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ABSTRACT

Existing proofs of the passivity criterion for linear, time-

invariant, distributed N-ports are either incorrect or too involved,

requiring the use of advanced mathematics such as distribution theory.

This paper presents a simple but completely rigorous proof using only

basic real and complex analysis. For the sake of completeness we have

included simple proofs of the classic Paley-Wiener Theorem and the Poisson

formula for the half plane. Finally, we give a passivity criterion

applicable to N-ports described by general coordinates, from which passivity

criteria for any specific representation (e.g. impedance, admittance, hybrid,

transmission, scattering, etc.) can be trivially derived.
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I. Introduction

In 1954 Raisbeck [1] proposed a general definition of passivity

which would apply to distributed as well as lumped networks and gave

an informal proof that a linear time-invariant (LTI) N-port is passive

if and only if its impedance matrix is positive real. In 1958 Youla,

Castriota, and Carlin published their classic paper on linear passive

network theory [2] which included a formal proof of this passivity

criterion, but the proof is fairly involved. Wohlers and Beltrami [3],

[4] and Zemanian [5] gave simpler formal proofs using the theory of

distributions, and several attempts were made to formalize Raisbeck's

original argument; some (incorrect) proofs were even incorporated into

textbooks (see [6]; [7], [8], [9]).

The primary purpose of this paper is to present a formal proof of

the passivity criterion which is straightforward, intuitive, and makes

the minimum appeal to advanced mathematics; in particular, no distribution

theory is used. Much of the advanced mathematics used is condensed into

a single theorem which characterizes LTI causal bounded operators in

the frequency domain. We have called this theorem the Bochner-Paley-Wiener

theorem since it is an easy consequence of their results, and give a proof
in the appendix.

Our second purpose is to discuss some of the intricacies of the problem,

We show that a reasonable assumption implies the less natural one

("solvability") that the set of all admissible v+i is dense in l!J. We

examine the difference between, passive devices which satisfy fT v*idt >0

for all T and devices for which f v*idt >0which we call weakly
J—CO

passive (the distinction is due to Wohlers; some authors have used

weak passivity as their definition of passivity). We show that an
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N-port W is passive if and only if it is weakly passive and has a

causal scattering operator (which is not equivalent to its having a

causal impedance operator even when W has both representations) and give

a weaker criterion for W to be weakly passive. For example, consider

a1-port Mwith v(t) =i(t) +1 i(t+l). This W has an impedance

Z(jw) =1 +j eJC0 which has the analytic extension Z(s) =1+̂ es in
the whole complex plane. Parseval's relation shows that if i is

admissible and ie i^9 then v€ L2 and | vidt >0, that is, W is
J -00

weakly passive. Z(s), though quite analytic, is far from positive

real since Z(irj+1) =1-1e<0, so this N is an example showing that
proofs of the criterion assuming only weak passivity are incorrect.

Finally we give a passivity criterion for a device described by

general coordinates from which specialized criteria in terms of any

particular representation (e.g. admittance, hybrid, transmission, etc.)

can be trivially derived.

We will use the following somewhat standard notation: w is the

conjugate and w* the conjugate transpose of we CN, |w| =(w*w)1/f*;
L^ (Lg(IR)) is the set of (measurable) CN (RN) valued functions of areal
variable f(t) with [ f*(tjf(t)dt =Iffl2 <oo (Lebesgue integral; functions

—00

which differ on aset of measure zero identified); l0 is lL For
N rA ?

fe 1-2• ?(jw) is its Fourier tranform (= 1.1.m. f f(t)erJa)t dt); if
_. % . N A^» J-A
f(t) is C -valued and T e ]R, f will denote the function which agrees

with f(t) for t<T and which vanishes for t> T; l!J ("Extended Lo")
— — 2e 2

is the set of all fwith fy €L^ for all T€IR ;y(E) will denote the
Lebesgue measure of the (measurable) E e m, RHP will denote the open

right half plane {z € clRez > 0}.
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We will say a function F(ja>) defined only up to sets of measure

zero has the analytic extension F(s) in the RHP if F(s) is analytic in

the RHP and lim F(a+jo>) exists and equals F(jaj) for almost all a) € ]R
CJ-+0+

We will routinely drop the qualifier "almost" from "almost all",

trusting that the reader familiar with measure theory will be able to

supply it where necessary.

