
 

 

 

 

 

 

 

 

 

Copyright © 1981, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



DEALING WITH ERRORS IN THE MOTION

OF A VEHICULAR ROBOT IN 2-D

by

Gordon C. Fossum

Memorandum No. UCB/ERL M81/35

29 May 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Dealing TTith Errors in the Motion of a Vehicular Robot in 2-D

29 May 1981

by Gordon C. Fossum

Abstract

A software tool is described which simulates the motion of a special-purpose

vehicular robot. This robot executes rotation and straight-line translations only,

and is designed to operate without external assistance. The simulation incor

porates the effects of seven different errors, all acting simultaneously, and of

any one of four choices of compass aiding.

Introduction

Much research in the field of vehicular technology has been devoted to the

development and analysis of systems designed to "get you from here to there."

The vast majority of this research, however, has relied on the assistance of

external inputs along the way, such as markers in the floor (Ref[l]), radio sign

posts (Ref[2])t or frequent recalibration by human operators or by a central

computer with knowledge of likely paths (Ref[3]). (More references may be

found at the end of Ref[2].)

The underlying assumption in such research is that errors in unaided sys

tems grow too quickly for such systems to be useful for most applications.

Unfortunately, data to support this assumption is not readily available. This

paper should simplify efforts to provide such data.

The purpose of this paper is to examine the sources of errors in the motion

of an unaided vehicular robot, describe their effects, and present a software

tool, which is written in Pascal. This tool is a simulator, which, when given an

input file consisting of (l) the type of compass guidance desired, (2) upper

bounds on the errors, and (3) a list of ordered pairs of real numbers, (each pair

representing a rotation command and a translation command, so that a,6 means



"rotate a degrees and move bmeters"), will produce, as output, ordered pairs of

real numbers with sufficiently fine granularity to closely approximate the path

taken by the robot. The robot is presumed to be circular in top view with the

center ofmass at the geometric center, to simplify calculations later.

A more detailed and complete description of the software, as well as the

results of its application to a chosen problem will follow the description of the
errors.

Errors

There are seven error sources considered in this paper. They are treated

as being independent of each other (such that changing the "severity" of any

one of them has no effect on the severity of the others). They are examined

singly (presuming that only one of them at a time has a non-zero value) to deter

mine the "error araa" each one can spawn. The errors are:

ABSOLUTE ROTATIONAL SKID (ABSSKID)

RELATIVE ROTATIONAL SKID (RELSKID)

ABSOLUTE ANGULAR ERROR (ABSANGL)

RELATIVE ANGULAR ERROR (RELANGL)

ABSOLUTE PATH LENGTH ERROR (ABSPATH)

RELATIVE PATH LENGTH ERROR (RELPATH)

PATH NON-LINEARITY ERROR (MINCURV)

The words in parentheses are the variable names for the maximum values

of these errors in the Pascal program.

In all figures referred to in this section, the "correct" translational motion

of the robot is toward the top of the page, which is to say that whatever the ori

ginal orientation and angle of rotation prior to the translational motion, the

"clever cameraperson" chose the appropriate angle to shoot from. Further-



more, temporary short variable names are introduced, for the SOLE purpose of

reducing the wordiness of the figures. In the figures, "t" (short for "theta")

represents the commanded rotation (in degrees) and "d" represents the com

manded translation (in meters).

1. ABSOLUTE ROTATIONAL SKID. Temporary name=el; units=meters.

The first maneuver in the execution of the instruction is a rotation. In any

real machine, the act of starting and stopping the rotation will cause the center

of mass to move. The variable el represents the maximum (radial) distance it

can "skid" due to starting and stopping, independent of the magnitude of the

rotation. If this error acts alone, the robot, upon completion of its entire

maneuver would stop somewhere in a circle of radius el, centered on its

intended destination (see Figure A).

2. RELATIVE ROTATIONAL SKID. Temporary name=kl; units=meters/deg.

Some skidding is caused by the rotation itself, and will be proportional to

the magnitude of the rotation (unlike the previous error). The variable kl is the

maximum constant of proportionality which can be encountered. This error,

acting alone, will cause the robot to stop inside a circle of radius (kl)(|t|) cen

tered on the intended destination (see Figure B).

