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1. INTRODUCTION

When analog voltage levels are critical to circuit performance, or where

tightly coupled feedback loops are present, standard circuit simulators such as

SPICE [l] or ASTAP [2] can be used to analyze the circuit. However, when the

size of the circuit becomes large, the cost and the memory requirements of

conventional circuit simulators become prohibitive and new techniques have to

be used. The timing simulator MOTIS [3] was developed to simulate large scale

integrated circuits. The Program MOTIS was a revolutionary simulator in two

main respects:

a) It limited severely the types of networks It dealt with (MOS devices with

quasi-unidirectional circuit models and a grounded capacitor on every node)

b) It discarded both sparse Gauss elimination and conventional Newton-

Raphson iteration as solution methods.

In MOTIS Backward Euler formula was used to discretize the time derivative

operator and a nonlinear Gauss -Jacobi like relaxation technique [4] was

adopted to decouple the node equations at the nonlinear equation level. The

algorithms of the timing simulators MOTIS-C [5] and SPLICE [6] perfected this

technique. In particular, SPLICE used a nonlinear "Gauss-Seidel like" technique

with a selective trace algorithm to exploit the "latency" [7][8] of large digital

circuits. All of these algorithms did not carry the iteration of the relaxation

methods to convergence: only one sweep was taken. Because of this, the

numerical properties such as stability of the integraton formulae used to

discretize the derivative operator no longer hold. These methods have indeed

to be considered as new integration methods. Hence a complete analysis of

their numerical properties has to be carried out to characterize them.

In this paper we formalize these relaxation or displacement methods and

propose a generalization of a method presented for the first time in [9]. Then
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we propose a model to study formally the stability, accuracy, consistency and

convergence properties of the methods. Based on this model, we evaluate the

various methods and show that the method proposed in [9] has better stability

and accuracy properties.

2. TIMING ANALYSIS ALGORITHMS

MOS VLSI circuits are often modeled as electrical circuits containing linear

and nonlinear resistors (controlled sources are considered to be resistive ele

ments according to [10]) and capacitors. Furthermore, a capacitor is con

nected from each node of the circuit to ground to model the time delay of a sig

nal propagating through the circuit. Since each node has a capacitor to

ground, the node equations have the following form:

C(v)v+/(v.u(0) = 0 (2.1)

v(0) = vQ.

ve]?1; uu:/?-»tfm; C( • ):J?n->i?n3!n; /( • , • ):BnxJim-*J?n.

fiy,u(t)) = [/i(v,u(0)./8(t/.u(0) fn(vM*))]T

where v is the vector of node voltages, u is the vector of independent source

waveforms, C(v) is the nonlinear nodal capacitance matrix and fi(v,u(t)) is the

sum of the currents feeding the capacitors connected to node i. In this paper

we shall assume that no floating capacitor (Le., capacitors connected between

two non ground nodes) is present in the circuit. Therefore C(v) is a diagonal

matrix. We assume also that C(t/)~l exists for ail v of interest. Therefore we

can simplify (2.1) as follows:

v+F(v,u(t)) = 0 (2.2)

v(0) =v0.

where:
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F(v,u(t)) = C(v)~lf(vtu(t)). (2.3)

Algorithms used in the timing analysis of MOS and VLSI.circuits discretize

the derivative operator by Backward Euler [3][6] or trapezoidal formula [5]. In

this paper we shall focus on the Backward Euler formula

Ufc+i = Oufc+i-Vjb)/h. (2.4)

where h = tkMl—th and vfc+1 and vk are the computed voltages of the node vol-

tors at time tkMl and tk respectively. The solution of the resulting nonlinear

system of equations:

^jb^^+^OuibH ufab+i)) = 0. (2.5)

is then approximated by one sweep of a displacement technique.

Program MOTIS [3] uses a Gauss-Jacobi like technique which yields the fol

lowing set of decoupled equations:

VkKi -uif+fcFiM+i.t/*8 v*,^i(*jb+i)) = 0

^fi^^W.«fc« vg,u2(ttMi)) = 0

v£+i -*Uk+hFn(vkl,vg vfrnUnfa+i)) = 0

The solution of the decoupled nonlinear equations (2.6) is then approx-

imted by taking a single step of a "regula falsi" iteration [11].