An M -admissable signal or signal pair will mean a real valued

N +signal or signal pair in L^ which may appear across W .

II. Definition of Passivity and Statement of the Criterion

Following Youla et al. [2] we say W is passive if for all

hi -admissable port current-voltage pairs (i,v)

for all T€1R, [ v*(t)i(t)dt >0 (2.1)

The use of the scattering variables"^ (a,b), where a(t) -^v(t) +1i(t)

and b(t) = j v(t) - j i(t) is central to our argument, so we reformulate

(2.1) as

for all T€ ir, f (a*a-b*b)dt >0 (2.2)
J-00

For reasons we will discuss later, we impose the following additional

"solvability" assumption:

NThe set of to -admissable a's is dense in L?(R) (2.3)

+

With only minor modification the entire theory may be formulated for
complex signals, but we see no advantage.

Here we assume port normalization impedances of la ; in general

a =-Lv +Rk , h - 1 Rk ,ak 2Rk vk +T h • bk "2R^ Yk "T V
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Theorem 2.1 (Youla et al.) An N-port to is LTI and passive if and only if

(1) to has a scattering matrix, i.e. the set of admissable

(a,b) are precisely

{(a,b)|a €L^(R) and b(jw) =S(ju>)a(ju))}
and (2) S(jw) has the analytic extension S(s) in the RHP with

I-S*(s)S(s) positive semidefinite there.

We note that S(jaj) is defined only up to sets of measure zero, so that

statements involving S(jio) are to be interpreted as true almost everywhere,

whereas statements involving the analytic function S(s) are true every

where. Our assumption that i,v and therefore a,b are real implies

that S(-jw) = S(joj); finally let us note that (2) implies that

I- S*(ja))S(jw) is positive semidefinite for almost all we r since it

is almost everywhere lim (l-S*(a+jw)S(a+joj))

III. Proof of Necessity of (1) and (2)

Throughout this section let W be a passive N-port.

Lemma 3.1 Suppose (a,b) is an admissable signal pair such that

a(t) = 0 for t < T. Then b(t) = 0 for t < T.

Proof Since to is passive | (a*(t)a(t)-b*(t)b(t))dt > 0, so under
J -00

the hypothesis of lemma 3.1, -I b*(t)b(t)dt =- |b(t)|2dt >0.
Thus b(t) =0 for t <T. ""°° B

This simple lemma has extremely profound consequencesI

Corollary 3.1 To each admissable ae lJ, there is aunique bsuch that
(a,b) is admissable. Furthermore bSL? and flbfl < Hall.

Proof Suppose ae L^ with (a,b) and (a,b') admissable. Since to is
linear, (0,b-b') is admissable. By lemma 3.1, b(t) -b'(t) =0for

t <T and T arbitrary, so b= b'. By passivity, we have for all Te R
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laa >
2 fT . rT

a*a dt >

N

-00

b*b dt
-00

which proves be L2 and Ibi < flaO. n

Thus we may define a linear operators on the set of admissable a's

in L2 into L2(.R) by 5(a) =b. The last conclusion of Corollary 3.1 is that S
is abounded operator (hence continuous), and by our solvability assumption
the set of admissable a's in L2 are dense in L2(R), so we may extend 5in
aunique way to an operator defined on all of L2(R), with ObB < OaS
valid for all a€ L2(R). Let us use the same symbol S for this extended
operator.

Corollary 3.2 S is a causal operator, that is, if a(t) = a'(t) for

t < T, then Sa(t) = Sa'(t) for t < T.

Proof If a(t) * a'(t) for t < T, then (a-a1, Sa-Sa') satisfies the

hypothesis of lemma 3.1. Thus Sa(t) = Sa'(t) for t < T. n

Thus, 5 :l2 (R)-*- L2 is a linear time invariant bounded causal operator.