3. ABSOLUTE ANGULAR ERROR. Temporary name=e2; units=degrees.

The act of starting and stopping the rotation will cause some error in the

heading of the robot relative to what its heading should be. Roundoff error in

calculating the rotation angle will also be included here. The variable e2 bounds

these errors. Acting alone, e2 causes the robot to stop on (not inside) the circle

of radius d, centered on the starting point, such that it is no more than e2

degrees of arc away from its intended destination (see Figure C).



4. RELATIVE ANGULAR ERROR. Temporary name=k2 (unitless).

Some inaccuracy is to be expected somewhere in the linkage of the rota

tional mechanism. The variable k2 bounds this proportional inaccuracy. This

error causes the robot to stop on the same circle as that of the previous error,

such that it is no more than (k2)(|t|) degrees of arc away from its intended desti

nation (see Figure D).

5. ABSOLUTE PATH LENGTH ERROR. Temporary name=e3; units=meters.

The act of starting and stopping the linear motion will cause some error

along the direction of motion. Roundoff error in calculating the path length will

also be included here. The variable e3 bounds these errors. Acting alone, e3

causes the robot to stop on the line connecting the starting and stopping points

within e3 meters of the intended stopping point (see Figure E).

8. RELATIVE PATH LENGTH ERROR. Temporary name=k3 (unitless).

Some inaccuracy will exist in the linkages of the translational mechanism.

This error, proportional to the path length d, is bounded by the constant of pro

portionality k3, so that the robot will stop on the same line as that of the previ

ous error within (k3)(d) of the intended stopping point (see Figure F).

7. PATH NON-LINEARITY ERROR. Temporary name=c; units=meters.

A variety of factors will cause the robot to follow some path which is not, in

fact, linear. The variable c is the radius of the circle which the robot would

trace if it exhibited worst case behavior. The reciprocal of c is the maximum

curvature which the robot's path can exhibit. Thus, if the value of c were 20.0,

the robot could move in a circle of radius 20 meters, and have a maximum cur

vature of 0.05. (Throughout the following two paragraphs, refer to Figure G.)

This error is the tough one to analyze, because it allows the robot such free

dom. The robot's path can be visualized as a rope of length d, immovably



anchored at one end (the starting point) and projecting along some flat floor.

The rope is only slightly flexible, such that it can be bent into a curve of radius c

at any point, but no more.

The job is to describe the closed curve in 2-space such that points on and

inside the curve represent possible positions of the free end of the rope, and

points outside the curve cannot be reached by the free end of the rope. Three

extreme points can be shown to be on the curve immediately. The intended des

tination is on the curve, because, in some sense, you can't go "farther" than that

point from the starting point. Two other points on the curve are those arrived at

by proceeding "hard to port" or "hard to starboard" from the starting point, for

the entire path length d. The "hard to port" point is located (are you ready?) on

a circle of radius c whose center is at a distance c from the starting point, to the

"left", along the line containing the starting point which is perpendicular to the

intended path of the robot such that the length of the arc along this circle from

the starting point up to the "hard to port" point is d. The "hard to starboard"

point is found in an analogous fashion.

These three points can be connected by a curve which may be viewed as

being obtained by swinging the rope from "hard to port" through the intended

destination to the "hard to starboard" point, keeping it as taut as possible at all

times. Alittle reflection leads one to conclude that a snapshot of the rope at an

arbitrary point on this journey will show the rope starting on a circular arc to

some point and then continuing as a straight line (see Figure H). This curve

forms the outer boundary to the error area, as there is no way for the robot to

go beyond it (if all other errors are zero).

Another curve is found by "pushing" the rope (perhaps by attaching a

spring to connect the two ends of the rope) so as to minimize the radial distance

between the two ends. Arope compressed in this fashion will assume an S shape



built of two circular arcs, each of radius c, as no other permitted configuration

is as "short" in radial length. (At this point, however, a proof of this conjecture

remains elusive.) This curve is not symmetric, however, and we must superim

pose two versions of it (one arrived at by "peeling" the rope from left to right,

the other from right to left) and take, as our inner boundary to the error area,

those portions "closest" to the starting point (see Figure I). These curves, then,

define the area caused by the PATH NON-LINEARITY ERROR.

Error Composition

The absolute and relative angular errors can be combined, resulting in an

arc which is wider than either of them. Similarly, the absolute and relative path

length errors can be combined. If all four of these errors are considered

together, the resulting error area resembles the swath of a windshield wiper

(see Figure J). This error area represents the final answer if we could assume

that the robot really could "turn on a dime" and really did travel in straight

lines.

