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1. Introduction. The study of power system transient stability is

almost invariably conducted through the use of Lyapunov functions or

simulation. The former provides a role for analysis and can determine

properties of groups of trajectories. The latter, which relies on the

numerical calculation of individual trajectories, can on the other hand,

treat models that are more detailed and realistic. Both approaches,

however, are used in the same context which can be described as follows,

One supposes that at some time the system is in an equilibrium state say

x . The system is then subjected to a disturbance for a short time

interval (for example, a line trips due to a fault and then recloses after

the fault is cleared). At the end of the disturbance the system is

therefore in another state x, and one asks whether the system, now

starting at x, will eventually return to the pre-fault equilibrium xe.

Thus both approaches are concerned with estimating the "size" of the

attractor of x . The context of transient stability analysis is therefore

the local system behavior, that is, behavior in the neighborhood of a

prespecified equilibrium point.

In contrast to this focus on local behavior, this paper presents

preliminary results of a study of the qualitative properties of

global behavior. Since the power system has many equilibria, Lyapunov

function techniques are unsuitable for global analysis. The presence of

multiple equilibria also implies that the asymptotic behavior of

trajectories does not vary continuously with initial conditions.

Consequently it is hazardous to infer from the numerical calculation of

an individual trajectory starting in a state x, the asymptotic behavior

of trajectories starting at states near x. Such inference can be supported

by a classification of the possible asymptotic system behavior, and it is

the ultimate aim of this study to arrive at such a classification.
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This paper falls short of this aim in two respects. First, and as

discussed in detail in the next section, the system model used in the

study makes two unrealistic simplifications with respect to generator

dynamics and the load. Second, we are as yet unable to prove that our

classification is complete. We strongly believe, nevertheless, that the

three asymptotic behaviors discussed here, namely, convergence to an

equilibrium, trajectories connecting saddles and limit cycles, exhaust

the possibilities.

The paper is organized as follows. The model is presented in the

next section. The case of a single generator connected to an infinite

bus is reviewed in section 3. Section 4 is devoted to the closed orbits

which are possible only in the special case of zero damping. Section 5

discusses complete stability. Concluding remarks and suggestions for

further research are collected in Section 6.

2. The Model. We consider a multimachine system with lt<j nodes indexed

i = 0,1,..,g. Node 0 is a slack bus, and the other nodes are generator

buses. The departure from synchronism of generator i is assumed to be

governed by the classical swing equation,

M.e. + D.0. = P. - f.(e) , 1 = l,,.,g, (2.1)

M.j(D.j) = constant of inertia (damping), with M. > 0, D- > 0,

8. = generator voltage angle measured relative to slack bus voltage angle

9.J = departure of generator frequency from reference frequency m ,

P. = exogenously specified mechanical input power minus loss due to

damping, w D., minus electrical power demanded at node i. (P- is

called the excess power supply at i),

Me) := I b.. sinfe.-e.) (2.2)
1 j=0 1J n J
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is the power injected at node i into the rest of the network. In (2.2),

9 := (9-|,..,6 ), the reference angle 9Q =0, and B.. is the magnitude of

the admittance of the (lossless) transmission line between nodes i and j.

This model has two deficiencies. The first has to do with the

neglect of load nodes. Consideration of load nodes leads to a system

model with a differential equation similar to (2.1), but in addition the

state must satisfy certain algebraic constraints. In turn, this creates

both conceptual and technical difficulties (since the trajectory is not

always defined, and it may be discontinuous) which we do not as yet know

how to treat adequately [8]. The second deficiency of the model concerns

the classical swing equation model itself. The classical model presupposes

constancy of the generator main field-winding flux linkage, the absence

of voltage regulation, and the constancy of mechanical input power. All

of these assumptions lead to inaccuracies, especially for the long time

period behavior which is the object of this study [2, p. 46], More accurate

models, resulting in a differential equation for each generator more

complex than the second order equation (2.1), do not introduce conceptual

difficulties. However, these model do not possess the special

Hamiltonian-like properties of (2.1) which are exploited in the subsequent

analysis.

