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Syntax Oriented Analysis of the Run Time Performance of Programs

Luts Felips Cobrera

In this thesls we consider the problem of finding efficlent ways to deter-
mine, given the valuss for the input variables, the values of varlous performance
fndices associated with a program. For most purposes, we may concentrate on
reproducing efliciently the dynamic profile of the program, Le., on obtaining the
exact profile for any run of the program es a function of the values of the input
veriables. Using the profile together wilth a data base of program performance
Information enables us to find the actual values of most of the desired perfor-

mance Indices.

To achieve this, we describe several kinds of psrformance represeniations
of programs which express the profile equations of the program we are analyz-
ing. We show that it Is often possible to ropresent the profile equaﬁons by pro-
gram performance formulas, whose evaluation time is linear in the length of
their expressions. This is easlly seen to be the best one ¢ in hope to obtain. We
also delimit the cases in which en optimal performance representation can be

found, and propose some alternative methods for the other ceses.

In lact, our skeleton procedure can siways be used, in the case of sequential
programs, to repressnt the profile equations of a program. It is seen that, for
compute bound sequantial programs, the running time of the ekeloton can be
substantially shorter than that of running an instrumented version of the origl-

nal program. Nevertheless, we also present examples which show that the run-I

. * g

ning time of the skeleton need not be linear in tho length of its text and in some

cases Is very close to the running time of the actual program.

A variety of solutions, and theorelical results which guide their usege, are
prosented to overcome the ditferent problems due to the possible slovmess of
the skeleton, on the ons hand, and to the non-applicabllity of the program per-
formance formulae, on the other hand. It Is recognized that most of the dafina-

8ility problems are caused by the iterations (loops). In particuler, alternations

* (conditional statements) within Iterations often ceuse a program not to exhibit

en optimal performeance representation. We examine in full delall the case when
the actions on the control variables of an iterstion ere linesr functions. In this
case, we see Lthat ot run time we are even able to delermine the exact pattern of

truth values thet a predicate has.

We have yet to implement a system which can bulld perlormance represen-
tations for us. However, we have discovered that known techniques used in data
fiow analysis sutfice to obtain all the Information we need about the variables in
& program. Performeance representations could be built by en “intelligent pro-

gramming environment' while a program s being edited.

Our methods can also bs used to obtain traces of programs efficiently. In
tact, with minor modifications, the skeleton epproach can be used to generate
instruction traces of programs. A further refinement yields data troces. More-
over, those of our techniques which find faster performance representations can
also be utilized to generate condensed traces, which can then bs anelyzed using
& postprocessor. Once the {race rapressntation of a program Is bulit, oblaining
several traces (corresponding to different sets of Input date values) should be
much more economicel than actually running sn eppropriately instrumented

version of the program several times.



¥When analyzing parallel programs, the problem of determining performance
indices is much more complex since modeling the computational environment of

the program Is much harder. However, we show how our techniques for sequen-

tisl programs can be used to aid this study.

Prolessor Yomenico Ferrarl
Computer|Science Division
Chairman of Thesis Committee
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CHAPTER 1

Introduction

The porformance of software systems Is becoming a contral Issus In the

Implementation and utilization of novel ideas and techniques in varlous fields

_ of computer acienco. With hardwars cosls constantly decreasing, the availa-

bility of systems with a relotively large amount of main memory has bece.ne
more widespreed. However, these systems are now normally operaled in a
mulliprogramming mode. Thus, they sre very frequently utilized by many
users at a time, creating contention for the installation's resources. For
each of n users, service in & mulliprogramming environment Is often sub-
stantially inferior than it would be in a uniprogramming system of compar-
able (1/n) power. In fact, the behavior of any program in e multiprogram-
ming system differs from that of the same program in a uniprogramming one
because of the effects of the actions of othor usors as well es of the operating
system. Programs almost always exhibit performance degradation, in terms

of turnaround time, in mulliprogramming systems.

It is not surprising then that the efficiency of software which s highly
ulllized (including In this category the operating system, which oontrols the
activity of an instaliation) is beooming tho object of an Increasing number of
performance evaluation studies. The purpose of those studies Is to assees,
and determine ways to increase, the productivity of an instellation as well as

to decrease the cost of processing certain important applications.

It has long been recognized that it Is not enough to have very fast cpu's

in order Lo complete a tosk in a predetermined amount of time, or to have an



extremely efficient 1/0 subsystem: a system's performeance depends on all of
the aspects of its hardware and software configuration and on its workload.
It is thus necessary to have software which uses appropriate algorithms and,
most important, thet makes suitable usege of the resources available in the
installation. Unfortunately, today there are no software design tools, or
methodologles, which allow us to analyze a symbiosis of this kind between a
program and the installation in which It will run. Not enough work has been
done in this area, although there is interest and need. In [Smi?8, SmiS0,
BooB0), for example, we see discussions, implementations of methodologies
and proposals on some of the issues that need be resolved to find a solution

for this problem.

In the case of an existing program, when trying to analyze and/or
predict its performance in & given installation, it is necessary to be able to
determine exactly what resources and in what proportions the program
requires to run. It would be very convenient if one could obtain this informa-
tion in an elficient way, Le., faster than by actually running the program and
measuring it. We would like to have a performance dsscription of the
behavior of the program as a function of the values of its input variables,
which would allow us to obtain efficiently the desired performance informa-
tion. If such performance descriptiona for programs were available, prob-
leme like compering distinct software packages, or distinct implementations
of & given algorithm, would bacome easier and less resource and time con-

suming.

Indeed, one can also envision that an intelligent operating system could
use this parformance description in its scheduling decisions, and thus allow

for & better utllization of the available resources. Global optimization of

resource sallocation becomes feasible If the resource demands can be
predicted with reasonable accuracy. When & program Is to run, the operat-
ing system is pressnted with the program end the input date; If it elso were
to get a performance description of the program of the type described
above, allocations of resources could be made in a less uncertain eituation,

hence with a higher probability of success.

These representations could also aid us substantially in the study of the
performance characteristics of a given program. Substantial execution time
savings can occur for large numerical programs. Moreover, they could also
be uzed to generate traces efficiently, and to assess program restructuring
algorithms. Another application is in the detection of “doad code”, i.e., code

which ia never executed.

1.1. Our Fundamental Problem

The bshavior of a progrem means different things to people with dil-
ferent objectives. For example, one may be Interested in the 1/0 activity, in
the cpu requirements, in the number and type of arithmetic operations per-
formed, in the amount of paging activity generated (in the context of a paged
virtual memory system) or in the total running time. Each of these perfor-
mence aspects of the execution of & program is normally a function of the
velue of the inputs to the program. It then becomes clear that the objective
c;l the performance study must be established beforehand. Nevertheless,
there exists a performance indox which enables us to unify most of these stu-
dies. This index is a count of what gets executed in a run of a program.

A basic block is a linear sequence of program statements having one

entry point (the first statement executed) and one exit point (the last state-

ment executed). The program profile is a veclor whose elements express the
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number of times each baslo block is exccuted In a given run {Knu?71b). We
shall often uss the term profile to mean program profile. Thus, our profiles

will be counts of basio block executions in a given run of the program.

Given a profile, It Is rather simple to oblain soveral of the above men-
tioned performance aspects. The only one that may not be obteinable,
depending on how intricate the fiow of control structure ia, is the dynamics
of the memory demeands produced by the program. As for all the other per-
formance aspects, all that is nec'nuuy is some information which normally
needs Lo be gathered only once per program-installation combination. In
fect, what Is required is just & map from the names sssociated with the basic
blocks to the basie blocks of Instructions, and then different maps from the
basic blocks into tables of specialized information which occasionally may be
installalion dependent, although it does not necessarily have to ba so.

For example, if we are Interested in counting the different kinds of
alomic operstions that the program porformas, then the mep we need is one
that associstes with each besic block en itemized description of all the
atomic operations performed by the statements in the basic block. Then,
once wo o!;hln the profile for basic blocks, we only have to muitiply the value
assoclated with a specific baslc block by tho number of Uimes each atomic
oporation is performed in that basic block Lo obtain the counts of the opera-
Uons executed. This procedure is certainly instellation independent, but,
once the necessary maps have been constructed for & program, thoy need

never be recomputed.
However, If we are interosted in estimating the running time of e pro-
grom when executed with a given set of inputs, we need instollation depen-

dent information. In particular, if we assume a uniprogramming environ-

ment, what we need to find out is the (average) time oach atomic operation
takes as well’as the execution Ume of each kind of branching statement

appearing in the program.

For machine and assembly language programs this information mey be
obtained from tables supplied by the hardware meanufacturer. It we are deal-
ing with « program written in a high level langusge, then we need information
which s both compller and system dependent, because what we are really
interested in Is the (average) time a compited atomic operation takes. This
can be echieved by classical benchmarking techniques which call for per-
forming the same operation a large number of times and then determining
the (average) unit time. 1t should be cloar that each lime a new compiler is
installed or a new system considered, » now table has to be obtained for the
stomic operations we are interested in. Thus, estimating the running time of
a program In different Installations requires a different table for each instel-

lation.

A whole spectrum of subtier problems appear when we also want to con-
sider tho effect that an optimizing complier for a high leve! language may
have on the running time of a program. Our tebles should now Include con-
text dependent information for the different kinds of coda optimizations
used by the complier. In this case it i not e straightforward matter to
determine the *‘coat” of an atomic operation. Conventional benchmarking

techniques need Lo be epplied carefully.

We shall call profils eguations of a program those cxpressions which
express the frequoncy counts of basic blocks as functions of the Input data.
Thus, It we had an appropriate representation for the profile equations. we

would be sble to obtain the profile of the program in an efficient way. The



best achicvable is to have an evaluation cost linear In the length of the

representation of the profile equations.

The purpose of our study is preciscly to explore different alternatives
which will enable us to obtain profiles for programs in an efficient manner.
In fact, we will describe automatic ways of representing the profile equations
for a program and conditions under which they will yield the profiles with
linear time evaluation cost. These methods will allow us to obtain profiles
much faster than by actually running (a properly inatr;.lmentad version of)
the programs. '

In Chepter 2 we introduce a “Program Performance Language”. We
defino with it some syntactic objects which will represent (parts of) pro-
grams and others which will describe the values of variables at different
points of a program. This will enable us to find the limits to our goals (within
that formalization) as imposed by the topological complexity of the D-charts
sssociated with programs, by the algebraic complexity of the modifications
done to certain variables in a basic block, by the algebraic complexity of the
predicate which governs a loop and by the interrelationships existing
between distinct parts of the programs.

1.2. The Default Procedure

When we are interested in a count of the basic blocks as a function of
the values of the input veriables of a program and all we have is the program
to work with, we will normally find that the program has many statements
which do not play any role in this process. We shall nov: make this observa-

tion more precise.

Given a variable name z, we shall say that £ is a control variable If its
value affects the flow of control of the program. It is clear, then, that ell

statements in the program which do not modify control variables may be
excluded from an analysis whose sole purpose is to find the profile of a pro-

gram.
Ve have thus found a first approach to our problem of efficiently gen-

erating program profites. Given a progrem P we construct a program P, and

suitable tables T, ... , 7, which will, we hope, enable us to obtain perfor-

_ mance information about P much more rapidly than by actually running an

instrumented version of P. This can be done in the {ollowing way:

(1) P, is obtained by deleting from P all those statements which do not
effect the flow of contro!l of P, Le., those statements which do not modily
control variables or variables which will appear in statements modifying
control variables. Moreover in each basic block, ¢, we add a statement
of the form B, := By + 1, where the varlabla'B‘ does not appear in the
original program, has not been used before in P, and is associated with
the basic block in a unique way. We also add, at the very beginning of
P,. statements which initialize esch and every one of these new vari-
ables J; to zero.

(2) The tables T, ..., T,. represent meppings between these names 5; and
different kinds of information required for our performance studies.
For example, one of thess meppings will always bz the onz which
matches the names 5; and the actual sequences of statemsnts which

constituted the corresponding basic block.
We shall call P, the (flow-of-control) skeleton of P,

We notice that in the first clause defining P, we need not introduce so
many new variables B, to describe the profile of P, because in any program

there is redundancy of flow-of-control Information which one can use



advantageously [Knu?3). All one needs is Lo bave one varlable counting the
executions of each independeont path. Baslo blocks which will slways oxecute
;aquenually may be accounted for by the uss of only one variable. Figure
1.2.1 Hiustrates a simple instance of this, where we sce that the value of By
cen bs derived from (in this cass coincides with) the count for By

Discovering which statements affect ths flow of control of a progrem can
. be done In an automated way by the global data flow anelysis methods used
for code oplimization [Aho?78). The mothods uiantlnl!y consist of & mul-
tipass procedure where, in the first pass (hrough the cods, date flow Informa-
tlon Is gathered and suitable data structures that will keep this information
for further processing ars buill. In subsequent passes the information is
appropristely used. Severat implemented optimizing compilers gether all
the informetion which Is needed to perform step (1) of our procedure during
their first pass through the code.

Rgure 1.1 Two variebles B suflice.

As for the tables required, some of them can also be gonereted automet-
icelly quile essily. For example, while parsing the program, the compller can
identify all the basic blocks when they sre encountered and count the dis-
tinct types of atomic operations which appesr In each block. However, It
should be cloar that some other tables require extra effort to oblain. For
exemplo, suppose we are interested in determining the pago trace of a run of
a program; then, we need to know the physical layout of a compiled version
of the program to determine which pages cmupond to a given basic block.

This has to be done after the actusl machine code has been produced.

To lllustrate the form, effectiveness and usage of the skeleton of a pro-
gram, os well as its limitations, we shell present three examples. Two of
them are taken from a large FORTRAN program and the third is the well
known Warshall's algorithm. Warshall’'s sigorithm computes the cost of
traversing a labeled directed acyclic graph to go from one vertex Lo another.

When eppropristely interpreted, it yields the transitive closure of a matrix.

SPICE is a large FORTRAN program [Coh76b, Nag75] (11000 lines of code)
which anclyzes integrated circuits to determine their electrical and thermal
properties. We have chosen to analyze (parts of) it becauss it is an examplo
of a large program which i3 frequently used at Berkeley and whose behavior
has been analyzed using only conventional techniques. .

For our immediate purposes we have chosen two parts of the code, the
subroutine TMPUPD end the subroutins MATLOC, of which we will bulld the
skoletons. The analysis of each one of them will point Lo advanteges and limi-
tations of the mothod. However, in both cases we will ses that obtaining the

profile from the skeleton ls much faster than from the original code.



Exzample 1.2.1

Appendix A contains the original FORTRAN code for each of these two
portions of SPICE, as well as their flowgraphs in D-chart form.

In Table 1.2.1 we show the code for the skeleton of the subroutine

TMPUPD. We ses that all the statements are very simple and thus of quick

SUBROUTINE THPUPD .LE.2) GO 70 220
IMPLICIT DOUBLE PRECISION (A-H,0-2) m oByos1
l'}'(gr?tl::&o w008 %Bn-snm 0108
B2=h2¢+1 D:o:a:ul
8 B3=B3+1 230 B19=B19s1
LOC=LOCATE(1) L0C=NOD
P N1 -
4 t J
LOcV <NODPLOLOCH1) ??wcmo)oo:o
N )
%’-‘3‘“" b 200 G (wcnt» coro
400
Pt s
(13 ) GO T0 30 B23nB23+1 Tos20
B5=B5+1 20 B4=BaAe)
=3 LOCs!
o - R g
t J
B1=B7+1 Bossgoney
100“1’;(:0 ,wuo TR(21) mliP m.m c0T0
8 ¢ A
B e B e
F Y 3 +
B’g mo, 070200 Dusmgo ]
10T (L0 IPRNT
A e IP (TEWN0.18.2) 60 T0 413
lr(mmomeom 10 B202820+1
Bi=B1141 415 B30=D30+1
gl FiRkaone
=i
e B
m o]
B13=B13+) GO T0 410
IF (LOC.EQ.0) 60 70 300
)
210 B15:D1541
Table 1.2.1 Skeloton of THPUPD

1

execution. We could save more processing time by delsting redundant
counters and later, whon analyzing the results, reconstruct the full profile by
teking into account the interdependencies used to eliminate statements

from the original code.

In tact, By, By, Byg. Bpo and By, vre always traversed the same number
of times as B, is. Similerly, B, Is traversed the same number of times as By,
Byg is traversed the same number of times as B o B,y and B,y are traversed
the same number of times as B;5, By, I8 traversed the same number of times

as B, and Hep, Bas, By are traversed the same number of times as By,

So we see that from the skeleton depicled we could still eliminate 13
statements of the form Bi=Bi+1, where | is an integer. We notice that 7 of
these statements are within loops, so their deletion certainly increases even

more the running time savings.

Example 1.2.8

Table 1.2.2 deplicts the skelston for the subroutine MATLOC of SPICE. Its
very simple structure permits, if desired, the further elimination of 17 state-
ments of the Bi=Bi+1 type, where | is an integer. Four of these statements
are within loops. What we should notice in this example is that, since we have
nested loops, the execution time of the skeleton would improve substantially
if we could “linearize” them. In fact, from analyzing the code we see that
oach of the inner nested loops, i.e., those corresponding to variables By, By,
B,y and By, are traversed NDIM times each Ume the T-branch of their
respective outer loop Is teken. NDIM is e variable which is not modified
within MATLOC, it is an input value for this subroutine. Linearizing these
loops is then a fairly straightforward matter. After the count for the
corresponding outer loop Is found, one multiplies it by NDIM and obtains the
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UBROUTINE HATLOC
?u?ucn DOUBLE PRECISION (A-B.0-T) NODP
Bi=Bi e} wwe: ‘u:(wc)
LocaTea) G0 T0 770
gx mﬂm»mm”m u’fs;zm
lc%c;: o 774 IP (LOC.£Q.0) GO T0 700
wo wc-wcm(c) B22=B22+3)
DO 770 =3 NDIM
ﬂwgfcno) G0 10T "ga-mig
wc-uonm:unc) wc-m
- Bt
72%5106- %-mc:ma)
notrgmuno)cowm "gg‘wcmxlqo’mmw
e‘%cr'él o L0} gc;;%mm)
"omwg; TE) log’ncw‘m(u)
Ll L4
"WSG" £20) 0070780 81077 (L0G.EQ.0) GO TO 820
mc;;«obw {$00) m‘:?b"
LDCATE(S) €0 70 010
”%au-‘g; 1 =0 wc-mq'u(u)
moggcﬂa?o) GoTo 704 SO (IDC-B,Q-O) G070 860
DO 783 l=), B0+
Bn—nu'u wc-ilg)o?w(lm
lﬁ'g-nonrfnam uga lfciommm
Bi2sBiI2¢) o IQ 6070800
) l&om (LOC.EQ0)
Bla-man ) 0010788 wc-ng'wanc)
n%u-aml ﬂwsmmna
B‘.’.’&'ﬂ:.’a""“‘ #70 I7 (LOC.EQ.6) GO 70 900
CONTINUE B34=D34s1
&eg%' 900 LOC=LOCATE(27)
968 LOC=LOCA’ B35=B33+) 070 1000
B17B1748 Olgg cha.qo) 3
mwr 0) 0010 178 Wm
3&’?3‘:".’ €0 70 910
- ke
B19=B19+1 $000 RETURN
Skeloton of HATLOC

Table 1.82

2l

count for the inner loop.

Example 1.2.3

We presont in Table 1.2.3 Warshall's algorithm, teken from [Aho74], to
fllustrate why we must try to find botter approaches than building the skele-
ton representation of programs. We have exprossed it in a pseudo Pascal
language for belter readability.

We see that ali loops are traversed a fixed number of times and thus, as
in Example 1.2.2, linearization of them (s not only desirable but possible. It
takes & moment's reflection to sos that in this case the straight forward

skeleton would not run much fester than the actual routine.

1.5. Boms Related Work

Donald Knuth has pioneered the arca of the mathematical analysis of
elgorithms [Knu7ie, Knu71b, Knu78). In this analysis, for the execution time

forl:= 1 untiln do G := 1 + v.y);
for1 sLjsnandiv )do GY:= lv.v)
fork:= 1 untiin do
for1sijsndo = ¢! + QR x(ch") g™

for 1 £ 1,j € n do o{vvy) := OF:
| is a labeling function between nodes

is the sum of the labels of all paths from v to v; such that all
;:;tl;::n :l'i "l:;o path, oxcept poszsibly the end points, are in the set

e(vy. vy) ia the coat from y lovy.

Table 1.2.3 Warshall’s Algorithm
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of a given algorithm or program, one attempts to determine the four quanti-
ties
<maximum, minimum, average, standard deviation>.

The fourth quantity refers to the standard deviation of the distribution of
execution times around the averege. Knuth's frequent contributions to this
area have not only been a source of inspiration for many researchers but
they have also shown how difficult the analysis mey become even for rele-
tively simple algorithms.

1n [Knu78)] we can see that the complete analysis of a rather simple elgo-
rithm mey require complex mathsmatical knowledge and expeortise. It then
becomes quite clear that analyzing large real-life programs may be an enor-
mous task. The required amount of sophistication and level of reasoning
about the program seems to go beyond the current level of what can be
automated.

Nevertheless there have been efforts to understand the nature and com-
plexity of this process. In a recent Ph.D. dissertation, Knuth's student Lyle
H. Ramshaw [Ram79] exiomatlizes a part of the process of analyzing pro-
groms. His efforts are directed towards the understanding of the reasoning

behind the mathematical analysis of an algorithm.

With a different spproach, since 1974 Jacques Cohen and his collabora-
tors have been microanalyzing structurally simple programs, Le., determin-
ing the above mentioned four quantities as functions of each elementary
operation involved in the progrem. In [Coh74) Cohen pressnted a system
which would acoept programs In a restricted Pescal-like programiming
language and would return an expression of its execution time as a function

of the processing time of elementary operations. However, ths evaluation of
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this expression requires the user to specify the number of times the body of
a loop would be traversed and the branching probabilities of conditional
statements. These two conditions make this approach very difficult to use

when one is trying to gain knowledge about the behavior of a program.

Nevertheless, Cohen's interactive system includes many features for the
algebraic simplification of expressions, for finding cloacd forms for some
kinds of lurpmaliom and for solving some finite difference equations. These

features have to exist in any system that will perform a task of this kind.

The simple structure of many algorithms has proved that the method
can yield interesting results. In [Coh76a] we sce an analysis of Strassens’s
matrix multiplication algorithm. A non recursive version of the algorithm
has all loops traversed a fixed number of times and no conditional state-
ments within loops. This allows the authors to find a closed form expression
for the processing time of the algorithm whose evaluation does not lead to
inconsistencles. In their expression, specying the number of times a loop is
to be traversed is given by the dimension of the matrices. Then, as all the
bodies of the loops are basic blocks, the evaluation yields the exact profile of

the run.

However, it Is not clear from the preneniatlon in [Coh768a) how much of
the mathematical deductions were carried out automatically by the aystem.
The article ssems to suggest that these deductions were presented to the
system for further symbolic processing and evaluation, but hed been
obtained by the authors.

We shall call Cohen's approach the dsterministic microanalysis of pro-
grams because of the requirement that the user provide the number of times

o loop will be executed and a conditional branch will be taken. A big draw-



back of this method is thet, In any relatively complex program, the interrela-
tisnships between statoments moy become very obscure and involved. it is
unrensonable to expect that 8 user will master them and provide consistent
data for the evaluation of the expressions. Ths fact that these expressions
do not depend on the input variables of the analyzed slgorithm or program

appears to be responsible for most of the method's deficlencies.

Iitis qult.e easy to sce that all programs which ere syntactically correat
in the langusge sccepted by the analyzing system are deterministically
microanalyzable. As the control structures of this language include while
loop statements end if then else branching statements, because of the rosult
of Bdhm and Jacopini regarding the functional completeness of this class of
programs [B5h88), it would be very nfce if for such a cless of programs one
could produce expressions which described the behavior of the program as a
function of the input variablss and of the elementary operations. We shall
see in Chapter 2 that this is impossible Lo do, even if we assume that our pro-
grams halt.

A difterent approach can be found in Ferrarl's work, {Fer78}, where pro-
grems are viewed s D-charts and formulac are bullt in a bottom up fashion
taking into account all the data dependencles. Unfortunately, the metbodol-
ogy used there did not clarify when ons could obtain such expressions. Only
very simple examples were found to be monogesble. However, the expres-
sions cblained were functions of the input variables and thus when supplied
with values for them a correct profils wes obtained. The task of finding
expressions became more complicated but their evaluation required nothing

from the user, and Lhe answer obtained was always correct.

.t
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To obtain the four quantities desired using Ferrarl’s expressions, one
has to find suitable input deta that would exercise the program in such & way
as to achieve its minimum end its maximum; then, making some probabills-
tic essumptions on the neture of the input date, one is able to determine the
average and standard devietion with some predetermined degree of statisti-
cal confidence by measuring enough samples of the input date. In fact, it is
worth noting that Cohen's epproach requires the same kind of hypothesis
with the additional problem that, for a given assignment of values Lo the
number of times loops are traversed and branches teken, -ona may not obtain
valuea which represent the executisn of the program under a given set of

inputs.

A vory interesting system, Metrio, is presented in [Weg?5). With it & very
limited class of Lisp programs can be correctly microanalyzed. The
highlights of Wegbreit's system are that it knows bow to find closed form for-
mulae for recursive programs (in Its restricted Lisp environment), deals with
elgobraic simplifications and expresses the execution behavior as s function
of the size of the input. Moreover, Metric slso allows several measures of
performance to coexist. This provides a degres of fexibility that Cohen's
system deces not have. However, when computing the maximum end
minimum execution \ime of a program, ss in Cohen’s system, several “sim-
plilying” bypotheses are made which yield bounds not necessarlly tight. In
other terms, there may be no set of inpuls which would meke the program

attain these bounds.

The very fertile area of Symbolic Evatuation or Symbolio Execution of
programs has undisputed relevance Lo our problam. In [Che70, Cho76, Che?8,
Kin76, How78] we road ebout different systems which attempt to expressin e



symbolic way the results of the computations performed by & program.
Common to all of them, and to any system which performs such a task, is the
problem of dealing with loops. The elfect that such a construct bas on the
value of a variable is central to the analysis in all approaches.

All of these authors are primarily concerned with the correctness of the
enalyzed programs, ajthough performance is mentioned in a paper by Cheat-
_ ham [Che78). Systems like DISSECT {How78) are denigned to evaluate FOR-
TRAN programs, EFFIGY [Kin76) is intended to evaluate simple PL/1 pro-
grams, and the system developed by Cheatham and his collaborators [Che78]
to analyze EL1 progrems. The output normelly consists of an expression
describing the elfect of a program path on a varisble and the sequence of
predicates whose truth value uniquely determines the execution path teken.
The ability of each of these systems to find such expressions rests in the sim-
plicity of the programs submitted for analysia. The limitations of each

methodology are never discussed in a formal way.

However, in [Che78] we find for the first time o decision procedure for
solving & restricted class of recurrence relations [Kar79). The result by
Gosper [Gos78]) gives us more tools to work with in this area. Gosper’s result
is implemented in MACSYMA [Mat77), which is a powerful algebraic manipule-
tion system originally implemented at MIT to run on PDP-10's. However,
today there is a Berkeley version of MACSYMA (“vaxima''), {Fat78), which
runs on VAX computers. MACSYMA as & tool in symbolic evaluation appears
to have no rivels. In Chapter 5 we shall deel with the prodlem of finding
closed forms and describe how a system like MACSYMA may help a user doing
it.
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The only reference known to us that uses an idea similar to the skeleton
is in [Pra78], where programs are decomposed into a control part (a subset
of our skeleton) and & kernel part (which Is only concerned about computing
output values). Then the author uses this idea to study program equivalence,
termination &nd code optimization. He introduces several models of pro-
grams, the most general of which formalizes the notion of equivalence of con-
trol structures. It should be clear that any two programs which share con-
trol structures will behave identically in their profile equations, and more-
over, from the viewpoint of their termination, one will halt if and only if the

whole class of programs with the same control structure halts.