The MOTIS-C and SPLICE programs use a Gauss-Seidel like technique. In

SPLICE this technique yields:

^M^k+^iO&ib+i.i/"('fc+i)) = 0; i = 1,2 n. (2.7)

where:

«*«.i = tvi+i vt+ltvt*1 vf\*. (2.8)

The solution of (2.6) is then approximated by using one step of the Newton-

Raphson algorithm.
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Another displacement technique for the solution of (2.1) has been pro

posed for a simple circuit in [12]. This algorithm is a symmetric displacement

method reminiscent of the alternating-direction implicit method [ll] and of a

method proposed in [9]. The basic idea here is to "symmetrize" the Gauss-

Seidel scheme with a method that takes two half steps of size h/2 each: one

half step is taken in the usual "forward" (Le., cower triangular) direction, the

second half step in the backward (i.eM upper triangular) direction. Letting:

<[vit v},v}t}/2 v^uz}7 i£2lis odd (2.9)

"M-i/z v*rira,i/ii,...,vB]r if 21 is even.
the forward step yields:

^H-i/2-vi +̂ i(vfc+l/2i<,u(rA.+l/2)) (2.10)

+—Fi(vki.l/Zti.i,u(tki.Wz)) = 0 i = £.2 n.

and the backward step:

viiri-vi+-£Fi(vki.u,u(tk+l)) (2.H)

+̂ ifo.+u+1.u(rfc+l)) =o i an,n-l 1.

The solution of the decoupled equations is then approximated by taking

one step of the Newton-Raphson algorithm. Note that all these methods do not

solve (2.5) since only one sweep of the displacement iteration is taken. There

fore the stability and accuracy properties of the integration method used to

discretize the derivative operator no longer hold.

In the sequel we will refer to the "time advancement" algorithms which use

the Gauss-Jacobi, the Gauss-Seidel and modified symmetric Gauss-Seidel dis

placement step as Gauss-Jacobi, Gauss-Seidel and modified symmetric Gauss-
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Seidel integration algorithms respectively. In the following section the numeri

cal properties of these "time advancement" methods will be investigated.

3. NUMERICAL PROPERTIES OF TIMING ANALYSIS ALGORITHMS

The numerical properties of an integration method, such as stability, are

studied on test problems [13][14], which are simple enough to allow a theoreti

cal analysis but still so general that one can have insight about how the method

behaves in general. For the commonly used multistep methods, the test prob

lem consists of a linear time-invariant zero-input asymptotically stable

differential equation. Unfortunately this simple test problem cannot be used to

evaluate the displacement techniques introduced in section 2. In fact, each

variable of the system of differential equations is treated differently according

to the ordering in which equations are processed. Hence a more complex test

problem is needed. The test problem we choose is a linear time-invariant zero-

input asymptotically stable system of differential equations, i.e.:

x = Ax (3.1)

x(0) = No

where A € Rnxn and the set of eigenvalues (spectrum) of A. o(A), is in the open

left half complex plane, Le., o(A)g.Cq. Let A = L+D+U, where L is strictly lower

triangular, D is diagonal and U is strictly upper triangular. The displacement

methods presented in section 2 applied to the test system (3.1) yield the follow

ing recursive relations:

a) Gauss-Jacobi integration algorithm:

[/-W]^+i = [I+h(L +U)]x*. (3.2)

**+i -Mcj(h)xk. (3.3)

where I is the identity matrix and

MgjW = [I-tiD]-l[I+h(L + U)]. (3.4)
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b) Gauss-Seidel integration algorithm:

[l-h(D+L)]xk+l = [I+h.U]xk. (3.5)

xk¥X = MCs{h)xk. (3.6)

where

Mosih) = [I-h(D+L)]-lU+Ml (3.7)

c) Modified symmetric Gauss-Seidel integration algorithm:

Let:

AL = L+1/2D (3.8)

Atj- U+1/2D

Forward step:

U-j{2L+D)]xk+x/z =[i+hL(D+ZU)]Xk (39)

U-"~AL\Xk +\/2 = [I+—Arj]xk (3.10)
2 iJ *""* L 2

**+i/2 =[/-|^]-l[/+^7K. (3.11)
Backward step:

[I--(D+2U)]xk¥X =[I+j(2L+D)]xk+l/2 (3.12)

**« =[/"^!7]-l[/+ji4iK+i/8. (3.13)
Combining (3.11) and (3.13) we obtain:

**+i =Ms(h)xk. (3.14)

where

Malh) =[/-^ry]^[/+|-^][/-^]-i[/+^7] (3<15)
The matrices Moj{h)t Mcs(h) and Ms(h) are called the companion matrices of

the methods. If we denote with M{h) the generic companion matrix of a

method, we have:

-7-



xk =[M(h)]kxQ. (3%16)

We define next the numerical properties of the integration algorithms

described by (3.16) following the outlines of one-step integration methods

applied to ordinary differential equations [13].