For the most general picture, though, it's best to start with the path non-

linearity error area (Figure I), and "fold in the other ingredients carefully."

First, add the path length errors in by considering that the path non-

linearity error presumes a path of exact length. If we substitute for the

"correct" path length the longest path length permitted by the two path length

errors (taken together), we get a slightly larger path non-linearity error area

which is positioned slightly farther away from the starting point. An analogous,

smaller, closer area is derived from the shortest path length permitted by the

path length errors.

Now, recall that the "hard to port" and "hard to starboard" points were on

the circles of tightest curvature (smallest radius) that the robot could travel,

but the curvature itself is independent of (and therefore constant throughout)



the just-completed construction. Thus, as the path length varies from longest to

shortest, these two points sweep out circular arcs, which, taken in union with

the outer (upper) curve of the larger path non-linearity error area and the inner

(lower) curves of the smaller path non-linearity error area, define the new com

posite error area which specifies where the robot could be if paths of inexact

length and imperfect linearity were permitted, but all rotations were presumed

to be executed perfectly (see Figure K).

The angular errors can next be incorporated into this composite error area

easily by just rotating the entire area about the starting point clockwise and

counter-clockwise to the maximum angle permitted by the angular errors taken

together (-e2-(k2)(|t|) to +e2+(k2)(|t|)) (see Figure L).

The final composite error area is achieved by incorporating the "skid"

errors. This is accomplished by stating simply that the new error area consists

of all points which are within a distance of (el+(kl)(|t|)) of some point on the

previous error area. This production can be visualized as painting a border of

this width, with rounded corners, around the previous error area (see Figure M).

Compasses

There are two things to consider here. First, compass error and tolerance,

and second, how a compass can help keep errors small.

Any compass, magnetic or gyroscopic, will have some small error in its own

function. One assumes that this error is significantly smaller than the angular

errors described above, as this is necessary to justify using the compass. In

some sense, the compass (and associated circuitry) "reacts" when it senses that

the heading of the robot is, at some point, different from the heading it "should"

have, by more than some tolerance. The tolerance programmed into the com

pass should be larger than the error inherent in the compass, to avoid

anomalous behavior.



The circuitry that receives information supplied by the compass might use

it to effect "midcourse corrections" by "locking in" the heading of the robot at

the beginning of each translation, and executing internally generated rotation

commands during the course of that translation whenever the heading strays

from the locked-in "standard" by more than the compass tolerance.

The circuitry could, on the other hand, store a running sum of the rotation

commands being executed, and thus always have a record of what the heading

really should be; thus, after each rotation is executed, the compass circuitry

could effect small corrections before the translation begins.

The abstract of this paper mentioned four choices of inertial aiding. The

first choice is no compass (no aiding at ail). The second choice is the compass of

the first kind above. This is called "Dumb Compass 1" on the graphs of the simu

lations contained in this paper. The third choice is the compass of the second

kind above. This is called "Dumb Compass 2". The fourth choice is both "Dumb

Compasses" working together. This is called "Smart Compass" on the graphs.

The Simulation Program: An Explanation

As described earlier, the simulation program is expected to output the

coordinates of the path taken by the robot in executing the commands input to

it. In fact, it does more than this. The program (a listing of which follows the

figures at the end of the paper) is entitled 'TARGET" because it is designed to

stop a given simulation without executing all commands if the robot ever "hits" a

target, whose coordinates are selectable by changing the values of "xtarget" and

"ytarget" in the const section of the program. If it is desired that all simulations

run to completion, the coordinates of the target may be set to some distant

point.

There are four procedures in the program. They are "buildlist", "move",

"xeqcmd" and the main procedure. An explanation of each procedure follows:



"buildlist"

This simple procedure creates a linked list out of the input commands, so

that they can be used multiple times by the main program.

"move"

This procedure takes, as input, the magnitude and direction of a desired

incremental move of the robot, calculates the new x,y coordinates of the robot,

checks to see if any point along this incremental move is within a distance equal

to the radius of the robot of the target, and prints out the new position of the

robot.