The notion of Data Flowgraphs and Flowcharts [Kod76a, Kod78b] hes
been used to analyze the behavior of programs. However, there are many
problems with this essentially static approach. Some of the problems are
well stated in [DavB0), where the author specifically criticizes alleged analo-
gles between flowgraphs and electric circuits, but his solution does not go
very Iar in solving the main objections to the epproach. The main problem is
that all of the dynamic aspects of the program are totally lost. Devices must
be introduced to describe, for example, the number of times a given loop will
be traversed. In fact, what is missing, once again, is the dependence of the

representation on the input data.

In tha following two chapters we shall study families of ropressntations
for programs which improve on our skeleton apprpach (by having a faster
running time) and which will always be dependent on the input date. To

achieve this we first Introduce pertinent formalisms in the next chapter.



CHAPTER 2

A Program Performance Language and its Semantics

We shall now introduce a formal language which will be used to express
our symbollc representations of programs. Its spirit ls similer to that of
languages used In first order loglc. However, a symbol which adequately
enabl.u us to deal with contro! structures has been Introduced In our
tanguage. For a simple introduction to first order logic languages we refer
the reader to [End72].

We assume we havs en Infinite set of symbols which ls partitioned s lo!-
lows:

Logical Symbols
1 parenthoses: (.)
2 ssnlontial connective symbols: -, 0R
3  variables {one for each non-negative integer n): Bg Ky oee o Tpo oo
4 equality symbol: o,
Non Logical Symbols
* 1 one binary predicate symbol: <
2 two constent symbols: O, 1

3 function symbols: the unsry function symbol log, the binary funclion
symbola 4, ®, mod, and, for each positive integer n, some sets (possibly
empty) of symbols, called n-place function symbols.

4 the four-place spooial symbol: IFTHENELSEFI.

8  the spocial denotation symbols (one for each non-negative integer n):

Bﬂo B.l ses g B.' oo

The constant symbols are sometimes also called 0-place function sym-
bols. This allows for a uniform trestment when we specify the semantics of

the langusge.

Our intended Interpretation of most of these symbols should be quite
clear. All ths unary and binary operatlion symbols deacribe the basic real
valued algebraic operations and the constants 0 end 1 are to mean zero and
one. The special denotation symbols B; will be used to represent the basic
blocks (of instructions in a program). We shall make all the moanings expli-
cit after we Introducs the syntex for the language.

8.1. Program Performance Formulae

An expression is any finite scquence of symbols. Tho simpleat kind of
moaningful expressions are the ferms. They ere the expressions which are
Interpreted as naming numerioal objects. The two kinds of objects we are
going to be concerned with are the basic blocks (of instructions in a pro-

gram) and numerical values.

Normaelly in mathematical logic terms ere all thoss expressions which
can be bullt up from the constent symbols and the variables by prefixing the
function symbols. Formally, for sach n-place function symbol £, one deafines
an n-place Llerm-building operation l‘, on expreasions:

Tp(es. og oo o 83) = foye 250 e 0 2,)
and uses it Lo generate the set of terms. However, we shall adopt a more res-
tricted definition In that not all function symbols will be used to bulld up our

terms.



Definition 2.1.1

The set of terms is the sect of expressions generated from the constant

symbols and variables by the operations I, I's, T’y and Feee.
]
From now on, whenever we refer to an n-place function symbol £, f will

not be one of log, +, * or mod. However, if we say “’any n-place function sym-

bol £ * then the above four function symbols are also included.
Definition 2.1.8

An atomic formula Is an expression of the form P(te.t;). where P is
either the equality symbol = or the binary relation symbol < and ¢, £, are

terms. We shall abbreviate atomic formulae by writing tg = ¢, and £g < £,
]
Informally, sentential formulae are those expressions which can be built

up from the atomic formulae by use of the sentential connective symbols,
This can be made precise by using the following two sentential-formule-
bullding operators on expressions:
r.(e) = (-2)
Toalerea) = (2 OR 29).
Definition 2.1.8
The set of sentential formulae (formulse, for short) is the set of all

expressions generated from the atomic formulae by the operations I, and

Tow

Definition 2.1.4

We define our set of program performance formulae by recursion on the

length of expressions. We lat A denote the empty string.

(i) Ais a program performance formula.

(i1) Special denotation symbols Bg, By, ... are program performance formu-

(ilt) I ¥, and ¢, are two program performance formulae then ¥,¥; is a pro-

gram performance formula.

(iv) 1t ¢ Is a formula, f any n-place function symbol, £y, ... . Iy terms, and ¥,
¥s two program performance formulee, then
IFTHENBLSEFI(@.f (40 «or » £ ) W1 ¥0)
is e program performance formula.

[ ]
Program performance formulae will be, under suitable conditions to be

described later, symbolic expressions for the profile equations of programs
as functions of the input variables. Their linear Ume evaluation cost is what

makes them very desirable for performance evaluation studies.

As Is customary when describing formal languages the number and
kinds of primitive symbols have been kept to a minimum to avoid redundan-
cies. However, to make the languege practical, we introduce abbreviations
for commonly used relations and oparations.

We thus introduce the following three binary relation symbols: <, >, =.
The longest definition in terms of = and < !s for >:

£, > te it ~((ty = tg) OR(¢; < ts))
where ¢, and ¢4 are terms and iff s an abbreviation for “if and only if”’.

We also introduce the rest of the binary logical connective aymbols: &, -
and ». The exponential funclon symbol exp(x.y), also denoted es z¥, and
the binary division function aymbol / (in whoss definition we exclude the pos-
sibility of dividing by zero) are also defined in terms of our primitive function
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symbaols in Lthe usual way.
From now on the program performance formula
rTHENELERI(p. £ (81, - o bu).W2¥0)
will be written
oL (tg s ba) HEN Y ELSE Yo 11

£.2. Bemanlics for Program Performance Formulas

We shall now define the (canonicel) interpretation of the syntectic
objzcts introduced In the previous ssolion. As mo quantifiers exist in our
language, all variables which sppoar In a program performance formule (ppt)
are free. This will enable us to evaluate any pp! in @ one-pass lefl-to-right
mennor. This can not bs achieved when quantificrs are present.

An & full (mathematical logio) mode! theory for this languege does not
seem (o play a role in our problem, we shall not devslop it here. Indsed, our
(standard) universe will be the set of real numbers, even though there will be

cases when some variables will only range over integer valuss,

Let ¢ V « R be an assignmont function from the set V of all variables

into the sot of real numbers. We define an extension ¢ of { to the set of all

expressions denoting numericel values as follows:

1 for each varisble =, i(z) = {(z).

2 o)=Oendi{t)=1.

3 114,, ... . ty are terms and £ 18 one of log, mod, +, *, then

Wty oo 8)) = SR(E(EL), oo $(82))
where #® is the operation defined in the real numbers which ls donoted

by . In partioular, x denotes the muitiplication operation, Le., ®igx.

4 118, ...t arc terms and £ Is an n-placs function symbol different from
log, mod, +, ® then
Wty e o 13)) & SR8, oo $(82D),
where @ : (R U {#})® + R v {=] is such that If any argument is = then
tho valuc is =,

Having dofined the Interpretation for terms, wo now proceed to define satls-

faction for formulae, Given a formula p and en assignment function 1, p[#] i
the result of assigning velues, via {, to all {frec) variablesin .
With atomlo formulae,
for any two terms ¢, and ty, (¢, = ¢g)[4] Is true Iff ¢,) is equal to {(¢,).
(¢, < t5)[4] 1s true 191 4(¢,) is (strictly) less than §(ty).
With sentential formulae p,
(-~ p)¢] 1s true U7 it is not the case that ol1] is true. (p, OR py)[4) Is true
A1 ¢,[4] I3 true or gfi] is true.

The Interpretation of a pp! will yield a (finite) soquence of symbols which is
meant to represent the profile of a program when the program is run with
the Inputs used to evaluate the ppt.

Definition 2.2.1

Wo define the interpratation function I by induction on the complexity
of ppf's:
1 for eny spscisl denotation symbol By, 1{B,)[{] = 1B;.
2  for any performance formula ¥, where ¢ Is ¥,

Kvi¥a)t] = Ky )MeJKva[4).

8  For any formula p, n-place funolion symbol £, terms ¢y, ... , fn and ppf'e

Y ¥o



I(P ¢ . £(¢4 v + Lo JTHEN ¥y RLSE ¥ F1){1] {s equel to
FR(L,), oo o $(2)) % Kyy)l4] it p[{) is true and equal to
) o Ue)) x Kea))) 11 pft] Lo talse,
whereforany e € RU (), m x £ 2 x = = e, Ity i A for j € [1,2]. then we

say that fR(4(¢,), ..., {{t,)) x Xyy)[e] is A

Proposition 2.2.1

Lot ¥ be a program performance formula and { en assignment function
ofVinto R. Then Ky){{)=2c8,...8, ., where(a)sg€R v fe}, (b)for 0 <§
£n, 5 cRUfeJUIB] ¢ ()8 e RUim)then g €8}y ¢ o -

Proof

By induction on the complexity of program performance formulae.

£2.9. Representation of Programs

We shell first study non recursive goto-less programs. It is well known
[B8h686] that any computation can be carried out by a program of this kind.
As dono in [Fer78], we shall represent this kind of programs by single-entry
single-exit directed graphs called D-charts.

A D-chart has five types of vertices and three rules of formation. The
five types of vertices are: rectangular bozss, which are used to represent
basic blocks of statements in series or more complicated D-charts; diamond
shapsd vertices, which represent decisions; circular vertices, which
represent junctions; and the two {riangular vertices, representing entry and
exit points. The rules of formation are: composition, aiternation, end itera-

tion.
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By T <of

‘ )
Pigure 2.9.1 Mgure 2.39.2 Figure £3.3

Definition £2.3.1

(W i represents a basic block of statements in a program, then

is an slementary D-chart.

(i1) (Compouition) It m and are elementary D-charts, then Figure

2.3.1 Is en elomentary D-chart.

(i) (Alternation) It and are elemontary D-cherts and ¢ a formula
(see Def. 2.1.2) then Figure 2.3.2 is an elomentary D-chart. We call the
two branches the T-branch and the F-branch respectively. For example
in Figure 2.3.2 we have the left branch es the T-branch and the right
branch as the F-branch.

(iv) (Steration) It is an elementery chart and ¢ & formula, then Figure
2.3.3 is on elementary D-chart. We call the two branches the T-branch
and the F-branch respectively. In Figure 2.3.3 the T-branch is the right
branch and the F-branch is the down branch. The T-branch of an itera-

tion will always be the “loop back" branch.



Definilion 8.3.8

A D-chart is a graph of the form E » where E is an elementery D-

chart.
[

Given an elsmentary D-chart E we ghall distinguish two points in ft:
. the sntry point a end the exit point f, which are focated Just before entering
the rectangle B and just after exiting the rectangle B (seo Figure 234). A
check point 7 In an elementery D-chort D 1 any entry or exit point of an ele-
mentary D-chart D’ contained in D.

Each path through a D-chart corresponds o a possible flow of control, or
run, through the original program. In alternations and iterations, the T-
branch is taken if the evaluation of the formuls g Is true. Otherwise the F-
branch ia taken. Runs begin with the first statement of & program, with the
triangular vertex representing the entry point (assumoed to be uniqus),

The input variables of a run sre variables which are referenced in the
path before thoy are sssigned values. The explicit control variables of a run’

-]

B
g~

Rgure 23.4

are lhose varlables which ocour in at least onc predicale (formula) of an
slternation or iteration in the path. A run Aalir if, given the set of input vari-
ables, the corresponding exsculion terminates. We say that a program halls

If all of its runs halt.

£.4. Program Performance Formulae for Dcharts

We shall now assoclate In & unique way ppf’s to D-charls by inductively
assigning ppl's Lo the basic components of elementary D-charts.

Given a D-chart D, the ppl ¢, associated with D is obtsined as follows:

(1) For each indecomposable elementary D-chart . (Le..
represents & basic block of instructions), we assign to the basic block a
special denotation symbol 5, (never to be used agein for any other besic
block) and the ppt 15; to the elementary D-chart.

@nr ;nd are clementary D-charts with assigned ppl's ¥, and ¥

respectively, then ¥, ¥, Is tho ppf assigned to their composition.

(3) Given an aiternation construct whore D, and Dy ure the elementary D-
charts essocisted with the T and F branches respectively and ¢ is the
predicate, the ppf associated with it Is

Fp.1THEN ¥, BLSR ¥ FL,
whero ¥; and yg are ppl's essoclated with D, snd Dy respoctively, and 3
represonts the real valued constant function whose value Is 1, Le.: 1(x) =
fforalize R

(4) Given en iteration construct D where D, is the eloementary D-chart asso-
ciated with the T-branch and ¢ Is Lho predicate having n variables, the
pp! associeted with it ls

To.JTHEN $, BIBE AR,



where ¢, s the pp! associated with D, end f is an n-place function sym-
bol with the same variables as g which, when evaluated with the value of
the variables at the entrance point a, yields the number of consecutive
times that g would evaluate to true in the corresponding run. We shall
denole such a funcﬁon 7 ossoclated with p by f¢ .
11 D’ is the elementary D-chart obtained from D by removing the two triangu-
ler verlices and ¢' Is the ppf assoclated with D* by the sbove rules, then ¢' is
Yo
Theorem 2.4.1
Assume that P is a program represented by the D-chart D, and ¥, has 2
as variables. Then P halts iff, for all assignment functions, { , = does not
appear in I(yy(2))t] .
Proofl

P will not halt Iff a run enters an iteration and never exits it. We also
have that for any program and for each iteration with predicate p, fp will
have = in its range iff there is a sst of inputs which mekes the run enter the
iteration and never exit it. We finally notice that in tho evaluation of a ppt
the only place where » can be introduced is when evaluating #p for some

predicate p.

Thus, if P halts, for no assignment { will any fy cvaluate to = and so «
will not appear in I(y)[i). Conversely, If = never appears for any assignment

1, then no f#¢'s ever evaluate to « and so all runs terminate.

From now on, we shall assume that our programs hait.

Given a D-chart D and an assignment function 4 for its input variables 2,

the sequence
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@cBoa1By * ¢ OBy
is the profile of P under input ¢ iff, for 0 < j £ n, the run with inputs {
traverses a; times the elementary block of instructions represented by By.

Given a D-chart D, ¥, represents the profile equations of P if, for every
assignment 1, I{¢,){{] is the profile of P under input & It ¥, represents the
profile equations of P, we denote it by ¥p.

We shell now determine conditions on D-charts under which ¥, = ¥p.
There is one construct which presents no problem: composition. It ¥y i
¥0,¥0, and ¥p, = ¥p,. ¥, = ¥p,: then as Kyy) = K¥p) H¥p,) we immediately
have ¥ = ¥ Moreover, alternations and iterations where all the elementary
D-cherts appearing are basic blocks, also represent the profile equations of

their corresponding programs. In the case of iterations this Is guaranteed by

the definition of #¢.

Problems arise with the nesting of non primitive constructs.

Theorem 2.4.2

For any elementary D-chart D where there are neither alternations nor
flerations sithin an iteration, ¥p = ¥p.

Proof

We prove it by induction on the kind of permissible constructs. Let i be
an assignment function.

Clearly for an elementary D-chart of the form where is an
Indecomposable elementary D-chart, ¥, = ¥p (= 1B, where B ls the special

denotation symbo! assigned to B). Assume now that D, and D, are two ecle-
mentary D-charts satisfying our hypothesls for which ¥o, = ¥, and ¥p, = ¥,



Composing them we slready know proserves reprosentability. Say we have
an alternstion wilh p as predicate, Dy as T-branch and Dy as F-branch. The
ppl ¥ which represonts it is
Ir ¢, 1 THEN ¥p, ELEE ¥p, Ml

snd Ky)fs] is 1 % Ky, ){4] if p[¢] is true, and is 1 x Uy )4) if (4] 18 telse. Thus,
in olther case, we oblain that ¥, & ¥, because of our induction hypothesis on
D, and Dg. As for Werations, our hypothesis only allow them to have basic
blocks as T-branches and for theso we know they represent tho profile equa-

tions,

lamme 24.9

Lot D bs an clementary D-obart snd, In particular, an Iteralion with
predicate po. Lot D's body consist of an alternation D, with predicate gy, T-
brench Dyy and F-branch Dyy, whore ¥p,, = ¥p,, and ¥p,, = ¥p, (vee Figure
24.1). Then, ¥p, = ¥p, It the same branch of the aiternation is traversed
each time the T-branch of the [Leration is traversed.

Prool

Let { be an assignment function. We prove the “only I part first.

1t pclt] is true, the T-branch of the iteration is traversed #pg*{t) times.

So It, say, D), is always traversed, Lthe correst profile ls given by focRit] »
H¥p,)il. As by hypothesis ¥p,, = ¥p,,. we have yp, = ¥p, in this case. Simi-

larly, if D)y wore tho branch alweys traversed, using ¥p,, = ¥p,, WO would

oblain ¥p, = ¥p,

Now for the “if” part, we ergue as follows. The pp! ¢ corresponding to D

a3

Ngure 2.4.1 Ngure 24.2

IF 9o . fipo THEN ¥p, ELSEAFL
Thus, Ky)[4] in #oc™(i] x Kwp, Ms] 11 pclt] s true, and ALl pc[i] Is felse. We
thon sze that ¢y, = ¥, Implies thot the same branch of the elternation is

teken each time the T-branch of the iteration Is teken,

lemmag.4.4

Lot D be an elementary D-chart and, in particular an iteration with
predicate go. Let D's body consist of enother lteration with predicate p, and
body Do (see Figure 2.4.2). We sssume further that ¥p, = ¥p, Then, ¥p= ¥,
Uf there exists an integer n such that each lime the T-branch of the outer

fteration Is Lraversed the T-branch of the inner iteration is traversed n times.
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Proof

First we deal with the “only if"* part.

It po[4) is true, the T-branch of the outer iteration is traversed fpof(i]
times. It p,{i] is true and we are traversing the outer loop's T-branch, then
the Inner one will be traversed #p,R({] times. Thus, #pcR(t) x #p,¥[1) x
Ky, )I{] is the correct profile for D in this case, since ¥p,, = ¥p,, and since
the inner iteration will always traverse the same number of times its T-
branch each time the outer iteration's T-branch is traversed. If p, is false,
the evaluation yields #poR{i] x A x (¥p,,){t), which is equal to A by our defini-
tion. So In either case we ses that 9, = ¥p. The last case is when gq is false

but then A is again the correct answer.

Now we deal with the “if"* part. The pp! ¥ corresponding to D is
IF go. f9o THEN IF @, , #i7, THEN ¥, BLSE AFLEISE A FL.
The two Interesting cases of I(y)[{] ere when both gc{{] and ¢il4] are true,
and when gglf] is true and g,{{] ia false. In the latter case 1(¥)[1]) is A and s0
this forces the inner iteration to satisfy the condition that, if p, was false the
first time the T-branch of the outer iteration was traversed, then ¢, will

remain false for all consecutive traversals.

If ¢glt] end p,fi] are both true, then Ky)i] 1s #ecRif] x PR LR
1(¥p,)[1), which represents the profile equations of D only if ¥p, = ¥p, and the
inner iteration's T-branch is elways traversed the same number of times
each time the T-branch of the outer iteration is taken. This number of times
corresponds to that traversed the first time the outer Iteration’s T-branch

was taken.
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It is worth mentioning that even though the last two lLemmas are quite
discouraging, in our Examples 1.3.1, 1.9.2 and 1.3.3 all nested loops satisfy
the hypothesis of Lemma 24.4. In fact, as noted in Section 1.3, the
bypotheses of the Lemmas 2.4.9 and 2.4.4 have been implicitly mede in all
the literature we know about.

As for the hypotheses of Lemma 2.4.3, they are only relevant in our first
example and there they hold for six of the eight existing cases. In the two
cases in which they fail, one branch is taken the first time the T-branch of
the Iteration is taken (to print headlines) and the other branch Is taken for
all successive traversals.

In & D-chart, whenever alternations within iterations satisfy the
hypothesis of Lemma 2.4.3. we say that alternations are welt beshavsd. Simi-
larly if nested iterations satisfy the hypothesis of Lemma 2.4.4 we say that
{terations are wall bshaved.

Theorem 2.4.5 Representability of Profile Equations

Y%= ¥ it for all assignments 1 all alternations and iterations are well
behaved.

Proof

Let us deal first with the “only If* part. The proof is by induction on the
complexity of olementary D-charts. Clearly the symbols B represent the

profile of the basic blocks of instructions which they are associated to. We

have alroady remarked that

alternations end iterations with irreducible D-charts as branches represent
the profile of their associated programs. The other two building steps meke
use of Lemma 2.4.3 or Lemma 2.4.4, and the bypothesis that alternations and



{torations are well bebaved. Thus, whenever a possible confiicting construct
oceurs, e, an sllernstion or an iterstion within an Iteration, our well
bohavedness hypothesis allows us to conclude that we still represont the pro-
filo equations of the larger slomenteary D-chart.

Now we deal with the “if* part. As In the proofs of Lemmes 2.3.3 and
2.3.4, we must analyzo the elfect yp = ¥, has on D-chart constructs. We only

. have to look at two cases: alternations within iterations and jterations within

iterations, because the all other casos causo no problems.

Assume we bave an slternation D, with predicate g, within an iteration D
with predicate g¢. The iteration may be loceted as In Figure 2.4.1 or there
mey oxist an elementary D-chart between the entrance of the alternation
and the entrance of the T-branch of the iteration. By the compasition rule,
in any of those lwo cascs we will have that when ovaluating the pp!
corresponding to D, #pc™$) x o)1) witt eppear If pft] 1a true. But then,
this is a3 in Lemms 2.4.3, 50 we must have that this siternation is well
behaved. In the same way we argue that all alternations in the D-chart must
be well bohaved.

Similarly, using the proof of Lemma 2.4.2, we argue that all itoretions

appearing In the D-chart must bs well behaved.
[
Theorem £.4.5 shows that our goal olis”tlon 1.1, that of obtaining ppl's

representing profile eguations ovelusble efficiently, Le., in a onc-pass left-
to-right procedure In linear time (as a function of the number of characters
in the ppt), forces rather strong topological and/or sementic constraints on
the programs that these ppf's repressnt.
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A natural question to ask then Is whother this is due to our inabllity to
formolize the problem or to an essential characteristic of computations
which does not allow us to “linearize” all of them. What would ssem to be
missing in our evaluation proceduroe is & way of taking into account the inter-
dependencies botween control variables of nosted constructs. Perhaps we
might gain (ron:‘ trying to cepture more somontice in 1 Our assertion Is that
there i not much more that one can do In full generality, and thus compli-
cating § Is not worth it. In Chapler 3 we present an approach which we think
is the most appropriate to deal with this problem.

Ezample 2.4.1

In Figure £.4.3 we show tho D-chart corresponding to a program which
reads an array A of N numbors and then stores in 8 the sum of all the posi-
tive entries of the array. Thus, in Figure 243 ggis <N andg,ls Alil=0
. In this example we seo that the selection of the branch in the aiternation Is
exclusively dependent an the input data, and that, In order to establish the
correct profile for 8 run, one has to read all Input values and compute the
cardinality of the scts of “"trues” and *falses”™ of the Inner predicate. Thus,
oven though we know that the T-branch of the iteration will be traversed
exactly N consecutive times, one has Lo evaluate the allernation predicate
each time. This precludes the evaluation in linear time of the ppf of this D-
chart.

Example 2.4.8
Figure 2.4.4 dopicts the flowchart of a program which reads an N by M
array of numbers A and then adds all the positive elements in the J** column

up to the A[LJ]'® one in the [ entry of the array 8. Thus, the outer predi-
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cote, po. is i€ M, gy is j< A[1,1] and pgls AlLj)= 0. In this example we see
that both the number of times the inner loop will be traversed end which
branch of the alternation Is to be teken are absolutely input data dependent.
¢ and pg have to be evaluated every time. Thus, there can be no purely syn-

tactic interpretation function which can capture this behavior.
]
Let L = <B, 9. a. #> be an iteration with T-branch body B, predicale ¢.

entry point & and exit point f. Lot £ be a variable appearing in the D-chert.
We denote by 2{a] the value of the variable = at the entry point of the itera-
tion; by {p] its value at the exit point of the iteration and by z{k] the value it
has immediately after the k' traversal of the T-branch B; note that z[0] Is
assumed to be ={a) , Le., the value of = at the entrance to the iteration. We

extend this notation in the naturel way to n-tuples of variables £; thus 2[a}

abbreviates <z,[a), ... . z,[a]>. k, when used aes above, will be called the
{teration indez.

The hypothesia of Lemma 2.4.3 cen also be characterized by a logical

condition on the predicates go and ¢,

Theorem 2.4.6

Let D be an iteration with predicate go. whose body consists of an alter-
nation D, with predicate ¢,, T-branch ¢¥p,, and F-branch ¥p, . (see Figure
2.4.1). Then, the same branch of the alternation is traversed each time the
T-branch of the iteration is traversed it for all assignment functions {, when-
ever the T-branch of the iteration is traversed, (1) (po(2c{a)) » ¢,(2,[a])
true Implies (po(2o{k]) » -p,(2,[k])) is falae for all positive integers k <
fecf(2fal) or (2) (po(2la]) » -gy(2i(a))) true implies (po(£[k]) <
#:(2,[Kk))) is falze for all positive integers k = fpoR(2(a)).

Proo?

Let { be an assignment function. We prove the “If* part first.

Given that the same branch of the elternation is traversed each time the
T-branch of the iteration is traversed, then exactly one of (1) or (2) Is true.
Indeed, it the T-branch of the alternation Is traversed, then (po(2o[k]) -
gu(2,0k])) would be true for all integers k, 0 £ k < fp"(£c[a)). Thus,
(pel2elk]) » ~p1(2,[k])) would be false for all integers k, 0 < k < fpoR(2[al).

For the “only i’ part we-argue a» follows. Say (1) is true. Then
(po(2olk]) < -py(2,[k])) being false for all pozitive integers 1 < k <
#¢.%(2la]) means that the F-branch of the siternation is never taken If the
T-branch has been taken the first time. We argue in an analogous manner if

(2) is true. So, for the run which corresponds to the inputs i, a unique
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branch of the aiternation will always be traversed each time the T-branch of

the fteration is traversed.
]
The advantege of this new characterization Is its syntactic orientation.

One can now hope that with tha aid of a theorem proves, this condition oould
be checked during e syntactic enalysis of the code. In fact, If the predicotes
9o and g, are of the form sROy , where RO Is one of <, <, > or &, somo cases
(depending on the ection of tho lteration on the oontrol variables) can be
analyzed automatically without much difficulty.

2.8. Definable Programs

We now deal with the necessary and sufficient conditions to oblain ppf's
which represent the profile equations and in which no n-place function sym-
bols £ spposr. These ppl’s will be symbolio expreasions for the profile equa-
tions of programs.

The set of syntactical objects which denote numerical values needs Lo be
expanded so ans to reflect the offect of aiternstions and iterations on vari-
ables. This amountes to formalizing tho symbolic evaluation of program vari-
ables.

Definition 2.8.1
The sot of special terms Is defined by recursion on the langth of expres-
sions by the following clauses:
1 enyterm{ s a special term;
2 i Ty ... Tasmen OF€ special terms, g(g,, ... .24) @ formula (Det. 2.1.2) and f
en m-place function symbol, then

P o{Te e o Tn) o ATaode coo o Trom) THEN Toom o1 ELSE Tromes P

is a spocial term;
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3 the set of special terms Is closed under the operations Iy, Iy, I'e and

| P9
]
Special lerms cen be evaluated using the same Interprotation function 1

introduced in Section 2.2

Proposition 8.6.1
For eny speclal term 7 and assignment function ¢, K{1){{] € R {«}.

Prool

By industion on the complexily of special termas.
' ]
Weo notice, as In Theorem 2.4.1, that a speclal term 7 evaluates to = It

some Jp eppearing in v évaluates to «». Thus, whan dealing with halting pro-
grams, the evaluation of any special term Is finits (rocall that our definition
of / does nol allow divislon by gero).