By the Bochner-Paley-Wiener theorem (see Section VII) S has a representation as

Sa(jto) = S(jto)a(jto) where the NxN matrix S(jto) has the bounded analytic

extension S(s) in the RHP. We have shown that ajn a€l2 (R) are
admissable and that to has a scattering matrix S(jio). It remains to show

I-S*(s)S(s) is positive semidefinite in the RHP.

Lemma 3-3 For each ceCN, c*(I-S*(jto)S(jto))c >0for (almost all)
0) € ]R.

Note that this is weaker than I-S*(jtu)S(jto) being positive, semidefinite

for (almost all) to € JR."1"

Proof Suppose for some c€ CN c*(I-S*(jco)S(jco))c< 0for w in some

set A of positive measure. We may take a subset A of A with

\emma 3.3 says Vc €CN ]NC CIR{y(Nc) =0and u^ NQ
s*c*(I-S*(jco)S(jco))c >, 0} whereas this statement is .
qN cIRVc €CH{\iW =0and to £N«* c* (l-S*(jto)S(jto)) c>0}. We
shall see later that the stronger statement is true.
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0 < u(A) <- and Ae [0,-) or A€ (—,0] such that c*(I-S*(jto)S(jto))c

< -e < 0 for to e A. Then for -to € a, c*(I-S*(jto)S(jto))c

58 c*(I-S*(-jaOS(-j<o))c < -e. Define a(jto) by

a(jto) =

Then i!a(jto)il = /2u(A) |c| <«, so a€ L2. Consequently a(jto) is

the transform of an a(t) <= l2, and since a(-jto) =a(jto), a(t) e L2(R)

and is thus admissable since all a(t) e L2(R) are admissable..

Intuitively, a(t) is a signal bandlimited to the set A where

c*(I-S*(jto)S(jto))c < 0. If we apply this signal to A/, the Parseval

relation yields

J (a*a-b*b)dt =̂ | a(jto)*(I-S*(Jto)S(jto))a(j(o)dto

•JF J c*(I-S*(jto)S(jto))c dto

+27 f 5*(i-s*(Jw)s(jto))E dto <'Utek. <0
Since | (a*a-b*b)dt » 11m ( (a*a-b*b)dt, there is a Tft with
T J-oo J+*> i -co °

( 0
(a*a-b*b)dt < 0, contradicting W's passivity. This establishes

J -00

lemma 3.3. n

Theorem 3.1 I-S*(s)S(s) is positive semidefinite in the RHP.

Proof F™m our remarks after Corollary 3.1 we know S(s) is bounded

in the RHP. Hence Poisson's representation is valid ([10]; see Section VII

for proof): For sQ = oQ +jtoQ, aQ >0

S(s0) ='if , \ 1 s^)^J-« (to-(o0) +aQ

C to € A

c -to € A

.0 elsewhere

N
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Let c € CN. Then

|s(s°)c|" I- Cj^rfc?S(H i?f r^ |s(dw)c'd(-
By lenroa 3.3 c*(I-S*(j«)S(j«))c - |c|2 - |s(jco)c|2 >0 for (almost all)

J^.?jJ!_'c' 1 'S(ja,)cl for (alra°st all) oj€ 3R and

l^0)c|<lclip g0 da)s|c|
J-« (a)-aJ0)^

Thus |c|2 -|S(sQ)c|2 =c*(l-S*(s0)S(So))c >0establishing Theorem 3.1
and the necessity of (1) and (2) in Theorem 2.1. n

IV. Sufficiency of (1) and (2)

We assume now (1) and (2), that is to has a scattering matrix S(jco)

which has the analytic extension S(s) in the RHP, and that I-S*(s)S(s)

is positive semidefinite in the RHP. (1) implies that to is solvable

since the set of admissable a's is l5(R). (2) implies that S(s) is bounded
'2

in the RHP, for if ek is the kth standard basis vector (0,...,1,...0)*,

e£(I-S*(s)S(s))ek -1-J|SM(s)|2 >0, so that |S,,(s)| <1for
j=l J 'J ""

s€ RHP. By the Bochner-Paley-Wiener theorem, S is the frequency domain

representation of aLTI bounded causal operator 5: L2(R) h- l2(R) (see

Section VII). It remains only to establish (2.2). If a€L^ (R) then

[ (a*a-(Sa)*Sa dt =T (a*aT-(Sa)*(Sa)T)dt
i —CO J .00

=j (a|aT-(5aT)J(3aT)T)dt
—°^

=£ (a|aT-(SaT)*(SaT))dt +J" (SaT)*(SaT)dt
Since Sis causal. Note the second integral exists since aT elJ(R)
and S:L*(R) -l£(R)