Equation (2.1) can be expressed as a system of 2g first-order

equations,

9=0)

w= -M']IXo + M-1(P-f(9)) , (2.3)

where M(D) is a gxg diagonal matrix with entries M.(D..), and P,f(9) are

g-dimensional vectors with components P.«,fj(9), Observe from (2,2)

that f(9) = f(<J)) whenever 9.-<b. = 0 (mod 2tt) for all i. Therefore we may
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regard (w,e) as a member of the state space X := R9 x R9 or

E := R9 xT9 where T := [0,2tt] with the endpoints 0, 2tt identified. In

the sequel both state spaces" are used, To motivate these two state

spaces we introduce a definition. A trajectory 9(t), t > 0 is said to be

a (closed) orbit of the first kind, respectively second kind, of period

T > 0, if 9(t+T) = 9(t), respectively e(t+T) = 9(t)(mod 2tt), for t > 0,

Thus a closed orbit of the first kind is a limit cycle in X (and hence

in £), whereas a closed orbit of the second kind is a limit cycle in

(but not necessarily in X).

Our aim is to study the qualitative properties of the trajectories

of (2.3). In particular,we are interested in the changes in these

properties as the parameters M, D, P change. In the mathematical

literature this is called a study of the (dynarnic) bifurcations of (2.3).

We begin with the case of a single generator, g = 1.

3. One Generator Case. Now (2.1) simplifies to

M9 + D9 = P - B sin 9 , (3,1)

in which all qualities are scalars. This equation is almost completely

analyzed in [3, Chapter 8] and we summarize its conclusions.

Rewriting (3.1) as

9 = oj, Hi + Dw = P - B sin 0, (3,2)

and eliminating dt gives the behavior in phase coordinates,

dw _ -Dgj+P-B sin 9 •
de " Mo

= -q"+P-YSlne u? 0, (3.3)
(a)
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where a := D/M, 3 := P/M, y := B/M. Since one of these three parameters

can be eliminated by a change of time:seaie, it ;is enough to study the

behavior as any two of these, say a and $, vary, We first vary a or the

damping constant, and then $ or the excess power supply.

3.1. Cyclic Saddle Connection Bifurcation. Suppose that 0 < $ < y. The

state (w,9) is an equilibrium if and only if oj = 0 and 9 - <J>k or 9 = K,

where

<j>k := 2kTr + 9Q, ^ = (2k-1)7r + 9Q ,

and 3-ysin 9Q =0, 0<9Q < j. See Figure la. (w = 0, 9 = cf>k) is

stable while (ui = 0, 9 = K) is a saddle. In the state space Z - R xT ,

which is now a cylinder, there are only two equilibria corresponding to

<j>0 and ip1.

The curve rn in Figure la is the unstable invariant manifold of

the saddle (u> = 0, 8 = i|>0). It intersects the vertical line through <J)Q

at height HQ. The curve T-, is the stable invariant manifold of the

saddle (w = 0, 9 = i|j, ) intersecting the same vertical at height H-j.

Remember that on the cylinder R x T these two saddles coincide. The

relative magnitudes of HQ and H-, depend on the damping a. There are

three possibilities.

Closed Orbit. For a small enough one gets HQ > H-. as in Figure la, Then

(3.2) has a unique, stable solution (the curve 0 in Figure la),

(w(t),9(t)), with period T, such that

a)(t+T) = oj(t) > 0, 9(t+T) = 0(t) + 2tt, t > 0. (3,4)

This is a closed orbit of the second kind. Finally, every trajectory of

(3.2) on the cylinder R x T converges to one of these critical
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elements, namely, the orbit 0, the stable equilibrium <f>0 or the saddle

Define aQ(3) such that HQ > H1 if and only if a<aQ(3).