Delinition 2.6.8

Given an lteration L = <B, p(2), a, #>, we say that L is definable if thore
exists a special term $(2) which does not contaln n-place function symbols
7. such that, it g(2[a)) is true, then

#2(a)) = go™(2(a]) .

[
This last definition s central in what follows. § Is nothing else but an

effective description of §p. When evaluated it yields, as a function of the
values of the contro) variables at the entrance of the iteration L, the number
of consecutive times that the T-branch of L will be traversed.

We shall deat later with the important problem of automatic recognition
and construction of special terms § directly from the syntax of programs.

Now, we remark that there may not be a simple relationship between the
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values of § and -~ Their ranges of validity are disjoint.

Control variables will henceforth bz assumed to be of numeric type, Le.,
type integer or type real. We nlso assume that the basic operations which
can be performed (by our programming languages) on variables are: subtrac-
tion, addition, multiplication, division, exponentiation, modulo arithmetic,
togarithm evaluation and n'® root extraction. It should be clear that our set
" of terms suffices to represent each one of these actions on variables. For
example, if the assignment statement 2, := 2; * £, occurs in a basic block,

then the term 2, ® £ ropresents it.

We now want to define expressions representing variables which, when
evaluated with the values of the input variables at a check point ¥, will yield
the value of the variable which they represent at y. Moreover we want these
expressions to be speciel torms. ’l:hla last requirement forces a constraint
common to all systems dealing with symbolic evaluation: that there be a way
of expressing (in whetever formal langueage is used) the effect of an iteration

on & variable.
Example 2.6.1
Assume that we have an iteration such that in its T-branch D, the vari-

able z Is only modified by the assignment z := a®z2 + b, where a and b aro

names of variables whose value does not change in D,, and a[0] # 1. Then

z[k] can be expressed by a®z[0] + b[:.:il ] .

-
The algebralc expression for =[k]} depicted in the above example plays a

central role in Chapter 4.
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Definition 2.5.3
For eny variable £, special term 7 and check point 7, we say that 7
describes z at 7 if, for any assignment function ¢ , 1(r)[{] Is equal to ={y] in

the corresponding run.

Definition 2.6.4
For any veriable £ and any iteretion L we say that r{z.y) is a closed
Jorm for z in L if 7(z.y) is a special term such that for any Integer k.,

7{={0],k] is equal to z[k].
»
We notice that, without loss of generality, y can be assumed to be of

type integer. Example 2.5.1 depicts a closed form for 2 in the associated

iteration L. Determining the existence of closed forms wliil be the subject of

Chapter 5.

For the rest of this chapter, we shall assume that closed forms exist for
every variable and iteration we consider.

Definition 2.6.6

For any D-chart D, variable z;, and check point 7, the canonical special
term (cat) 7y, associated with z; at 7 is defined as follows:

(1) Itz is an- input variable at ¥ of an elementary D-chart with entrance
point a, then 75, = 7y, Moreover, if the entrance point is the entrance
to the D-chart D, then 75, = 24 ¢

(2) for any irreducible elementary D-chart, see Figure 2.5.1, 7y io symboli-
cally expreased in terms of 7y, 88 the term representing the result of
the sequence of symbolic evaluations of the assignment statemeonts to =

occurring in B, where z; is used to denote 7,4



(3) for any aiternation, see Figure 2.8.2, 1yl
P 9. 1 THEN Ty 9 lay/a] BLSE Ty lan/a) I
where, for k € (1.2}, 7y, {ay/a} i the expression obtained by roplacing

In 754, euch ocourronce of &y by 74

(4) for every lloration, sso Flgure 2.5.3, 144 is
Fo. L THEN (75 f9) BB Ty o 11

where 7(s;.};) is & closed form for x5 In L.
]
So, for any elementary D-chart D, any varlable 5; and any checkpolnt y in D,

tho cst 7y, exists iff there exist closed forms for s, in all intervening ilera-
tions.
Theorem 2.6.8

For eny elementery D-chart D, any variable z; end sny checkpoint 7 in
D, if the cat 7y, exists, then It describes 2 at 7.

O e
Q oe=d S oL . B---- a,
B B, By
By == ==-- Bs ' ---- P
. -
f--- p---
Rgure 26.1 Ngure 2.5.8 Ngure 6.3

45

Proot

By induction on the complexity of cst's, where for the iteration con-
struct (the hard one) we use our assumption thet closed forms exist and that

they describe their associated variable.
]
As compositions and aiternations preserve cst’s, wo see that all the com-

plexity In building them from simpler ones lies in iterations. It is the nonex-
istenco of closed forms which limits our ability to generate cal's.

In general, making the assumption that a closed lorm exista for an
irreducible lteration Is the same as requiring that a given recurrence equa-
tion has symbolic solution [Che70] (see Section 5.1). When we assume no
nested iterstions, as we are allowing alternations within iterations, one hes
two baslcally different cases: (1) When considering D-charts for which ¢, = ¥p.
then the existence of the closed form reduces lo nnglng solutions for each of
the possible paths and then delermining, based on the sole snalysis of the
Input variables, which path will be taken and thus which solution to use for
the run. (i) In the general case where distinct branches may be taken within
the same run, no method is known for finding closed forms. In fact, the
closed form in cese (i) will In general have to allow conditional statements to
reflect the fact that distinct branches may be traversed. These issues are

discusscd in Section 5.4.

It, for a check point ¥ In a D-chart D, no n-place function symbo) f
appears in 7y, we say that z; is dsfinable at y and abbreviate this by saying
that 7, s delinoble. Wo say that an clomentary D-chartl D proserves defina-
bility for =4 if, whenever 7,4 is definable, then 7,4 Is also definable.



48

Theorem 2.6.9 Definability Preservation for Variables

(1) 11 75, is definable and D Is en irreducible elementary D-chart, then
749 i3 definable,

(ii) If 7, 4 Iu definable, D is an siternation in which both the T-branch end

the F-branch preserve 5;'s definability, and p is such that each of its control
variables is definable at a, then 744 is definable.

(tii) If 74, Is definable, D is a definable iteration (Del. 2.5.2) with predi-
cate p such that each of m‘ control variables Is definable at a, and there

exists a closed form for 2, then 7,4 is definable.

Proof

(i) This is clear, because it just amounts to having terms representing
the basic operations performed on variables, and using 1y, 8s the descrip-
tion of z; at a.

(ii) As in Figure 2.5.2, let a, and ag denote the entrance to the T-branch
and F-branch of the alternation respectively, snd g, and f; denote the
corresponding exits. By assumption, 7, s, and 754, are definable if 7, - and
Tja 0re. But, In any alternation, 754 = Ty, = Tye, « 80 Ty, and 74y, are
definable. Then, 7;,is

IPp.1THEN Typ, BISE Ty, I

and, as each of the control variables is definable at a, 7, , is definable.

(ill) For any assignment 1, I(r; 4)[{] is equal to =,[g] in the correspond-
ing run, but this s equal to z;[#p¥{1]], where z[0] is I, ,)[1]). Since we have
a closed form for z; in the iteration, Ty I8 7(1, .f¢), and, since our iteration
is definable, wo can express this by 1(7;..3). As each of the control variables

is definable at a, we can obtain our expression for 7; 4 with no n-place func-
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tion symbols f appesring and thus 7,4 is definable.
[
Esch of the converaes to (i), (i) and (iif) in Theorem 2.5.3 deserves indi-

vidual attention because nons of them bolds in full generelity. For example,
definability may bo quite easily regained after an irreducible elementary D-
chart D: just consider the case where the variable is assigned a constant -
value in D. Thus, the relationship of definability between 7,4 and 7y, is not
as direct as the one between 1, and 7y,

Theorem 2.5.4 Definabllity Acquisition for Variables

(i) 1 D is an trreducible elementary D-chart in which assignments to =,
are independent of :,[a] and ere either based on input variables, constant
values or definable variables, then 7y is definable.

(1) 1t D is an siternation where (1) z,(#] = z;[8,) and z,[$,] end PACA]
are independent of z;[a] and definable, or where @) (8] 24[6¢), indepen-
dent of :,[a]. definable and the alternation predicate g is such that all of its
control variables are definable at a, then 744 18 definable.

(m) 11 D Is an iteration, k an iteration index, and (1) x;{k] is independent
of zy[a] and constant, or (2) =4[k] is independent of z4[a) but has a closed
form, end the iteration is definable, and all control variables are definable at

a, then 744 is definable.

Proot

(i) Terms preserve definability.Thus, if the assignments ell involve either
definable variables or composite terms obtained from definable ones, the
result is that 7y ¢ Is definable.

(ii) By nssumption, T,y and 7y, are both definable. Now in case (1) we

may deline 7,y 88 T5g, and obtain definability Independently of how il
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behaved the control variables of ¢ may be. As for case (2), since the bronch
taken does affect our result, we dofins 75 a8 usually and just nolice that
definability Is rogaincd as the control variables are sssumed to be definable.

(i) This case is quite analogous to (ii). In (1) wo defino 7,4 ea the
(definable) constent value =;[k] and in (2) we usc the standard cst definition.
Definabllity is regained by our assumptions on the lteration.

Theorem 8.6.6 Characterization of Delinability for Variables

(1) For an Irreducible D-chart D, 154 ls definable iff the hypothosis (1) of
Theorem 2.6.3 or the hypothesis (1) of Theorem 2.6.4 bold.

(1) For an alternation D, 7,4 Is definable iff the hypothesls (1) of
Theorem 2.5.3 or the hypothests (ii) of Theorem 2.5.4 hold.

(iit) For an iteration b, vy Is definabls iff the hypothesis (it1) of Theorem
£.5.3 or the hypothesis (lil) of Theorem 2.5.4 hold.

Prool

Theorems 2.5.3 and 2.5.4 prove Lhe “only If"* part of this thoorem. We
shall prove tha “if** part by induction on the complexity of D-cherts.

Proving (i) is simple, because, given any Irreducible elementary D-chart
D, it Is always trus that there exists a term which desoribes all the assign-
ments made to =; in D, where we use the symbol z; Lo represent 7, So it
the assignmeonts depend on 74 ,, and 7,4 Is definable, then 75, must be defin-
sble. If those assignments do not depend on 2;[a), then the variables occur-
ring in this term have to either be input variables, whict are always defin-
able, or definoble variables becauss 71y 4 I8 s0.

As for the proofs of (i) end (iii), we need to carry cut a simultaneous

fnduction. ,
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Say that D is an alternation as In Figure 2.5.2 in which each brench is en
irreducible D-chart. Wo now lock at the terms which describe the action of
each of the branches on sy, If they are so that their velue Is equal am?
independent of :!:a] for all evaluations 4, then the deflinability of 7, , forces,
as In (i), the desired restrictions on the varisbles participating In the defini-
tion. If the values are still Independent of s{a] but they are not equal for all
assignments {, then the definability of 7,4 forces tha control variables of ¢ to
be definable at a and imposes the constraint that esch term represonting
the branches be definable as well. It (any) of the velues depends on ={a).
then the definability of 7; 4 forces the definabliity of 7, ,.

When we have an {toration as in Figure 2.5.3 with irreducible T-branch,
then, If x,[k] Is Independent of x,[a) and constant, 7y, will evaluate to that
value, which Is, thus, obtained in a definable way. If £,[k] dopends on k but is
independent of z;[a). then the definability of 754 forces the existenco of a
closed form for x;, the dofinability of the ileration and that of the control
varisbles at a. The last slternative introduces the further requirement that
74.a be definable.

The rest of the proof for elternations and iterations is analogous to the
one abovs but an induction hypothesis Is used to deal with branches, instead
of using the existence of the term obtalnable from stralght line code.

»
M T4 e o Ty 016 Cot’s and Y2y, .. o 23) @ PpL. then $(7y. o o 7,) i5 @ spe-

cial program psrformance formula (sppf).

Delinilon 2.6.6

For any program P, If ¥, Is an spp! with no spoclal function symbols f,
then P is dsfinabdly microanalysable.
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[ )
¥We are now at the point where we may charecterize those programs

whose profile equations can be expressed without the use of any n-place

function symbol f.

Theorem 2.6.8

P is definably microanalyzable Ift (8) ¥, = ¥ (b) for all exit points § in
D and any control variable 2z;, 7;, Is definable, (c) all iterations are defin-

able, and (d) for every control variable and iteration a'closed form for the
variable exists.

Proof

The “only I"* part Is proven by inductively constructing the cst’s and the
ppf which represent P. The “if" part is proven by induction; it uses the
assumption ¥ = ¥, Theorem 2.5.5 and the observation that the exit points

of a construct are the entry points of the subsequent one.
. L]
The theorems of this section suggest several interesting remarks about

the nature of the preservation of definability for differont types of objects.
We see that proving the preservation of definability for variables iz easen-
tially a top-down process. In contrast, proving the preservation of definabit-
ity for [terations is a bottom-up process, as is the existence of closed forms
and the preservation of definability of the iterations. We have also seen that
proving the satisfiability of ¥, = ¥y, may be seen as a bottom-up condition
which depends strongly on the nature of the variables appearing in predi-

cates.

Unfortunately, the class of definably microanalyzable programs Is

rather limited. The sole assumption y, = ¥y, is quite a constraint. In the fol-

-t . .0
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lowing chapter we shall see how we may deal with a wider family of programs
by changing some of our syntactic constructs. The goal will still be that of
obtaining efficiently a representation of program profile equations, but we

shall see that the complexity of the evaluation will no longer be linear.

26. Summary

In this chapter we have presented our basic approach to the efficient
generation of program profiles. A language in which our performence
representations of programa can be expressed was introduced in Section 2.1.
Section 2.2 presented the sementics of it and the following three sections
dealt with issues arising from the representation of programs. It was seen in
Theorem 2.4.5 that, to achieve optimally efficient representations, programs
need to satisfy conditions on the topology of'their D-charts and/or on the
behavior of the predicates which govern ilerstions and alternations. Exam-
ples 2.4.1 end 2.4.2 show that in general we cannot expezct to achieve much

more than what our interpretation function I allows us to achieve.



CHAPTER 3

An Extended Program Performence Langueage

In Chapter 2 we have soon that a rather restrictod cless of programs is
definsbly microanalyzable. In fact, Theorem 2.4.5 shows that our problems
. already begin when wo are just considering the efficient gensration of the
protile squations for a program. Our skeleton procedurs presented in Sec-
tion 1.2 1s guurdixtood to yleld correct profiles for all progrems, but l!..s run-
ning time may be unnccopuh!?.

The purposs of this chapter is three-fold:

(1) to prosent alternative methods for finding fp (el of which ere sutoma-
tizable) \

(2) to narrow the gap betwsen what we can do efficiently, in terms of
evaluating expressions which reprosent the profils squations for pro-
groms, end our default procedure, and

(3) to extend our model of programs so as to capture more of the features

usually found In programming languages.

.1. On Counting Functions ¢

When dealing with an iteration L= <B, ¢(2), a, #> with an n-place prodi-
cato ¢(2), we have introduced the n-place function symbol #p to donote a
function which satlsfies the following condition: for any assignment function
%, It ¢4] is true, then #p™{{] Is the number of consocutive times the T-branch
of 1, will be traversed until the flow of control exits the iteration. f#op will be
said to be p's counting funclion.

So far we have not dealt with the lssuo of finding f¢'s. This section will
explore this problem from two viewpoints: dotermining f¢ using our
knowledge about tha\counling functions of the (sub)predicates which form ¢,
and associating the valus of Jp with the least nonnegative root of certain spe-

clal functions determined by tho block of the iteration.

It should be clear that, given L us above, §y deponds on both the predi-
cate p and B. 1 depends on B because it is there where the Lransformations
to ¢'s varioblies are made. This Is why #p end §-~p are not direclly compar-
able, as was noted In Section 2.5. Ezample 3.1.1 Hlustrates this point.

Throughout thiz chapter, we shall assume that the control veriables are

of type numoric, Le., either of type integer or of type real.
Example 3.1.1

Lot us assume that our progremming language has a bullt in definition
of the largest possible integer which can be represented, MAXINT. Say that
we have an iteration L= <B, p{LN). a. #>. In which N is not modified in B, and
the only statement affecting j in B is § ;= |+1 . Supposs that the predlea\o ™
isj < N.Then -g I3 j = N. Then, §p may be expressed by N[a] - [[a] , end
#§~p by MAXINT - f{a] .

Thus we see that even though we are only dealing with a complementa-
tion operation, the definition of §-p may not be easily found In terms of the
definition of g. We nced at least to have Information on the environment. In
fact, in our oxample, If the programming lenguage did not heve s built in
definition of MAXINT, one would not be able to express §-pinit.

]
As wos remerked in Section 2.1, by introducing eppropriate definitions

wo moy assume that our predicates contain the foliowing six relational
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operators RO; <, >, <, *, =, # . Clearly, they form a set cf oporators which is
closed under negation. So, without losa of generality, we may assume that no

predicate ¢ contains the symbol - in its expression.

This will help us deal with the problems suggested by Example 3.1.1. In
general, {f ¢ had an occurrence of -, we would eliminate it using DeMorgan’s
rules. By appropriate elimination of double negations, one would move the -
_ signs next to expressions of the form £, RO ¢y . where ¢, and ¢g are terms,
and then “absord” them by using the appropriate relational operator. In
fact we shall also assume that all predicates ¢ will be in disjunctive normal
form (with no ~ symbols appearing), Le., p will have the torm .

(P, & .. &gy ) OR (g1 & oo &P} OR.. OR (P sy & ... &g o)
in which each p; is of the form ¢,R0t,, where t,, £g are terms and RO is ono of

the six relational operators listed above.

Given a set of functions £ 4, ... s fa. £ = minlf 4, ... » fu} Is defined point-
wise, Le., for overy set of values 2, £(2) = min{f (2), ... . Fa(2)]. A similar
definition can be given for max, the polntwiss maximum of a set of functions.

Given & control variable £ and an olementary D-chart D with entrance
point a and exit point 8, the action of D on z is the result 2[#) as a function
of z[a) and of the input values at a for all control variables appearing in D.

Theorem 9.1.1
Given the iteration L = <B, ¢(2), a, >, where p{2) = ¢,(2,) & ... &
?a(2,). it for 1 € 4 < n, fg,, asnociated with <B, p((%). a,. f;>, exists, then
fo = mintdpy, .. 10}
Proof

Ve do it by induction on the number of predicates which forme. n=1
there is nothing to prove. So, assume the theorem Is true for all predicates
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which are a conjunction of n predicates gy, and consider p(2) = 9,(2,) & ... &
Pn(22) & Puag(Zasr). Lot ¥ reprosent ¢y(2,) & ... & pp(2). Thenp = ¥ &
[ L]

For any assignment function {, p[t] is true iff ¥{{] and pa.,[{] are true.
Thus, in L = <B, ¢(2), a, #>, the first (iteration index) k for which ol2lx]) is
false, ia exactly the same k for which either ¢{2[k]] or ga+i[£[k]] Is false for
the first time.

But thon, the number of consecutive times that ¢ will evaluate to trus is
exactly the number of consecutive times that both ¥ and py 4 will simultane-
ously ovaluate to true, because the body B of the original iteration Is the

same in all the lteratlonu/eonniderad.

Thus #¢ = mini#y. #onnil-
By induction hypothesis, #¥ = min{#py, ... . fpali 80

#v = minfdoy oo o #0ne #0n 0}
[}

From the proof of this theorem we see that all we need to have as
hypothesis on the component iterations <58, ?4(%). ag. £;> is that the action
on 2, by the corresponding body be the same, under the same input values at
@y, a8 the action of B on £;. We thus obtein the stronger corollery:

Corollary 8.1.2

Given the iteration L = <B, p(2). a, #>, where p(2) = nlf) & .. &
#a(Za). it for 1 <4 € n Fpq, associated with <5, ?4(£), aq, ¢, exists, and if
for 1 £ 4 < n, B, performs the same action on £ as B, then

#¢ = min{dp,, ... . #val-



By tho proof of Theorem 3.1.1.
[

Unfortunately the case of disjunctions Is not as straight forward as the
one of conjunctions. The problem is thet a predicate may change {ts truth
velue several times whilo the T-branch of the iterstion is being consecutively
traversed. We shall see examples of this behavior in Chapler 4.

Theorem 3.1.3

Given the lteration L = <B, p(2). a. #>, where p(2) = py(€;) OB ... 0R
#alfa) Mlor 1S4 S0 dp anscciated with <B;, 9(2:): as. £i> exists, and if,
for 1 € ¢ € n, B, performs the same action on £; as B, then we have two

(algorithmic) ways of computing fp:
(1) Let 1, be the set of indices | such thet ¢s(2,[0]) Is true. let n, =
t‘n(n'xl",(!,[o])l. Now consider p(2[n,]). If false, then gp(2[0]) = n,.
s
Otherwise, lat fg ba the set of indices ] such that ps(25n,)) o true. Lot
ng= l’n‘?:l“,(!,[n.])l. It p(2[n,+n,)) ia falso, then Jp(2{0]) = n, + ng.
In general we may now find §y(2[0]). vsing tho above procedure, by:

#o(2{0)) = tn.. wherae k {a the first index for which J, = ¢.
1

(2) Let ¢, bo the loast Index 4 for which pi(%[0]) is true. Llet n, =
'p.'(!“[ol). Now let 45 be the loast index ¢ > €, (wrepping around n It

necessary) for which #p(2(n,)) is true. Let ng = dp,(2,In,]). Con-
Unue in this way uniil we find ¢, and n, such that, for all 1 £{ £ n,

vc(!.[,f.:.n:l) 1s false. Then fp(2[o]) = ;_I.ﬂ:-

Proot
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Given any assignment function {, ¢[¢] will be true If at least ono of the
#s[4] is true. The above two methods are based on this samo fact In two ait-
ferent ways. That both methods work Is proven by Induction on the number

of participating atomic predicates.

For the cass n = 1 there is nothing to prove. Assume that the validity of
ths methods has baen established for n and let p{2) = ¥(2) 08 pus.(2). where
¥ i3 the disjunction of n predicates. Let us also assume that p(£{0]) is trus.

Method (1): We evaluate §{2[0]) and g, .4(£{0]). and then find, for those
which eveluate to true, #¢{2[0)) and fp,.,(£[0]). As p{£[0]) is Lrue, at lcast
one of the two disjuncts must be true. Let ny be the maximum number
obtained from the above procedure. n, came from, say, ¥ (the other case is
symmetrical); then ¥(2[n,]) is felss. Thus, we determines whether
#7a01(2In,)) s true or nol. If falso, wa ere done and, by induction, this
method works correctly. Else we find ng = #pq+3(2{n,]). Now we only need
to look at the truth of ¢{2[n,+n;s)). U false, wo are flone. else we find

- #¥{2([n +ne)). and so forth. Thus, this method will correctly find go(2(0)).

because It will only stop when all predicates become false simultaneously,
and then it will compule and record ths exact number of [terations that it

took for this to happen.

Method (2): This Is proven almost identically to the above. In fact, the
only difference is that we look at the truth of just one predicate, end from
then on elternate to the other one as soon as the current ons becomes [alse,

There is no need Lo consider two cases as above.

»
It should be noticed that our procedures hait only because we are

sssuming heiting programs. It is this the hypothesls that allows us to assert
that there will be a finite value of k for which p(2[k]) is lalss.
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Which method is more efficient? Method (2} evaluates less predicates
than (1) but must update the values of the contro! variables more often than
(1). Their efficiency will therefore be determined by the behavior of the
predicates (l.e., it will depend on whethor they change truth value often or
not) and by the cost of updating the values of the control variables. We also
note that Method (2) can never require fewor lterations than Method (1).

Corollary 9.1.4
Given the iteration L= <B, p, a, #> where p(2) = p,(£,) OR pa(2s), if for 1

242 f§p associated with <B,, p(#,), a;. B> exists, end ffor 1 s{ <2,

B, performs the same ection on £ as B, and M = max{#p,. #wsl. then:
(1) ¢i(2,[#pe)) felse implies o= M
(2) pa(2:109,]) folso tmplies #p = M
(3) (p:(2,]M]) OR pe(2,[M])) false implies #p = M.
Proof

Any of conditions (1) or (2) imply (3). In case (3), we see that the algo-

rithms described in Theorem 3.1.3 yicld #¢ = M.
[ ]
In the case when a predicate may change its truth valus, in the context

of an iteration, from true to false at most once, then either hypothesia (1) or
(2) of Corollary 3.1.4 holds. In Section 3.2 we shall study this kind of predi-

cates in some deteil.

We shall now see that, for the purpozes of our analysis, we may choose to
look et very simple predicates at the cost of adding some complexity to the
body of the iteration, but preserving the counting properties which are of

interest to us.
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Theorem 3.1.6

Given L = <B, £,R0t,, a, #>, where ¢, and ¢g are terms, and given two
variables =y, 2, which do not appear in t;. tg, or B, then L, = <B', xR0z, a,
#>, where B’ differs from B only in that the stetements =, := ty and =; := £y
have been added after the statements located at the end of L's T-branch and
also added just before the entrance point a, has the same counting functions
es L does, Le.,

#(t,Roty) = #(zyR0%;) .

Proo!

Adding = := ¢y end 2; := (g 09 described in the statement of the theorem
preserves the truth of ¢,Rotg in the following sense: t,roto(2[0]) is true iff
£;[0]r0z,{0) is 50, because of the code added Just before a. Then, because of
the code added at the end of L's T-branch we have thet §,rot o(2{k]) is true ift

2 [k]noz. [k] is true.
[ ]
Now, the assignments =, := ¢, and 2; := tg must be understood appropri-

ately in that they mey represent a very long programming language state-
ment. However, as we noted in Section 2.5, our terms always represent sym-
bolic sequences in operations of our programming language. We are also

implicitly assuming tbat the evaluation of £,R0ty has no side effects.

Theorems 3.1.1, 3.1.3 and 3.1.5 allow us to concentrate our attention on
the simplest possible predicates, namely those of the form =;Roz;. If we are
able to find their counting functions in the conlext of an {teration, then we

can find the counting functions of predicates based on them.

To conclude this section, we shall analyze the case when an equality

predicate r=y occurs in an Reration predicate g. The analysis of its effect



on fiy requires arguments different from the ones presented above. There

are two basic cases to consider.

(1) Bactson = and y trivially, Le., there are no modificaticns Lo sither vari-
abls In the body of the loop. Then s{a)=y[a] implies =[k)=y[k] for all k,
and so this predicate will always evaluate to true oncs the T-branch of
the iterstion is taken. In this case heiting must be assured by other
atomic predicates in ¢ and, for the purposos of determining #p. In tho
light of Theorems 3.1.1 and 3.1.3, it can be dltca‘rded.

(2) B acts on £ and/or y nontrivielly. This case presents more difficulties,
becauso, even though B may act differently on each variable, for some
initial values the equality may bs preserved throughout saveral consacu-
tive traversals of the T-branch. For example, we may have the assign-
ments £:=2% and y:=2% as the only modifications to £ end y in B,
but, it 2{a)=y{a)=2, then =[1]=y[1]=4. Other examples can be given in
which the equality is preserved an arbitrary prespscified number of
traversals of the T-branch. These exemples are obtained by using poly-
nomisls whose values coinclde at a predetermined number of consecu-

tive integor coordinates. '

Thus, we sew that in case the algebrale transformations to = and y in B are
not an identity, we will need to evaluate the predicate at the end of each
traversal.

3.2. On Traversa! Independent Actions of Rerations on Varisbles
Definition 3.8.1

Given an eration L = <B, p{2), a. #>. we call p siable If for any run of
the program, efter the flow of control has gone through a, p changes truth

.}

value at most once before the flow of control goes through f.
»
Stable predicates have pleasantly predictable behavior: after they are

evaluated with the values of the control veriables at a, thalr truth value will
change at most once belore we exit the lteration. Thus, once the change of
truth value has occurred, one need not evaluate the predicate any more.

Stability is @ properly which depends exclusively on the action of the body of

" the fteration on the conlrol variables.

Civen a real valued funotion #® a root for it Is any element v of it
domain for which ]'(r) = 0. Counting functions mey be defined pointwise by
non negative roots of functions in a way we shall make precise below. This
connection will help us find definable counting functions, as described in Sec-
tion 2.5, and will also set some ebsolute Limits as to how much we mey

accomplish in this respoot.