"xeqcmd"

Short for "execute command", this procedure contains the mathematics

required to calculate the effects of the seven errors on each command to be

executed. Different values for the errors are chosen randomly for each com

mand execution under the assumption that all values within the prescribed lim

its are equally likely. That is. if x is the maximum value for a given error, it is

assumed that the probability curve for that error is a uniform distribution in the

interval [-x.x]. The size of the incremental moves for the command are deter

mined as a function of MINCURV and the path length of the command, and the

required incremental moves are calculated and executed, by calling the "move"

procedure; compass corrections are incorporated when needed, if the compass

level (COMPLVL) indicates that the robot has sufficient "smarts".

A bit more explanation is in order with regard to the random selection of

error values referred to above. Values for the first six errors are chosen once

per command, but values for the path non-linearity error are chosen randomly

(with some bias) once for each incremental move vMhin a command. To under

stand the "bias" in these incremental errors, it is necessary to investigate what

causes non-linearity.



The contributors to non-linearity fall into two classes. First, there are those

that are effectively constant in time, such as wheels with different radii, which

would tend to cause the robot to move in a fairly well-behaved circle. Then

there are those that are truly random in nature, such as small irregularities in

the surface on which the robot travels. Any combination of these two classes of

errors may be selected to yield a series of path non-linearities, all bounded by

MINCURV, and all related to their predecessors and successors to some degree.

One might expect that a combination with a heavy weighting on surface

irregularities, rather than wheel irregularities, would yield results more closely

clustered around the correct destination than would a combination biased more

toward the approximately constant inaccuracies of poorly matched wheels. This

suspicion was borne out by some simulations, two of which are shown in Figures

Nl and N2. The variable SMOOTHWT can be visualized as a measure of the

smoothness of the floor: thus, a high SMOOTHWT means that the bulk of the error

was in the wheels. These figures show clearly that simulations with high

SMOOTHWT are more evenly distributed across the entire "error area". For this

reason, SM00THWT=50.0 was chosen for the simulation program.

"target"

The main program reads the input parameters, calls "buildlist", then runs

through the linked list of commands n times, where n is specified in the const

section. The "hit percentage" is then printed in such a way that it will appear on

the graph near the origin.

Some System-Dependent Details

The "random" function returns pseudo-random numbers in the interval

(0,1). Its randomness was checked by plotting 50,000 points at random in the

unit square. No patterns were discernable in the resulting graph.



Each line output by the program consist of two real numbers, possibly fol

lowed by a comma. The numbers generated by the program are fed into a sys

tem routine called "graph" which generates a connected line as long as it sees

just two real numbers (and nothing else) on each line. When something else is

on a line, the graph is broken at that point, and the point is "labelled" with the

"something". A comma was the most innocuous label available, so every simula

tion is therefore plotted with a comma marking its termination.

Exercising the Simulator: some algorithms

In order to test the capabilities of the simulator, the following problem was

posed. Imagine that a robot of radius 0.5 meters is required to travel from (0

meters, 0 meters) with initial heading along the positive y-axis to (15 meters, 15

meters), and hit the target located there. If the errors are small enough, a sin

gle command would suffice. However, if the errors are realistic, some reason

ably intelligent algorithm might be required to maximize the likelihood of a hit.

A total of six algorithms were developed and tested under all four levels of

compass aiding, and using two different collections of error bounds; one

emphasizing bad angular errors, and the other emphasizing bad path length

errors.

The first four algorithms are based on calculating the error area around the

target for each given set of error bounds, enclosing this error area with the

smallest rectangle possible, and generating commands which cause the robot to

"cover" that rectangular area. (Of course, the robot will not cover the area per

fectly because of the cumulative nature of the errors involved in multiple com

mands. The purpose of this exercise is not to decide what the best algorithm is.

but to show how the simulator can compare the performance of several given

algorithms.) The four "rectangle-covering" algorithms are called "long", "short",

"side", and "spiral", and examples, showing how they would look if they worked



perfectly, are contained in Figures PI through P4, with the error area they are

designed to cover shown in Figure P5. In the "long", "short", and "side" algo

rithms, the "zig-zag" movements are such that the robot progresses a distance

equal to its diameter for every pair of commands executed. In the "spiral" algo

rithm, after each loop, the robot is similarly one diameter further away from the

center than before. (It is very likely that different simulation results would be

obtained if algorithms were used which caused slower or faster progress.)