>2-jj: j a*(ju)(I-S*(j(o)S(ju))aT(ja))dw >0
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since I-S*(j<o)S(j<o) is positive semidefinite for (almost all) to € IR.

This proves to is passive and completes the proof of theorem 2.1. «

V. Discussion

In this section we examine the definition of passivity we have used

and our proof of the passivity criterion.

Let us first consider the energy integral (2.2). Several authors

use the alternate integral

(a*a-b*b)dt > 0 (5.1)

where a,b e L2(R) instead of the extended spaces l!J (R). Let us call an
N-port to weakly passive if it satisfies (5.1) and (2.3) (solvability);

Wohlers [3,4] points out that weak passivity has the advantage of

being independent of causality. We can prove a theorem analogous to

(2.1) for weakly passive N-ports:

Theorem 5.1 An N-port to is LTI and weakly passive if and only if

(1) to has a scattering matrix S(jto)

(2) I-S*(ja))S(j<o) is positive semidefinite for (almost all) to € R

The difference between this and (2.1) is that S(jto) need not have an

analytic extension into the RHP, and when it does I-S*(s)S(s) need not

be positive semidefinite there (cf. example in Section I).

Proof Corollary 3.2 is easily checked for a LTI weakly passive to. Bochner's

theorem applies directly and we conclude to has a scattering matrix

S(jw). If I-S*(jto)S(j(o) were not positive semidefinite in some set A

of positive measure, we can construct a (measurable) a(jto) supported on

A u -A with a(j(o)*a(ja)) = 1 and a(jto)*(I-S*(j<o)S(ju>))a(ju)) < -c < 0

for to e a u -a where u(A) < « and A c [0,«) or (-»,0], and

a(-jto) = a(jto) as in lemma 3.3. Then a(jto) e l5 and corresponds

a(t) € L2(R) for which

r
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L. (a*a"b*b)dt *5F fl «*CJ«)(I-S*(J«)S(Jo»)) a(ju)dw
<--MAI <o
— 7T

which contradicts weak passivity(5.1).

The converse is easily proved, for suppose to has a scattering

matrix S(jto) with I-S*(jto)S(jto) positive semidefinite for to e R . Then

to is clearly LTI and S(jco) is bounded so if a<= LJJ(R). b(jo>)
3S(jw)a(jw) 6 L2, so b€ Lg. Furthermore

£ (a*a-b*b)dt =̂ £ a*(j(o)(I-S*(jto)S(jto))S(jco)da) >0
So that to is weakly passive. n

An example of a weakly passive but not passive 1-port is to given by

b(t) =f H^Ia(t-T)dT (5.2)
J-co 7T T

l-|w| |oj| < 1

0 |0)| > 1

Note that S(jco) has no analytic extension into the RHP and that S is

not a causal operator. Another example is a -1 H inductor, which has

Here S is not a causal operator, even though its impedance operator

1- £is!
The relation between weak passivity and passivity is simple:

Theorem 5.2 An N-port to is passive if and only if it is weakly passive

and its scattering operator S is causal.