The sign of a real number v, Is defined as follows:

1 it >0
sign{r)={ O it r=0
1 If r<0

Given a function symbol § end two points r, and rg, wa say that J changes
sign i £%(r,) end 7%(rg) have distinct signs. For function symbols which
reprosent continuous real-valued functions, @ change of sign implies that a
root exists in the closed interval determined by the points used for the
evaluation.

From now on we shall omit the distinction between function symbols

and the real vatued function #® which they ropresent, uniess the ambiguity

may prove misieading.
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We shall now make explicit an assumption about programs which
becomes relevant: programs are assumed not to be sell-modifying. In fact,
this assumption has been implicilly made throughout our discussion of pro-
file equations. We may then assert that, given an iteration L = <B, zRoy. a.
§>. the action of B on a control variable the first time its T-branch is
traversed is a fixed function of the input variables, Le., any two times the T-
branch of L Is entered with the same values for the input variables, the
action of B on = and y during the first traversal is the same.

Let us assume that the action of B on ths control variables =, y is also
independent of the order of traversal, L.e., any two times the T-branch ofL=
<B, zROY, a, B>, is taken, the action of Bon = (and y) is described by the
same function. We shall denote the action of B on = by {, and the actionon y
by 8.

Under all of these hypotheses, we have that z[k] = (z[a}) and y[k] =
g*(y[a}). where t* (g¥) is the function obtained by composing f (respectively
g) with itself k times. We define a new function h as follows:

b(k) = f{z[a)) - s*(¥[a))-
The changes gl sign of h will help us find #zRoy.

Theorem 3.2.1

Let L = <B, Roy, a. #> be an iteration and suppose that z[alroy[al is
trus. Assume further that the actionof Bon g is f end on y is g, and that
these actions ere independent of the order of traversal. Let

M = min~(*z[a))rog"(y(a))-

Then

-
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min h(k)=0 —
»
min sign(b(k~1)) # sign(b(k))  URo€ (=2
M= ngn sign(h(k-1)) » sign(h(k)) if Ro € [<,2} and = never holds

min sign(h(k-1)) » sign(h(k)} + 1 17 RO € {=,x} and = holds

Proof

We assume that z{a]roy[a] is true and (because of the essumption that
tbe iteration hailts) that there exists a k such that ~z[k]roy[k] is true.

(1) Cease whenRois <: we ore looking for the first k such that 2[k] = y[k]
and, for all j <k, z[}) < ylj}. This value ofkis exaotly that for which b
changes sign, because under the above conditions, for all J < k,h(j) <0
and h(k) = 0. Thus M = k. An analogous ergument works for the case
when RO I8 >.

(2) 1Rro € <>} and the minimum k for which h(k) changes sign is such that
b(k) = O, lLe., sign(h(k-1))xsign(h(k)) = -1, then the equality clause of
these predicates will not hold (in this run) and so we are back to the
case of strict inequalities. However, il RO € <2} and the least k for
which h(k) changes sign Is such that h(k) = 0, then the T-branch of Lis
traversed a (k+1)* time. Thus our formula Is also correct for these two

cases.

(3) 1RO is », we have that 2[a] # y[al, and then the Jeast k for which z{k]
= y[k] will be exactly the jeast k for which h(k) = 0. Thus M is exactly

equal to this k.
]

We remark that, when RO is », our condition is much harder to deter-
mine from a syntactic analysis than in all the other cases. As we shall see In

Chapter 4, there are many instances whore changes in the sign of b can be
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determined with some ssse. However, the existonce of an integer root may
not bo possible to dotermine just from ths syntax of the expressions defining
the function h.

In fact there are Instances where rea! solutions may be determined
analytically but integer solutions do not exist. Consider the function sin(z);
we may oasily determins in what intervals it changes sign, but unless an a
. priori analytic ergument s given for the non existencs of Integer roots, one
inay be led to soarch indefinitely for a non existent Integer root.

1t should be cloar that, under the sbove conditions, fz[a)roy[a) is the
celling of the least nonnegative root of b, where the ceiling of any real

number r, ], is the least Integer nsuch thatnar.

Stable predicates have & very simple characterizauon in terms of their
associated functions h. We recall that a resl valued function h is called
monatonically non dacreasing If, for sny two values x, y, X < y Implies h(x) <
h(y). Analogously, h is called monotonically non éncreasing i, for any two
values %, ¥, & < y impliss b(x) = b(y). Finally b Is called monolonic if it Is
either monotonically non decreasing or monotonically non increasing. We

then bave:

Theorem 3.2.8

Lot ¢ be sROy. Then p is stable in L i the assoclated function h Is
monotonic.

Proot

Monolonie functions have lke Property that, once a change of sign
occurs, the previous sign will nover appear sgain. I it did, one would hove o

reversal in the Inequalities. Thus, in the case of functions h associated with
predicates RO, by Theorem 3.2.1 this condition desoribes preciscly the
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stability conditions.
]
Theorsm 3.2.3 A Geometric Characterization of an Iteration’s Action

Let L= <B, p(2), a. #> be an iteration whose action on the variable £ Is
the function f, for all traversals. Then, the value of 2 efter k conseculive

traversals of the T-branch of L Is determined by the intersection of the verti-
cel line ¢ = £{a] with the functionf®. '
Proot

This Is proven by Induction on the {teration index k. By hypothesis wo
obtain £[1] = t{z{a]) . Assume that the property holds for k conseculive
treversals, then we have: z{k+1] = t{z[k]), becauso the ection of Lon = lu f,
and g0, by Induction,

g{k+1) = ({{(=[a))) = **Y=zla]).
It tokes & moment's thought to realize that the seéquence of pointe
[I“(:[a]))“. corresponds exactly to the y-coordinates of tlie points in the
plane determined by the intersection of the vertical line y = £[a} and the

family of functions {*},,, .

9.3. Algorithmically Definable Counting Functions

Using the results of our last two sections, we shall now analyze the cese
of defineble component predicates. We shall begin by studying some abso-
fute limitations on definability imposed by Th¥ursh 3.2.1.

In Section 2.5 we have seen that, in order (o find definable #p's, wo need
to have closed form expressions for the valus of the k'® (teration of ths con-
tro) voriables. Moreover, Theorem 9.2.1 tells us that we must also be able to

solve for k.



In the particular case when the expressions found for the values of the
control variables after the k' traversal of the T-branch of an iteration are a
polynomial in k, our problem then amounts to knowing whether we may find
an (rlgebraic) expression involving radicals which would yield the first nonne-

gative root of this polynomial.

The fundemental Theorem of Galois theory [Art71] stetes that quintics
are unsolvable in radicals. However, our knowledge of the existence of a non-
negative root for those polynomials we ere interested in may lead us to think

that a formula for #¢ could exist. Unfortunately this is not the case.
Theorem 3.9.1

1t all polynomials with rational coefficlents and a nonnegative root were
solvable, then all polynomials would be solvable.

Proof

Let p{x) be a polynomial with retional coefficients. Let r be its real root
with the largest absolute value, and K be a rational number larger than the
absolute vatue of +. Then p,(x)=p(x-K) is also a polynomial with rational coef-
ficients all of whose reel roots are nonnegative. But then by hypothesis one
would be able to find a splitting field F for p,. However, as K belongs to the
bass field, F would elso be a splitting field for p, given that p (s) = 0 ift p(s-KX)

=0, and s € Pimplies thats-K € F.
L]
Ve shall now see two examples which illustrate the ebsolute algebraic

limitations on the definability of counting functions. The first is a generic
example exhibiting tha limitations imposed by the unsolvability of higher
order equations, end the second Hlustrates a different problem, that of

exponential equations.
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Example 9.3.1

Consider L, = <B, £ROn, a, #>, where In B the only assignment which
modifies £ s x:2(,%3% 3% % and where each of tho variables {; is modified
once in B by the statement {;:=4+1;, where no 1; is modified in B, and n Is
also not modified in B, : :

¥ith tb~se conditions it is clear that

£[k] = (4,{0]+k® 7,)* (1,{0]+k*7g)* (1s[0]+ Kk 75)* (1,[0] +k* 14)* (15[ 0] + k* 7)
and the test performed to see if the T-branch is to be traversed agein is
~ z[x)ron(0}.

A sufficient condition for L to be a halting iteration is that all 7’s be
positive. But then, es z[k] is a quintic in k which can be transformed, by giv-
ing appropriate values to the 7,'s and {;[a]'s, into a particular non solvable

quintic: we cannot expect L to be definable.
»
Example 3.3.1 is quite ad hoo. Rarely transformations mede to control

variables are of such algebraic complexity [Knu?1, Hen80). Our next exam-
ple shows that, even when we assume very simple conditions, definability

may not be achisvable.
Exampls 3.9.2

Consider L = ¢B, £<y. a, > and say that the action of B on = is a®z+b,
the action on y is c*y+d, and that a, b, ¢, d are not changed by B. After

traversing k times the T-branch of L, one has (assuming a # 1 # ¢)

a~1

k_ k
B(k) = (a*z[a) + b[° ) ]) - yle] + d[i—.f'l) :
This is an exponential equation on the iteration index k which doss not have a
symbolic expression for its roots, even when using logarithms, unlessa =c.

Thus L is not definable even though it bas a very simple predicate and simplo



actions on ite control variables.
]
The following theorem gives us one instence when definability for en

iteration with a composite predicate can be obtained from Lhe definability of

somne iterations with atomlc predicates.
Theorem 3.3.28

Civen the iteration L = <B, p(2). a, §>, whore p(2) = p((2,) & ... &
#a(2a). I for 1 €15 0 each <By, py(%). 0. £1> la definable and B, acts on %
in the same way a3 B does, thon the evaluation cost of #p = min{@y, ... « $al Is

(stinl) linear on the length of the iteration’s description.
Proof
By the assumption of definability, the evaluation of each § is dons in

linear time. Then, evaluating §p takes at most n Limes the longesi evaluation

time for en individual §,.
]
Thus we sce that, even though we need to epply an algorithm to obtein

#9. we can still achicve the goal of linear evalustion time. However, this is
not the case for disjunctions.

Theorem 3.3.3

Given the Iteration L = <B, ¢(2). a, #>, whore ¢(2) = ¢,(£,) oR ... 08
Pa(Za). it for 1 £1 < n each <B;, ¢(2). oy, £;> Is dolinable and B, scts on 2,
in the same way os B does, then the evaluation cost of §p s proportional to

the number of iterations of the algorithms described in Theorem 3.1.3.
Prool

In either mothod described in Theorem 3.1.3 we may bound the cost
incurred ol each ileration by looking at the cost of ovaluating each individual

#¢. As these last costs are constant, wo obtain the desired bound.

-
In the last two cases, §p may bs called algorithmically definable. We

obsorve that, as in Lthe case of disjunclions one does not have an a priori
upper bound on the number of cycles that the algorithm will perform, we no
longer have a lincer time evaluation cost. However, different empirical stu-
dies [HenB0, Woo78, Knu71] hove consistently shown that long predicates
hardly ever occur in practice. When ¢ is solely composed of steble atomic
predicates, the nqmbar of them in p bounds the number of times the algo-
rithm will cycle.

39.4. A Solulion to the Limilations of Lemmas 2.4.9and 2.4.4

In our Examples 2.4.1 and 2.4.2 we showed that even structurally simple
progrems cen arbitrarily misbehavs, thereby making the successive evalua-
tion of their predicates the only way to obtain correct |'>romel. It is also true
that the hypotheses of Lemmas 2.4.3 and 2.4.4 are quite strong and they may
be difficult to check automatically. (The autometic verification of these and
other hypothesss will be explored in Chapter 7.)

We thus nsed ways to approach this problem more efficiently than by
tho skeleton procedure. As our cxamples show that lhe evaluation of inner
predicales may bs unavoldabls, wo shall not try to do better than that, but to
do it as rapidly as possible. For this purpose we shall introduce a now three-
place tpeclnltnymbol.

The new threes-place special symbol to be added to our program perfor-
maence language is FORTODOOD. Tho inductive rule of usage to obtain algo-
rithmic ppfs is the following:
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it # is an n-place function symbol, ¥ en algorithmic ppf, and k a symbol
not appearing in ¢, then ‘
rorTODOOD{k=1, J, ¥}

{s an algorithmic ppl.
As done with our other special symbol, we shall always write the above in the
form

FORk=1TOf DOY OD .

The interpretation of this new symbol will be defined after we associate

algorithmic ppf's with D-charts. Otherwise the definition of the interpreta-

tion function becomes unnecessarily complex.
This new special symbol will only be used when we encounter certain

patterns in the D-charts, namely, aiternations within iterations or iterations

within Iterations.

The Case of Alternations Within Iterations

Assume we have a situation like that in Figure 3.4.1, where D, and D, are
elementary D-cherts represented by the ppf's ¥p, and ¥p, respsactively, and
where ¥, is the pp! which represents B,, ¥; the one for By. The pp! assocl-
ated with this elementary D-chart is

IF 9o, #Po THEN 70. IP @ss 1 THEN ¥, BISEYg 1 ﬁp. ELSEAFL.

The elgorithmic ppf assoclated with this elementary D-chart, where we have
teken care of the alternation with predicate @, which was within the iteration
with predicate gg, is:

IF po. lnmmh,ﬁ.malmmakﬁ 10 f#o DO IF p5. 1 THEN ¥, ELSE g FI OD

In fact the transformation “pull out of the iteration™ should be applied
cnce simuitaneously to all those alternations within the iteration with predi-

7n

cate pp which do not satisfy the hypothesis of Lemme 2.4.3. It should be
clear that an inductive definition using the above criterion will enable us to

handle all instances of alternations within iterations.

The Case of Iterations Within Iterations
Assume we heave a situation like that in Figure 3.4.2, where D, and Dg are
elementary D-charts represented by the ppf's ¥p, and ¥p, respectively, and
where ¥ is the ppf which represents B. The ppf associated with this elemen-
tary D-chart is
IF wo. fipo THEN Vp, TP @a. fi¢a THEN Y ELSEAFI ¥p, BLSEAFI.

The elgorithmic pp! associated with this elementary D-chart, where we have

Br_'é__i 1'
Lok
o >-1 . @L—j
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taken core of the fteration with predicate g, which was within the iteration
with predicate pg, Is:

I7 9o 9o THEN ¥, ¥p, BLSE A FI FOR k=1 70 flyo DO [P py. fips THEN ¥ RISEA TI OD
As in the caso of alternations this transformation should be applied once
simultansously to ail those iterations within the iteration with predicate po
which do not satisfy the hypolhesis of Lemma 2.4.4. Again, it should bs clear
thet an Inductive definition using this criterion will enable us to handle all

e
Instances of ilerations within (Lcrations.

We extend our Interpretation function 1 to hendle elgorithmio ppl's. Its
definition, bowever, will be algorithmic In nature, and only definability
assumptions may ellow fasler evaluation time than that of running the skele-

ton.

Interpretation of Algorithmic ppl‘s

(1) Case of an slternation with irreducible branches and predicete p,(2,)
within an (teration with predicate pg(2c): given an assignment function
V- R,

KroR k=170 fgo DO [F ¢y, 1 THEN B, BLSE By F1 0D){¢]
is the following procedure: for k equal to 1 up to fooli). evaluate
#1(2,[k-1]), keop eppropriste counters C;, Cq for the T-branch and the
F-branch respectively, and update the values of the control varlables.
When done, the final counters C, and Cy must sotisty Cy + Cy = fgglt]).
The outpat of 1 Is the string C,%8,Ce"B, .

(2) Cese of an fteration with sn irreducible T-branch B,, and predicate
¢:(2,), within an Weration with predicate po(£o): given an assignment
functioné:V + R

KPoR k=110 #9o DO I7 9. fip, THEN B, BLSE A 11 0D){¢]

k£

is the following procedure: for k equal to one up to #p i), ovaluate

r1(2,{x-1}]), update the values of the control variables, and keep & sum

#olt]
of the values in the counter C;,. When done, C; must be equal to
| ]

#o:(2,(k-1]). The output of Iis the string C,FB,.

(3) Other cases. They ero analogous to the above two. The only difference
is that the counters C; and Cy now epply Lo subformulac and not to basic
blocks. C; and Cy will be profile coelficlents mulliplying the evaluation

of the corresponding (sub)formulae.
Theorem 3.4.1

Algorithmic program performance formulae always represent the profile

equations,
Proot

By a simple induction on the complexity of algorithmic program perfor-
mance formulas, noting that the "elgorithmic” special symbol is only Intro-
duced when the original ppf dozs not represent the profile equations.

Example 3.4.1
We shall now show how we are able to deal with our Exampls 2.4.1. (sce
Figure 2.4.3). In this cose one applies case (1) of tho rules for interpreting
algorithmic ppl's. The algorithmic ppf for this case Ia
FoRk=170 N Do 1¥ A[k] =0, 1 THEN B, BLSE A FI 0D
where B, is the basic block corresponding to the alternation’s T-brench in

which the sum S is performed.

The Interpretation Is as follows: for k equal to § up to N, evaluate the
predicate Afk) = 0. If true, record thia by incrementing C,. If false, do noth-
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ing (because the ELSE branch is A). When [linished, output c\F8,.
-
Introducing the new special symbol FORTODOOD has certainly solved our

problem of finding symbolic reprosentations for the profile equations of D-
charts, but the drawback is that we have ended up with an algorithmic defini-
tion for L, whose evaluation time may be as bad as that of running the skele-

ton.

We present two cases where the expected cost of evaluating the elge-

rithmic ppf is smaller than that of running the skeleton:

(1) When we are given a definable ileration L with predicate ¢g(2o), an alter-
netion within this iteration with predicate ¢y(2,), and closed form

expressions for ¢,'s control variables 2,

(2) When we are given a definable iteration L with predicate po(2o) and
another definable iteration g,(£,) within it for which we have closed

form expressions for its control variables £,.

In both of these cases, when evaluating the algorithmic ppf, we expect to out-
perform the running time of the skeleton because the truth of predicates
need not be established sach time a T-branch is to be taken. The fact that
we have closed forms for the control variables of the inner predicate allows
us to “update” them in one (possibly complex) evaluation. The skeleton will
be updating them each time the corresponding branch is traversed. If the
iterations are to be traversed a substantial number of times, then running

the skelston should take much longer than evaluating the algorithmic ppf.

9.5. Analyzing a Llarger Class of Programs
We have adopted, for the purposes of our study, the representation of

programs based on D-charts. From the work of B6bm and Jacopini {B5hss]),

%

we know that any computational flowchart cen be converted, perhaps at the
expense of adding some extra boolean variables, into a D-chart which will
preserve the functionality of the original program. Moreover, it Is also known
[Led75]) that one needs to introduce auxiliary boolean variables only when
"untangling” a loop which has more than one exit. It Is the presence of

blocks which are not one-in one-out which forces the introduction of auxiliary

. varlables.

Most modern programming languages have a richer set of control struc-
tures than those naturelly represented by our program performance formu-
lae, which salisfy the property of single-entry single-exit points. We shall now
sce how to dea! with them. Once we exhibit the eppropriate reductions to
our formulae, all our definablility results will apply.

In particuler, we shall deal with the so-called D'-charts (Led75). which
are D-charts xith two additional rules of formation. They are deplicted in Fig-
ures 3.5.1 and 3.5.2.

B,
Bg
B -
r e .
By,
Mgure 3.6.1 Ngure 3.5.2
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Figure 3.5.1 is celled s repsat-until iteration, and Figure 3.5.2 is a case
statement for 1 £ | £ n. In Figures 3.6.9 and 3.5.4 we give their equivalent
ropresentations in terms of our D-charts.

We may ‘then treat these control struclures using the depicted
equivalences. We may perform similar reductions with any construct reduct-
ble to @ D-chart.

So far our methods have not dealt with control variables whose type i
not numeric. There i3 & good reason for it, and it is becauso the behavior

characteristics of those programs are very difficult to determine from their

=D

By
. s
1
B
(J
B . E E
L o |
<X o ng
. T
Ngure 3.5.9 Rgure 3.6.4

”
syntax. In Chepter 7 wo shall present some examples of thess programas.

9.6. Some issues Concerning Unrestricted GO-TO's

The controversy on the usage of unrestricted GO-TO's in programming is
& subject which has a long history. There have been dozens of suthors con-
tributing their ideas to the subject. We shell not present an In-depth analysis
of the pros and cons of unresiricted GO-TO's but just make some remarks os
to how their eppearnnce in programs affects our methods and goals. In
[Knu?4, Dij72, Led75) the interested reader may get acquainted with some of

the Issues and arguments In this controversy.

For us, the basic problem with unrestricted GO-TO's is that they destroy
the one-in one-out flow of control property of D-charts. This Is troublesome
when determining the definability of a variable. With the one-in one-out pro-
perty, one con qnlurally order the basic blocks so that a basic block B is not
processed untit all of its prodecessors B, are processed; Le., the nodes B

are always traversed bsfore B in any run.

When the one-in one-out property is not sstisfied, es in Figure 3.6.1, one
can no longer do this. The immediate problom s that one nseds several
passes through the graph to determine the existing dependencies. This
increanes the running time nseded to find the performance representation of
the program [All78]. In Figure 3.6.1 we may also see that By Is bolh a prede-
cessor and a successor of Bg bocause there ere runs which raverse By

before B, and olhers which traverss By before By

A different ospect of this same problem is that finding definable itera-
tions (regordiess of the fact that iteralions are semanticelly different from
those in D-charts, In that they may hove several entry and exit points)

becomes much harder. In Figure 9.6.1, we sce that B, is also part of the
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Bo

By

¥o

Figure 5.6.1

iteration which has g, as the governing predicate. If ¢,'s control variables
are modified in the iteration with predicate pg, then the mere existence of a
closed form lor ¢,'s control variables is already a difficult problem. In fact, a
closed form for them can never exist as a pure algedbraic expresaion, because

of the dependence on gg's truth value.

Thus, even though our methods may handie unrestricted GO-TO's, the
cost of doing it is normally felt at all levels. Building a performence
representation will take longer, because mulliple passes through the code
will be nseded. Iterations, which now have to be defined as cycles in the
directed graph representing the flow of contro! of the program, will be less

likely to be definable. It then becomes more probable that fewer iterations
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in a program will be “linearizable” and so the evaluation cost of our perfor-

mance representation will tend to be close to that of running the skeleton.

9.7. Summary

In this chapter we have desit with several shortcomings of our program
performance language introduced in Chapter 2. We have first studied how to
obtain the (crucial) counting functions §p for nonatomic predlcateé @. Ve
have then analyzed a special kind of predicates, the stable ones, which help
us evaluate #p in an efficient manner. Stability was also characterized in
terms of the bebavior of a real valued function which can be determined

from the text of the program.

We have then introduced a new 3-place special symbol which ellows us to
represent the profile equations of arbitrary D-charts. The interpretation
function 1 was expanded accordingly, but now, to deal correctly with this new
symbol, one has to define 1 in an algorithmic form. Which method, the algo-
rithmic pp! or the skeleton, will have a shorter execution time depends on
the definability hypo'.he.les satisfied in a given case. Finally, we have noted
how the violation of the one-in one-out property of D-charts by arbitrary GO-

TO’s meakes our analysis more costly.



CHAPTER 4

The Linear Function Case

In severel empirical studies of programs [Knu71b, Woo76, Hen80], it has
been observed that most modifications made to control variables in the bedy
- of iterations are, algebralcally, very simple. This has motivated our detailed
study of the counting functions of iterations in which the control variables
are modifiod according to linear functions. We shail see that under these
hypotheses one can efficlontly obtain, always at run time, sometimes at com-

pile time, all the characteristics of the counting functions.

Throughout this ‘chaptor we shall consider exclusively an fleration L =
<B, ROy, a. >, where the actions of B on £ and y are lincer functions. We
assume the action of Bon = tobe f(z) = az + b, end the sctionon y to be
g(y) = cy + d, where o, b, 0 6nd 4 arec names of variables whoso velue does

not change in B.

Under these hypotheses the closed forma for £[k] and y[k] ere (recall
Bxampls 3.3.2):

=(a] + kb Ha=1

a* -1
."s[a]fb[._l ] famrl

={k] =

yla] + ka fo=1
c*z[a) + d[%._—'-'-l‘—] foepl

We shall use the function h{k) = £[k] - y[k] to analyze the behavior of

vik)=

=zRoy In L. However, It proves useful to extend the definition of h to all real
numbers r, even though, from the viewpolnt of zRoy, the function h i
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)}

{nteresting only at integer points. The following seclion enalyzes some useful
properties of corlain epocial familics of linear funcllons. For any resl
number ¢ end function f, we define I°(¢) = ¢ .

4.1. Some Propertiss of Special Families of Linsar Functions

Consider the real valued lineer function £(t) = &t + b, where a and b are

two roeal numbers. The composition of § with itself k times yields

t +kb Ha=1

.-uu[:':"] faw1

() =

Theorem 3.2.3 tells us that the family (%) o descrves study. Whenfis e

linear function, it turns out that {f°} . possesses one characteristic which
accounts for most of Lthe family’s good behavior: either all the straight lines
which reprosent the elements of Lthe family are paralle] or they meel at a sin-

gle point.
Theorem 4.1.1

Let £ be the linear function #(t) = at + b. It a = 1, then the functions ®

in the family {f°) .. represont parallcl lines in the plane. Otherwise, the

point l%-a.' ig—.-] belongs to each member of (M} . .
Proot

We have given above the expressions for f*. From them, one can see

that, e = 3, %t} = L+ kb, and, for k, # k, [f*(t) - £*5(t)] = [, - kylb , which

‘is independent of t . Thus, the two siraight linos are parailel.

Whon e # § we have'



l.[ bﬂ]:.ll_ta_.’.bg—-_l.

1= a-1
P | (ba® - b{a* - 1))
1-a
1 k. bak
iy {bak — bak + b)
b
*T-a
So, the point [%. T‘-_’-;—] belongs to each of the straight lines represented
by functions in {f*} . .
]
b b
The point [T-_-n-' -1::-] will be called the intersection point of {f°] .. .

and pleys an important role when determining halting conditions. When f is
linear, the family (Fl.o will be called a spscial family of functions.

The value of the coefficient a determines all the essential characteris-
tics of the behavior of the family {f°) , . in particular, when we consider the
intersection of {f*} _, with the vertical line y = =[a] . There are only seven
cases to consider,

Let A = z[a) + '_’

a-1"
(1a>1

b

lim *(z[a)) = lim a*(A) + 3

H=[a)m

b
1-a

sign(A)co

b otherwise
1-a

%)
(2)a=1
lim *([a]) = im (z[a] + kb) = sign (b)e
(3)o<cac
lim (z[a]) = Jim e*(A) + b -
b
T

(4)a=0

lim fzla)=b .
For two of the cases when a is negative, it is convenient to introduce two aux-

fliary functions: f_ end l. . They give us bounds on the values that the family

{0 takes. Consider a given value £[a]. We define our new functions by:

—lﬂltﬁ(ﬂl + ;%T] *1 Ea
f,= Iel"lllﬂl + ,_?TT] + T%q—

(index m stands for minus and the p for plus).

When a <0 end a » -1 , we can casily see that (*(z{a]) = 1'(21() and
r%*Y(z[a]) = 1_(2k+1) . So the values of {f*}_, ., when evalusted at the point
z[a]. oscillate between those of f, and l' . ¥We must also notice that, under
theses hypotheses, IB and " are monotonic functions. This is most clearly
seen when one observes that the only change in the values of f and f’ is
given by tha change of value in Ja/*. As the real valued exponential functions

are monotonic, ln and l’ are monotonic.

Table 4.1.1 summarizes the monotonicity properties of f,, endf, .



function | sssumplions behavior
. Ax0 k [a}>1 | monotenically nonincreasing
1, A20 & [a} <1 | monotonically nondecreasing
1 A£0 & [o] > 1 | monotonically nondecreasing
1 A%0 & |aj <1 | monotonically noninoreasing
(. Ax0 & [a}» 1 | monotonically nondscreasing
L A2 0 & [a] <1 | monotonically nonincreasing
. A£0 & [of > 1 | monolonically nonincreasing
f, A0 & |s] <1 | monotonically nondecreasing
Table 4.1.1 Behavior of _andf,.