The last two of the six algorithms mentioned are "random". These algo

rithms merely command the robot to move to (15 meters, 15 meters) and start

moving randomly from there (totally random rotation commands, and random

translation commands biased toward the diameter of the robot). The two algo

rithms differ in that the second random algorithm is programmed to execute

four times as many random steps before giving up; in both algorithms, the

number of random commands is a function of the shape and size of the rectan

gle surrounding the error area.

Five series of runs were generated. In the first, only ten iterations of each

simulation were calculated (and graphed) to show visually what happens. Some

of these are shown in Figures Ql through Q30. (These figures appear in six

groups of five figures each. Each group of five figures shows the performance of

one of the six algorithms described. Within each group, the first four figures

show the performance of that algorithm for each compass level, given bad angu

lar errors, and the fifth uses "no compass" (the first compass level) only, assum

ing the scenario of bad path length errors.) (The actual error bounds employed

in each of the two scenarios are shown in Figure R.) In the second through fifth

series, respectively, 500, 650, 800, and 1000 iterations of each simulation were

calculated (but not graphed) to yield the hit percentages for each. The average

of these last four is shown in Figure S.



Conclusions: Shortcomings and Directions for Future Research

Even a cursory examination of Figure S shows that for the bad angle error

ensemble, the Spiral algorithm outperforms all others, and intelligent planning

does count for something, as the performance of the random algorithms shows.

Further, the conclusion that bad angles are more troublesome than bad path

lengths is probably warranted. However, compasses can improve performance

in both cases (more so in the bad angle case, as one might expect). It is

interesting to note that the "side" algorithm responds to the assistance of the

"dumb" compasses differently than all of the other algorithms.

On a more fundamental level, some conclusions and warnings about the pro

gram itself, as opposed to the results of their use, are in order.

The program makes some bad assumptions. One is that the error values

are really uniformly distributed. This may very well not be true. A second bad

assumption is that the error values are completely independent from one com

mand to the next. It would not be too difficult to correct this second assumption

if only it were known to what degree each error should be correlated from one

command to the next.

This simulator could be expanded to investigate the performance of robots

programmed to try to cover entire areas with no outside assistance, rather than

just trying to hit a single target An internal array of points could be individu

ally flagged during the "move" subroutine if and when each of them was

approached closely enough by the robot.
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Spiral Atsoritha
No Coapass



fosssa:
Tplot

IDS -1U -x- liU -10 -y 30

fosssa:
tplot

Fissre <X2.[
Bad A*;!* Errors
Short Kaodoe Als.
No Coapass

Fissre Q.&&-
Bad Anil* Errors
Short Raadoa Als*
Daab Coapass 1



fosssa:
tplot

fosssa:
Tplot

hiisa 10/10

u -a -y 20

Pissre 023
Bad Anal* Errors
Short Randoa At*.
Daab Coapass 2

Fissr. Q2*
Bad Anslo Errors
Short Randoa Als*
Saart Coapass



fosssa:
tplot

I

hits=9/10

zua -10 -x- 30 -10 -y 30

fosssa:
tplot

ITO -1U -x- *4U -1U -y 40"

Fissre Q25
Bad Path Errors
Short Randoa Als*
No Coapass

Fissre &X
Bad Anil* Errors
Loos Raadoa Als*
No Coapass



fosssa:
tplot

fosssa:
tplot

•10 -x- 30 -10 -y 30

Pissro Q2.7
Bad Anslo Errors
Loos Randoa Als*
Daab Coapess 1

Figaro Q28
Bed Angle Errors
Long Randoa Als*
Deab Coapass 2



fossaa:
Tplot

138 -5-=5E=-2!

hits=10/10

) -b -y 20 -*•

fossaa:
tplot

Zuo -io -x- !iU -10 -y 30"

F.gor* 312**
Bad Angl* Errors
Long Randoa Als.
Saart Coapass

Fissre Gl30
Bad Path Errors
Long Randoa Alg.
No Coapass



ERROR BOUNDS USED IN SIMULATION

ABSSKID (meters)

RELSKIO (ra/deg)

ABSANGL (degrees)

RELANGL (unitless)

ABSPATH (meters)

RELPATH (unitless)

MINCURV (meters)