Proof If W is passive, then it is clearly weakly passive and we have

seen in corollary 3.2 that its S is causal. Conversely, if to is

weakly passive then its S is a bounded operator and if it is causal

for which S(ju>) =

-10-



then (S(aT))T =(Sa)r (Noting aT e Dom Ssince 5 is bounded).
N NFollowing the argument in Section IV, if a € L« then aT € I and

(a*a-b*b)dt =f (afaT-(5aT)*(SaT))dt +j (SaT)*(3aT)dt >0
J-co J-oo *T

Thus M is passive. n

One final remark concerning weak passivity is in order. Any proof

of the passivity criterion theorem 3.1 which has as hypothesis only

weak passivity without the auxiliary assumption that S is causal in

incorrect. Mere analyticity of Z or S is not enough, though boundedness

of S is (see Section VII Bochner-Paley-Wiener theorem; cf [7], [8], [9])

Nor is the assumption that Z is causal adequate, as the -1 H inductor
+

shows.

'It is interesting to note that Raisbeck's original definition of
passivity is what we call weak passivity together with the additional
assumption that Z is causal, so that his criterion is not quite right.
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We now turn to the second requirement for passivity, "solvability"

(2.3.),which may seem a bit technical. The obvious example of a device

which satisfies(2.2) (has positive energy integrals) but not(2.3 (is not

solvable) is the 1-port nullator characterized by v = i= 0. We will now

show that all_ LTI N-ports which satisfy (2.2) but not (2.3) exhibit a general

ization of this pathological behavior, and give a more natural

assumption which implies (2.3).

Let us consider first a 1-port to which satisfies (2.2) but not

necessarily {2.3). In this case, corollary 3.1 shows that 5 exists and is

a bounded operator from its domain (which we assume here is not necessarily

dense in L2(R)) into L2- Thus we may extend S to be defined on the closure

Mof its domain. M is a closed, translation invariant subspace of L2(R)

which by a theorem of Bochner and Wiener [11] may be described by

M= (a € L2(R)|a(jto) =0 for (almost all) |u>| € E}

where E c [0,«) is a set of positive measure if (2.3) is not satisfied, and may be

taken to be the empty set if (2.3) is satisfied. Thus the admissable a's

in L2 are simply those whose spectrum vanishes on a certain set E of

frequencies, that is, to acts as a frequency selective nullator.

We now make the observation that if a signal a(t) which is not

identically zero satisfies a(t) = 0 for t < 0 (let us call such a signal

positively supported) then a(ju)) vanishes for uj in a set of measure zero.

This is easily seen from the fact that a(ju)) has an analytic extension

in the RHP which would vanish identically if a(jto) vanished on a set of

positive measure, or from the well known version of the Paley-Wiener

theorem which asserts

•- IMilMll ^ <. {5-3)
00 1+oi

-12-



Thus hi is a very strange device indeed, for the only positively supported

admissable a(t) is 0. This precludes any testing of the device in the

laboratory (a pathology shared by some non-causal devices). It is very

natural, if not philosophically necessary, to assume this cannot happen.

Specifically, if we make the assumption:

If there is any nonzero admissable a, then there is a

positively supported (nonzero admissable) one. (5.4)

then we may conclude that W is either a nullator or satisfies (2.3) and

hence is passive.

The generalization to N-ports is straightforward even though the

closed translation invariant subspaces are more complicated. In this

case M may be described by

M it

M= {a 6 L"(R)|k a(jw) =0 for (almost all) |oj| € E , for all a € A}

(5.5)

where Uka,Ea)|a e A} is a collection of pairs of complex N-vectors and

subsets of [0,~). For example, consider the 2-port to characterized by

M={a € l| (R) [a^jto) +. a2(jw) =0 for |u>| e [0,1]

and a.|(ja)) - a2(joj) =0 for |oj| e [2,3]}

and b = a when a € M.

Thus i.j = i2 =0 always, and v-j and v2 are constrained as follows:

for signals bandlimited to [0,1], v] = -v2; for signals bandlimited to

[2,3], v.| = v2; for all other signals v1 = v2 =0. Thus in the laboratory,

to would appear (!) to be a 2-port nullator. This is the pathological

behavior we eliminate with the following assumption:

-13-



There is a positively supported admissable a such that

if ka(t) =0 for all t, then k=0. Informally, the

infinite collection of vectors {a(t)|0 <t<«} spans lRNt (5.6)

5.6 is implied by the existence of positively supported admissable

{ar...aN} with (a^t),. ..aN(t)} spanning 1RN for tin some set of positive
measure. This is the generalization of (5.4)which implies to is solvable.