Thore Is another property of these functions which Is of interest to us.
In the semiplane {<2.y> : £ = 1}, thoy are symmetrical (i.0., mirror imoges)

wilh respect to the horizontal line 2 =

T A way Lo see this is Lo porform

a displacement along the vertice! axis of <2 units. This transtorms lu(k)

into ', (k) = Je{*A and £,(k) into ryk) = [al*A . Thus £’ (k) = -f" (k} . Clearly

then, (,, and f, ere symmetrical with respect to the horlzontalline z = 1 '_’ :
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(6)-1<a<0

b _._b
-a 1-a

ll.n.\ fy(k) = lim {a]¥A + T

b
1-a

im tak) = [im ~{al*A ¢ g2

In \his case, the volues [P(z[a])],,, form & sequence which converges to

1 3 o Moreover, in the plane, all even indexed elements of this sequence
b

T—a" On the other side of this line are

are on the same side of the line &8 =

sll of the odd indexed elements. Thus Lhe valuss of the sequence cross over
b
1~-a

number of times it b = 0.

the line g =

every time. This says that h will chango sign an infinite

(6)a=-1
This case Is quite peculiar, In that the whols family {[?} _, reduces to two

functions: f{¢) =-¢ + b and %(t) = ¢ . Thus, for all k 2 0, t™(z[a]) = z[a]
and t™*Y(z[a)) = -z[a) + b.

(Mac-
b
. sign{A)eo itzlal» T
lim ty(k) =
bee b otherwise
1-a
b
~sign(A)oo it x{a} # 1-a
lim f(k) =
b b otherwise
1~-a

The sequence {(=[a))] ., diverges. Moreover, the absoluts value of the

elements Increases monotonically. The values of the odd indexed elemonts

will diverge with signs differont from those with even indices. As In (5). they



will also be on different sides of the line 2z =

b .
1-n8
Figures 4.1.1 through 4.1.8 depict typical situations of {f°}_ . for each
case. We have omitted the case for a = 1, where paraliel lines making a forty
five degree angle with the horizontal axis and d unils apart from each other

would be obtained.

4.2. A Real Valued Function Approach

In Section 3.2 the function h{k) = =[k] - y{k] was introduced and used
to characterize the stability properties of an iteration predicate. Moreover,
Theorem 3.2.1 gave us a relationship between the least nonnegative root of h

" and the counting function of the iteration.

When analyzing an iteration, the values z[a) and y[a] can be viewed as
parameters. In fact, once we fix them, h becomes a function of the iteration
index k only. For the purposes of finding the roots of h, it is better to con-
sider h to be defined for all real values. When using the hypotheses of this
chapter, if a and ¢ are nonnegative, viewing b as a real valued function

presents no problem. In the other cases we shall see that using l'. foe

g, and
8, Where 8 and g are the equivalents of l'. t, for y. will allow us to per-
form our analysis.

Under the hypotheses of this chapter, the analysis of the counting func-
tions for iterations is reduced to the study of only four kinds of functions h.
We only need to find the nonnegative roots for the following four types of
functions:

1 bhir)=rA+B-(rC+D)

Il hir)=e"A+B-D

Figure 4.1.1

Ngure4.1.4

Pigure 4.1.2

Figure 4.1.5

a7

-L
2
Pgure 4.1.3
1 a=0
T2
Figure 4.1.6



N bir)aa®A+B-(rC+D)
IV b(r)=e"A+B-(b'C+D)

whare a, A, B, C and D ere assumed conatant, A, C non zero, and a positive.

Funclions of Type ]}

b{r)=0 Ut rA+B=e¢C+D ift v(A-C)=D-B
n order to find the root, we must divide by (A - C), thus we must have thal A
# C, I.e., the two straight lines must not be perallel. Thus:

root existenco condition: Aw C

| D-B
root expression: r = 2-C

Functions of Type Il

b{r)=0 Ut e A+B=D UI " =

D-B
A
As o is alwnys positive, we must have that llgn(!%-s-) = 1, L.e., that the

exponentis) function y = a™A + B crosses the horizonte! line 8 = D . Thus,

root existence condition: sign lD ; B I =1,

root expression: v &

Functions of Type Il

h(r)=0 #1 aTA-rC+(B-D)=0.
In this case we will have nonnegative roots iff the straight line determined by
y = rC + D, and the exponential function determined by y = a'A ¢+ B, meet
in the positive semiplane. The nocessary analytic conditions for this to hap-

pen are not as clegant as the ones ebove.

The tangent slope Is that valus of the slope ol y = vC + D, Le, that
value o.l C, which makes the exponential function and the straight line meet
in exactly one point. It Is determined by the unique solution r of the follow-
ing equation: ’

Aa” + BzIn(a)Aa"r +D .
There Is no |enarai way of expressing the root r of this equation In an alge-
braioc way. Hence, r needs to be found using some numericel method. Thus,
root existence conditions: see Table 4.2.1

root expression: does not exist (in general)

Punctions of 1’”0 1\ 4
bir)=0 1T aTA-D'C+(B-D)=0.
In this case we will have nonnegative roots if both exponentials meet. In any
such case, we will only have one root. Thus,
root existence conditions: see Table 4.2.2

root expression: does not exist (in general)

condillons property

A>0 & D>A+B & anyC " onoroot

A>0 & D<A+B & C)>tangontsiops | ono or two roots

A<O & D<A+B & anyC one root

A<O & D>A+DB & C<tangentsliope | ona or two roots

Table 4.2.1 Root Existence for Punctions of Type Ul



conditions

A>0 £ C>0 &k (A+B)<(C+D) & A>C

A>0 ¥ C>0 & (A+B)a(C+D) & A<C

A>0 & C<0 & (A+B)<(C+D)

A<O & C>0 & (A+B)=2(C+D)

A<O & C<0 & (A+B)<(C+D) & A>C

A<O & C<0 & (A+B)x(C+D) & A<C

Table 4.2.2 Root Existence for Functions of Type IV

4.9. Iteration Definability

Table 4.3.1 summarizes the basic definability results of this chapter. In
this section we shall determine for which cases L is definable, and give an
expression for the least nonnegative root of h. In the nondefinable cases, we
present some speclal assumptions which yield definability. Not all of these
conditions can bs established et compils time, some need to be checked at

run time.

4.9.1. Caze When R0Oisnot »

Definebility is determined by our ability of finding expressions for the
least nonnegative root of h. From Section 4.2 we know that only when b is of

type 1 or of type Il we have expressions for the roots, This sets the limits of

fn

ac1|a=-1|-1<ac0]|a=0j0<cacija=l]a>l
e<-1 ND Dl ND D' ND ND ND
e=-1 ] D D*s D D' D D=
-1<c<0| ND | D'« ND D ND ND | ND
c=0 | D D D D D pls
0<e<] ND pos ND D' ND ND ND
ex] ND D ND D ND D ND
e>1 ND Die ND D' ND ND ND
Table 4.3.1 Definabllity Propertiesof L.

ND means non definable, D' means definable using logarithms,
D moeans dofinable without using logarithms.

definebility for L.

Theorem 4.9.1

The definable cases are those corresponding to a  or a ll entry In Table

4.3.2. The enlry indicates the type of h for cach case.
Proo?

By observing the functions which describe 2[k] and ylx].



a<1]av-1]1¢ca<0][a=0j0<aclijax1]a>

e<-1 1. n n

cz=-1 11 n 1 ] n
-1<e<0 n 1l _

e=0 [1] 1 1] ] 1] ] n
0<e< _n_ _n_

exm) ] 1 1

e>1 1 _n

Table 4.3.8 Types of Definabllity

Theorem 4.3.8

The expressions arlsing trom Lype | cases are those ropresented in Table

4.3.3.
Proot

All of the expressions shown in Table 4.9.3 are established by enslyzing
the effect of the actions of L on the values of the variables £ and y. As en
Mustrative case, we shall show how to derive the expressionfore=1anda =
-1 . The other ceses neither require more work nor different methods.

When o = 1 and a & -1 we have £[0) = z{a), 2[1] = -z[a] + b, =[2] =
£[a). and in general, for any integer k, £{2k] = z[a). z[2k+1) = -z[a] + .
For y. however, the values are: y[0} = y[a) y[1] = yla] + d. y[2] = ylal +
24, end In general, for eny integer k, y[k} = yla] + kd. Clearly, e change of
sign in h will ocour for either an even or an odd k. The cases are respectively
described by

h(2k) = ={2k] - y{ek) = 0 = £[a) - y[a]) -2kda  and
n(2k+1) = s[2k+1] - y[2k+1) w 0 = -z[a] + b - (2k+1)d o -z[a] + b-d - 2kd.
The smallest root of hik) is given by
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a=-] a=0 a1l
- 1 b
o L PR [y e NSRBI [ATENR)
° =1 2 othsrwise -2b
am- ax=0 a=1l
° 1 it (-z[a)+b)rod
D) fzhoy = is falae dzRoy = 1 I’ al-d
° 2 otherwise b
a=-1 ax=0 ac}
E mln[ Islalz:ud [a] l '-:|a|_-_12d|a|0b-d ” l bid|a| l: ab:d a
e=0 1 ¥ (ax[a)+b)rod] a=0 |
& fzRoy = is falzs & #zRoy = ! “bm(el'sﬂ'l::?
-1<a<0 2 otherwise -1<e<0 2 otherwise

Table 4.9.3 Expressions From Type ] Cassa

:|¢| =y[a}l =z[a] :[|¢| +b-4d
mln| za N 2d R

[
Whan |a] > 1, let 1, be that function among f, end f_ which is increasing,

and {, that which decreases. Similarly we define g, and g,. These symbols
are used in Table 4.3.4.
Theorem 4.9.9

The expressions erising from type Il cases ere those represented In

Table 4.2.4.

Proot



o4
b
e=0 & 0<acl 1 i £la] = 1~a
dzRoy =
or ala=1) ¢ b otherwise
e=0 & a>1 log z[alla-1) + b]
“ log(e) |
d
i
szomOcec 1 viel= 75
or bc-1)+d Wlolhervlu
az0 R ed>1 |lo'[V[“R°")*"
| log(c) |
cmOkac  fr)=d w2 P ter)ma wacyEo
a0 cca H)=b ubaS— ge)mb bcgdo
c=-l1 & ac-

or
e=-] & -1<ac0

nun".(') = ~yla] +4, "(') =yla]

as-]l ke>1
or
cx=-] & 0<acl}

minihy(r) = —yla] + &, 8,(r) = y(al}

az-l Ec<-]

or
ax-l &k -1<0<0

minlan(r) = ~zla) + 4, g,(r) = ={a) |

az- & e>l

or
az-] & 0<e<}

nipley(r) = —x[a) + 4, gy(r) = =la]}

Table 4.3.4 Expressions From Type Il Cases
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All of the above expressions are established by analyzing the effect of
the actions of L on the values of the variables 2 and y. As an illustretive case
we shall show how to derive the expressions for thecasec=-1anda<-}.

In this case we have 2[0] = z[a] = 1,(0), =[1] = £,(1). z[2) = 1,(2). =[3]) =
1,.(3). and in general, for all integers k., z[2k] = 1,(2k), =[2k+ 1] = 1 (2k+1).
For y, however, the valuos are given by y[0) = y[a). y[1] = y[a] + 4. y(2]) =
ylal, (3] = «yla] + 4. end In general, for all integers k, y[2k] = yla),
ylek+1) = yla] + 4. As both If.l and |t | are unbounded monotonically
increasing functions, there will be at least one solution r for £ (r) = yla] +
d or l’(r) =yla].

Jt 1 has a root r, we find the least odd integer (ck+1)2r. I f,hasa
root r, we find the least even integer 2k ® v . We then find JzROy ac;!ordlng
to Theorem 3.2.1, using the minimum of the above two numbers. If only one
root exists, we use the corresponding minimum integer found and Theorem

3.2.1.

4.9.1.1. Nore Hypotheses Which Yield Definability

In ell cases when h is of type 11 or of type IV, there are some instances
in which it is possible Lo obtain an expression for the roots. They arise either
from special values that the control variables £, y have when entering the
iteration L, or from relationships between a end c. The result of these sim-

plifications is that functions of type 1 or I} are obtained.

Functions of Type Il

and B=

In this case h(r) = a"A + B - (rd + y[a]) where A= 2[a] + v

T%—e-. There are only two simplifications which may occur:



(1) =[a)= T 2 i
Then, hir) = -rd + B-yla). whichls of typa 1.
(@) d=0

Then, h{r) = a"A + B -y[a] . which is of typs 1.

Punctlions of Type IV
In this caso, b(r) = a¥A + B- (c"C + D) , where A = g[a) + -.—E—l-. Bz

L _.c= ylal + ;,and D= -l%o_' The only four simplifications

d
t~a e~-1

which may occur are the following:

(1) xla)= -2

a=-1
Then, b{r) = -o"C + B-D, which is of type Il
@ yla)= ,_‘_,

Then, h(r) = a¥A 4+ B-D, which is of type 1.

(3) ax=g

Then, b(r) = a™(A-C) + B-D, which s of type Ii .
(3 B=D

2
oo >|0

Then, hir) = a"A - c"C, and the root r for hir) = O s givenby r =

—
O
[ ]

4.9.2 Casc Whenmois

A was polinted out In Section 3.2, whon analyzing the case of »# we are
required to find en integer roct of h. When halting is being assumed, this
amounts to soarching through ths distinct roots of h, at least one of which
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will be Integer. In Section 4.2 we saw that in all definable cases for {terations
ntlslyﬁu the hypothesss of this chapter, b has at most two roots. This cor-
tainly limits the amount of searching one needs to do. Moreover, in Section
4.5 we shall give conditions which delimit the the range of the seerch to be

performed.

In many of the nondefinable cases the function h has infinitely many
roots. In fact, this condition may also be dapenda;t on the values of z(a}
and yla). In Section 4.4 we see several ceses whero this occurs. What
interests us now is the fact that, It h changes sign infinitely many limes,
unless one has an a priori mothod to determine if h will have an Integer root,
a search for it may bo endless. This is the main difficultly when deealing with
the relational oporator # . As no expressions for the roots of systems of two
exponantial equations oxist in general, only s casz by case analysis cen pro-
vide an answer about the existence of integer roots. Determining §p In this
way is not acceptable.- Given our hypothesis that programs halt, we would
use the skeleton epproach to deal with this case.

4.4. Slability of Predicates

Changes of truth values of £ROy are associated with changes in the sign
of h. Thus the study of h's behavior will also dotermine the sequences of
truth values which mey occur in iterations satisfying the hypotheses of this
chapter. Theorem 3.2.2 tells us that the monotonicity of b is the condition
which yields stability. Given the monolonicity of linear functions, it Is not
surprising then that many cases wiil have stable predicates. However, non-
steble cases do exist, but they have remarkably simple patterns of truth
values. This information cen be used advantageously when ovaluating §#p for

non atomic predicetes p. There are several cases where the bohavior of the



prodicates can be determined at compile time.

Table 4.4.1 depicts abbreviated versions of the patterns of truth values
which may occur when the predicate zROy is not = v y. The justification of
each entry ls, once again, based on an analysis of the behavior of the associ-
ated function h. The behavior of h is determined by the relative growths of
the functions f and g.

Let us now analyze one entry of the table in complete detall.

Cese whena=-land-1<e¢<0.

In this case we have 2[2k) = £[a). end z[2k+1] = -z[a] + b . The values
for y(k). on the other hand, are given by: yl2k] = g’(ZI:) and y[2k+1) =

8,(2k+1). Wo know that both g, and g ere monotonic and have limits, when

. We then have that

k -+ =, equal to T-¢

=[alrog,(k) when kis even

z[k]roy[k] =
(-z[a) + b)ROg,(k) when kis odd.

As 8p and g_ are monotonic, the sequences of truth values generated by
them will be stable, L.e., there will be at most one change in Lhe truth value.
As we assume that L's T-branch will be traversed at least once, we have that

z[a]royla] is true. Thus, the possible sequences of truth values gonerated

by z[a]rog (k) are:
rrre-- U elalrogi—is true
T FF... Wt zlalRog Sc s false

The possible sequences of truth values generated by (-z[a] + b)rog (k) can

be oblained os follows. Let P = (-z[a] + b)ROga(1) end Q =

(~z[a] + b)Ro-l—g? s then,

..
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Patterns of Truth Valoes

For predicates oot .

Tadle 4.4.1



TTYr--- UP lstrusandQ Istrue
oo

FF.-+ ItP istruesend Q ls falso

TTT -+ P isfalse and Q 1s trus

+++ P isfalss and Q ls fatse.

All the sequences of truth values which b may produce are obteined by
an eppropriate selection of alternstive truth values from those two
sequences. As we are assuming balling programs, there is only one case
excluded from the ecight combinations, namely, that which produces the
sequence T7T - - - . Thus, the hailing condition for this case, Le.,, whena s
4ond-1<c <D lsthat

(slalrog-3) & ((-=[a] + blao(ey[a] + &) & ((-=lal + blaa(749)
is false, where wo have mado use of the equality g (1) = cy[a] + 4. This con-

dition will be used In Section 4.5.

Before analysing the remaining seven cases, we shell indicate how ono
determines the lengths of the initis! soquences of *‘trues” or “falses’
obtained from s, and g . The whole ides is that wo are dealing with functions
of type Il, and so we may find an expression for the root. The floor of Lhis
root glves us the langth of the Initial sequence of truth values.

-]
]

In particuler, let us enalyze the cese of [ R We assume that =[a]ro
is false and we wanl lo determine the number of consecutive times
slarog (k) will evaluate to trus. As wo assume that £[a]rog (0) is true,
recalling that ..(0) = yla), our problem Is equivalent Lo finding the least k
for which the function g’(k) - £[k] changes sign. The root for this function is

given by
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d
) l[a] + -"':-c—
lv' d
vla} ¢+ 75
T T Teg(led
Thus, the number of successive Limes that :[a]m’(k) will evaluate to true

is bl An anslogous enalysis can be carried out for g .

Wo now anslyse the remaining ssven eltornatives: lot P = (z{a]Ro1-2=).
Q= ((-#[a) + b)ro(72-3) and R = ((~z[a] + b)zo(cy[a] + 4)).
()  Pistrue, Qistrue, Ris false

wo obtaln: TFIF - -« TFTTIT -+«

(i)  Pistrue, Qiafalse, R is false
we obtain: TFTFTF - - -
(iif) Pistrue, Qinfolse, Ris true
weobtain: T - - - TTFTFIF - -
(iv) Piafalse, Qis true, R i fsise
F ... FFTFTFT - - -

T+ TFTFTFT - -+
we obtain: TFTF - - TFly . .. TFTFTFT - -+

(v) Pisfelse, Qls false, Ris false
we obtain: TFTF -« TFFFF - - -

(v) Pisfelse, Qis true, R is trus
we obtaln: P -+ TFTFTFT - - -

(vil) P ialalse, Qis false, Ris true
we obtain:
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TF--: TFFFF -

TF - TFFFF - .-
FF oo

The ebove seven cases can be summarized as follows:

TTT -+ -
FT:--- FF .

T FTFT « -
With these techniques, one can determine, at run time, the exact pat-
tern of truth values that h will have, even in the nonsteble ceses. The reduc-
tion Lo subceses involving functions of type Il ia what allows us to do so.

We should remark that when the relational operator is not #, all stable
casos are those where b has exactly one root. It nesds to have one because
of halting, and it can't have more than one because of the change of sign. On
the other hand, when the relational operator Is ¢, the condition on the roots
of h is that there exist exactly one integer root. Noninteger roots may exist

in abundance.

4.5. Halting Conditions

In Section 4.2 we listed the cases where h would have roots. The cases
were given in terms of conditions for the coefticients A, B, C and D. These
e?nditiom naturelly translate themselves into conditions Involving z(a).
yla). a. b, c and d. From them, es we have just done in Section 4.4, we may
deduce conditions on z{a) and y{a] which would insure haiting, given that a,

b, ¢ and d are assumed not to change their velue inL.

Moreover, it should also ba clear that, when the values of z[a]) and yla)
are available, some nondefinable cases become definable, as seen in Section
4.3.1.1, and 80, even in those cases, the expression of fzROY can be obtained

at run time.
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When our relationel operator is not ¢, there are soveral cases when halt-
ing can be established at compile time. For instance, assume a < -1. We

b
1-~-a

know that the values of x[k] (when =[a] # ) will be unbounded. More-

over, consecutive values will have, for k sufficiently large, opposite signs.
Then, if e & -1, all of these ilerations will hait bacause either the values of
ylk] ere bounded or they all have, for k sufficiently large, the same eign.
This argument is also valid, with the roles of 2 and y interchanged, for the

case whene<-l1andad> -1.

The two most difficult cases for haiting conditions are encountered when
dealing with functions b of type 11l and of type IV. We shall now give criteria

which reduces the scope of a search for the roots.

Let us analyze the case a> 1and e = 1. Our function h is given by h(r)

b
1-a

=a'A+B-(rd+D).whereA8¢[a]+-.—_b_T.BtB and D = y[a). We

have seen that this case ia non definable. However, we may bound the smal-
lest nonnegative rot-n using the following observation: it at the origen the
straight line is above the exponential, then O is a lower bound. Otherwise, the
straight liney = r@ + D must Intersect the exponentiel functiony = aA+D
for the first time at a point where the exponential’s growth rate is smaller
than the slope of the line. This observation is true because, if they have not
met by that time, the growth of the exponential will be larger than that of
the straight line and thus the values of the Iatier will never be able to reach
those of the exponential.

An upper bound on the least nonnegalive root of h is givenby a formali-

zation of the above remark. The derivative of b{r) a b’(r) = in(a)Aa” . The
slope of the straight line is d. Sowe findr such that b*(r) = d, and this is our
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upper bound for ths least nonnegative root of h. This v Is given by

(]
In{e)A
log(a)
This v may have to be determined at run time, bocause A depends on

rs

z(a}. It z{a] were known et complle time, then v could be determined at
complle time. Moreover, if r is smell, instead of finding all the corresponding
roots for our functions, one may decide to use the skeleton epproach for the

Iteration.

Consider now the casea > 1 and ¢ > 1. We have

hir) = a"A + B-(c"C + D), whore A = g[a] + -.-—E-T.Bu

‘2. Cz=yla)+

c—g_l-' and D = Tg?' When we are not in ono of the four conditions listed
in Section 4.3.1.1, we have to bound the root. We look for upper bounds as
tight as posaible. When we bave the upper bound, we perform a “midpoint

search” o find the roots. This scarch Is much faster than a sequential

search.

D-B
Ce"

. 1
Equation a”A - ¢"C = D - B is equivalont to %—[:—] =1+ .Asc>

1, we have Lhat El‘n:%i;g-- 0. Thore are two cases to consider:

® p—%!«o

In this case the smallest value which may be achisved by the left hand

D-B
C

Al ] D-B
PR

side of cur equivelence is 1 +

. Thus, we will bo passed the root when

i.e., when
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D-B
(D] T > (1]
In this case the smallest value which may be achieved by the left hand

4
side of our equivalence is 1. Thus we will bo passed the root when %{%—] =

log g—
1, Le., when r= .
2
log °
Tighter bounds may be found by using botter values for the right hand

side of our equivalence.

Thero Is yet another consideration to be made ebout non definable
cases. The range of values that thelr underlying exponential functions mey
take Is quite restricted. As most programming langusges only support .'nn-
ite number of distinct values for variables of type numeric, once they are
exceeded, overflow (or underflow) conditions will halt the compulation. As
we assume bona fide haiting programs, the values of the variables should

always stay within the predetermined ranges.

Let us consider g(r) = As” + B when r Is of type inleger. Assume
further thst the underlying hardware has 32 bit words. Then, the largest
unsigned integer wo may represont is e2%.1.

The function g will grow at its slowest rato when A Is smallest, and B is

the largest possible negotive number. Assuming these oconditions, g is

transformed to g(r) = 2%a” - 3% and we may easily find the value of r, as &
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Bﬁlog! 22
log(a)

have that r < 65. Thet Is, an iteration under these hypotheses does not

function of a, for which g(r) = 2%, Namely, r = . So, whena = 2, we

traverse consecutively its T-branch more than 65 times.

This hardware dependent information, together with compfle time infor-
maetion about the nestedness of iterations, should be used when determining

what strategy to follow in the analysis of a given program.

4.6, Summeary

In this chapter we have secen how to determine all the information
needed for our analysis In the case of an iteration in which the actions on the
control variables are linear functions. For example, we determined all the
definable cases. We have given expressions for h which ellow us to find #¢ in
all the nondelinable cases. We have also given bounds for the interval of
numbers in which the search for ths roots of h must be made. Moreover,
halting conditions for all cases were also given. We were even able to find the
lequéncaa of truth values that predicates have when the actions of the itera-

tion on the control variables are linear functions.

CHAPTER §
Finding Closed Forms

In Section 2.5, the subjact of closed forms for variables in iterations was
first introduced. It was seen that closed forms must exist for all control vari-
ables in a program if we are to find our best possible performance represen-
tation of the program. Moreover, for definable programs, the special terms
describing the closed forms cannot contain an.y occurrence of n-place func-
tion symbols f. We shall call this latter type of closed forms definable
closed forms. In Chapter 4, we have analyzed a case where finding closed
forms for control variables is no problem. Indeed, they always were defin-
able closed forms.

The purpose of this chapler is five-fold:

(1) to reduce the problem of finding closed forms for irreducible iterations

to that of solving recurrence relations;

(2) to describe, discuss and analyze three known decision procedures for

finding definable closed forms for some familios of recurrence relations;
(3) to present table-driven methods for finding definable closed forms;

(4) to discuss the problem of closed forms in the context of iterations with

multiple inner paths; and

(5) to discuss the problem of closed forms in the context of nosted itera-

tions.

107
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8.1. reducible Ilerations and Recurrence Relations

An irreducible fteration Is an iteration L = <B, ¢, a. #> whose body Bise
basic block of statements. As our programs are sssumed not to be sell-
modifying, the action of L on a variable = mey be described by a fixed func-
tion g. The specific form of g wiil depend on the kind of action L porforms on
=,

We lot £[0] denote the value thet the variable & has when entering the
{teration L for the first time, L.e., £[0) = 2[a). Then, £[k+1] L.e.. the value =
has after the T-branch of L has been travorssd k+1 consccutive times, cen
be written as z{k+1] = g(z[k], k). g is determined In & unique way by the
statoments in' B.

The triple <z[0), £[k), z{k+1]>, constitutes s first order recurrence
relation with boundary condition =(0).

In Chapler 4, we studied the case where, for all control variebles z, the
relationship between s[k+1) end z(k] does not depend on the iteration index
k end, moreover, the relationship between £[k+1} and ={k] is lincar. In this
case, definable closed forms are easy to obtain.

Whenever we havs (hat the relationship between z[k+1] and ={k] does
not depend on the Iteration index k. we may oxpress z[k+1] in the following
way:

=lk+1] = g(=[k]) = gX(=[0]) .
In this case, finding definsblo closed forms is the same as finding & term
1(x.k) which describes g*(z).

In tho work of Cheatham [Cha78), we sse that there are situations when

one wents to find closed forms for parametric recurronce relations. In their

most uner&l form, parametric recurrence relations cen be expressed by,
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A,,,(=) = g(A(h(2.K)), 5. k) , whore k> O.
In the same paper it is proven that salving rocurrence relations of this kind
may be reduced to solving at most two parsmetric recurrence relstions of
the form
Ay, (=) = g(A(z). 2. k), whore k> 0.

Relations of the latter type are easier to solve bocause tho “parameter” £
does not change throughout tho llerations. A pattern-matching table-lookup
method for solving this Lype of recurrence was proposed by Cheatham.

First order recurrence relations have been studied sinco the last cen-
tury. The first trentise on the subject was written by G. Boole in 1872
[Boo57). The methemstical mothods proposed for solving them have paral-
leled those for differential equations. In fact, it has bsen shown that systems
of linear recurrence relations with constant coefficients cen always be
reduced to s singlo recurrence relation with constant coefficients in one
verlable [LevB1]. The reduction can be accomplished in an sulomatic way

using Cramer’s rule for solving systems of linear equations.