Complete Stability. If the damping is so large that a >aQ(3), then

every trajectory converges to an equilibrium point. The system is said

to be completely stable. In Figure lb, SQ and S1 are the invariant

stable manifolds of the saddles (0,^Q) and (0,^) respectively, and the

region between SQ and S^ is the region of attraction of the stable

equilibrium (O,^). On the cylinder R1 xT1 the curves SQ and S]
coincide and all points outside this one-dimensional manifold converge

to <J>Q.

Saddle Connection. When a =a0(3)> H0 s Hi» and tne curves rQ, T^
coincide as in Figure lc. On the cylinder R x T the curve r is a

closed curve connecting the saddle (0,^) to itself. This is called

a cyclic saddle connection, see [1, p. 496]. As a decreases to aQ(3),

the closed orbit 0 of Figure la converges to the cyclic saddle connection

r and the period T of the orbit increases to infinity. In this sense

r may be regarded as a closed orbit of infinite period, (The trajectory

S in Figure lc gradually approaches r.) On the other hand if a increases

to a0(3), the closed "orbit" seems to appear "out of the blue" [1, p. 567]

Thus the cyclic saddle connection separates or bifurcates the presence

and absence of orbits. It occurs at the exceptional value a =aQ(3)

and the slightest perturbation in a will destroy it. This "non-genericity"

of the cyclic saddle connection is a special case of a result of Kupka

and Smale [1, p. 533].
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3.2. The Saddle-Node Bifurcation. The damping parameter a > 0 in now

fixed and the excess power supply 3 is varied. For 0 < 3 < y we saw that

on the cylinder the critical elements consist of the stable equilibrium

or node (0,^), the saddle (0,^) and, possibly, the closed orbit 0. As

3 increases 4>Q and ij;-| approach each other, and at 3 = y they annihilate

each other in the saddle-node bifurcation [1, p. 550], The (stable)

invariant manifold is drawn in Figure Id, There is also another critical

element, the stable orbit 0. If 3 > y, then there is no equilibrium and

the orbit 0 is the only critical element.

The saddle-node bifurcation is static, since it corresponds to the

appearance or disappearance of equilibrium points and hence it is

concerned with qualitative changes in the solution of the "power flow"

equation, P-Bsin9 = 0. Static bifurcations in the case of several

generators are examined in [4]. In contrast, the saddle connection

bifurcation is dynamic. The study of dynamic bifurcations is much more

complex since it requires an understanding of critical elements that

are not equilibrium points, for example, limit cycles.

The qualitative behavior of (3.2) can be summarized in the

"bifurcation diagram" of Figure 2, where E indicates presence of equilibria

and 0 the presence of an orbit of the second kind. Although the proof

is not given here, it is possible to show as in the diagram, that aQ(3)

increase with 3, aQ(3) •*• 0 as 3•+ 0, and its graph approaches the vertical

through 3 = y.

4. Orbits of the First Kind. In the previous section it was seen that

in the single generator case it is impossible to have an orbit of the

first kind when the damping is positive. Such orbits will arise in the

absence of damping.
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4.1. No Damping. Since modern generators have very little damping

it is frequently considered valid to assume D =» 0 in (3.1). The

system is now conservative. As shown in Figure 3, the equilibrium

(0,<J>q) is now a center, while (O,^) is still a saddle, The stable

and unstable manifolds of this saddle coincide forming a closed orbit r

of infinite period or zero frequency. The center (0,cf>0) is surrounded

by infinitely many closed orbits of the first kind whose frequency

decreases from Q to zero as one approaches r. ft can be calculated by

linearizing (3.1) around the equilibrium (0,9Q). This linear system

has two imaginary eigenvalues + i& which are the solutions of the
2

characteristic equation MX +Bcos 9Q = 0. Observe that n is a good

approximation to the frequency only for the orbits of very small

magnitude. For larger orbits the linearized analysis can give poor

answers. In this sense the discussion in [2, pp. 59-63] can be

misleading without additional qualifications. The result depicted in

Figure 3 extends to the case of several generators as follows, Suppose

D=0in (2.3) and let 9Q e R9 such that P-f(9Q) =0. Then
(co=0,9q) eR9 is an equilibrium. Suppose this equilibrium is stable

in the Lyapunov sense. This is equivalent to the condition that the

3fsymmetric matrix F(9Q) := ~ (9Q) is positive definite (see e.g. [8]).

