Sec. 4.2, we construct an £-SP reduced

model for (50),

T N T : T _— - ; - -

(51)
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where

0
K, = . (52)

U, := [U7,05,0, Uyps Oy, are defined in (30a), (30b).

Now let us denote the matrix of machine inertias of study and external

system by MS, Me respectively, and that of damping constant by DS, De

respectively.

Fact 3. If M, >0, Dy 2 0, (& diagonal) then there exists a nonsingular

. T .
real matrix K such that both KEU M UKg > O,KgUlDeUrK3 > 0 are diagonal.

rer3
. =15
K3 = VrA V.

where

V.. is the matrix whose column vectors are the orthonormal

r
TM U.) and A2

eigenvectors of (Ur oUp

is the diagonal matrix whose

Tvu).

diagonal elements are the eigenvalues of (Ur oUp

V is the matrix whose column vectors are the orthonormal

.
ToT -1
V(U DUV AT

eigenvectors of (A'1)
Fact 3 is proved in [12, p. 106].

By Fact 3 and the structure of K], the reduced model (54) below
represents a power system which retains the study system and has a

reduced external power system structure

M.ASy. + D.ASL + H.A8! = B, v = Kya8), 88.(0) = 48 (0) = 0 (54)

where
= T = ] o o0 M o.'-
R = A3 8 R .
D 1= KyDKy = diag(Dy,«++DgsDoyyste By (56)
)
He = KyHK, (57)
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p = KB (58)

~
-9

n

~

110 K (59)

Remarks: 1) Since (51) is algebraic equivalent to (54), xr(-) = x;(o)
for Yu, therefore the reduction error of (54) is equal to that of (51)
and can be estimated by Theorem 3.

2) Suppose Ur is a column vector with all components equal, then by

Eq. (38), the phase angles of external generators satisfy:

T i = LN ) ‘
I(i(t)'urur\ﬁ(t))-ll i ga, 1= q+]3 m, ¥t € [O’T]

(1 +++ 1) implies

m
L[ T xi(t)]] < ea, ¥i=gHl eee mVt € [0,1]
"4 Tgmqn
It follows that ¥i,j, q+1 < i,j <m

te"[’S’fT] |x3(t)-x;(t)] < 2ea

Hence this is the case where all external generators are e-coherent [8].
Clearly the e-coherent dynamic equivalent of our previous work is a

special case of €-SP model reduction.

5.2. Power Network Synthesis

The matrices H and B in Eq. (50) of the original system are derived
from a power network. In this section we are going to synthesize a
reduced power network for which the corresponding relations give the

matrices H,. and B, in Eq. (54) of the reduced system.
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The matrices H and B are derived from the linearized real power flow

equations [8] of the power network (Fig. 1)

APG H H AS
=] 99 94| = . (60)

MPL| |Hyy Hgylte

where APG: vector of incremental real power injections at generator
internal buses
APL:  vector of incremental real power injections at load buses

A9: vector of deviation of voltage phase angles at load buses

The subscripts g and £ in the matrix refer to generator and load buses.

The ij-th element of the matrix in Eq. (60) is

V?Vq cos(e?-GQ)
L P43 (61)
1J
V?Vq cos(G?-eq)
hy = ! = (67a)
Jj connect to i ij

where

V?Zb?: voltage phasor at bus i at the operating point.

xij: the reactance between buses i and j.

Substituting the linearized real power flow equations (60 ) into

the linearized swing equations of the generators

MAS + DAS + APG = O (62)
we get
- -1
Ho= Hog = HogHpoHog (63)
T
B = -HyoHyg (64)
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Figure 1

Original power system.



Note that the swing equations (62) concerns with real power balance at
generators whereas the network equations (60) involve the voltage
phasors at the operating point (61). |

If we further partition the system into the study system and the

external system the matrix in Eq. (60) takes the form

— i — s - M
H 0
Ho 0 H gg 0 1M
99 + 9% 0 H® .0 H®
! 99 | g8
A I . . (65)
1 S 0 1
H, | H e P H
2,g : 2 0 He 1 L%
L 29 1
-~ L -

where superscripts s and e refer to study system and external system
respectively. Because in the model each generator internal bus is
connected through the synchronous reactance of the generator to a bus
designated as a load bus, the matrices Hgg and Hgg are diagonal and

Hog = [-H;g,o], Hgg = [-Hgq»0] if we order the load buses so that those
connected to generators come first. Let us denote the set of load

buses of the external system that are connected to generators £.