Once one Is dealing with a single recurrence rolation with constant coel-

ficients, there are baslically two methods for solving it:

(1) Determine the solution of an associated homogeneous recurrence rela-
tion by a well defined algorithm. Then delermins a particular solution of
the full recurrence relation by guessing its form. As in the case of dif-
ferontial equations, the sum of thess two solutions ls.tbo general solu-

tion.
(2) Find a generaling function whose coefficients represent thes sequence

defined by the recurrence relation. The expression for the k'® coefti-

cient is the desired solution.
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Unfortunately, there is no known way of finding, in an automatic way.
expressions for the k' term of a generating function. Thus, both of the
above methods require some kind of human Intervention or table fook-up.

Recurrence relations with variable coefficients present a whole new
spectrum of complications. As in the case of differential equations with vari-
able coefficients, there are no general methods for finding solutions. Ve
shall now analyze a case which covers more than 90% of the modilications
made to control varisbles in the studies of programs we heve seen. We shall
then see how the decision procedures presented in the next section help us
find closed forms for this case.

We assume that the value of the variable £ is modified by the two func-
tions £ and g es follows: £[k+1] = g(k)z[k] + f(k) . Chepter 4 dealt with the
special case when both functions, { and g, were constant.

lemma5.1.1

It, for ell integers k = 0, x[k+1] = g(k)z[k] + 1(k) . then

sike1) = flawzto]+ flenor s - + T gne-2)+ Hetorc-1) + 10
{0 (L] (nk-1 {sk
Proof
By induction on k. For k = 0 we have
£{1] = g(0)z[0] + 1(0) = ;lsmztol +1(0)

and 5o our expression holds. Assuming that our expression is true for j, we

have

=(j+1] = g)=0)) + 1)

- w)[ﬂamslo) +Heo e ‘ﬂ.-mru-a) + Heor-2) + 100

-,-l
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+ 1))
= }:loa(t)ztl!l + aa(«)«o) PO ‘1‘1,_3«)10-2) N !"lls(mo-:) "G

[ ]
Theorem 6.1.8

It, for all nonnegative integers n, g(n) = 1, then the existence of a closed
form for ‘iot(i) yiolds an alternative expression for z[k] whose evaluation

cosnt is linear in k.
Proot

g{j) = 1 implies that

s = fat0) .
=) ta)er
By rearranging terms in the expression obtained for 2[k] in Lemma 5.1.1 and

using this fact about g, one obtains:
2le+1] = [at)=[0) + [I'Iam - 1“1:(0])5:«) R
t=0 al t=t =0

. [;2:«) -‘g..w]g«o bt [1'_1:«) -1 ]:}:::m) + o

This equality can be verified easily by induction. The closed form hypothesis
for the sum allows us to obtain each sum with one evaluation. To efficiently
obtain the products, one evaluatss them from the “'last' down to the *first”,
Le., shorter products are computed before longer ones. We notice that, in
our expression for z[k+1), we need to have only two adjacent products of this

kind at the time. Thus, the total evaluation cost is linear in k.
]
The expressions obtained for £[k+1] in Lemma 8.1.1 and In Theorem

5.1.2 provide computational alternatives. The more closed forms one hes,

the faster the evaluation can get. In fact, if we were also to have a closed
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form for ﬂ(({) , the evalustion Lime might be even shorler, depending on
(L]

the complexity of the closed form.

Corollary 6.1.3
It, for all integers n, g(n) = m, where m 2 1, Le., g Is the constant func-

tion m and m is st least one, then the expression for g{k+1] simplifies to:
s{k+1) = m**'=2[0] + [m' —-mEM o) e .- ¢

s ULRRRY L) O Buo
Proof

By using the expression derived in Theorem 6.1.2.
]

Thus, definable closed formulae for r].(() and ﬁl(i) aliow us Lo evalu-

0] D
ate z[k+1] with cost linear in k. Depending on the complexity of the closed
forms, evaluating £{k+1] meay bs done faster using the skeleton. Finding a

closed form for [k}, however, is much harder. We remark that we have

mede no assumptions on t.

Whon dealing with product forms, the usage of logarithms may help us
obtein closed forms. I m = r[.(l) . then log(n)= 2!0;(4(()) . Htherels
=0 ()

s closed form for the latter, thon the value of ths former may be obtained In

a pointwise manner by using antilogarithms.

6.2. Three Decision Procedures for Minding Clozed Forms

The throe procedures we shall analyze present differont approaches to
the problem. One of the differences has to do wilh how the closed form Is

cxpressed. Moenck’s proceduro mekes use of a set of functions, the
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polygemma functions, to express closed forms (Moe77]. Karr's procedure
requires the specification of which format symbol(s) should be used to
express the closed form [Kar79], snd then it decides if the sum Is o rational

function of thess symbols or not.
On the othor hend, Gosper's procedure does not do anything of this sort, '

bul the enswers It provides may contain expressions which require iterative

methods o evaluate [Gos78).

6.2.1. Moenck's Procedure

‘lloanck considers the problem of summing polynomials and rationsl
tunctions. His spproach is to follow, as closely as possible, the techniques
and spproach used for Integration of polynomials of rational functions. He
nolices that the correct analogy to difference aigebra of ths differentiation
operstor D in differential algebra (L.e.: Dx* =nx*?) is the difference operator
A acting on the the factorial funclion [x], . Factoria! functions ere defined as
[x], = x(x-1)(x-2) - - . (x-n+1). The difference of a factorial is

olx, = ofal,,, -

Moenck’s spproach for finding sums of polynomials is to represent them
in terms of factoriel functions and then use this new representation to find
their sum. If

tx)e P %3‘-5'«0)
{20
then

8'(x) = ‘g‘ ({"—3“%-5'1(0) = 'g‘ (3,) 2o

To actually compute the expression for e given polynomlel, one first

needs to comﬁute the difference table for all appropriste entries (as deter-
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mined by the value of n in 4~'f(x)) and then, if one wants a power representa-
tion inatead of a factorial representation, one needs to use the explicit defin-
itions of the factorial functions in terms of polynomials. As far as summing
polynomials, this method requires more work than the straightforward one of
distributing the sums across the powers of the variables and using the well

known recutrrence relations which express ‘g‘x‘ in terms of the sums of lover
degree. However, Moenck's techniques provide a way to generelize this pro-
cedure to rational functions.
The factorial operator on a function £, [f(x)],. is defined by
(1(x)), = 1(x)1(x-1) - - - f(x-k+1) for k>0.
Then, it is extended to all integers k by defining [f(x)], = 1 and asserting that
(1(x)}, = [o(=))[#(x-D},,
is an identity.

To carry on the analogy with partial fraction decomposition and integre-
tion by parts, Moenck needs to find “shift free” decompositions of rational
tunctions. “shift free” means that the members in a product of functions
are not shilts, to any power, of another member of ths product.

Thus, Moenck’s procedure begins with the following algorithm which pro-

duces shift-free rational oxpressions: Given a rationel function %&;—

1) Form S(x+k). where k is a new variable.

2) Compute the resultant with respect to k: Ros(S(x+k). S(x)) = R(k) .

3) Test for integer roots of R(k); these will disclose any k's with non trivial
GCD's of the form GCD(S(x), E*S(x)).
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4) Apply Stirling’s method to convert the rational function %%-:—}into a fac-
torial denominator: this is done by multiplying the numerator by
appropriate factors of the factorial function which are missing in the

denominator.
6) Proceed to form a complele shift-free partial fraction decomposition,

Le., E%;')_- .ﬁ-‘ ,i-:l Q‘ri%-. where each [s,]; is shift-free, and ia found by

the above steps.

Then the algorithm proceeds to use summation by perts, applied to each

term of the shift-free partial fraction decomposition. To expresa the result

for the terms of the form & :)m , Le., the transcendental part, the
=B

polygamma functions Yalx) are introduced. We recall that

Yeo(x) = DPiog(T(x+1)), m >0 .

Polygamma lunctions behave nicely with the difference operator 4, since

- (=1)™"(m-1)_
8¥alx) = D! [_—] (x+l;:‘

Ax) = L3
B(x) g (x-b @ *
where j(t) is the multiplicity of the root by, using the polygamma functions

Therefore, if

the summation can be written as

a(-1y-1

Bl .., @ - v -v-1) .

With this expression. one can find pointwise values by evaluating

6"

appropriately the polygamma functions. It should be noliced, however, that

the evaluation may be quile expensive If the transcendental part is long.



Moreover, one Is not able to determine whether a transcendental part oxists

until the full shilt-free partial function decomposition has been carried out.

This procedure provides us with a method to find closed forms for the
action of an iteration L on s veriable £ of the following kind:
zlk+1) = =[k] + 1K) .
where { Is a rational function. In Section 6.1 we have also secn how closed
forms for sums cen bz used in more general actions of iterations on vari-

ables.

1t should be polnted out that most of Moonck's procedure can be traced
back Lo Jordan's book on Finite Differencea [Jor50).

6.2.2. Gubu'n Procecdure
Given a summand a, , the “indefinite sum™ S{n) is delermined (within an

additive constant) by Eq = S(m) - 8(0) . or, equivalently, by
o]

a = 8(¢) - S(i-1) (1]
When S(n) has the additional property that ﬁs-nLg)lT“ a rational function of n,

Gosper's procedure finds 8(n).

Gospor's technique consists of performing a particular change of vari-

ables which reduces sg = S(i) - S(i—1) Lo a system of lincar oquations. This

system is consistent it

S 2 is a rational function of n. When the system is

n-1
consistent, by solving it one can find the coefficients of a polynomial which
ylelds the closed form for S(n). The essence of the change of variables is
that, as in Moenck's algorithm, a shift-fres factor is sought (o exist in a
decomposition of a rational function. We shall now describe the method In

some detall.
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Assumo that our summands e, are all nonzero. Then, when snf 1 isa
rational funstion of n,
S(n) _,
8g S(n) - 8(n-1 8
8y ° 8(n-1) - S(n-2) ? 1- S(n-2 [2)
S(n-1)
must also be a rational funclion of n. We want to express the ratio {2] as fol-
lows:
-‘—"—3 Pa_ G {3)

8p)  Pn-t Tar
where p, q,, and r,are polynomiels in n subject to the condition thal 9, end

r, are shift free relatively prime. Thus, we require that GCD(q.. r..') = ] for
all nonnegative integers . We have seen In Section 6.2.1 that this can be

achieved by computing the nonnegative roots of the resultent of q, and r,
and by performing s change of veriables.
In fact, it GCD{q,, r.,,) = g(n) ., then this common factor can be elim-

inated wilth the transformation
o Qn Ta
o e e i
P+ P a(n)g(n-1) - - - g(n-j+1) .
which leaves ratic [3] unchanged.

One now expresses S(n) by

S(n) = %:—'—-l(n)n. . (]
whero 1(n) is to bo determined. By using equation [1),

Pa S(n Pa 1
tn) = — — :
) e S(n) -S}n-l) . 1= Ss]lz;li

thus, f(n) is e rational function of n whenever 5%’(% is. By substituting



118
equation [4] into [1], one gets

Gnes 9
= —f - ——f{n-1 2 .
oy = pflnlen = o (n-1)eg-y
Muiltiplying this by 2— and using equation [3), one has

P ® %n'(n) - r,l(n—l) . [s]
the functional equation for {.

Theorem 5.2.2.1  ( Gosper)

S(n)

S(-1) is a rational function of n, then {(n) is a polynomial.

Proo!

See [Gos78).
’ ]
Then. because of equation [4], all that remains to be done is to look for a

polynomial f(n) satisfying equation [S), given p,, q,, and r,. This is done by

conaidering two cases eccording to the relationship between the degrees of
the polynomiels (q,,, + r,) and (q,,, - r).

The closed forms which this procedure finds may contain expressjons
that require (terative methods for their evaluation. Nevertheless, the
expressions meke no use of functions like the polygamma ones. The class of
indefinite sums for which this procedure produces closed forms contains
many families which can not be solved using Moanck's procedure. For exam-

ple, Gosper's procedure can sum
Il:[u' +bj4+cf + d]
»= }:[l[aﬁ +bf%+cf + c] )

while Moenck’s procedure cannot. However, given that Moenck’s procedure

expresses part of its answers using polygamma functions, it produces

e e
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expressions for some sums which Gosper’s procedure considers unsumm-

able. One example of this is the case of ﬁ %:
=)

These differences arise from the basic hypotheses needed by the pro-
cedures. In fact, from this viewpoint, the two procedures are very different.
Moenck's procedure yiclds solutions for certain kinds of summands. In con-
trast, Cosper's procedure ylelds solutions when the sought closed form satis-
fies certain conditions. Thus, Gosper's hypotheses are based on the form of

the solution to the problem.

Another difference between the two procedures is that, when applying
Gosper's prpcedure, one does nol know, by just looking at the summand,
whether there will be a closed form or not. One hes to carry out the whole
procedure to know this. Moreover, while executing Moenck's algorithm, one
can know whether the result will be a definable closed form when one deter-

mines whether there exists a transcendental part or not.

5.2.3. Karr's Procedure

This procedure is different in its approach from the previous two. It
uses a lield-theoretic motivation. It poses the problem in an algebraic way,
and then derives conditions for summability. Starting with a field of con-
stants, larger fields are constructed by the formal edjunction of symbols
which behave like solutions to first order linear equations. Then, in these
extension ficlds, the dilference equations are posed and solutions are sought.
The final criterion for summability is whather a certain slgebraic extension is

exactly of degreo two.

Civen a set of formal symbols and a sum, the procedure will determine

when the sum Is a rational function of the given symbols. For example, it will
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yiold that H = 2 %- i3 not a rational function of n. Iis elgedraic nature
isl

allows us to find formulas, as rational tunctions of n and the symbol H,, for

£H, ana Pom, .
= = .
However. it Is not possible to handle sums in which one of the limils also

appears In the summand.

Thus, none of the thres methods Is uniformly more powerful than the
other two. The only way we may cbiain an expression for H_ is with Moenck's
procedure. Gosper's procedure does handle all the elementary sums that

Kere's procedure does, but Kare's procedure provides s way of dealing with

sums of the kind 20!‘ . which are not handled by Gosper's procedure. On
(L1

the other hand, Gosper's procedure is abls to work with cerlain sums in

which the summation limit appears in the summand.

The basis of Karr’s algorithm ere the differenca fislds. Their definition
is quite elegant: A difference fiold is & field F together with an automorphism
o of F. Finding & sum in “finite terms” can now be described as: given [, and
o difference field F of which { is an cloment, we look for solutions g of

og-g=t _

only in F. Thus, the cholce of field F is the means by which *in finite lerms

is given a'preciso meaning.

To present a complote skelch of the procedure one needs to introduce
and develop severs! concepts which would require many pages. They can all
be found In [Kar79]. The cssence of the procedure, however, is thet one may
symbolically extend the starling field and check, algorithmically, that cer-

tain nocessary conditions hold. Once this is accomplished, a veclor space
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basis is explicitly computed end its expression yields the desired closed

form.

Knowing how to compute enswers to questions ebout the homogeneous
group and solutions for first order lincar difference equations in a JIE-field F,

Kerr's procedure

(1) algorithmically determinss, given a, # € F, whother F(t) with ot s at +
is a IiC-oxtension of F

(2) is able to Hift to F(t) the computations concerning the homogencous
group and difference equations if F(t) described in (1) Is indeed & Ie-

extension of F.

The construction starts with a constant field, in which certain computa-
tions are possible, and is guided solely by the successive choices of the pairs

a, # from ever longer flelds.

It scems plausible, sithough we bhave not beon able to prove it, that
there should be an 'algobralc method In the apirit of Karr's which would
totally includa Gosper's procedure. This conjeoture is based on the striking
analogies that exist between the two approaches. After all, the automor-
phism ¢ in the difference algebra is an abstractlion of the shift operator.

5.9. Table-Driven Methods for Finding Closed Forms

Those are procedures which, efter modifying the data into appropriate
forms, require a look-up facliity to proceed. We shall briefly indicate two
popers which have deall with the problem in this way.

Cohen and Katcoff {Coh77), present s program which finds solutions for
someo systems of linear finite difference equations. The method used is a

modification of the second method presented in Section 85.1. The authors
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show that it is possible to express the solution of a linear difference equation
with constant coefficients as & formula which contains a finite summation.
This allows them to delay the look-up of generating functions to a later stage.
Another characteristic of this approach is that, if the program cannot find a
closed form for the resulting summation, a formula with the sum displayed
symbolically can be made available to the user. The user may then provide
the system with a closed form.

Ivia [Ivi78), presents some programs written in the MACSYMA program-
ming language which find clossd forms for single veriable recurrence rela-
tions with constent coefficients as well as some variable coefficient
recurrences. As systems of recurrence relations with constant coamcienﬁ
may be reduced to a sequence of single variable recurrence relations with
constant coefficients, Ivie's programs may also bz used In this more general

setting.

The constant coelficient case is treated in the standard way, making
extensive use of MACSYMA's facilities. One very interesting aspect of this
paper Is the approach taken to deal with the variabls coefficient case. The
method of exponential generating functions Y(x) is used. It is shown that an
Ordinary Diffsrential Equation, ODE, is obtained for Y(x). Thus, the method
converts the solution of a recurrence relation to the solution of a differential
equation. Of all the procedures we have seen, this is the only instance when
such a. reduction Is used. Using the MACSYMA commands ODE2 and POVER-
SERIES, this method can bs programmod. It Is then left to the abllities of the

system to find the desired solutions.
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5.4. On Iterations With Hultiple Inner Paths

So far we have been concerned with the problem of finding closed forma
in the context of iterations with an irreducible body. We shall now analyze
the case when there ere alternations within an iteration L.

The presonce of alternations within an iteration implies that there are
multiple paths which the flow of control may follow once the T-branch of the
iteration L has been taken. The relevance of this is that control variables
may be modified differently in each exisling path. So, the task of finding
definable iterations becomes more complex.

Throughout this section, we assume that the iteration L= <B, ¢, a, >
has n alternations and no iteration within its body B. It is easy to see that,
under these conditions, there will exist at least n+1 and at most 2° paths.
Let P, ....P_ be an enumeration of the paths within L, where n+1 £ m < 2",
Let us say that y, is the predicate which, when trus, cause the flow of control
to traverse P, The pi'cdicnte ¥, can be obtained by the conjunction of all the
predicates whose truth determines s given path within the iteration. More-
over, let B, be the sequence of statements exocuted in the path P, called the
body of P, Figure 5.4.1 depicts an example of an Iteration with six internal
paths and Table 5.4.1 lists the associated information. As we assume no
iterations exist within B, all bodies B, may be viewed as basic blocks of
instructions.

In Example 2.4.1 we presented an alternation with two inner paths in
which the selection of branch in the alternstion was dependent exclusively on
the Input data. Thus, the traversal order of the distinct paths could be made

arbitrary by an appropriate cholce of values for the input veriables. It is not
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By
Bs
path predicate ¢, body
Bs| 184 Be
T ¢ P, ko, B;B,B,B,
t v . Py 0 ke, BB,B,B,
B, B, Py | 91&-pke, |BBBDB,
1 4 L Py | &0 * s | B.ByB,5,B,
By Py | 9,&-p & ~p, | BB,BBB,
v T
Py | 0 & -9, & ~p, | B,B,B,B,B,
Ngure 84,1 TeMe5.4.1  Pathsof Figure 6.4.1

difficult to generalize this example to one where there are m paths within en
(teration and such thet the flow of control will succeasively Lraverse branches
in any predetermined order. As those cases are quite hopeless, and the

skelolon epproach is the only viable siternative to follow, they will not worry

us. We shall concentrate on cases when one can spply either the techniques

of the previous sections or Lho ones Lo be introduced in this scction.
The strongest condition which may occur Is that, for a given run, only
one path P, Is traversed each time the T-branch of L is Lraversed, Le., that

the hypotheses of Theorem 2.4.5 are satisficd. We thus obteln

Theorem 6.4.1

Lot L= <B, ¢, a, #> be an iteration with n aiternations and no iterations
within its body B. Assume that these n l.ltcrnalloln determine m distinct
paths within B, each with body B, and thst ¥, is the predicate which, when
true, will determine Lho traversal of path B, 1f all the alternations within L
are well behaved (soe Theorem £.4.5), then, for any variable £, 8 closed form
for = oxists l? L ift there exist closed forms lor £ in each iteration <B;. ek,
a, >, whore 1£i<m.

Proot

1f we have @ closed form 7 for £ in L, then the spoclel term 7 will Induce
a closed form for = for ench ileration <B, ¢ & ¥, a, #>. Namely, the one
which s used in runs where the predicate p & ¥, Is truc every time the T-
branch of L s taken.

As for tho “only If° part, assumo that ¥y, ... . Tw, 870 the closed forms
tors In<B, p k¢, a P> .., <B.pky,ap respectively. Then, a
closed form 7 for = in Lcan be expressed by the special term

IPp & ¥, 1 THEN 7, FISE [P p & ¥g, } THER 74 BLEE ... Ire &Y, 1THEN Ty

BISEAVI...FIML .
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Corollary 6.4.2

Under the same hypotheses of Theorem 5.4.1, T is & definable closed
form It all the 7, are definable closed forms.

Proof

M T has no n-place function symbols £, then none of the 7¢ constructed
from it will contain any such symbol. On the other hand, If none of the 7¢ has
n-place function symbols £, then the construction of v we exhibited in the

proof of Theorem 5.4.1 has no n-ptace function symbols f.
[

As in Section 2.4, we obtain the following result about the predicates ¢ &
¥%:

Corollary 5.4.3

The alternations within L are well behaved iff for all assignment func-
tions {, and all pairs j,, jesm, where j; # jg, -

(v = ¥),) & (p =91

is false.

Proof

Like that of Theorem 2.4.8. The condition stated on the predicates pre-

cludes the possibility that two distinct brenches be traversed in a given run.
]
When these conditions are not met, we know that our performance

representations are not optimum. Some kind of iterative procedure must be
used to correctly represent the profile equations of the program. However,
there are two situations in which one can expect to outperform the skeleton
approach. The first is based on e condition on the predicates and the second

on & condition on the actions of the paths on the varlebles.
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Theorem 5.4.4

If all predicates ¢, are stable (sce Def. 3.2.1), and there exist closed
forms for all control variables in all paths, then the following algorithm out-
porforms the skeleton and should be used to find the action of the iteration

on any variable £ for which closed forms exist in all paths:

(1) determine which ¥, is true, call it y;

(it) update ¢,'s control variables, recvaluate, and record the number of

times y, ovaluates to true until it becomes falss;

(iil) when ¥, becomes false, update the value of all control varisbles appear-
ing in the other predicates using the closed forms and the current value

of z;

(iv) go to (i).

Proo!

By their definition, the predicates ¥, are pairwise incompatible, Le., ¥, &
¥, is never true, when j » k. Thus, at most one of them will be true at any
given time. By the stability assumption, once ', becomes false it will never
become true egain. (Stable is used in the same sense as in Def. 3.2.1 if one
views the p:adicate ¥, in the context of ths iteration <B, ¢ & i',- a. f>. Other-
wise we redeline predicate stabllity, allowing the predicates ¢, Lo have
exactly two changes in their truth values). The savings in running time occur
because we evaluate less times than in the skeleton different control varl-
ables, becauss once a predicate becomes lalse those control variables which
only appear in it are never updated egain, and because the variable = Is
updated less times than in the skeleton. The hypothesis of existence of

LS
closed forms is needed to perform the updates in an elficient way.
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Corollary 65.4.6:
Under the hypotheses for L glven in Theorem 6.4.1 and those of Theorem
5.4.4, if all the lterations <B. ¢ & ¥, . #> are definable, then #o. tor L= <B,

. a, §>, con be obtained In lincar time.

Proo!

Using the algorithm described in Theorem 5.4.4. Once we discover which ‘

predicato {s true, becouse of the definability of the corresponding fteration
we only need to do ono evaluation to find the number of consecutive times
that the branch is to be traversed, and one updste of all variables to refllect
the consecutive traversals. This s done exactly m times, and the cost is

linear in the number of paths.
]
So, when we have definabllity of <B. ok 'l' a. #> and stabllity of p & ﬂ .

we obtain that fp cen be computed in linear Ume. This result can be
exploited to avold ming the full skeleton when no closed forms can be found
for a variable of interest which is modifiedinL .

Wo shall use the symbol o to denote function composition. Glven s vari-
able £ and two bodles B, and Ii‘. we say that tho actions f of B,and g of Bl ons
commute, if g = gof (i.e., the order in which the evaluation s performed is
irrolevant). The commutativily hypothesia bas the properly that it can be
checked by an elgebraio manipulation program.

Theorem 5.4.8

Let L = <B, g, a, £> be an iteration with n aiternations and no lterations
within its body B. Assume that those n allernations determine m distinct
poths within B, each with body B, and that ¢, is the predicate which, when
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truo. will determino that path B, is traversed. Assume further that there
exist closed forms for all actions on =, and that ell the actions on £ com-
mute. Then, z[#¢[¢]] can be defined by 8 sequence of m evaluations.

Proof

Consider the following method:
(1) runthe skeleton of L

(1) update # using the closed form for it in each branch B, 1€ i€ m.

That the correct value for 2[fp[]] is obtained is a consequence of the com-

mutativity assumption.

Theorem 5.4.7

Under the hypotheses of Theorem 6.4.8, if sll the itorations <B, ¢ & 9
a, #> are definable, then £[#¢[1)) may be obtained without using the skele-
tonforkL.

Proof

The algorithm that allows us to do thia is the one described in Theorem
3.1.9 for predicstes that were & disjunction of other predicates. We only need
1o notice that L will bs traversed as long es (p & P)oR(p & ¥ OR -« - OR (v
&vy,)Istrue.

"
In {Che78) condilionsi recurronce relations were introduced. They were

formulated as recurrence relations of the form

Ay, (x) = case

'.(kg !) - '.(k- X, At(h|(.' k)))
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v, (k. x) = (k= A (b (x. k)
end
where no two predicates g, could be simultanzously true. The method pro-
posed for solving them was algorithmic in nature and required, as we do,
closed forms for each “erm” of the recurrence to exist. Moreover, the only
time they could assure an answer wes when a special case of our hypothesis

of stability for all predicates g, held.

In essence, the way one sttempts to find a (conditional) closed form
which is the solution to a conditional recurrence relation Is by reducing the
problem Lo that of finding a sequence of closed forms for the component
recurrence relations, where the boundary conditions depend on the solution

of a previous erm of the recurrence relation.

There is ons particular case of iterations with multiple inner paths which
{s rather common and reduces very nicely to the standard cese. Consider an
iteration L with only two paths in it. That s, there exists only one aiternation
within the iteration. Lot these two paths be P, and L and assume further
that every time the flow of control traverses L's T-branch for the first N
times, where N Is fixed, branch P, ia executed. All other traversats of L°s T-
branch result in the execution of branch P, . Then the conditional
recurrence relation for L can be expressed by the [ollowing two recurrence
relations:
<=[0]. z[k), ={k+1]> for 1sk=N
<x[N), z[k]. £[k+1]> for k>N .
The first of these relations will describe the action that P, effects on = and

the second thatof Pyon e .
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Two Instances of this case can be seen in our Example 1.2.1, where N is
equal to 1. In both of these cases, branch P, prints a headline and branch P,

computes and prints the values of a table.

6.5. On Nested Iterations

We shall now study the problem of the existence of closed forms in the
presence of nested iterations. The symbolic action of one iteration on a vari-
able can be expressed as follows: let 7(z, k) bo a closed form for 2 in L= <B,
. a, #>. Then, for any execution of the program, the expression forz atfis
the special term

IF 9. 1 THEN 7(z. #p(2(a))) BLSE 2 FI .

The effect of multiple nested iterations on variables becomes quite
involved. We shall illustrate this by presenting the case of two nested itera-

tions and using Figure 5.5.1 as reference. Given a varisbie 2, we et z(k, %],
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where ¥ € {a, #), denote the value that 5 has at the point 7, efter traversing
the corresponding iteration k conseoullve times. We shall assume that, for {
€ {0, 1]. the entries of vector £ arc g's control variables. Moreover, for {.4
€ {0, 1), tho action of By on £, is the (vector) function ia. and thatong Iy
the function gy.