For suppose one of the sets E in (5.5) has positive measure. Then since

ka(jfo) vanishes for to in a set of positive measure, k*a(j<o) =0 for all

co and hence k* a(t) =0for all t, so by (5.6) k=0. Thus M=L^(R) and to
is solvable.

The reader may have wondered why we have used the scattering repre

sentation as opposed to the more common impedance representation, used

for example in Raisbeck's original informal argument. There are two

reasons: certain passive devices such as open circuits do not have an

impedance representation, and more important, for a passive device the

scattering operator 5 is bounded whereas the impedance operator Z need not

be. The recognition of the importance of the scattering representation

for passive networks is of course due to Youla et al.

The boundedness of S is crucial to our proof. First it allows us to

use the Bochner-Paley-Wiener theorem to show that a passive to has a

scattering matrix S(s). Distribution theory must be used to prove that

to has an impedance matrix Z(s) (assuming it has an impedance representation).

Even assuming the existence of Z(s), as Raisbeck and Kuo do, it may be

unbounded.

'Technically, we must require that this remain true no matter how a(t) is
redefined for tin sets of measure zero.
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M M

We can have Zi £ L2, even if i e L2, so that Parseval's relation must

be used with care. Furthermore Poisson's representation is not valid.

For example, if M is a (quite passive) 1 H inductor,
a jto

(<o-<o0) +aQ
is not

even integrable (e.g. [1] line 16, [9] line 5). In the sufficiency proof

we considered aT, admissable since all of L2 W was known to be admissable;

this too was a consequence of the boundedness of S . The same argument fails

for Z, since its domain may be a proper subset of L« (R). With the inductor

above, iy need not be admissable since ij is generally not differentiate.

This is only a partial list, but we can say that arguments using Z in

stead of S cannot be made formal without considerable trouble.

VI. Passivity Criterion with General Coordinates

In this section we consider the use of variables other than the

scattering variables. Specifically, we consider the variables £ and n

related to v and i by

v~

i

' "a b"

c d n

»

C

n

=

a $"'

Y 5

v~

i (6.1)

where ft =
"a b"

c d
is a real invertible 2N x 2N matrix. We shall say a LTI

N-port to has an fl-representation if for each M-admissable s(t) there is a

unique W-admissable n(t), in other words there is an (LTI) operator A with

t, = An. We assume neither that the domain of A includes L2(R) nor that A

is bounded. For example an inductor has an fl = I2 representation with

An = Ln; we call this the impedance representation and A the impedance

operator. By suitable choice of fi, this general framework includes the

scattering, impedance, admittance, hybrid, and transmission representations.

We will recast theorem 2.1 into a form applicable to N-ports having some

general ^-representation; in the particular case of the impedance representation
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this will be the original Raisbeck proposition.

Theorem 6.1 to is LTI passive and has an ^-representation if and only if it is

solvable and £(ju}) = A(jto)n(jto) where A(jto) has the meromorphic extension

A(s) in the RHP and D(s) + D(s)* is positive semidefinite1" in the RHP, where

D(s) = [aA(s)+b]*[cA(s)+d].

Proof Suppose first to is passive and has an a-representati on € =An. By

theorem 2.1 we know to has a scattering matrix S(jaj) with analytic extension

S(s), I-S(s)*S(s) positive semidefinite in the RHP. This and (6.1) imply

C(jto) = A(jto)n(joj) where A(jto) has the meromorphic extension in the RHP

A(s) = [(a-6)S(s)+a+8][(y-6)S(s)+Y+6]"1

FurthermoreS(s) =[(a-c)A(s)+b-d][(a+c)A(s)+b+d]"], so [(s+c)A(s)+b+d]*
[I-S(s)*S(s)][(a+c)A(s)+b+d] = D(s) + D(s)* is positive semidefinite in

the RHP.

Conversely suppose to is solvable with D(s) + D(s)* positive semidefinite

in the RHP. Solvability implies ((a+d)A(s)+b+d) is invertible except on

a set E of isolated points (i.e. is invertible as a meromorphic matrix).