BAD ANGLE
SCENARIO

0.01

3.2001

5.0

0.05

0.003

0.001

30.0

FIGURE R

PERCENTAGE OF HITS

BAD ANGLE ERRORS

BAD PATH
SCENARIO

0.01

0.0001

0.05

0.0005

0.3

0.1

300.0

No Compass Dumb Comp 1 Dumb Comp 2 Smart Comp

Long 60.34X 71.06X 63.71X 100.00X

Short 49.18X 52.12X 40.76X 100.00X

Side 31.55X 32.63X 64.87X 100.00X

Spiral 81.4SX 92.04X 88.03X 100.00X

S. Random 26.62% S5.65X 24.57X 100.00X

L. Random 35.71X 60.52X 36.36X 100.00X

BAD PATH LENGTH ERRORS

No Compass Dumb Comp 1 Dumb Comp 2 Smart Comp

Long 98.81X 100.00X 97.96X 100.00X

Short 99.37X 100.00X 99.8SX 99.81X

Side 99.97X 99.42X 99.45X 98.46X

Spiral 94.13X 97.73X 92.91X 97.80X

S. Random 64.50X 74.14X 61.8SX 71.28X

L. Random 69.58X 76.70X

Figure S

68.61X 76.58X



target.p target.p

program target(input.output);

const pi=3.141592654;
n=650;
radius=0.5;
smoothwt=50.0;
coraperr=0.1;
comptol=0.3;

[requested number of iterations]
[radius of (circular) robot]
[weight factor for non-linearity calculations]
[error of compass, in degrees]
[tolerance of compass, in degrees]

type insptr=~instruction;
instruction=record

rotn,tran:real;
next.insptr
end;

[each of these records ]
[will hold one command ]

[a rotation part, and a]
[translation part. J

[points to record containing present command]
[points to record containing first command]
{becomes true whenever target is hit]
[0=nocomp; 1-dumbcompl; 2=dumbcomp2; 3=smartcomp]
[counts number of hits]

[used as an index in for loops]
[x—coordinate of robot's present position]
[y-coordinate of robot's present position]

[robots present heading, in degrees]
[rotation command, as read from linked list]
[translation command, as read from linked list]

[what the heading should be, according to compass}
[radius of smallest circle robot could travel]

[x-coordinate of target]
[y-coordinate of target]
[maximum value of absolute skid]

[maximum value of relative skid]
[maximum value of absolute angular error]
[maximum value of relative angular error]
[maximum value of absolute path length error]

[maximum value of relative path length error]

target

Tar instrptrrinsptr;
head.insptr;
hit:boolean;
complvl.integer;
count.integer;
i,:integer;
xnotT.real;
ynow:real;
headingnovr:real;
rotncmd.real;
trancmd:real;
storedhdgtreal;
mincurv:real;
xtarget.real;
ytarget:real;
absskid.real;
relskid: real;
absangl.real;
relangl:real;
a bspath: real;
relpath.real;

procedure buildlist;

var r,t:real;
ptninsptn

[this procedure is called only when all]
[that's left in the input file is a list]

[of commands; these are read into a]
[linked list by this procedure.]

buildlist

begin
if eof(input)
then writeln 'no instructions/)
else begin

new(instrptr);
ptr:=instrptr;
repeat

readln(r,t);
new(ptr-\next);
ptr:=ptr**.next;
ptr~.rotn:=r;
ptr-\tran:=t
until eof(input);

ptr~.next:=nil;
instrptr:=instrptr~.next
end

end;

procedure move(mag,dir:real);

May 25 21:35 1981
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target.p target.p

...move

var xnew:real; [x-coordinate of robot's location after move]
ynewrreal; [y-coordinate of robot's location after move]
tempi .real; []
temp2:real; [these are temporary variables]
parm:real; []

begin
xnew.=xnow+(mag *cos(pi Mir/180.0));
ynew:=ynow+(mag «sin(pi •dir/180.0));
if magOO.O
then begin.

if sqr(xnew-xtargeO+sqr(ynew-ytarget)<sqr(radius)
then hit: = true

[the two lines above check to see if the robot has hit the target]
jot the END of the move. The twelve lines below are required to \
[check whether the robot hit (or, rather, grazed) the taraetX
[DURING the move.]