With tbis notation we mey derive the expression for [k, 7], where y €
fa. f) and ¢ € {0, 1). We lot To(£o. k), Ty(2y, k) bo vectors of closed forms for
£, ond £, In the Inner iteration, and 1(x, k) be a closed form for # in the
inner iteration. The three basic relationships for £ are the following:

(1) ={k+1, f)] = eolzlk, AoD

(2) =fk+1, #) = 7i(z[k+1, ag) Foy(2,[k+1. ag]))

(3) =(k+1, p3) = goy(z(+1, ap)) .

When k = 0, relationships (1) becomes: =[1, #,] = geo(=la)) .

From (2) we realize that, to express the effect of a nested psir of itera-
tions on o variable symbolically, one noeds to describe the eflest of succes-
aive entrances to the inner fteration. We shall now introduce some notatlon
which will aid us In this description for the vectors of control varisbles £ and
2,. We deﬂno.tlu functions Tg and T, es follows:

Delinition 6.8.1

Fori€(o.1),

TH(2o. £) = 2,

TH* 20 2,) = F§, 0 T((Flo OTP(20. £). #91(Fdo O TH{%e. £1)[al))

133

Theorem 6.6.1

(1) The (1+1)™ consecutive Uime we enter the outor iteration's T-branch, the

inner {teration is traversed

201 [Feotiteo. €,)(a))

Umes.
(il) The valuo of £ st f§, efter traversing consecutively the T-branch of the

innor iteration ! times is:

2,(0.p5) = Tl(2o.2)[a) .

Proot

By induction on {, we prove simultaneously (i) end (). For I = 1 we
have Lhat

£,{1. ag) =Fd (2,{al) =Fd 0 TP(2,. £,)[a).
and o the inner iteration is traversed §g,(Fé 0 Tf(2c. £,){a]) times. Thus, (i)
holds for ¢ = 1. Becauso of this, we have that
£(1. #5) = F4, o T((Flo 0 TH(20. 2:)[al). #9:(F& 0 TP(Z0. 2,)[a]))

and (ii) holds for § = 1.

Assume now that (1) and (1) hold for §. Then, ss £[1+1, a,) = £[1. ).
wo have that

2[1+1, ag) = Fio 0 Ti(20. £:)[a) .
the inner iteration is traversed
#0.(F& o T{(2,. 2,)a))
times, and (1) holds for {+1. As for (ii), using (i) we have that
2,[t+1, 8;) = Ty(£[E+1. ag). #94(F& O TH(20. £)){al))
2 Ty(Flo o T{(£o. £)a). #p,(F& o T{(20. 2,)(a]))

and thus

2,(t+1, £4] = F4y 0 Tu(Flo 0 Tl(20. £1)a). #os(Fd 0 Ti(20. £,)a)))
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= T}*}(20, £,)[a] .
]
In complete anelogy with T,, we define v, to describe the effect of the

nested pair of iterations in Figure 5.5.1 on a veriable 2.
Delinition 6.6.2
VWz)=z2

v"*Y(z) = 9010 (P00 v™(2). ##1(F&OT(20. 2:)a))) .

Theorem 5.6.2:
The value of = at f. after traversing consecutively the T-branch of the
inner iteration ¢ times, is:

2[1.85] = v}(z)a] .
Proof

Analogous to that of Theorem 5.5.1, but using Definition 5.5.2.

We are only now able to express ={§]. namely,
208] = (4 volzolals) = /" Pz)[a] .
Thus, the existence of closed forms for this case requires that both iterations

be definable and that the functions T° and v* have closed forms.

In our Examples 1.2.2 and 1.2.3, as well as in ell the examples mention-
ing nested iterations that we have seen in the literature, the inner iteration
is always traversed a fixed number of Llimes, say N, each time the T-branch of
the outer iteration is traversed. This is the same condition we require in
Theorem 2.4.5 to obtain an optimal profile representation. Under these con-

ditions, v/ (z) has a simple expression: ’

ve
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+**)(z) = gor 0 0 (=), N] .
When 1 = 3, this can be fully expanded to

v(z)= y,.ov[ywou, o-r[g., Y I Oflpw(z). N]. N]. N] .
So, when V! has the above simple expression, we sse that v'(z) cen be
obtained by 3! symbolic evalustions, Le., the complexity of finding the
expression for 2[f] depends linearly on the values of #pg . The existence ofe

closed form 7(z, k) for z in the inner iteration is all we need to achieve this.
11 90O gos Is the identity function, then
¥ (2) = goy °"bw(=)- “"') .
Then, in this case we obtsin only from r a closed form for £ in the system of

two nested iterations. We have thus proven
Theorem 5.5.3
Consider the palr of nested iterations as depicted in Figure 5.5.1, and
assume that 7(z, k) is a closed form for = for the inner iteration. Then
(1) if the inner iteration is well behaved (see Theorem 2.4.5), v!(z) can be
obtained by 3! expression evaluations;

(2) if we also assume that geo O go; Is the identity function, then v'(z) hasa

closed form.

5.6. Summary

In this chapter we have dealt with the problem of finding closed forms
for the actions of programs on variables. It wes seen that, under special eir-
cumstances, finding closed forms can be posed as a recurrence relation
problem. Three known aulometic procedures for finding closed forms for

speciel kinds of recurrences were presented. Table look-up methods for solv-



ing recurrences wore also explained. Finally, the cases of iterations with
multiple inner paths and of nested iterations were analyzed and expressions

for thelr (combined) sction on varisbles wers obtained.

CHAPTER 6

On Recursive Programs

.

So far we have not dealt with the problem of recursion. In fact we have
not specified how to treat procedures or subroutines. We have viewed pro-
grams as syntactic objocts in which each statement has a well defined offect
on the value of varisbles, but we have not beon concorned with the various

posaible types of statoments.

6.1. Procedures as Basic Blocks

When using the D-chart representation of programas, basic blocks have
been assumed Lo contain primitive statements, so that a term of our perfor-
mance language exists which describes the action of the block on the vari-
ablas. This Is essentially equivalent to assuming that, at the point of a pro-
cedure call, one performs *in-line code expansion, and replaces the call by
the body of the procedure. In a D-chart repressntation, the procedure call
statement corresponds to a nods which is then expanded to the full D-chart
representing the praocedure body.

Our techniques alroady allow us to do better than In-line code expansion.
We can derive the profile of each procedure and use it Lo obtain the profile of
the whole program. Our methods allow us o treat nonrecursive procedures
as self-contained units. The skelston epprosch cen be used if the procedure
does not satisfy the necessary definabllity conditions needsd for e faster

representation.
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When dealing with specific programming languages, care haa to be taken
in determining the meaning of input and output variables in a procedure.
Problems with eliasing, sharing and external variables have to be addressed.
To give just one example, the variables in FORTRAN COMMON statements can
play the role of input variables, output variables, or both. This analysis is
context dependent but can be carried out sutomatically by existing tech-

nigues of compiler theory.

Cheatham states that the analysis of a procedure should not be made in
total isolation [Che78), since all the poasible patterns of sharing among for-
mal parameters and input variables have to be explored. The argument sup-
porting this statement is that, in the context of & program. a procedure is
normally called making use not of all but of a few of the existing possibilities.
When lthe programming languege allows for a wide variety of combinations,
this suggestion ssems appropriate. The eiternstive mothod proposed in

[Che79) for analyzing procedures was based on a case-at-the-time approach.

¥hen a call to an as yet unanalyzed procedure s found, the procedure is
analyzed in the environment of the call. A tsmplate, giving a generalized
description of the call environment, is created and kept in a librery. This
template contains the modes of the actual parameter values and input vari-
ables, and the shering patlerns among them. Then the procedure is analyzed
assuming this (restricted) environment and the rosults stored associated
with the corresponding template. When subsequant calls to the same pro-
cedure ere encountered, the new call environment is compared with the
existing templates, and, If a match is found, the previous analysis is used. If

the modes of the actual parameter values and input variables do not coincide

or if the sharing patterns are distinct, then a new template is created, added ‘

oy -
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to the library, and the corresponding analysis is performed and stored as
well.

This method permits the treatment of fairly general cases. In the con-
text of programming languages with strict shering and aliasing rules, or when
& procedure does not use these features of the language, the method reduces
to that which performs the analysis in complete isolation.

Thus, the problem of nonrecursive procedures can be treated with the
techniques already developed in the previous chapters. Unlike the METRIC
system [Weg75], this approach need not meke any assumptions on the order

and on the sequence of procedure calls.

8.2. Recursive Procedures

There are several reasons why the analysis of recursive procedures is
more complex than thet of nonrecursive ones. For example, it is proven in
Manna's book on the Mathematical Theory of Computation, [Man74]), that any
flowchart schema (e.g.. a D-chart) can be trensiated into an equivalent recur-
sive scheme. Thus, the class of computations which can be described with
D-charts is included in the class of computations which can be described
using recursive schemas.

Recursive schemas can be defined as follows. Consider the langusge
introduced in Chapter 2 with no upec.ial denotation symbols nor the special
symbol (PTHENELSEFL. Then a recursive schema ¢ over the set of formulae in

the language is of the form:
2 = 7o(2, ). where

Fy2.9) = n(2.9. P)
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2. 9):2 (2. 9. P)
Here 1o(2. F) is a predicate Lhat contains no variables other than the input
vorisbles € and the function varisbles F. Similarly, 7(2. ¢, MisisNis
a predicate that contains no variablos other than the input variables £, con-
tro! (noninput) variables ¢, and the tunction variables A

The following theorem ls stated in [Man74), page 328:

Theorom 8.8.1  { Patterson, Hewilt )

There §s no flowchart schoma (with eny number of program variables)
which is equivalent to the recursive schema
S, z=F(a) where

F(y) := it ply) then ¢(y) etse h(F(g,(y)). Flg,(y)))

]
Thus, recursion s seen Lo be more powerful than iteration. It is worth

noling that it is euchual that both F°s occur as srguments of b in the defini-

tion of S,, because there ere flowshart schomas which are equivalent to the
following two recursive schemas:
8, 2= F(s) whero
F(y) := i p(y) then #y) else h(F(g(y)))
ond
S, 2= F(s) where
Fly) := 1 p(y) then ((y) else by, F(s(y))) .

Other lssues which make the analysis of recursive procedures more

complicated, in the contest of symbotic evaluation, arise from the fact that
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procedures in genorel may return addresses as values. Our techniques have
not dealt with this problem, because in normal program stotements It s the

value of Lthe variable which Is passed and modifisd.

There are two situalions in which ons may transform the situation from
passing en addross back to passing a value. Consider a recursive procedure

T with only one argument, say £:

(1) 1 the formel paremeter £ Is bound by value, then on cach recursive call
@ new copy of the paremeter Is created. When *“unwinding" the nested
calls, appropriate care hes to bo token to use the correct value of £ at
each point of the execution path. One essentislly mimics Lhe process of
performing a procedure call and preserving in a steck the sppropriate

information.

(2) 11z 1s bound by reference (and always occurs in the samo position as an
actual argument in the recursive cali), then the effects on = during the
recursive descent and unwind accumulate much like what bappens to

the variables In a regular iteration.

These considerations cen b easily generalized to the case of soveral format

parameters.

The body of a recursive procedure meay contain several paths where
recursive calls are made and others which are recursion free. Moreover, ina
given path, thers could be several recursive calls. 1t the paltern of calls
becomes too involved, or if definabllity conditions do not exist, an extension
of the skeleton spproach can be used to produse tho desired profile. There
are ossentially no new problems In obtaining skeleton representations for

recursiva programs.
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However, there are several cases when one can expect to do better than
using the skeleton. Two cases which have been mentioned in the literature,

eithough in settings which were more restrictive than ours, are the following:

(1) Wegbreil requires [Weg75). in order to convert to a certain “normal
form", that the procedures be well nested, Le., that, whenever A calls B,
no procedure called by B calls A.

(2) Cheatham [Che78) analyzes the case of simple recursive procedures,
i.e., those which have at most ons recursive coll along any path (includ-

ing Iterations) from its entry to an exit.

When either of these hypotheses hold, our methods developed in Chapters 2,
3 and 5 are applicable. In fact, (1) allows us to transform the procedure into
one which essentially looks like an iteration with multiple inner paths. Then,

our results of Section 5.4 can be directly applied.

F(z):

Bo B,
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As for (2), consider the procedure F(z) represented in Figure 6.2.1,

where the arrow pointing to the broken line between B, end B, means that a
call to F with formal parameter a Is made at that point. Viewed in this way,
the behavior of F can be thought of as an iteration with body B, of recursive
descents, a computation B, when control haa reached “bottom", and then an
iteration B, to *‘unwind” the recursive descent. In the iteration B, the initial

value of parameter z will be the value of the actual parameter, and the “next

traversal” value will be a. In the iteration By, the initial value will be that
computed in B, and the next traversal value will be that computed in B,
The number of traversals teken for each iteration is determined when the
predicate ¢ causes B, to be executed instead of B,. We may then employ the
techniques developed in Chapters 2 through 4, to analyze the pair of itera-

tions in order to determine the effects of a call on F.

6.9. Two Examples

In this seclion we shall anelyze two examples of recursive procedures
which require distinct kinds of performance representations. We shall first

present a case where our techniques are directly applicable.
Example 6.3.1
Consider the recursive definition of the factorial function:

Factorial(n)

if n<1 then return(1):

elso return(n x Factorial(n-1)):
end

Using Figure 6.2.1 as referonce, we have that ¢ is the predicate n< 1.,

in B, we return the velue 1, B' conlains the statement a:=n-1, and in B.

we multiply the current index by the value associated with the next index.
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The control verisble is n , and In tho F-branch the only modification
made to it Is Lo decrease it by one In E_.. Thus, we are back to the case of
linear function actions. We then know that the F-branch will be executed (n-

1) timens.
]
In this example, wo can therefore bulld & pp! to represent the profite

equations. We can do this because the transformations of the control vari-

ables are amenable to our previous analysis.
Example 6.9.8

The following algorithm will list, in pre-order, the names of the nodes In
a binery tree:

Search-a-tree(pointer to the root)
{f pointer does not point to an empty tree
then Search-a-tree(lelt pointer of root)
write out the name of the root
Search-a-Lree(right pointer of root)
end

Our only tool to deal with this kind of algorithm, as no sigedbraic proper-
ties can be extracted from the usage of the control variables, is to represent

it using the skelelon approach.

6.4. Summary

In this chapter ws heve scen how to treat procedures, and in particular
recursive procedures. Even though recursion bas been secen to be more
powerful than iteration, the skelston method can always be used to obtain
performance representations. Moreover, there are several situations in
which our techniques for nonrecursive programs arve directly applicable and
can improve on the skelston approach. The restrictions which need to be

salistied ere related to the kinds of parameter passing mechanisms used,

and to the complexity of the structure of procedure calls.
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CHAPTER 7

A System for the Microanalysis of Programs

In this chepter we shall discuss some of the issues to be resolved when
designing a system which implements the approach developed in the previ-
ous chapters. As specified in Chapter 1, our goal is, given a program, to build
a performance representation corresponding to its profile equations. More-
over, this performance representation should yield the profile (much) faster
than If the profile were obtained from a properly instrumented version of the
original program. We shall call microanalysis of a program the process of

finding, as & function of the input values, the exact profile of the program.

In Section 1.2 we introduced a default method: the skelston. After show-
ing why we should try to do better (see Examples 1.2.2 and 1.2.3), in
Chaplers 2 and 3 we developed an approach whose goal was to “linearize’
loops. In Chapter 4 we showed how this could be achieved when the actions
on the controt variables-were lincar. Then Chapter 5 gave us tools to deal

with more generel situations.

We shall now discuss several aspects that we have not addressed before

and propose a way in which all of our considerations could be implemented.

7.1. Non Linear Aclions of lterations on Variables

Already in Chapter 2 we recognized that our main problem was to
analyze the elfect thel iterations have on variebles. To determine fg, for a
given iteration L = <B, ¢, a, #>, and to obtain the action of an iteration on a

varlable in an efficient way, we needed closed forms.
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In Chapter 4 we dealt with the cass of control variables £ which were
modified by a traversal independent linear action, Le.: z{k+1]} = az[k] + b,
where a and b were not modified in the body of the iteretion L . The pro-
cedures presented in Section 5.2 sllowed us to deal with some instances of
the transformation z[k+1) = 2{k}) + f(k) . Our discussion in Section 5.1
extended this to transformations of the type £[k+1] = g(k)z[k] + f(k), but
the evaluation cost was no longer linear in the length of the program.

Tho rest of Chapter 5 provided us with some more tools to find closed
torms. However, there are many kinds of transformations which have not
been dealt with. We shall now analyze some of them.

Nonlinear Traversal-Independent Actions

As noted in Section 5.1, when the relationship between z([k+1] and z{[k]
does not depend on the iteration index k, one has that

z[k+1] = g¥(=[0])
where g is the action of B on =. Thus finding (definable) closed forms is
equivalent to finding & term 7(z.k) (with no n-place function symbols 7)
which describes g*(z). However, to have a definable iteration, one also needs
to solve for k. This last condition was what presented all the problems in our
analysis of the linear function case in Chapter 4.

There is one family of transformations which satisfies both of the con-
straints outlined sbove and which we have not dealt with. It is a Lransforma-
tion of multiplicative type: the action of B on = being a°z" , where o, s andr
do not change in B. Then

2[k+1] = a*(=2[k])* = aki»r)(z [0y |

The solution for k to the equation x[k] =N Is given by
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tog(N) + (r+s)log(e
re+s)log(e) + rlog(z{0})

We notloe that no hypotheses heve been made about a, s and r. How-

ks

ever, our obility to find closed forms seems to stop here with this kind of

transformations. Even when we consider the action of B on a variable z to be

£ ¢+ b, we do not bave a non-procedural way to express =z[k+1). In fact, in
this case we have 2[2] = (2[0]* + b)® + b and =[3] = ((=[0]* + b)t+b)f+b.

The only expression for £[k+1) we have boen able to derive Involves k nested

sums. Transformations which are algebreically more complex do not load to

simplifications in the oxpressions they genorate. Thus, when these kinds of
actions are detected, one should proceced with the skeleton approach.

On Functions With Rinite Rangs

Consider the case where z[k+1]) = =[k] + #(k) and the range of tis fin-
fte. i.e., there are only finilely many values produced by I. One example of
this Is given by z{k+1] = =[k] + 1 + (k mod K) . where K does not change in

B. We shall see that, under some special circumstences, we may treat this

case quite efficiently.

Functions f with finite range may be characterized as follows:

(1) Those functions, psriodic, whose values detormine a sequence of
numbers composed of cycles, l.e.: there exists a positive number T,
called the perlod or cyole length, such that, for all »umbers t, g(ter) =
s(t)

(1)) All othors.

Naturelly, functions of typs (1) are amenable to a better (more efficient)
snalysis. We note in passing that (k) = 1 + (k mod K) , where K is constant,

ts of type (1).
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To enalyze functions of typa (1), lct

st = ¥ 1o
tsjtd
where v is I'e period.
Theorem 7.1.1
For any two integers , and j;, 80, 7) = S, 7)-
Prool
Wo shall show that, for all §, 8{), 7) = S(0, 7) .

Bocauso of f's periodicity, 1{J) = #(j+7) for all Integers ). So for any

given integer)
8(0.1) = Bole) = Teta+)

= ¢y
= Yo

o0
= 8(}7) .

»
Let us denote S(0, ) by S{f).

With this notation we may easily describe the values a control variable =
tekes when a function [ of finite cyolic range is acling on it in an sdditive

way. Wo have that
£[k] = £[0) + :i:’:u) )
=)

But this can be written as

e = ofol + [ Jto 5 )
by Just noting that, every 7 Lraversals, z[j+7) - 2[}] = S(1) . We also notlce
that
z[k+1) - £[x] = t{x+1) = t{(k+1) mod 7).
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If we consider

s = e ¢ 20) |
we have, for all integers n,
z[nr) =g(n7) .

Thus, for the purposes of determining #p. we may use g as an approxi-
mation to f. We find the iteration index m at which one would stop if g were
transforming the control variable, and then look at the interval of numbers
(n7. (n+1)7] in which m lies. In it wo determine the exact itoration index for
which L will heit.

Example 7.1.1

Let L = <B, x < 2000, a, #>, where z{a] = k{a] = 0, the only modifica-
tiontoxz inBis 2 :=2 +1 +(k mod 20), and the only modificationto k in B
‘Is kizk+l,

Then 7 is 20 end S(f) = g(l + (t moa 20)) = E; = 210. Thus g(t) =
) &
%%o—t and so the value for #p lies in the interval (180, 210] (since |20;fgoo
=101),

k
Thus, we only need to find the least k > 180 such that k = 85(1) + 3} 1(¢)
(3}

k
and k > 2000. The desired k, Is easily seen to be 15. In fact, as we have Ztt
i=1

- k.(kz.ﬂ) , one cen determine k, analytically. Thus, #p = 185 when z[a] =

k[a] = 0.
]
For functions of type (1), our skeleton approach seems to be the only

generelly applicable approach.
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7.2. On Finding Roots at Run-time or by User Supplied Factorizations

In Chapter 3 we saw that the actions of iterations on variables may ylold
functions whose zeroes do not have an elementary expression. As these
roots are intimately connected with counting functions f#p (see Theorem

3.2.1), determining these roots at run time might be a viable aiternative.

The tradeoff one has to have in mind is the following: the execution time
of the algorithm which finds the least nonnegative root of the funclion must
be less than the running time of the skelston of the corresponding iteration.
In other words, one should not find roots at run-time If the process of doing
0 takes longer than that of performing the skeleton for the corresponding

fteration.

However, there is another approach to this problem. Once the system
has identified a function for which it does not know how to find zeroes sym-
bolically, the user could be presented with it and asked for belp. The user
maey then return a factored form, or a criterion, e.g.: apply & specific pro-
cedure for finding its roots, or perform a skeleton, or search a given data-

base of function forms.

With this flexibllity one can envision that improvements to a given per-
formance representetion could be achieved by studying and analyzing in
detail the parts of this representation where the default procedure was used.
As these studies could be done after a given representation has been
created, one would benefit from having such a representation for perfor-
mance studies while improving it. This Interactive approach ssems to us to

be the most appropriate.
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7.3. On Non-Numeric Contro! Variables

Throughout our discussion in Chapters 2 through 5, we have assumed
that conlrol variables are of type numeric. Moreover, we have made eaten-
sive uss of the ordering and algebraic propertics that numeric entities have.
In fact, thelr aigebralc proporties have been most useful for our purposes.
Wo have been able to “linearize loops™ only wheu we obtain symbolic expres-

sions for Lhe roots of certain functions assoclated with the itorations.

The skeleton epproach of Scction 1.2 can bo used for all types of control
variables. To apply our methods which improve on the skeleton, however, we
rely on an underlying slgebraic structure. Thus, if one has a data type which
has an underlying algebrale structure amenable to that of the numeric type,
our methods can be used without problems. Otherwise, other tochnigues

need Lo be developed.

For example, in sevoral languages the Lype cher (character) is declared
as an enumersted typo. In such cases it is often trus that the letters in the
alphsbet, upper and lower cese, arc assigned & place in a linear ordering.
Let us assume that we deal with e langusge where all lowor caso letters pre-
cede upper case ones, and that the ordering goes from a to z and from A
to Z. Then, there may be situations where one may recsplure properties of
numbers. For example, it now may make sense to say that en Wterstion is

going to be traversed 2-g limes, by making use of ths underlying order.

To determine theso cases, each data Lype which we would like Lo treat
efficiently must be snalyzed individually. Those cases in which s better
method than the skeleton can be used should be treated sccordingly. It is
our betief, however, that, If one Is able to deel properly with iterations whose

control variables are of typs numeric, most of the achievable efficiency of a
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performance representation for computation intensive programs is achisved.

We have thus fer not talked ‘about the cost of building a performance
ropresentation, but it should be clear that the more “intelligenoe” we incor-
porate into the system which bullds such a reprosentation, the costlier it
becomes. Of course, the expected return is thet the porformance represen-

tations produced by the system should execute faster.

There is one kind of control variables for which we do not think too many
improvements over the skeleton cen be obtained In an autometic way. This
is the case of control variables of Lype boolean, Le., which only take the
values trus or false when evaluated. The reason for our skepticism is that in
the body of the iteration a (possibly very complicated) condition must bo set
equal (o the variable, and thus too much informstion may be lost in this
assignment. An aiternative way to deal with this case is to try o obtain a
symbolic expression for the varisble and then use en algebraic manipulstor
system to check for the Lruth value. But even this is not entirely satisfactory
bocause it does not help us find the number of conseculive times that the
variable will evaluate to trues.

In fact, trying to deal with boolean valued variables in an automatic way
brings us Into the field of automatic theorem proving. & task known to be
generally undecidable. This is so because normel programming langusges
have enough algebraic expressive power Lo encode complex arithmetic state-
ments whoss truth mey not be formally provable. Our next section deals

with some Issues relaled to this aspect.

7.4. The Automalic Verificatlion of Hypolheses

What interests us is to establish in an automatic way the validity of the

hypotheses noeded Lo obtain our optimal performance representations. To
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do this, we bave to assume some properties of the method used for finding

the performance representations.

We assume that, after a first pass over the code whose performeance
representation is to be found, one has complete data flow analysis informa-
tion for each variable at each point of the program. Ve also assume that a
symbolic expression is obtained for each control variable in each basic block
of statements. As we have romarked in Chopter 2, finding symbolic expres-
sions for straight line code is not a problem. Determining which variables
are control varlables, however, does require the full power of data flow

analysis techniques.

While parsing a program, it is easy to determine in an eutomatic way if
an iteration has within its body other iterations or altérnations. Thus, having
delected on iteration with no other iterations nor alternations within it, end
also knowing its control variables, the symbolic expressions for the control
variables obtained by mere symbolic execution of straight line code yield a
fair emount of information. Indeed. after reducing the symbolic expressions
tor the control variables to its simplest algebraic form, say by a system like
MACSYMA, pattern matching techniques enabls us to determine the algebraic
complexity of the transformation as well as whether the transformation is
traversal independent or not. We then act accordingly, using the technigues
developed in Chepters 4 and 5.

It a closed form for some of ths control variables cannot be found, then
that iteration will have to be dealt with using the skeleton approach. Il there
exists @ closed form for each control variable, we determine whsther the
iLeration is definable. In case it is not definable, there still exists the option,
s discussed in Section 7.2, of obtaining et run time roots for the function
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determined by the closed forma of the control variables and of the predicate,
instead of resorting to the skeleton approach. If one decides to obtaln roots
at run time, a routine for doing so will have to be incorporated into the per-
formance representation at the oppropriate point. Its inputs will be of two
kinds: those whose vaiuel can be determined ot compile time, and those

whose values will only be obtained at run time.

The above analysis can be generalized to the case of iterations with
several inner paths, which may include nested iterations as well. This is
achieved with the help of the data flow information. Once we know that a cer-
tain variable is a control variable of an jteration, we may determine whether
it is modified within an inner iteration or not. and also whether distinct
branches modify it differently. It the control variables are not modified by
inner iterations with a verieble number of traversals, and If distinct inner
branches produce the same effects on them, then one can carry out the
same analysis as in the case of an irreducible iteration.

What we would like very much o determine in an automatic way is the
validity of the hypotheses of Lemmas 2.4.3 and 2.4.4. For Lemme 2.4.3, the
case of elternations within iterations, Theorem 2.4.8 is a rather suiteble
alternative. Unfortunately, we do not have anything similer for the iteration
case. When using the condition presented in Theorem 2.4.6, that

((pol20) =+ #1(2:)) & (po(2c) =+ -wilf )
be false under all assignment functions {, for some families of predicates we
may determinc the validity of this condition in an automnatic way. One
instance of this is when the predicates sre the atomie retational operators RO
introduced in Chapter 4, and the variables involved are of type numeric. In

the general case, however, one would need a universal theorem prover, which
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is known not to exist. We believs that this is another instance where the sys-

tem should ask Lhe user to decide how it should proceed.