Now linearize (2.3) around the equilibrium (oj=0,9q). The characteristic

equation of the resulting system is

det[X2M +F(9Q)] =0,

and, since M is diagonal with positive entries and F(9Q) is positive

definite, so this equation has 2g imaginary roots, say + ifii,,, + ifi .

Assume that &.,..,fl are all distinct. Then corresponding to each Q.,

the nonlinear system (2.3) has a two-dimensional invariant manifold
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consisting of infinitely many closed orbits of the first kind. Moreover

the frequency of these orbits varies continuously as one moves away from

the equilibrium. (It is not possible to assert as in the case of g = 1

that this frequency decreases.) As one approaches the equilibrium this

frequency converges to fi.. Finally, the tangent space to this invariant

manifold at the equilibrium is the two-dimensional eigenspace corresponding

to the eigenvalues + Qy These results, which follow from the Lyapunov

sub-center manifold theorem [1, p. 580], justifies the linearized

approximation in [2, pp. 59-63]. Note, however, that it is necessary

to assume that a,,..,n are distinct.

4.2. Damping eliminates Hopf Bifurcations. Consider the system (2.3)

and let (M(a),D(a),P(a)), -1 < a < 1, denote a continuous one-dimensional

parametric change in the system parameters. Let (to = 0,90(a)) be an

equilibrium point and suppose that 9Q(a) varies continuously with a.

Linearize the system (2.3) around this equilibrium and let A(a) be the

resulting set of eigenvalues. Suppose A(a) is in the open left half

plane for a < 0. Suppose moreover that at a = 0 there occurs a pair of

purely imaginary eigenvalues + ift, Q > 0, which cross into the right

half plane for a > 0. Such a situation often gives rise to an orbit of

the first kind and with a frequency approximately equal to Q. This

phenomenon is known as the Hopf bifurcation (see [5],[6]).

In a numerical analysis of the power system of the Powerton station

[10], the investigators determined that the oscillations observed in

practice arise from a Hopf bifurcation. The model that they used differs

from (2.3) in one crucial respect: several of the generators are

equipped with voltage regulators. The proposition below shown that Hopf

bifurcations cannot occur for the model (2.3). This leads to the

surprising conclusion that voltage regulators can induce oscillations in
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a power system.

Lemma 4.1. Suppose D> 0. Let (u)=O,0q) be an equilibrium of (2.2).

Let X be an eigenvalue of the system linearized around this equilibrium.

If Re X > 0, then X is real.

8f •2gProof. Let F(9Q) := -~ (9Q). Let (x,y) e Cy be an eigenvector

corresponding to X. Then

0 I

•M'1 -M-1D

which implies

x x

= X

yj [y

X^Mx +XDx +F(9Q)x =0

Multiplying on the left by x*, the conjugate transpose of x, gives

xVMx + Xx*Dx + x*F(9)x = 0 . (4.1)

This equation has two roots X,, X« with

xl +h - • Ffif <° •

It follows that if Re X, >^ 0, then Re X? < 0 and so Im X, = 0. a

Corollary. If D > 0, then (2.3) cannot have oscillations induced through

a Hopf bifurcation.

A more careful study of (4.1) gives some more information about the

eigenvalues of the linearized system. Recall that F(0Q) is symmetric

so all its eigenvalues are real.

Lemma 4.2. Suppose D > 0. Let F(0q) have m non-negative and g-m

negative eigenvalues. Then the linearized system has g+m eigenvalues in
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the closed left-half plane and g-m positive and real eigenvalues.

This proposition is a special case of a more general result in [9]

proved by a different method.

While Lemma 4.1 precluded the possibility of a Hopf bifurcation one

can show more directly and more generally that damping eliminates closed

orbits of the first kind.