Definition 3.1. (Consistency)

An integration algorithm is consistent if its companion matrix can be

expanded in power series as a function of the stepsize h as:

M(h) = I+hA+0(hz). (3.17)

Definition 3.2 (Stability)

An integration algorithm is stable if 3 5>0, 4 N>0 such that \±Q€iBn, ^fc>0

\\xk\\<N \4c^k Vi<0,(5), (3.18)

where xk is the sequence generated by the algorithm applied to the test prob

lem according to (3.16)

Definition 3.3. (Convergence)

Let x(t) be the exact solution of the test problem. An integration algo

rithm is convergent if the sequence of the computed solution converges uni

formly to x(r) as the stepsize h tends to zero.

Theorem 3.1.

Gauss-Jacobi, Gauss-Seidel and modified symmetric Gauss Seidel integra

tion algorithms are consistent.

Proof

a) Let us consider Gauss-Jacobi integration algorithm first. To expand the

companion matrix given by (3.4) in power series as a function of the stepsize h,

we compute

•^Mojih) =[I-hD]-lD[l-hD]-l[l+h(L+U)]+[I-hD]-l(L +U) (3.19)
and:
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4tMgj<S>) =D+L +U=A. (3.20)
ah

ri
where -ttMcj(Q) is the derivative of Moj(h) evaluated at h = 0. It follows that

ah

Moj(h) = I+hA+0(h*). (3.21)

b) The consistency of Gauss-Seidel integration algorithm follows, "mutatis

mutandis," a similar argument.

c) For the modified symmetric Gauss-Seidel integration algorithm, we have:

J-i»s(M =[I-jA,j]-1 ^AAf-^A-V+jAiII-^AirV+jAy] (3.22)

+[/+J/ld-l[/+|-/li][/-F4i]-'|-Ai[/-|4i]-'[/+|-4!r] .

+[/-£**]-'[/♦%AL]U-±AL]-L ±AL.
and

^M9{0) =LAL+jArj+^Arj+jAL =A. (3.23)
Hence:

A/s(/i) = I+hA+0(hz). (3.24)

The definition of stability requires the boundness of the sequence at xk for

small values of the stepsize h. The following proposition relates the boundness

of the sequence xk with the spectrum of M(h).

Proposition 3.1 [15]

The sequence of vectors \xk\ defined by (3.16) is bounded for a given vaue

of the stepsize h if and only if the spectrum of M(h) is contained in the unit ball

B(0,1), i.e., o(M(h))zB(Q, 1) and no multiple zero of the minimal polynomial of

M{h) has modulus equal to one.

In the sequel we restrict our analysis to the case in which the stepsize is

constant. From Proposition 3.1 it is immediate to derive the following theorem:
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Theorem 3.2

An integration algorithm is stable if and only if ^6>Q such that Vfre[0, <5)

the spectrum of M{h) is contained in the unit ball B(0,1) and no multiple zero of

the minimal polynomial of M(h) has modulus equal to one.

Theorem 3.3

Gauss-Jacobi, Gauss-Seidel and modified symmetric Gauss-Seidel integra

tion algorithms are stable.

Proof.

From the consistency of the above mentioned algorithms we have

M(h) = /+/u4+0(A2). (3.25)

By the spectral mapping theorem [15]

a{M(h)) = Je*U = l+fcX<+0(/i2); \^a{A)\ i = 1,2 o\. (3.26)

From (3.26) we have:

|fc| = j1+71^+0(^)1, i = l,2 a, (3.27)
and

ifci2 = [l+^e(Xi)]2+[/i/m(X<)]2+0(A2). (3.28)

Since M(Q) = /, its eigenvalues are all 1, and 1 is a simple zero of the minimal

polynomial of the identity matrix. Therefore from Theorem 3.2 it is sufficient to

show that:

o(M(h))cB(0,l) *t€(0,5). (3.29)

i.e. from (3.28)

|fc|2<l Vfie(0,<>), i = l,2,..,j (3.30)
From (3.30), we have:

2Be(\i)+h(Bez(\i)+Imz(\i))+O(h)<0 i = 1,2 a (3.31)
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2/fe(\i)+0(/i)<O i = l,2,...,<7 (3.32)

Since by assumption i?e(Xi)<0, i = 1,2,..., o\ 3<5>0, such that \>h€(0,6),

a(M(h))cB{0,l). (3.33)

Corollary 3.1

Gauss Jacobi - Gauss Seidel and modified symmetric Gauss Seidei integra

tion algorithms are convergent.