For the case of nested iterations, there are some instances in which one
can determine that the hypothesss of Lemma 2.4.4 hold. What we noed is to
establish that inner iterations are always travorsed a fixed number of times
each Ume the outer iteration ls entored. This may be true because of the
syntactic form of the construct, e.g.. a FORTRAN DO statement where all
bounds and the step do not change In that progrem segment, or because it
cen be determined from the first pass over the code of our procedure by
using the data flow information. An example of the latter situation is when
one finds a defineble iteration where all the variables appoaring in the
exprossion of the counting function are not modified within the enclosing
iteration. This was the case in Examples 1.2.2 and 1.2.3.

In Section 3.4 wo have scen a general way to deal with the case when the
hypotheses of Lommas 2.4.3 eand 2.4.4 are not true. This wey consists of
adopting an slgorithmic pp! representation. However, it was pointed out that
this approach mey not bo satiafactory. It may be that th» skeleton runs fas-
ter than this representation. Two cases where the expucted cost of running
the algorithmic ppf is smaller than that of running the skeleton were dis-

cuesed in Section 3.4:

(1) When wo aro given a definable iteration L with predicate pc(2,). on alter-
nation within this ileration with predicate p,(2,), and closed form

oxpressions for g,'s control variables £,.
(2) When we ore given a definable itoration L with predicele vo{2c) and

another definable iteration ¢,(2,) within it, for whose control variabies

£, we have closed form expressions.
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The hypotheses for both of Lhese cases can be established automatically as
outlined In the previous paregrapbs. Following the discussion of Section 5.4,
(1) can be gencralized to the case where soveral inner poths exist within the

iteration.

There are severs! other hypotbeses which a system may verily eutomati-
cally. To mention just ons more, in Section 3.4 we saw that, when the actions
of two blocks on a verlable commule, then we can improve on the skelston
even though definability may not exist. The commutativity hy.pothc-ll can be
established aulomatically with the halp, say, of an algebraic menipulation
system like MACSYMA.

7.5. An Interaclive System for Microanalyzing Programs
From our presentation it lhonlti be cloar that an sutomatic system
which would operate on programs and construot our *porformance repressn-
tations* cen be implemented. There are saveral alternatives as to the organ-
jzation of this software. A rather natural wey of orgenizing it could be by
separating the system Into two parts:
(1) A “front end” subsystem that would parss, obtein all the data flow infor-
mation needed to detormine all control variables, and build an inter-

mediale representation of the program.

(2) A “back end™ subsystem that would operate on this intermediate form

of programs and produce the final performencs representation.

There are several advantages of this approach. One of them Is that the
front-end subsystem, which will necessarily have progremming language
dependent parts, cen be modutarly reprogrammed to perform the analysia of

programs written in different programming languages. We thus avold modi-
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fying the whole system when one wants to analyze programs in a new pro-
gramming language. The back end would always act on a unique kind of
intermediate representation. As outlined here, the front end can be a silent

process, almost no interaction with the user being anticipated.

On the other hand, we belleve that the back end should be interactive in
nature to achiove better results. As we have mentioned in Sections 7.2 and
7.4, there are several instances where a dialogue with the user would help
improve on the default procedure. Some instances of this are in assisting
the system in finding closed forms, deciding on a numerical method for find-
ing roots, providing the system with a factorization of a polynomial or helping
the system establish the hypotheses needed to obtain optimal performance
representations. It should aiso be noted that the whole process could be
made totally silent because a skeleton, as described in Section 1.2, can be

built with no more information than the text of the program to be analyzed.

As output, the back end would produce a performance represontation in
a specified programming language. One would then compiie this new pro-
gram and run it. We do not think that producing pseudo code to be inter-
preted is a satisfactory solution, because interpreting code is a very slow
p}oceas. Our most important goal is to have the performance representa-
tions run fester than the programs they represent and reprodu.ce faithtully

the profiles of these programs.

There is a whole area where the interaction between the back end and
the user can be very fruitful and which is beyond the scope of what can be
done in an automatic way. This area could be called the area of the
“metafunctions” supplied by the user. Consider our Example 2.4.1, where we

have a progrem that reads an array of numbers and finds the sum of the
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positive entries in it. Figure 2.4.3 shows the flow chart of such a program. In
Chapter 3 we saw how to obtain an algorithmic ppf which should run faster
than the corresponding skeleton becauso of the uviixga due to not having to
evaluate t-e outer predicate. The final profile representation Is CyB8,CeBs .
where C, represents the number of times the T-branch of the ileration is
traversed (i.e., how many positive numbers are there in the array presented
to the program) and Cj represents the number of times the F-branch is
traversed. If the user has some knowledge about the probability distribution
of the sign of the numbers that will be presented to the program, then it may
be possibls for the user to provide such information to the back end. Thus,
the perl,;i'munce representation could be modified to one that looks like
7(1)B,9(3)Bz . which would then require only one input, say the length of the

string presented to the program, to produce the profile.

This approach may be helpful in determining the four basic quantities

one would like to know about a program’s running time:
<maximum, minimum, average, standerd deviation> .

As was discussed in Section 1.3, our approach enables us to obtain exact
points in the distribulion of uniprogramming execution time of a given pro-
gram. This may provide us with estimates on the four quantities mentioned
ebove. The exact delerminetion of them requires mathematical reasoning
about the algorithm. However, if one has o complex program, obtaining
points of the distribution of uniprogramming execution time may be very
costly. Thus, our procedure helps us obtain more empirical informetion at a
smaller computetional cost. Judicious choice of input variables may give us

sufficient information for the cases which one expects to encounter in prac-

tice.
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A third moduls thet can easily be incorporated into the system Is a spe-
cinlized data bass. This subsystem would be queried -nd updated by the
back end. Its purpose would be to store useful Information gothered with
experience, The system would then become an expert system" in the sense
that, after some tims in use, its data base would have knowledge which was
not there belore. One example of (tems that should be stored would be user
supplied foctorizations of polynomials (or rational functions), and user sup-

plied closed forms.

9.6. Summary

Our discussion throughout this work has besn centered around the topic
of bullding “performance representations” for programs. In this chepter we
have presented some aspeots which we had not dealt with before, In particu-
lar, we have discussed actions on varlables which ere not linear, control vari-
ebles of Lypes which are not numeric, and how to address the problem of ver-
ilying the bypotheses that allow us achieve our goal more efficiently than by
using the skeleton. We have also sketched an implementation of thess ideas.
Tho main components to be implemented were seen Lo bs a front end able to
extroot the dola flow Information needed to identily all the control variables,
end a back end able to apply tho techniques developed in the previous
chaplers of this work. An algebraic manipulation system like MACSYMA was
seen o be of great help for ssveral of the Lasks Lo be performed by the back

end.

CHAPTER 8

Microanalysis of Parallel Programs

In this chapter we shall explore the applicabllity of our methods to
paraliel programs. By parallel programs we shall understand programs writ-
ten In programming languages which have explicit syntactic constructs per-
mitting the coexistence of several sequential processes devoted to a common
uot of tasks. There are no a prior{ restrictions as to how these szquentiel -
processes are to be carried out, but (normally) they are in execution simul-

taneously.

Four exemples of programming languages with this kind of constructs
are PL/} with its multitasking facllity, Nicklaus Wirth’s MODULA programming
language, Per Brinch Hansen's Concurrent Pascel programming language
[Han77] and Narayana st al.’s CCNPASCAL [Nar79). This typo of parallelism
in programs Is somstimes called explicit paralielism.

In a program we may also have implicit parallelism,. when an optimizing
compiler produces code for a normal (sequential or single-thread of execu-
tion) program which will then have parts executable in paraliel. The motiva-
tion for concurrent executlion Is speed. Of course, such parallslised program
would execute faster in a multiprocessor system than in a single processor
system. Our techniquos do not deal with this Lyps of performance optimiza-
tion, even though there has been a substantie! amount of interest and work
In this area. Qr:e paper whare a modeling technigue for this Lype of parallel-
tsm is discussed is [Tow?78].
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The execution environment of a paraliel program need not be that of a
mulliprocessor system. In fact, a parallel program may be executed in a sin-
gle processor system managed according to the principles of multiprogram-
ming: different parts of the program may be concurrently executing by shar-
ing the processor and other resources of the system, somelimes even on &
time-sliced basis. Indeed, we shall see that some of the difficulties encoun-
tered in analyzing parallel progrems arise from the nature of the different

execution environments.

8.1. The Loss of Sequentiality

We have characterized a parallel program as one consisting of sequential
processes that are carried out simulteneously. The processes coop;eral.e on
common tasks by exchanging information through eappropriate interprocess
communication mechanisms. In the cese of Concurrent Pascal, for exemple,
they do so by exchanging data through shared variables [Han77]). Appropri-
ate restrictions need to be imposed on the communication mechanisms to

insure the consistency of the shared data at all times.

One problem with the loss of global sequentiality is that unrestricted
access to the shared variables can make the result of a paraliel program
dependent on the relative speeds of its sequential processes. As this has the
very negetive side effect that it Is possible to execule a parallel program
several times using the same input data and obtain different results each

timse, interprocess synchronization mechanisms must be used.

When dealing with sequential programs, we need information ebout the
processing environment only to establish relationships between the profile of
a glven run and performance indices which are compller/system dependent.

In particular, obtaining the profile of a run never requires information about
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the processing environment of the enalyzed program. This may not ba the
case for a parallel program. If the synchronization of the different sequen-
tial processes which make up a paraliel program is dependent on the actual
processing environment, then, since deriving the profile requires represent-
ing the synchronization mechenism, knowledge about the processing
environment of the analyzed program will be needed. This fact makes
analyzing the performance of parallel programs e herder task than that for
sequential programs. We are now faced with the additional problem of repro-
ducing the synchronization mechanism existing among the sequential

processes.

This increase In difficulty coincides with the experience of all other
fields of Computer Science which deal with concurrent processes: that the
complexity of their analysis is much greater than that for sequential
processes. To mention just one example, in the area of program correctness
the work by Gries and Owicki [Gri7?, Owi76a, Owi76b] shows the difficulties
encountered when dealing with techniques for proving parallel programs
correct.

In e parallel program ell computations performed by eny given sequen-
tial process betwesn stalements which require information or ecknowledge-
ment of other processes’ actions can be analyzed by our earlier technigues.
Thus, if each sequential process of a parsilel program is executing on a dedi-
cated processor, to find the profile we are reduced to the problem of repro-
ducing the exchange of information through the synchronizing mechanisms
in the system. This requires knowledge of each processing environment and

of the interprocess communication links.
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It soveral sequential processes arc executing In & single processor, the
overall system activity generated by thom ls dopendent on the scheduling
algorithm of the processor. Appropriate synchronization mechanisms leave
the profile of a run not affected by this multiprogramming environment, but
deriving thoae performance indices which depend on the activity of the whole
system (like execution time) requires this information. Hence, to derive
some performance indices of a peraliel program one now needs Lo consider
processes clustered by processors end describe their activity taking into

sccount each procestor’s scheduler.

Wo seo that the level of difficulty increases substantially in the latter
case. A satisfectory modeling offort requires complete Information about the
processors capabllities as well as about the interprocessor communications.
Acouracy is crucial because of events which are depondent on the relative
completion times of other events. Our techniquos are ussful in determining
the timing of events within ons processor. The overall modeling, however,
requires techniques which are very different in nature from the ones dis-

cussed in eerlier chapters.

B.2. Some Models of Parallel Computations

In the provious section we have seen the necessity of modeling the
environment In which a paralle} program Is to execute. For this reason, we
shall now present an overviow of models and concepts used in descriting sys-

toms In which concurrent activity of soquential processes takes place.

The centrel issuo In the discussions found In the literature Is that of
communication and synchronization between processes working towards &
common goal. The component processes must be able to communicate and

synchronize with each olher. Many methods of achioving this bave been
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proposed. One widely edopted method of communication is by inspection
and updating of a common store. However, this can create severe problems
in the oonstruction of correct programs end it may lead to expensive and
unreliable implementations with some hardwere technologies. A veriety of
methods have been proposed for synchronization: semaphores, events, condi-
tional critical regions, monitors and quoues, end path expressions are among
the best known. Each one of thess s demonstrably sdequate for its purpose,
but there is no widely accopled oriterion for choosing among them. In
{Hoa78), loare departs from the standard approach to the problems of inter-
process communicstion end synchronizetion end proposes a way to deal with
them based on the assumption that Input, output and concurrency should be

regarded as primitives of programming.

We now present some models of concurrent programming which have
been proposed In recent yoars. We shall follow the treatment in {Mac?9]. °
where these models arc presented in a rather formal and machine indepen-
dent way. We first present three generic types of models and then three

specific proposals.

8.2.1. Automata Modsls

These models generally consist of a state space, represonting the possi-
ble states of {he entire system, together with transmission functions which
(nondeterministically) generate state ssquences representing computations.
They are designed for the investigation of sutomata-theoretic questions such
as the decidability of cortain formal propertios of systems. To simplify
proofs, it is desirable to idealize ths model by minimizing and simplifying its
structure. Unfortunately, the resuilt is a “low level” model in which the

*“high level” phenomena of interest to 8 programmer cannot be directly end



realistically represented.

Another drawback of typical eulomata models is that perallelism is
reduced to the set of all possible Interleavings of computation steps, where
each step is represented by its incremental effect on the global state. This
makes it difficult to subdivide a compulation into the separate activities of

independent processes.

8.2.2. Petri Nels

One of the most successful and intensively studied models of paralielism
is the Petri net. This is & graph model which, as usually interpreted,
represents elementary events in a computation and the way they depend on
one another. Petrl nets have been used to analyze parellelism in a wide
variety of contexts, from hardware to operating systems, end have been
applied to problems in the zocial sciences. They have also been used to
describe the semantics of path expressions, which, as we mentioned earlier,

are a too! for interprocess synchronization.

The appeal of Petri net models Is based in a number of factors: they are
simple and elegant in structure, and their graphica) nature provides a visual
aid to Intuition. They are a good tool to study tha fundemental nature of
parallelism. They deal directly with questions concerning causslity and
dependence between events. They are capable of modeling phenomena at
many levels of abstraction, from hardwere to high-level languages. Relevant

phenomena such as deadlock can be modeled fairly clearly and naturally.

However, Petri net models have some limitations, mostly due to their
being idealized *low level” models. Expressing some problems (such es
readers and writers synchronization) requires features which are not avail-

able in Petrl nets. Nets are global representations of a system, and there are
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no simple or obvious means of decomposing a net into subnets which
represent natural subsystems. Conversely, there is a lack of natural compo-
sition operators for building complex nets out of simpler nets. Petri nets
have a static structure, which makes it difficult to model the changing struc-
ture of a dynamic system. One can attempt to caplure dynamic structures
by the use of Infinite nets, but the result is liable to be a rather obscure
representation. These nets are suitable for describing the control aspects of
computations, but provide no direct way of describing the flow of data or

data-dependent conditional behavior,

8.2.9. Operating Systems Theory Models

This category is meant to include theoreticel formulations of the prob-
lems of opscating systems together with assorted techniques or language
features, such as semaphores, critical regions, monitors, end path expres-
sions, which have been proposcd to deal with typical problems in systems
programming. Most of these ideas are relevant to distributed computing but

there arc some dilferences in outlook.

In conventional computer systems, it is normally essumed that the task
of the operaling system is to prevent undesirable interactions between unre-
lated programs which are required for economic reasons to share the
resources of the machine. The emphasis is on managing contention and
preventing Interference between processes. When dealing with a parallel
program, on the other hand, contention over shared resources |s less of a
problem and we are more concerned with facliitating co-operation and com-
munication between processes. In view of these differences, we should
expect concurrent computing to require new concepts beyond those derived

from experience with multiprogramming opereting systems.
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We now present three speciflic ways to view concurrent processing

environments within the operating systems model category.

8.2.3.1. The Actor Hodel

The actor model is a behavioral approach to computation. Actors sre
sell-contained program units which ecommunicate by sending and recelving
messages. The receipt of a message is called an svent. Its ellect is Lo
aclivate the target actor, which then performs some internal computaliqg
leading to the sending of furlher messages and perhaps the creation of new
actors. The alm of the actor model is to analyze the behevior of aclor sys-
tems in Lerms of the causal and "incidental” relalions between the evenls of
a computation. In this respect it resembles the theory of causal nets studied

by Petrl, but is more specific and concrete.

The actor model, which has been developed over the pasl few years by
Hewitl and his students at MIT, was inspired in part by the class notion of
SIMULA 67. This notion combines the passive structural and the aclive pro-
cedural aspecls of a data objecl in a single unit. Research on modeling pro-
gramming language fealures using the lambda calculus was another contrl-
buling influence, as was the technique of continuation passing developed lor

applications In language semantics [Str74, Rey77].

A complete description of the model is given in [Mac79] or [Hew77] and
will not be included here. One can hierarchically deacr be the aclor model
by Introducing first basic acfors, which are those which cannot be decom-
posad into systems of simpler actors, and then build all actors and messages
from them. Even messeges can be considered special kinds of actors. In this

model, no mention is made on the way communication takes place.
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8.2.3.2. Communicating Behaviora

In [Mil77, Mil78a, Mil78b], Milner has developed an algebraic theory for
describing and synthesizing systerns of communication sgents. Intuitively,
the model deals with systems of computing sgenls communicaling via input
ports which are connected by channels. The state of an agent is represented
by an abstract object called behavior, which expresses the potential com-
munication sctivities of the agent. Each act of communication causes a
change in the behaviors of the sgents involved. Communicalion takes the
form of a value-passing act requiring simultaneous co-operation belween a
sender and s receiver. Hence we can assume Lhat the communication chan-
nels have no storage and are unidirectional (Lthough In effect synchronization
information is exchanged in both directions when communication takes
place).

The mathematical theory of Milner s concerned only with the structure
and semantics of behaviors. Formal behaviors may be interpreted eos
mathematical objects in a number of ways, including processes, which are
the behavioral counterparts of mathematical functions, and synchronization
traes, which represent behaviors in which communication is reduced to pure

synchronization.

Each agent is nssumed to poasess a fixed, finite set of input and output
ports. The input ports are labeled by names and the output ports are
labeled by conames. The names and conames Logether constitute the sel of
labels, A. Labels are a device for specilying the Interconnection of porls, end
therefore of sgents (and behaviors). Pairs of ports with complementary
labels are assumed to be connected by a channel, and can therefore com-

municate.
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The objective of the communicating behaviors model is to describs an
elgebra of behaviors, in which complex bebhaviors can be built up from
simpler ones by the use of behavioral operators. One starts by considering
constructions for expressing the dynamic aspects of a behavior. They
include the primitives for communication and for expressing nondeterminis-
tic alternatives. One calls behaviors defined by means of these constructions
"elementary" to distinguish them from those behaviors constructed in terms
of them. Roughly speaking, the elementary behaviors are the states of single
agents, while compound behaviors represent the compound states of net-
works of egents. A complete presentation of the model can be found in

[Mil78b).

It is interesting to observe that in this model communication links (or
channels) are an inlegral part of the description of the model. This forces
synchronization restrictions which were nol present in the actor model.
These conditionants must be taken into account when reproducing the

behavior of a parelie] program In this environment.

8.2.3.3. Process Networks

The last model lo be outlined involves networks of processes communi-
cating by means of dedicated channels with storage. Because processes are
isolaled from time-dependent information, their semantics can be expressed
“denotationsally” in lerms of functional relationships between entire input
and output histories, represented by streams. Nelworks are constructed by
functional composition and recursion, so they inherit the deterministic,

_ functional nature of processes.

Processes are soll-contained, independent modules, each executing its

own sequential program accessing Its own local store, which may be of
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unbounded size. Processes only communicate with one snother via channols,
using input and ocutput operations provided for the purpose. Channels
transmit values (which may be restricted to a given type) from a unique pro-
ducer process to & consumer process. They are assumed to provide

unbounded buffering and to preserve the order of transmission.

An Inputl operation may involve waiting for the producer, but this is
made transparent to the consumer, so that time-depondent phenomena can-
not affect the outcome of the computation. For the same reason, there is no
“polling"* operation Lo determine availability of input in a channel. This deci-
sion to hide all necessary synchronization within the input/output primitives
has two important effects:

(1) Computation is determinate, in the sense that the sequence of output

values depends only on the sequence of input values.

(2) A voriety of scheduling strategies may bs used without materially alter-

ing the outcome of the computation.

A ber.eficial effect of avoiding nondeterminacy Is that processes have a
straightforward functionel nature. The communication history of each out-
put channel (Le., the sequence of values transmitted) is a function of the
communication histories of the input channels. The model then is totally
described by deeling with histories end with how to express functions on his-
tories. Histories are represented by deta of type *‘stream”.

Nondeterminacy can be incorporated into the model by providing a pol-
ling primitive nezt? with which one determines whether the next input value
in o stream i» immediately available. Nondeterminacy needs to be incor-
porated into the model if we are to represent real-time applicationa. The full
model can be found In [Kel77].
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8.3. A Particular Case: Concurrent Pascal

Concurrent Pascal is an example of a programming lengusge designed
for resl-time applications [Hen77}. Concurrent Pescal extends Sequential
Pascal with concurrent processss, monitors end classes. system types added
to Sequsntial Pescal ‘to represent these new entities are: Lype process, type

monitor and type class.

A process typo defines a deta structure end a sequential statement that
can operate on It. A monitor type defines a data structure and tho opera-
tions thet can be performed on it by concurrent processes. These operations
can synchronize processes and exchange dela among them. A class type
defines a dala structure and the operetions that can be performed on it by a
single process or monitor. These operations provide controlled access to the

data.

To ease synchronization between processes, the lypo gusue has been
introduced. It may bs used within a monitor type to delay and resume the
execution of a calling process within a routine entry. At any time no more
than one process can wait In e single queus. A variable of type queue can

only be declared as a permanent variabls within a monitor type.

The compller prevents some lime-dependent progremming errors by
checking that the private variables of one process are Inaccessible to
another. Processes can only communicate by means of monitors. A monitlor
defines all the possible operations on a shered data structure. It can, for
example, define the send end receive operation on a messege bufler. The
complier will check thet processes only perform these two operations on a
bufer. A monitor can delay processes to make lheir interactions indepen-

dent of their spoeds. A process that tries to recelve a message from an

173

ompty bulfer will, for example, be delayed until another process sonds a

measage to the buffer.

The structured way In which concurrent programming must be done In
this language sllows us to deal with the microanalysis of Concurrent Pascal

programs In a three step procedure:

(1) For each sequontial process within a parallel program s performence
reprosentation is built. The profile equations for each sequential pro-
cess ere thus expressed as a function of the input and shared variables.
This ellows us Lo analyze In isolation the behavior of any of the sequon-

lal processss which make up the parallel program.

(2) For each monitor we obtain its performance representation, where we
have to make special provisions for the treatment of variables of Lypo
queue. The actions of the monitor on variables of type queus can not be
predicted solely on the basis of syntactic information. Knowledge about
the exsoution environment of the monitor (e.g., how are queues handled,
types of deloys thal may occur when processing & message, arbitration
mechaniam for tiss) and on the activities of several processes may be
required to describe the effect of the monitor's action. This is the first
time we encounter the phenomenon that some performence indices
associated with the basic operations of a program are dependent on the

results (or activitica) of other processes.

(3) The system as a whole is simulated as a network where some nodes,
those corresponding Lo monitors with variables of typs queue, will have
queuss associated with them. Nodes with no quoues assoclated with
them will correspond to sequential processes. The arcs between nodes

represent data paths. These palhs may vary tremendously in nature:
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they mey be anything from an 1/0 channel to a telophone line. This is

another instance where we are faced with en explicit dependence on the

oxecuting environment of the parallel program.

Thus, to reproduce the behavior of a parallel program, we are faced with
the taszk of modeling its execution environment as well as representing each
of Its component parts, When we want to obtain performance indices such as
the execution time, we need to know, as a function of the inputs, the time it
will take for a sequential process to execute, the relevant data that it will
produce, the time it will take that data to travel to a monitor which requires
it, the time the monitor will take to process it, and the overall interrelation-
ships existing batween the differont activities currently being processed in
the system. In short, a full simulation of the network needs to be done. In
this simulation, one may use the performance representations of each node

to estimate the time spent at that node.

It should be clear that there will be situations where the modeling of the
network will be easier than in others. One such case I8 when processors are
nover shared by distinct processes. The simplification arises because one
does not have to deal with reproducing the scheduling decisions which need

to be made when more than one process Is running in one processor.

Unfortunately, at the time we write these lines, we have not had sulffi-
cient oxperience with these methods to report on any actual experiment.
This whole area deserves further study, and we plen to report on it In the
future. We are not aware of any other similar efforts In the prediction of pro-

grom performence indices within distributed processing environments.

CHAPTER 9

Conclusions and Further Research

In this thesis we have studied the problam of finding efficiont ways to
determine, given the values for the input variables, the values of different
performance indices associated with a program. We have seen that, for most
purposes, we may concentrate on reproducing efficlently the dynamic profile
of the program, Le.. on obtaining the exact profile for any run of the pro-

gram as a function of the values of the input variables.

To achieve this, we have described several kinds of *“perlormance
representations” which express the profile equations of the program we are
analyzing. We have shown that it is often possible to represent the profile
equations by “program performance formulae” whose evaluation time is
linear in the length of their expression. This is casily seen to be the best one
can hope to obtain. We have also delimited the cases in which this can be

done, and proposcd some alternative methods for the other cates.

In fact, our “skeleton” procedure can slways be used, in the case of
sequential programs, to represent the profile equations of & program. It was
noticed that, for compute bound sequential programs, the running time of
the skeleton could be substantially shorter than that of running the actual
program. Nevertheless, we elso presented examples which showed that the
running time of the skeleton nsed not be linear In the length of its text and
that it could also be very close to the running time of the actual program.

A varlety of solutions, and theoretical results which can guide us in their

usage, were presented to overcome the different problems presented with
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the possiblo slowness of the skeloton, on the one hand, end the non-
applicability of the program performance formulas, on the other band. It
was recognized that most of the “’definability” problems are caused by the
fterations. In particular, alternations within iterations often lzad to the loss
of optimal performance representation. We also examined in full detail the
case when the ectlons on the control veriables of an iteration were linesr
functions. In this case wo saw that et run lime we were even able Lo deter-

mine e exact pattern of truth valuss that a predicate would havo.

We have not implemented & system which can build these performeance
representations for us. However, we have discussed what is nesded to do o,
and discovered that known techniques used in data flow anelysis suffice to
obtain all the information wo nesd aboul the varisbles In @ program. We
believe that porformance representations could be bullt by an “intelligent
programming onvironmont’ et the same time that the program Is being

edited. This is one area of future ressarch which deserves investigstion.

We have aiso discovered thet our methods can be used to oblain traces
of programs efficiently. In fact, with minor modifications (which amount to
wrile out where one is st each stop as well as subscript values), the skeleton
approach can be used to generate traces of programs, including data traces.
Moreover, our techniques which yield faster performance representations
can also be ulilized to generate ““condensed” traces, which can then be
interpreted (or decoded) by using a simple postprocessor. The idea is that,
whon we are able to discover the bshavior of an iteration as a function of the
variables which control its looping, we may use this information to shorten
the length of the trace without eny loss of information. This method to

obtain traces deserves further roscerch, since no precedent approaches

m

ssem to have boen proposed. Its sppeal in that, once the “trace representa-
tion" of & program Is bullt, obteining several traces should be much more
economical than actually running an appropriately instrumented version of
the program soveral times. O! course, the same post-processor could be

used for traces oblained from any program by this method.

Another srea which deserves further study is thet of microsnalysis of
porallel programs. As we have seen, the problem of determining perfor-
mence indices Is much more cumplex in this cass, and requires modeling of
ths computational environment of the parallel program. There has been lit-
Ue work done in this area, and our tochniques do not prove to be directly
epplicable. They are useful for determining values of indices (or a single pro-
cess in a single processor, but we have not developed techniques to deal efti-
ciently with the problem of representing the computational environment of a

parsilel program.
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Appendix A

In this appendix we include the complete FORTRAN source of the file
tmp.f and the subroutine MATLOC from SPICE.

The text of Appendix A is not included. It
can be obtained directlly from the author.
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