Lemma 4.3. Suppose D > 0. Then (2.3) can have no closed orbits of the

first kind.

Proof. By way of contradiction suppose that (w(t),9(t)), t > 0 is a

solution of (2.3) such that for some T > 0, u)(T) = co(0), 9(T) = 9(0).

Integrate (2.1) along this solution to obtain

rT . .. . fT . fTrT
<D9,i

Jn
<M9,d9> + <D9,d9> =

0 J0

which evaluates to

(P,d9> -
0

fT
<D9,d9> = - (f(9),d9> .

Jn

<f(9),d9>
0

But from (2.2) f(9) = W(9), where V(9) := -E B-. cos(9.-9,), hence the
» xJ 'J

equality above gives

T

<D9,d9) = V(9(0)) -V(9(T)) = 0 ,
0

and since D > 0 this implies 9(t) =0.

-12-



5. Complete Stability. Throughout this section it is assumed that

D > 0. Also the state space of the system is taken to be (oa,9) e R9 x R9,

The following notation is used.

If £,n are in R9, then <£,ri> is their inner product and

|C| := <£,£>1/2. If S(t),t >0 is afunction with values in R9, then

for T < »,

Ul2 T:- (f |?(t)|2dt)1/2, |c|2 :- (f|e(t)|2dt)1/2 ,
c*x Jo h

ICh := f|5(t)|dt , UL := ess SUP l5(t)| •
1 JO t

One says Se L2 j> respectively L«, L-,, Lto if |£L t» respectively |£|2,

l£|-|» Uloo' 1S finite. One says £e CQ if £(•) is continuous and

lim c(t) = 0.
t-*»

Recall that f(9) = VV(9) where V(9) = -Z B.. cos(9.-6.).
•vi * J

Lemma 5.1. Let 9(t), t > 0 be a solution of

M9 + D9 = P - VV(9) + <(>(t)

where <j> £ L . Then 9 e L .
'CO oo

Proof. Let \\>{t) := P - W(e(t)) + <j>(t). Then i\> e L^, Since

D. ft D.
9.(t) =[exp - j± tjS^O) + [exp - ~ (t-s)]^.(s)ds (5.1)

it follows that 9 e LTO. n

The next result was inspired by the arguments in [7].

Theorem 5.1. Let 9(t), t > 0 be any solution of

M8 + D9 = P -VV(9) + <f), (5.2)
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where <f> e L2 n CQ. Suppose 9 e L^. Then there exists 9* such that

lim (9(t),9(t)) = (0,9*) .
t-*»

Moreover (0,9*) is an equilibrium of (2.1) i.e.

P - f(9*) = 0 .

Proof. Multiply (5.2) by 9(t) and integrate over [0,T] to obtain

0
<M9,9>dt + <D9,9>dt =

J

0
<P,9>dt-

which, rearranging terms, leads to

rT

0

<VV(9),9>dt + <<j>,9>dt ,

1<D9,9)dt =- j- {<M9(T),9(T)>-<M9(0),9(0)» +<P,9(T)«9(0)>

fT
- V(9(T)) + V(9(0)) + <(j),9>dt (5.3)

Now cf) e L2 n Cq implies <fr e Lot and so, by Lemma 5.1, 66^. Hence the

sum of the first three terms on the right in (5.3) is bounded by some

constant K independent of T. Let d be the minimum of the D^. Then,

using the Schwarz inequality for the last term in (5.3) yields the

estimate

d|e|2J<K+ l<H2J|e|2)TlK+ l<H2|e|2J ,

from which, upon completing squares, one obtains

(dl/Z|fil2.T-7d"1/Z|*l2)ZiIC +Td"1/*^l2": k2' say'
Hence

d1/2|§|2J< k+ld-1/2|4|
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and, since the right hand side is independent of T, this implies

9 € |_2. By inspection of (5.1) it is seen that 9 e L^ and so 9(t) is

uniformly continuous on (0,«>), Since 8€L this implies

lim 9(t) = 0 . (5,4)
t-*»

To show that 9(t) converges, let w(s) denote the Laplace Transform

of co(t) := 9(t). Let £(s) denote the Laplace Transform of

S(t) := P-VV(9(t))+<j)(t). Then (5.1) can also be expressed as

M(sS(s)-o)(0)) + D£(s) = t(s) .