For the reduced system (54) we have (57) (58)

T

K = KyHK, (66)
B, = KZB (67)

We are going to synthesize a power network whose linearized real power

flow equations are

= 99 9qi —r (68)

{kﬁﬁ B H_|las!
Léﬁf H,  H,,|la6
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[+Y]
o

Jj connected to i ij

Upon substituting (68) into the linearized swing equations of the

generators in the reduced system
M8 + D A8 + APG = 0 (70)
we should get Eq. (54), i.e.,

H ‘ (71)

w
I
1
x|
=

Similarly if we further partition the system into the study system

and the reduced external system, the matrix in (68) takes the form

~ N L -
) [
¥ 92_ 0 Hgg 1 0 Hgy 73)
5 s I
Aog | Hog "ig -2 i Hog
L_ ' -/ 0 ng ! -

We are going to take three steps to synthesize a reduced power
network.
Step 1. Matching Eij
(i) Let us first define
K5 = UrK3 (74)
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By comparing Eqs. (63)(64), (71)(72), (66)(67) and (74), it clearly

indicates that it is sufficient to have

fiey = KgHgng (75)
figy = Kgng (76)
Hig = Hggks

Hop = Hog (77)

S

pg Tor maintaining the identity of the

dRS =W, B =W , B =
and Hyg = Hgg» Mgg = Hggs Heg = H
study system.

(ii) It follows from (77) that we should retain the network connecting
load buses to load buses (Fig. 2). The matrix Hgg is no longer diagonal

. 0 - rovlu® n1 _ne T,e . .

(Fig. 2), Hgg [ K5Hgg,0] # [ Hgg,O], and K5Hgg is no longer diagonal
(Fig 2).

(iii) 1In the original network hys = -jgi hij' But h.. # -j;i hij'

In order to have the form of (61) for ﬁii we create an "infinite bus,"
which is a node whose voltage is kept constant at 1/0, and connect it
with each generator bus and load buses in £ of the reduced external
system (Fig. 3).

Step 2. Selection of Voltage

(i) The voltage at each load bus of the external load bus is

chosen to be the same as the original one, i.e.,

(80)

The voltages at the generator buses of the reduced system are chosen
to be 1 /0.
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Figure 2

Reduced power system.



(i1) We want power flows in the retained portion of the reduced
network exactly the same as before. This is done by adjusting power flow
from the load buses in the reduced external network to the infinite bus.
For this purpose, we use transformers (Fig. 3).

Step 3. Selection of Impedances

The reactances iij in the retained portion of the.reduced external

network are chosen the same as the original network. The reactances iij
in the altered portion of the reduced external network are selected to

match h j? voltages, and the power injections as described in Steps 1 and

2.

(i) generator to generator

Let the i-th diagonal of Hgg be denoted by h and the ij-th element
of the matrix K5 be denoted by kij' The reactances xij between generators

of the reduced external system

l\/] |

Xi7 b STHUVLT

(ii) generator to infinite bus

Let 9 denote the set of indices correspond to the generators in
the reduced external system. The reactances iim between a generator and
the infinite bus of the reduced external system are:

I

=Zk (] k. -1)
oo IR PR

x1

(iii) generator to load

The reactance iij between generator bus i and load bus j is:

33X

0
cos ej

...l =
Xij Vs

C—'O:‘
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Figure 3

Altered portion of external system.




(iv) transformer ratio

Let S? be the original complex power injection into the load bus i

of £ from the external generator at the operating point, we define

1 369
. 0 . 0,,,0 i
AP, + jAQ, =-S; - j = V:(Vi-e ')
i i i Nég Xiy 1
f: = h,.(1 - Z K.y)
1 ii = iA
AP,
- a0 _ -1 i
0
i Vi AP1
oof

. a0
The transformer ratio Bi is set to be

je

oo

(v) Tload to infinite bus

The reactance iim between load i and the infinite bus is

1 A0ty

5.3. Dynamic Equivalent of External System

Consider the external system in Fig. 2. The number of generators
has been reduced but not the load buses. Next we convert all load
demands in the external load buses into impedance loads. We then
apply Gaussian elimination on the corresponding admittance matrix to

eliminate those buses, we obtain the reduced system as shown in Fig. 4.
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