else begin
templ:=(ytarget-ynowWynew-ynow);
temp2:=(xtarget-xnow) *(xnew-xno\r);
parm:=(temp l+temp2)/sqr(mag);
if (0<parm) and (parm<l)
then begin

temp1:=(1—parm) ^cnow+parm ^cnew;
temp2:=(l—parm) Vnow+parm ^new;
if sqr(xtarget-templ)+sqr(ytarget-temp2)<sqr(radius)
then hit:=true
end

end;
xnow:=xne"rr;
ynovr:=yne\r;

if n<21 then writeln(xnoic,ynow);
if hit=true then count:=count+l
end

end;

procedure xeqcmd; Xeqcmd
•ar mag:real; [contains magnitude of "skid' moves]

dir:real; [contains direction of nskid" moves]
incrlengthrreal; [contains length of incremental moves]
distance:real; [contains path length, with errors]
deltahead:real; [contains incremental change in heading]
maxdeltaheadrreal; (contains maximum possible 'deltahead']
incr:integer; [counts the number of incremental moves so far]

begin
rotncmd:=instrptr-. rotn;
trancmd:-=instrptr-\tran;
instrptr:=instrptr*.next;
if rotncmdOO.O
then begin

[here, the robot has been told to rotate, so we calculate and]
[incorporate some errors tied to the rotation. These are the]
[absolute skid, relative skid, absolute angle error, relative]
[angle error, and compass error]

if complvl>l then storedhdg:=storedhdg+rotncmd;
din=360.0 *random(0.0);
mag:=absskid *random(0.0);
move(mag.dir);

May 85 81:35 1981 Page s oftargetp
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...xeqcmd
din=360.0 *random(0.0);
mag:=relskid *rotncmd *random(0.0);
if not(hit) then move(mag.dir);
headingnow:=headingnow+rotncmd *(l+relangl *(random(0.0) *2.0-1.0));
headingnow:=headingnovr+absangl •(random(O.O) ^2.0-1.0);
mag:=(2.0 *random(0.0)-1.0) •comperr;
if complvl=l then storedhdg:=headingnow+mag;
if complvl>l then headingnow:=storedhdg+mag
end;

if trancmd>0
then begin

[here, we calculate the (erroneous) path length, compute the length]
[of the incremental moves to be made, and the worst incremental ]
[changes in heading possible, given 'mincurv' and 'incrlength'. ]

distance: =trancmd *(l+relpath*(random(0.0) *2.0-1.0));
distance: =distance+abspath *(random(0.0) *2.0-1.0);
incrlength:=sqrt(mincurv*trancmd)/60.0;
incr:=l;
maxdeltahead:=(180.0 IncrlengthMpi *mincurv);
deltahead:=maxdeltahead *(random(0.0) «2.0-1.0);
while (incr «mcrlength<distance) and not(hit) do

begin

[in this inner loop we accomplish an incremental move, adjust]
[our heading slightly, and repeat until either the target is ]
[hit, or we've traversed the entire path length of the command.}

move(incrlength,headingnow);
headingno"vr:=headingnow+deltahead;
if (abs(headingnow-storedhdg)>comptol) and ((complvl=l)or(complvl=3))
then headingnow:=storedhdg+(2.0'random(0.0)-1.0) *comperr;
deltahead:=smoothvrt *deltahead+maxdeltahead *(random(0.0) *2.0-1.0);
deltahead:=deltahead/(smoothwt+l.Q);
incr:=incr+l
end;

if not(hit)
then begin [this takes care of the last little fractional piece.]

incrlength:=distance-(incr-1) •incrlength;
move(incrlength.headingnow)
end

end
end;

begin
readln(complvl);
readingabsskid);
readln(relskid);
readln(absangl);
readln(relangl);
readln(abspath);
readln(relpath);
readln(mincurv);
readln(xtarget);
readln(ytarget);
count:=0;
buildlist;
head:=instrptr;
if n<21 then for i:=l to 120 do [this draws the target]
writelnfxtarget+radius *cos(i ♦pi/60)),ytarget+radius*(sin(i*pi/60)));
writeln(xtarget+radius*(cos(pi/60)),ytarget+raddus *(sin(pi/60))/ ,');
for i:=l to n do

begin
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...target
if sqr(xtarget)+sqr(ytarget)<sqr(radius)
then begin

hit:*=true;
count:=count+l
end

else hit:=false;
xnow:=0.0; 4
ynow:=0.0;
headingnow:=90.0;
if complvl>0 then storedhdg:=90.0;
instrptr:=head;
while not(hit) and (instrptrOnil) do xeqcmd; [THE loop.']
if n<2l then writeln(xnow,ynow/ /);
end;

writeln(0.3,-0.9/ hit percentage=',float(count)/float(n):4:2/%')
end.
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