So,

w(s) = (sM+D)"1 w(0) + (sM+D)""1^) ,

From (5.4) and the Final Value theorem,

0 = limw(t) = lim sui(s) = D lim s£(s) ,
t-*° s-K) s+0

whence,

lim £(t) = 0 .
t-*»

Since lim <J>(t) = 0 by hypothesis, this implies
t-x»

lim VV(9(t)) = P .
t-*»

Therefore every limit point 9* of 9(t), t > 0 satisfies VV(9*) - P = 0.

Since the limit points of 9(t), t ^ 0 form a connected set whereas the

solutions of VV(9*) - P = 0 are isolated it follows that 9(t), t > 0 has

a unique limit point 9* satisfying (5.2). n

Thus a bounded solution of the swing equations must converge to

an equilibrium. An excursion of 9-(t) through 2tt radians means that
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generator i "skips" a cycle relative to the synchronous frame. The

previous result can therefore be stated in an intuitive form: if each

generator skips only a finite number of cycles, then the system must

settle into synchronism.

Theorem 5,1 prompts two important questions. For which values of

M, D, P is the system completely stable? And, if 9(t) is an unbounded

solution, what are its asymptotic properties? Both of these questions

seem very difficult to answer. Regarding the second question the

discussion of Section 3 suggests the conjecture that an unbounded solution

must converge to a cyclic saddle connection or to a closed orbit of the

second kind. A rather weak result in this direction is given in the

following lemma which will also be used later on.

Lemma 5.2. If 9(t), t ^ 0 is an unbounded solution of

M9 + D9 = P-W(e)

then lim <P,9(t)> = «.
t-H»

Proof. Suppose in contradiction that there is an unbounded sequence

{T^} with <P,9(Ti)> < K for all i. From (5.3) one gets

T.
f 1 l

<De,e)dt = - A «Me(T.),e(T.)> -<Me(o),0(o)» + <p,e(T,)-e(o)>Jq * 1 1 i

-(V(9(T.)) + V(9(0))}.

From (5.1) it can be seen that the first term on the right is bounded,

the second term is bounded by hypothesis, and since V is bounded so is

the third term. This proves that 9 £ L2. The argument in the proof

of Theorem 5.1 now shows that 0(t) converges, Q
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We now discuss the first question. The next result shown that if

P = 0 the system is completely stable.

Theorem 5.2. Suppose D > 0 and P = 0. Let 9(t), t > 0 be any solution

of

M9 + D9 = - VV(9) + <j> (5,5)

where <f> e L2 n CQ. Then e(t) converges to 9* and VV(9*) = 0,

Proof. From (5.5) one obtains

T

(D9,9>dt = -A«M9(T),S(T)> -<M6(0) ,9(0)>} - V(9(T)) + V(9(0))
0 t

rT
+ <4»,8>dt

Jo

which also leads to an estimate of the form

d|e|2(T<K+|*l2)T|e|2J .

The argument now proceeds exactly as in the preceding proof, «

The proof of the following stronger version of Theorem 5.2 is

more complicated.

Theorem 5.3. There exists tt > 0 such that if |P| < it and 9(t), t > 0 is

any solution of

M9 + D9 = P - VV(9) , (5,6)

then 9(t) converges to 9* and P-W(9*) = 0.
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Proof. The proof proceeds in several steps.