Moreover to has a scattering matrix S(jaj) with meromorphic extension S(s)

in the RHP given by

S(s) = [(a-c)A(s)+b-d][(a+c)A(s)+b+dr1.
For s € RHP, s^E,

[(a+c)A(s)+b+d]"1*[D(s)+D(s)*][(a+c)A(s)+b+d]'1 =I - S(s)*S(s)
is positive semidefinite; thus S(s) is bounded there and consequently

analytic in the RHP. By theorem 2.1 to is passive. n

Corollary 6.2 Assuming M is LTI, solvable, and has an impedance (Z),

admittance (Y), or hybrid (H) representation,

'Wejnean positive semidefinite where defined, i.e. except at the RHP ooles
ofA(s).
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(a) (Raisbeck proposition) to is passive if and only if Z(s) + Z(s)* is

positive semidefinite in the RHP. In this case we can show Z(s) is in

fact analytic.

(b) to is passive if and only if Y(s) + Y(s)* is positive semidefinite in

the RHP. Y(s) is in fact analytic.

(c) to is passive if and only if

H11+Hn* H12+H21 "

H21+H12* H22+H22*

is positive semidefinite in the RHP, where a = c =

and A =
"Hn H12

_H21 H22_

-17-
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VII. Appendix: Proofs of Mathematical Theorems

(A) Bochner-Paley- Wiener theorem:

S is a LTI bounded causal operator :L« -*• L2 if and only if

Sa(ju)) = S(ja))a(ju)) where S(jw) has a bounded analytic extension S(s)

in the RHP.

This theorem characterizes a very important class of operators and

is well known. It is usually proved using distribution theory, where the

boundedness conditions may be dropped. But the fact that the scattering

operator of a passive device is bounded allows us to use this (weaker)

version which is easily proved without distribution theory. It is a

simple consequence of two classic theorems: the Bochner theorem [11]

which states that H :L2 + L2 is LTI bounded if and only if

na(jw) = T(j(o)a(ju)) where T(jto) is essentially bounded; and the Paley-

Wiener theorem [12] which states that a£L2 and is positively supported

(a(t)=0,t<0) if and only if a(jco) has an analytic extension a(s) in the

RHP such that for some k and all a^ 0,

•00

I |a(o+j(o)|2 dux k (7.1)
J.00

we will also use a corollary of the Paley-Wiener theorem due to

Titchmarsh. For completeness we give a sketch of the

Proof of Paley-Wiener theorem

Suppose first a € L2 and is positively supported. It is then well

known that a(s) =

f 00

lall2 >

e a(t)dt defines an analytic function for
.0

Re s > 0 with lim a(c+jio) = a(jto) for almost all uj€]R. Furthermore

for a > 0

e"2at|a(t)|2dt =[°Vata(t)|2dt =^ f"lata+ju)) |'dw
J-00

-18-



using tne Parseval relation. Thus (7.1) holds for k= 2irilall . Conversely
/\ /\

suppose a(jaj) has the analytic extension a(s) in the RHP satisfying(7.1.).
/%

In particular for a =0 we have a(jco) € L2 and so is the Fourier transform
/\

of an a(t) € l2. Since a(s) has a domain of analyticity including the
-at - tT-ot ,RHP, we conclude e a(t) e l2 for all o >_Q and a(a+jio) =e a(t)(jaj)

(we have used the fact that the extension a(s) is unique). If a(t) were

not positively supported, then for some -6 < 0 a(t)| cit = e > 0.