Proof.

Follows from Theorems 3.1, 3,3 and the classical convergence theorem.

For computationl efficiency, it would be highly desirable that the stepsize

be limited only by accuracy considerations as in the case of the implicit back

ward differentiation formulas [13]. In the case of classical multistep methods,

the concept of A-stability [14] and stiff-stability [13] have been introduced to

test the "unconditional" stability of multistep methods. For the "time-

advancement" techniques introduced in this paper, it would make sense to

define a similar concept. Unfortunately, general results of "unconditional" sta

bility are not available for the test problem previously defined, but only for a

subclass, the subclass characterized by a symmetric A matrix.

Definition 3.4. (%-stabMty)

An integration method is^-stable if4 N> 0 such that ^0efln, 4fc

\\xk\\<N \ik^k "*rie[0,«). (3.34)

where \xk] is the sequence generated by the method applied to the test problem

(3.1) with A symmetric.

Theorem 3.4

The modified symmetrixc Gauss Seidel method is J?" stable.

Proof.
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Since A is symmetric and o(A)g.Cq, Ais a negative definite matrix. For

h = 0, Ms(0) = /, the eigenvalues of Ms(0) are all 1 and 1 is a simple zero of the

minimal polynomial. Hence we need only to see where the eigenvalues of Ms(h)

lie when /ie(0,<»). Let us apply to Ms(h) a similarity transformation:

WM =U~AtJ]Ms{h)[I-^ArjY\ (3.35)
and factorize Ms as:

Ms(h) = P(h)Q(h). (3.36)

where

P{*) =U±jAlW-jAlY1 (3.37)

QW =[I+jArj]V-^Arj]-K (3.38)
Now:

<i^Aai~AL}-'x. [/+£*][/-£*]»> ,_ 39>
I|P{h)| || =max 2 ? ^ ^ 2 § (3-39)

Let:

y =[/-j^]"1* . (3.40)

Then:

<[/+t-ai]y.[/+~Ai]y>
! jP(h) | 11 =max £ 1 (3.41)

y*° <U~AL]y.[I^AL]y>

h h2
<y.y >+ «-<y .Ay >+ -r-<y.4 tJALy >

=max 1 ± (3.42)
<y,y>~g<y,Ay>+ -r^iM^y>

Since Yy, <y,AyAiy > 0, and A is negative definite

ll/WII|<l*(*)e(0,-). (3.41)
Hence:
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MP(*)lla<l ^€(0.-). (3.42)

It can be proved in a similar way that

||$(A)||a<l Vi€(0,«). (3.43)

Hence:

\\as(h)\\*\\P(h)\\ \\Q(h)\\<l *ie(0,-). (3.44)

and:

e(Ms(h)) = o(Ms(h))zB(0,l),>vhz(0,°>).

Remark

Note that we cannot prove any # stability result for the Gauss-Jacobi and

the Gauss-Seidel integration methods. In our practical experiments, we have

seen that when applied to circuit problems, the modified symmetric Gauss-

Seidel method is indeed "more stable" than the other two methods.

Now we are going to discuss the accuracy of the integration methods

presented in this paper. Once more, we are going to define accuracy in terms

of the test problem (3.1).

Definition 3.5

Let x(tk) be the exact value of the solution of the test problem at time tk.

Let xk be the computed solution at time tk assuming xk_x = x(tk.{) i.e., that no

error has been made in computing the previous time point-value of x. Letting h

= *fc***jfe-i. the local truncation error is defined to be

s = I\x(tk)-xk\\ (3.46)

If s = 0(hr+l), r is said to be the order of the integraton method [13].

Theorem 3.5

Gauss-Jacobi and Gauss-Seidel integration methods are first order integra

tion algorithms.

Proof;

-13-



From (3.46) we have:

e= | \x(tk)-xk\ | (3.47)

= \\(ehA-M)xk.l\\. (3.48)

By expanding ehA in power series of h and by Theorem 3.1,

s = !|U+hA+Oih^-r-hA-Oih^lx^ I (3.49)

= 0(/i2)

Theorem 3.6

The modified symmetric Gauss-Seidel algorithm is a second-order integra

tion algorithm.