Step 1. A solution 9(t) satisfies

9(t) =[exp-M_1Dt]9(0) +f exp[-M"1D(t-s)][P-f(9(s))]ds .
Jo

The first term on the right approaches 0. Hence, if |P| £ l,and this

will be guaranteed by choosing tt < 1, then there is a constant k

independent of initial conditions (9(0),9(0)) such that |9(t)| < k for

all large t. Therefore, for purposes of the proof, one may limit attention

to solutions 9(t) such that |9(t)| <_ k for all t. Under this limitation

there exist constants a., j = 1,2,3 so that

4e.(t)
dt

For positive t,h the mean value theorem gives

< a., 1 < i < g. (5,7)
j

9(t+h) -9(t) -h9(t) =\ hh

where £,. := 3*.(t+sj for some 0 < s. < h. Substitution from (5,6)

M9 (t+h) -M9(t) +h[D$(t)-P+f(9(t))] =\ h2M^,

whence, using (5.7) and m := max M..,

|M9(t+h)-M9(t)+h[D9(t)-i P]| >h|f(9(t))| -^ h|p| -~ h2a3

This can be rewritten as

1 «-L| l/» ,Mr^U 1 n-1

m

M[9(t+h) -^ D_,P| -|(M-hD)[9(t) -Jr D_,P]| > h|f(9(t))l

-j h|P| -\ h2a3m
Consequently, either
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m|8(t+h)-^D PI >yh|f(8(t))| -Jh|P| -|h2a3m,
or

mh|9(t) -1D-]P| >1h|f(9(t))| -1h|P| -1h2a3m
where

mh := max |M--hDi|.

Suppose that e > 0, h > 0 are such that

|f(9(t))| > 3e , T1 <t<T2 , (5.8)

|P| <e , ha3m <e, m^ <m . (5.9)

Then, for T^ <t <T2, either

m|6(t+h) - \ D~]P\ >| he - \ he - | he =he ,
or

m|9(t) - 1 D_1P| >he .

In either case one obtains the lower bound

rT2+h 2
|e(t) -lD-]p|2dt >(*£) (Tg-^) . (5.10)

Tl

Step 2. Let ® := {e|f(e) =0}. Let r > 0 be such that if e,ty are two

distinct elements in ® , then

B(9,2r) n B(i|/,r) = <f> .

Here B(0,r) is the open ball of radius r and center 9. Let

B(® ,r) := U B(9,r) .

Define e > 0 by
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3e := 1nf{|f(6)||e^B(®,r)} ,

and select positive numbers h, 6, ir so that

ha~m < e, nv < m,- 2a-,h < r,

p 2 3
3m 6 < de h where d = min D.. ,

i

2 2 3tt < 1, tt < e, 8rm it < e h d, 27rm < ehd

(5.11)

(5.12)

(5.13)

(5.14)

Note that this choice guarantees (5.8).

Now fix P, |P| < tt, and a solution 9(t), t > 0 of (5.6). If 9 is

bounded then it converges by Theorem 5,1 and there is nothing more to

prove. So suppose 9 f. L . Multiply (5,6) by 9(t) and integrate

h ,T2
. • _ •

<D0-P,0>dt =
h ID^-lD-^Vdt-f |1 D^'Vdt
h 2 Jtii

=W(0(T1),0(T1))-W(0(T2),0(T2))

where

w(e,5) := 1<M0,0) +v(e)

Note that

[2 |0l/2 1D-V2p,2dt _f2,1 D-lp|2dt
h Jti

>d [^le-^D^P^dt-^^^-T,).

(5.15)

(5.16)

(5.17)

Next observe that the function t b- W(e(t),e(t)) is bounded, Hence T-,

can be chosen so that
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Wfed^.e^)) -W(9(T2),9(T2)) <5, T2 >T1 .

Using (5.17), (5.18) in (5.15) gives the upper bound

iS-lD-V^dt <-W(T -TJ +4 .
T, c 4d^ L ' c

(5.18)

(5.19)

Step 3. There are several cases to be considered. Suppose first that at

time T1 9(T]) £ B(® ,r). Define T, possibly infinite, by

T := inf{t > T^eft) e B((H),r)} (5.20)

Then e(t) £ B((fl),r) for T] <t<T. Hence, because of (5.11),

condition (5.8) is fulfilled.