For a > 0, — -at.|a(a+ja))rd(o = He"ota(t)ir = e"2at|a(t)|2dt

e-2c7t|a(t)|2dt>e2^

which contradicts (7.1) for a >A- In ^—. n
CO CT.Z

Proof of Bochner-Paley-Wiener theorem

We will prove the theorem for N = 1; the generalization to N > 1

is immediate. Suppose first S is defined by'Sa(jw) = S(jaj)a(jcj),S(ja>)

having a bounded analytic extension S(s) in the RHP. It is obvious that

S is linear and time invariant. S(ju>) is essentially bounded since it

is almost everywhere lim S(a+jio). Thus for a^L, a6L and

2ir Sa(ju>)|2du) =i- [ ia(j(o)|2|S(jo))i2d(o

<M2 TL '
— 2lT

, ...2|a(j«)rdu)= M^llall
-00

where |S(s)| <Mfor se RHP. So Sa € L2 and Ilsall < Mllail so that S is

bounded (this was the easy half of the Bochner theorem). It remains to

shows is causal. Suppose a(t) is positively supported. By the Paley-

Wiener theorem a(jw) has the analytic extension a(s) satisfying(7.1).

-19-



Since Sa(jw) =S(ju)a(ju), Sa(juj) has the analytic extension S(s)a(s) in
the RHP. For a > 0

. 00 _

|S(a+jto)a(o+jco)pdto <M2 |a(o+ju) |2dco <M227r(laB2
J .00 ~* ^~

* .00

By the Paley-Wiener theorem we conclude S(jw)a(jw) is the Fourier trans

form of apositively supported element of L2, that is, 5a(t) =0, t<0.
Thus S is causal.

Suppose now S is LTI, bounded and causal: L2 -»• L«. By the

(harder half of the) Bochner theorem, Sa(jaj) = S(jto)a(ja>) where

|S(j<o)| < M for (almost all) to € ]R . We must show S(j<o) has a

bounded analytic extension into the RHP. Let sQ = aQ + j<oQ with aQ > 0.

Consider a(t) =
e'sOt t>0
0 t<0

a(jaj) =—l— so'5a(jcD) =5iM . since a(t)
Oto+s ju)+S

is positively supported and 5 is causal, 5a is positively supported and

so by the Paley-Wiener theorem Sa(jto) has the analytic extension'Sats)

in the RHP. Thus S(jto) has the analytic extension Sa(s)(s+?Q) in the
RHP, which must be independent of s since it is unique. By the

Titchmarsh theorem [13]

f.<»0) .£
t » <*+5a(jto)dto _ J_

Sg-jto " 2ir
, 00

S(jto)do) s J_

- (s0-ju))(juj+?0) 2*
S(jto)du)

2 2-« a0+(io-ui0)

MHence |Sa(sQ)| <£ dto = _M_

- a2+((o-to0)2 "2a0
So |S(sQ)| = |Sa(s0)(s0+?0)| =2a0|5a(s0)| <M, that is, S(s) is bounded
in the RHP. n

(B) Poisson's formula for the half plane [10]. Suppose S(joj) has a

bounded analytic extension S(s) in the RHP. Let s = Q + ju a > o.

Then
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S<V "r7T
t °° a^S(jw)du)

— ((o-o)0)2+a2

Again we prove this only for N= 1.

Proof Consider the contours r£>R oriented as shown in Fig. 1,

(-—- - -r=-)S(z) is meromorphic in the RHP, its only pole there at sn
z"s0 0 u

with residue S(sQ). By Cauchy's theorem for t < aQ and R > |sJ,

S(z)d;

^ (^"zTT)S(2)dZ =7 (z-sQ)(z.s0) -S(«0>
e,R e,R

Letting e -»• 0 we conclude by Lebesque's bounded convergence theorem

•j r R aQS(jto)dco

J-R (to-to0) +aQ ttj

r aQS(z)dz

YR (z-s0)(z+sQ) •s^

where yR is the semicircle of radius R centered at the origin and

oriented positively. But

1 t aQS(z)dz aQMR

YR (Z-S0)(Z+S{)) (Ms0|);
anS(jto)

where |S(z)| < M in the RHP. Finally since —- _^ js jn
( ^27T(o)-to0) +0

itegrable

lim -
R-~ *

•R a0S(ja))da) 1 ,oo a0S(ja))dto

-R (w-Wg)2^ * -«> ((o-(Oq) +aQrr= s(so}

Note in particular that Poisson's formula is not valid if |S(z)| grows

as fast as |z| in the RHP.
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Figure Caption

Fig. 1. The contour r D used for proving Poisson's formula
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