Proof.

Since matrices [Z+^i] and [/+-r-Arr]"*1 commute, then:

Iis =[f~ArjrV~AL]-V^jAL]ll+^Arj] (3.50)

=[I-jA +̂ ALArj]-V+J+^ALArj] (3.51)

= /+/i/l +~-4+0(/i3). (3.52)

Hence:

e= IKe^-^)^^! | = 0(7i3). (3.53)

In circuit analysis, another important criterion for evaluating the accuracy

of an integration method, is what we define "waveform accuracy." In general,

the computed solution of a system of differential equations is the superposition

of a principal solution and parasitic solutions [13]. Parasitic solutions are gen

erated by the numerical approximations and, in particular for the algorithm we

are dealing with in this paper, by the displacement technique used.

Proposition 3.2
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Oscillatory parasitic components are present in the computers solution if

the spectrum of the companion matrix M(h) contains complex conjugate eigen

values.

If the original system to be analyzed does not contain an oscillatory com

ponent, the presence of such a component in the computed solution can be

misleading in the evaluation of the performances of the system [16]. Therefore

we introduce a subclass of the test problem, characterized by ct(A)€.Bq', Le., the

set of test problems whih does not have an oscillatory component in the solu

tion, and we look for bounds an the oscillatory components of the computed

solutions.

Theorem 3.7

Let (j(i4)€/?0". The imaginary part of the eigenvalues of the companion

matrix of Gauss-Jacobi, Gauss-Seidel, and modified symmetrix Gauss-Seidel

integration methods is bounded by a i quadratic function of the stepsize h

i.e. max|J?7i(£i)l =0(A2) (3 54)
Proof.

From Theorem (3.1)

M{h) = I+hA +0{hz) (3.55)

Hence

Wh)) = Ui\Ul = 1+Vi +0(A2); XiCffU) (3.56)

and

*n($i) = 0(hz) VI . (3.57)

Remark

The theorem essentiallysays that by choosing an appropriately smallstep-

size h, the parasitic oscillatory solutions can be made negligible with respect to

the principal solution.
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If we restrict the class of the test problems to the subclass characterized

by a symmetric A matrix, then we can prove a much stranger result for the

modified symmetric Gauss-Seidel integration method.

Theorem 3.8

If A is a real symmetric matrix, the spectrum of the companion matrix of

the modified symmetric Gauss-Seidel integration method is real, Le., no oscilla

tory parasitic components are present in the computed solution.

Proof

Let us factorize matrix Ms as in (3.51)

M, = PQ (3.58)

P = [I~A+li*4,ALAv]-1 (3.59)

Qzz[I^^A-r^-ALarj] (3.60)
Since AiAtj is a positive semidefinite symmetric matrix, -A is symmetric and

positive definite follows that P is symmetric positive definite matrix. Matrix Q is

the sum of symmetric matrices, hence symmetric. Since

P= SW (3.61)

where \ are the eigenvalues and Ri are the residues of matrix P, then

p1/2=SVX^ (3.62)
i = l

pl/z is a symmetric matrix, since the residues Ri are symmetric matrices.1 Let

us consider now the similarity transformation:

M,=p~uzM9pl/z (3.63)

-pU2Qpi/2 (3.64)

Matrix M9 is symmetric and therefore has real eigenvalues. Then by similarity

also Ms has real eigenvalues.
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4. CONCLUSIONS

"We have investigated the numerical properties of certain displacement

techniques used for the timing analysis of VLSI, MOS circuits, from stability and

accuracy viewpoint, the modified symmetric Gauss-Seidel integration algorithm

outperforming the other two methods: the Gauss-Jacobi method used in MOTIS

and Gauss-Seidel method used in MOTIS-C and SPLICE. The algorityhms have

been discussed for circuits containing no floating capacitors. "When floating

capacitors are present, the algorithms have to be modified to deal with the

additional coupling between equations introduced by the capacitors. The

analysis of the modified algorithms is complex and is carried out in [17], where

experimental results are also presented and discussed. We believe that these

methods will replace the traditional circuit simulator techniques based on spar-

sity techniques, Newton-Raphson methods and stiffy stable integration formu

lae, for the analysis of digital very large scale integrated circuits.
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