Suppose T-T1 > 2 h. Then one may set T2 = T-j +h in (5.10) and

T2 = T-j +2h in (5.19) to obtain respectively

J1+2h

T,
i-\\r\?to. >^\-

T1+2h
1 n-ln.2^ </h +5

T I9"!0 Pl dt—2' d

h3 2 h3 2
< n S + n -e
8m2 3m2

h3 2n e

m

by (5.14), (5.13)

which is a contradiction. Hence it must be the case that

T-Tj < 2h

-21-
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From (5.20) it follows that there is i|» in ® such that 9(t) <= B(ip,r)

Since <{> f- L^, Lemma 5.2 implies that 9(t) must eventually leave the ball

B(ij;,r). Define (see Figure 4)

T' = max{t|9(t) e B(i|>,r)}

and let T2 := T'+2h. Now write

w := W(9(T]),9(T1)) - W(9(T2),9(T2))

=W(9(T1),9(T1)) - W(9(T),9(T))

+W(6(T),e(T)) - W(9(T'),9(T'))

+W(9(T'),9(T')) - W(9(T2),9(T2))

=: w1 + w2 + w3, say.

Using (5.15) twice, one obtains

(5.22)

W-, > •i j^- D"1P|2dt >
2

^•^(T-T^ >- \^ , using (5.21);

w2 = <D9-P, dt>>-
J

<P,9>dt > - |P||9(T')-9(T)| > - 2irr.

To estimate w3 observe that since 2h|9| < 2ha-j < r by (5.12), therefore

9(t) £ B(® ,r) for T' < t < T! + 2h, Consequently (5.8) is fulfilled

and one can use (5.10). Then, from (5.15) and (5.17),

w3 > d 1 n-ln.2 1 2

V
e-Ao-'prdt -iir'(T -T')

4d

m
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Adding these estimates gives

d m2

s dh3e2 dhV, dhV.dhVs3,
4nT 4nT nT 2nT *

Using (5.14), (5.13). But from (5.18) w < 6 which is a contradiction

Hence the only remaining possibility is that there is ^ in ®

such that 0(1]) e B(® ,r). Define T' as in (5.22) and T2 := T« +2h.

Then

w := WOJT^.ed])) - W(0(T2),0(T2))

= W(0(T1),0(T1)) - W(0(T'),0(T'))

+W(0(T'),0(T')) - W(e(T2),8(T2)X

:= w« + w, say.

3
The same estimates apply giving w2 + w3 > j <5 and a contradiction is

reached. The theorem is proved. *

6. Conclusions. In our knowledge this paper is the first attempt

following the pioneering work published in [3] that deals with the

global behavior of power systems. The practical implications of the

results reported here have to be drawn with care because of the

limitations of the model discussed in Section 2. Nevertheless, two

conclusions seem worth emphasizing. First, as pointed out in the

Introduction, transient stability studies focus on the determination of

the "size" of the region of attraction of a particular, namely the pre-

fault, equilibrium. Suppose, however, that it can be shown that the
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system is completely stable. In such cases the study of a single

equilibrium would seem not to be very important since the system is

guaranteed to converge to some equilibrium. Second, the results

suggest that in the absence of voltage regulation a Hopf bifurcation of

the kind reported in [10] may not arise. Does this have any bearing on

the design of such regulators?

Even within the framework of the simple model used here there remain

important gaps in our understanding. Suppose D > 0. Then the set of

excess power supply vectors P for which the system is completely stable

includes a neighborhood of the origin. We conjecture that this set is

open. Second, if P belongs to the boundary of this set, we conjecture the

appearance of cyclic saddle connections. Finally, if P lies outside

the boundary, we conjecture the formation of closed orbit of the second

kind.
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Figures Captions

la. a < aQ($), stable orbit 0.

lb. a > cu(B), complete stability,

lc. a = aQ(3), saddle connection r.

Id. 3 = Y> saddle-node bifurcation

2. Bifurcation diagram for (3.2).

3. a = 0, orbits of first kind.

4. Definition of T, T1, T2.
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